圆的期末复习检测试题
- 格式:doc
- 大小:351.50 KB
- 文档页数:6
直线、圆与方程(基础练习)1.圆22(4)9x y -+=和圆22(3)4x y +-=的位置关系是( )A .外切B .内切C .外离D .内含2.方程220x y x y m +-++=表示圆则m 的取值范围是 ( )A . m ≤2B . m<2C . m<21D . m ≤21 3.已知直线:20l ax y a +--=在x 轴和y 轴上的截距相等,则a 的值是( )A .1B .-1C .-2或-1D .-2或14.已知P (3,2)与Q (1,4)关于直线l 对称,则直线l 的方程为 .5.圆222410x y x y ++-+=关于直线10ax y ++=对称,则a = .6. 两条平行线011801243=++=-+y ax y x 与间的距离为____________7.已知空间中A (6, 0, 1),B (3, 5, 7),则A 、B 两点间的距离为 .8.已知点A (﹣2,4),B (4,2),直线:80l ax y a -+-=,若直线与直线AB 平行,则a = .9.直线l 过点(1,2)-且与直线2340x y -+=垂直,则l 的方程是___________10.直线(2)10m x y -++=与直线(2)(2)20m x m y +---=相互垂直,则m = .11.点P(x,y)在直线02=+-y x 上,则22y x +的最小值为___________12.直线0)11()3()12(=--++-a y a x a 经过的定点坐标为__________13. 设P 是圆22(3)(1)4x y -++=上的动点,Q 是直线3x =-上的动点,则PQ 的最小值为___________14.已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,求圆C 的方程15.求以点(2,-1)为圆心且与直线x+y =6相切的圆的方程.16.在圆22260x y x y +--=内,求过点()0,1E 的最长弦和最短弦的长度17.求过原点且倾斜角为60︒的直线被圆2240x y y +-=所截得的弦长18.过点(-1,2)的直线l 被圆222210x y x y +--+=截得的弦长为2,则直线l 的斜率为__________.19.三角形的三个顶点是(4,0)A ,(2,4)B ,(0,3)C .(1)求AB 边的中线所在直线1l 的方程; (2)求AC 边的中垂线方程.(3)求过A 、B 、C 三点的圆的方程.20.过直线x+y-=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是 60°,求点P 的坐标.(巩固提高)1.已知△ABC 中,A(0,1),B(1,0),且|AB|=|BC|,求第三个顶点C 的轨迹方程.2.已知直线063:=-+y x l 和圆C :04222=--+y y x ,判断直线和圆的位置关系.若相交,求直线被圆截得的弦长;若直线与圆相离,求圆心到直线的距离.3.已知圆C :(x-1)2+y 2=9内一点P(2,2),过点P 作直线l 交圆C 于A ,B 两点.(1)当弦AB 被点P 平分时,写出直线l 的方程;(2)当直线l 的倾斜角为45°时,求弦AB 的长.4.已知圆C的方程为x2+(y-4)2=4,直线l:y=kx与圆C交于M,N两点,求k的取值范围.5.已知过点(3,3)M--的直线l被圆224210x y y++-=所截得的弦长为45,求直线l的方程.6.已知线段AB的端点B的坐标是(4,3),端点A在圆22++=上运动,x y(1)4求线段AB的中点M的轨迹方程.解:设点M的坐标是(,)x y,则7.已知圆C过点(2,1),圆心在直线y=2x上,且和圆x2+(y-4)2=4相外切,求圆C的方程.8.等腰梯形ABCD的底边AB和CD长分别为6和26,高为3. 求这个等腰梯形的外接圆E的方程40km 9.