实验设计与数据处理第八章例题及课后习题答案
- 格式:xls
- 大小:31.50 KB
- 文档页数:12
13125916机电硕1308班周晓易1.某工厂进行技术改造,以减少工业酒精中甲醇含量的波动。
原工艺生产的工业酒精中甲醇含量的总体方差为0.35.技术改造后,进行抽样检验,样品数为25个,结果样品甲醇含量的样本方差为0.15。
问技术改造后工业酒精中甲醇含量的波动性是否更小?(α=0.05)答:检验技术改造后工业酒精中甲醇含量的波动性是否更小,要使用χ2单侧(左侧)检验。
已知σ2=0.35,n=25,s2=0.15。
当α=0.05时,χ20.95(24)=CHIINV(0.95,24)=13.848,而χ2=24*0.15/0.35=10.286,χ20.95(24)>χ2,说明技术改革后产品中甲醇含量的波动较之前有显著减少。
2. A与B两人用同一种分析方法测定金属钠中铁的含量,测试结果分别为:A:8.0,8.0,10.0,10.0,6.0,6.0,4.0,6.0,6.0,8.0B:7.5,7.5,4.5,4.0,5.5,8.0,7.5,7.5,5.5,8.0试问A、B二人测定的铁的精密度是否有显著性差异?(α=0.05)解答如图:这里F>1,为右侧检验,这时F 单尾临界值>1,对于右侧检验,如果F<F 单尾临界,或者P(F<=f) 单尾>α,就可以认为第一组数据较第二组数据的方差没有显著增大,否则就认为第一组的数据较第二组的数据的方差有显著增大。
在本例中,由于P>0.05,所以A、B 二人测定的铁的精密度无显著性差异。
3. 用新旧工艺冶炼某种金属材料,分别从两种产品中抽样,测定试样中的杂质含量,结果如下:旧工艺:2.69, 2.28, 2.57, 2.30, 2.23, 2.42, 2.61, 2.64, 2.72, 3.02, 2.45, 2.95, 2.51新工艺:2.26, 2.25, 2.06, 2.35, 2.43, 2.19, 2.06, 2.32, 2.34试问新工艺是否更稳定,并检验两种工艺之间是否存在系统误差?(α=0.05)解答:由于s21<s22,故新工艺比旧工艺更稳定;又因为F<1,所以为左侧检验。
《实验设计与数据处理》大作业班级:姓名:学号:1、用Excel(或Origin)做出下表数据带数据点的折线散点图(1)分别做出加药量和剩余浊度、总氮TN、总磷TP、COD Cr的变化关系图(共四张图,要求它们的格式大小一致,并以两张图并列的形式排版到Word 中,注意调整图形的大小);(2)在一张图中做出加药量和浊度去除率、总氮TN去除率、总磷TP去除率、COD Cr去除率的变化关系折线散点图。
2、对离心泵性能进行测试的实验中,得到流量Q v、压头H和效率η的数据如表所示,绘制离心泵特性曲线。
将扬程曲线和效率曲线均拟合成多项式(要求作双Y轴图)。
流量Qv、压头H和效率η的关系数据序号123456Q v(m3/h) H/m0.015.000.414.840.814.561.214.331.613.962.013.65η0.00.0850.1560.2240.2770.333序号789101112Q v(m3/h) H/mη2.413.280.3852.812.810.4163.212.450.4463.611.980.4684.011.300.4694.410.530.4313、用分光光度法测定水中染料活性艳红(X-3B)浓度,测得的工作曲线和样品溶液的数据如下表:(1)列出一元线性回归方程,求出相关系数,并绘制出工作曲线图。
(2)求出未知液(样品)的活性艳红(X-3B)浓度。
4、对某矿中的13个相邻矿点的某种伴生金属含量进行测定,得到如下一组数据:试找出某伴生金属c与含量距离x之间的关系(要求有分析过程、计算表格以及回归图形)。
提示:⑴作实验点的散点图,分析c~x之间可能的函数关系,如对数函数y=a+blgx、双曲函数(1/y)=a+(b/x)或幂函数y=dx b等;⑵对各函数关系分别建立数学模型逐步讨论,即分别将非线性关系转化成线性模型进行回归分析,分析相关系数:如果R≦0.553,则建立的回归方程无意义,否则选取标准差SD最小(或R最大)的一种模型作为某伴生金属c与含量距离x之间经验公式。
试验设计与数据处理》第三章:统计推断3- 13解:取假设HO : u1-u2w 0和假设H1: u1-u2 > 0用sas 分析结果如下:Sample StatisticsGroupNMeanStd. Dev.Std. Errorx8 0.231875 0.0146 0.0051 y100.20970.00970.0031Hypothesis TestNull hypothesis:Mean 1 - Mean 2 = 0Alternative:Mean 1 - Mean 2 A= 0If Varianees Aret statistie DfPr > tEqual3.878 16 0.0013 Not Equal3.70411.670.0032由此可见p 值远小于0.05,可认为拒绝原假设,即认为2个作家所写的小品文中 由 3 个字母组成的词的比例均值差异显著。
3-14解:用sas 分析如下: Hypothesis TestNull hypothesis: Variance 1 / Variance 2 = 1 Alternative:Varia nee 1 / Varia nee 2 A = 1- Degrees of Freedom -FNumer. Denom.Pr > F第四章:方差分析和协方差分析4- 1 解:Sas 分析结果如下:Dependent Variable: ySum ofSouree DF Squares Mean Square F Value Pr > F Model 41480.823000370.20575040.88<.00012.27 7 由p 值为0.2501 > 0.05 (显著性水平) 9 0.2501,所以接受原假设, 两方差无显著差异Source DF Type I SS Mean Square F ValuePr > F m 2 44.33333333 22.16666667 4.09 0.0442 n 3 11.50000000 3.83333333 0.71 0.5657 m*n627.000000004.500000000.830.5684Source DF Type III SS Mean Square F ValuePr > F m 2 44.33333333 22.16666667 4.09 0.0442 n 3 11.50000000 3.83333333 0.71 0.5657 m*n 627.000000004.500000000.830.5684由结果可知, 在不同浓度下得率有显著差异, 在不同温度下得率差异不明显, 交 互作用的效应不显著。
水平号12345678序号AB112478224857336336448715551284663663775142887521y5.86.34.95.444.533.6SUMMARY OUTPU回归统计Multiple R 0.99970596265R Square 0.99941201175Adjusted R Sq 0.99917681646标准误差0.03240370349190230180220170210137.5138138138.5139139.5140底水量(x 1)/g 2202302404.0,4.5,3.0,3.6。
已知试验指标与两因素之间成二元线性关系,试用回归分析法139.5140吸氨时间(x 2)/min 136.5137吸氨时间(x 2)/min 选用均匀表U 8*(85)安排实验,8个试验结果(吸氨量/g)依次为:5.8,6.3,4.9,5.4,出较好工艺条件,并预测该条件下相应的吸氨量。
138.5139170180190200210137240第七章 均匀设计1、在啤酒生产的某项工艺实验中,选取了底水量(A)和吸氨时间(B)两个因素都取了8个水平,进行试验设计,因素水平如下。
试验指标为吸氨量,越大越好。
137.5回归方程模型为y =a+b 1x 1+b 2x 2136.5200底水量(x 1)/g观测值8方差分析dfSS MS F Significance F 回归分析28.9235 4.461754249.285714288.38342726421残差50.005250000000.00105总计78.92875Coefficients 标准误差t Stat P-value Lower 95%Intercept 96.52583333331.4768020536165.36138888561.5871169308092.7295928008底水量(x1)/-0.69666666660.010********-66.7626010421.42755955001-0.7234906467吸氨时间(x2)0.021*********.0005217491941.84641500741.470141026900.020********RESIDUAL OUTP 观测值预测 y 残差15.797500000000.0024999999926.32250000000-0.022******** 4.88250.017499999994 5.4075-0.00750000005 3.967500000000.032499999996 4.49250.007500000007 3.0525-0.052500000083.577500000000.022********观测值预测 y15.7975000000026.322500000003 4.88254 5.40755 3.967500000006 4.49257 3.052583.57750000000R=0.99 和Significance F=8.38342726421806E-09<0.01,说明该回归方程非常显y=96.5-0.70X 1+0.02X 2个因素,越好。
《试验设计与数据处理》专业:机械工程班级:机械11级专硕学号:S110805035 姓名:赵龙第三章:统计推断3-13 解:取假设H0:u1-u2≤0和假设H1:u1-u2>0用sas分析结果如下:Sample StatisticsGroup N Mean Std. Dev. Std. Error----------------------------------------------------x 8 0.231875 0.0146 0.0051y 10 0.2097 0.0097 0.0031Hypothesis TestNull hypothesis: Mean 1 - Mean 2 = 0Alternative: Mean 1 - Mean 2 ^= 0If Variances Are t statistic Df Pr > t----------------------------------------------------Equal 3.878 16 0.0013Not Equal 3.704 11.67 0.0032由此可见p值远小于0.05,可认为拒绝原假设,即认为2个作家所写的小品文中由3个字母组成的词的比例均值差异显著。
3-14 解:用sas分析如下:Hypothesis TestNull hypothesis: Variance 1 / Variance 2 = 1Alternative: Variance 1 / Variance 2 ^= 1- Degrees of Freedom -F Numer. Denom. Pr > F----------------------------------------------2.27 7 9 0.2501由p值为0.2501>0.05(显著性水平),所以接受原假设,两方差无显著差异第四章:方差分析和协方差分析4-1 解:Sas分析结果如下:Dependent Variable: ySum ofSource DF Squares Mean Square F Value Pr > FModel 4 1480.823000 370.205750 40.88 <.0001Error 15 135.822500 9.054833Corrected Total 19 1616.645500R-Square Coeff Var Root MSE y Mean0.915985 13.12023 3.009125 22.93500Source DF Anova SS Mean Square F Value Pr > Fc 4 1480.823000 370.205750 40.88 <.0001由结果可知,p值小于0.001,故可认为在水平a=0.05下,这些百分比的均值有显著差异。
试验设计与数据处理学院班级学号学生姓名指导老师第一章4、 相对误差18.20.1%0.0182x mg mg ∆=⨯=故100g 中维生素C 的质量范围为:±。
5、1)、压力表的精度为级,量程为,则 max 0.2 1.5%0.003330.3758R x MPa KPa x E x ∆=⨯==∆===2)、1mm 的汞柱代表的大气压为,所以max 20.1330.133 1.6625108R x KPax E x -∆=∆===⨯ 3)、1mm 水柱代表的大气压为gh ρ,其中29.8/g m s = 则:3max 339.8109.810 1.225108R x KPax E x ---∆=⨯∆⨯===⨯ 6.样本测定值算数平均值 几何平均值 调和平均值 标准差s 标准差σ 样本方差S 2 总体方差σ2算术平均误差△极差R7、S2=,S2= F =S2/ S2== 而F ()=,= 所以F ()< F <两个人测量值没有显着性差异,即两个人的测量方法的精密度没有显着性差异。
|||69.947|7.747 6.06ppd x =-=>分析人员A分析人员B8样本方差18样本方差210Fa值104F值668470566888.旧工艺新工艺%%%%%%%%%%%%%%%%%%%%%%t-检验: 双样本异方差假设变量1变量2平均方差观测值139假设平均差0df8t Stat-38.P(T<=t) 单尾0t 单尾临界P(T<=t) 双尾0t 双尾临界F-检验双样本方差分析变量 1变量 2平均 方差 观测值 13 9 df 128FP(F<=f) 单尾 0 F 单尾临界9. 检验新方法是否可行,即检验新方法是否有系统误差,这里采用秩和检验。
求出各数据的秩,如下表所示:1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17此时对于 α =,查临界值表得:T1=66,T2=102。
实验设计与数据处理(第二版部分答案)试验设计与数据处理学院班级学号学生姓名指导老师第一章4、相对误差18.20.1%0.0182x mg mg ∆=⨯=故100g 中维生素C 的质量范围为:18.2±0.0182mg 。
5、1)、压力表的精度为1.5级,量程为0.2MPa ,则 max 0.2 1.5%0.003330.3758R x MPa KPax E x ∆=⨯==∆=== 2)、1mm 的汞柱代表的大气压为0.133KPa , 所以max 20.1330.1331.6625108R x KPax E x -∆=∆===⨯ 3)、1mm 水柱代表的大气压为gh ρ,其中29.8/g m s = 则:3max 339.8109.810 1.225108R x KPax E x ---∆=⨯∆⨯===⨯ 6.样本测定值3.48 算数平均值 3.421666667 3.37 几何平均值 3.421406894 3.47 调和平均值 3.421147559 3.38 标准差s 0.046224092 3.4 标准差σ 0.04219663 3.43 样本方差S 2 0.002136667总体方差σ20.001780556算术平均误差△ 0.038333333 极差R 0.117、S ₁²=3.733,S ₂²=2.303F =S ₁²/ S ₂²=3.733/2.303=1.62123而F 0.975 (9.9)=0.248386,F 0.025(9.9)=4.025994 所以F 0.975 (9.9)< F <F 0.025(9.9)两个人测量值没有显著性差异,即两个人的测量方法的精密度没有显著性差异。
分析人员A分析人员B8 7.5 样本方差1 3.733333 8 7.5 样本方差2 2.302778 10 4.5 Fa 值 0.248386 4.025994104F 值1.62123|||69.947|7.747 6.06p pd x =-=>6 5.56 84 7056 7.56 5.58 88.旧工艺新工艺2.69% 2.62%2.28% 2.25%2.57% 2.06%2.30% 2.35%2.23% 2.43%2.42% 2.19%2.61% 2.06%2.64% 2.32%2.72% 2.34%3.02%2.45%2.95%2.51%t-检验: 双样本异方差假设变量 1 变量 2平均0.025684615 2.291111111 方差0.000005861 0.031611111 观测值13 9 假设平均差0df 8t Stat -38.22288611P(T<=t) 单尾0t 单尾临界 1.859548033P(T<=t) 双尾0t 双尾临界 2.306004133F-检验双样本方差分析变量 1 变量 2平均0.025684615 2.291111111 方差0.000005861 0.031611111 观测值13 9 df 12 8 F 0.000185422P(F<=f) 单尾0F 单尾临界0.3510539349. 检验新方法是否可行,即检验新方法是否有系统误差,这里采用秩和检验。