已知在A市正东方向300km的B处有一台风中心形成,并以每小时2100km以内的地区将受的速度向西北方向(北偏西45°)移动,在距台风中心5其影响,问从现在起经过多长时间,台风将影响A市?持续时间多长?10.已知一圆C 的圆心为(2,-1),且该圆被直线l :x-y-1=0 截得的弦长为22,(1)求该圆的方程;(2)求过点P (0,3)的该圆的切线方程;(3)设问(2)中的切点为A ,B ,求过A 、B 、C 的圆的方程;(4)求切点弦AB 的方程.11.已知圆C :04514422=+--+y x y x 及点)3,2(-Q(1)P(a,a +1)在圆上,求线段PQ 的长及直线PQ 的斜率;(2)若P 为圆C 上任一点,求|PQ|的最大值和最小值;(3)若N(m,n)在圆C 上,23+-=m n k ,求k 的最大值和最小值.。
期末复习4(22.圆解答题)例题:在△ABC 中,90︒∠=C ,以边AB 上一点O 为圆心,OA 为半径的圈与BC 相切于点D ,分别交AB ,AC 于点E ,F (I )如图①,连接AD ,若25CAD ︒∠=,求∠B 的大小;(Ⅱ)如图②,若点F 为AD 的中点,O 的半径为2,求AB 的长.1.在ABC 中,90B ∠=︒,D 为AC 上一点,以CD 为直径的O 与AB 相切于点E ,与BC 相交于点F ,连接CE .(Ⅰ)如图①,若27ACE ∠=︒,求A ∠和ECB ∠的大小; (Ⅱ)如图②,连接EF ,若//EF AC ,求A ∠的大小.2.如图,AB是O的直径,点C是O上一点,BAC∠的平分线AD交O于点D,过点⊥交AC的延长线于点E.(1)求证:DE是O的切线;D作DE AC(2)如果60BAC∠=︒,43AE=,求AC长.⊥.AB是O的弦,AC交O于点D,且D为AC的中点,3.已知在ABC中,BC AB∠的大小;延长CB交O于点E,连接AE.(Ⅰ)如图①,若50∠=,求EACE︒(Ⅱ)如图②,过点E作O切线,交AC的延长线于点F.若2CF CD=,求CAB∠大小.4.已知⊙O 是ABC ∆的外接圆, 过点A 作⊙O 的切线, 与CO 的延长线交于点P ,CP 与⊙O 交于点D .(1)如图①, 若ABC ∆为等边三角形, 求P ∠的大小;(2)如图②, 连接AD , 若PD AD =, 求ABC ∠的大小.5.己知AB 是O 的直径,C 为O 上一点,58OAC ∠=︒.(Ⅰ)如图①,过点C 作O 的切线,与BA 的延长线交于点P ,求P ∠的大小;(Ⅱ)如图②,P 为AB 上一点,CP 延长线与O 交于点Q .若AQ CQ =,求APC ∠的大小.6.如图,在⊙O中,点C为AB的中点,∠ACB=120°,OC的延长线与AD交于点D,且∠D=∠B.(1)求证:AD与⊙O相切;(2)若CE=4,求弦AB的长.7.已知⊙O中,AC为直径,MA、MB分别切⊙O于点A、B.(Ⅰ)如图①,若∠BAC=250,求∠AMB的大小;(Ⅱ)如图②,过点B作BD⊥AC于点E,交⊙O于点D,若BD=MA,求∠AMB的大小.8.如图,AB为O的直径,E为O上一点,点C为BE的中点,过点C作直线CD垂直直线AE,垂足为D.(1)求证:DC为O的切线;(2)若AB=4,∠CAD=30°,求AC.参考答案1.(Ⅰ)36A ∠=︒;27ECB ∠=︒;(Ⅱ)30°【来源】2021年天津市红桥区九年级下学期二模数学试卷【分析】(Ⅰ)连接OE ,由切线的性质,等腰三角形的性质,即可求出答案;;(Ⅱ)连接OE ,OF ,证明四边形OEFC 为平行四边形,根据平行四边形的性质,即可求出答案.【详解】解:(Ⅰ)如图,连接OE .∵AB 与O 相切,∴OE AB ⊥,即90AEO ∠=︒.∵27ACE ∠=︒,∴254AOE ACE ∠=∠=︒.∴9036A AOE ∠=︒-∠=︒.∵OE OC =,∴OEC OCE ∠=∠.∵90B ∠=︒,∴//OE BC .∴ECB OEC ∠=∠.∴27ECB ∠=︒.(Ⅱ)如图,连接OE ,OF .∵,OE BC EF AC ∥∥,∴四边形OEFC 为平行四边形.∴OE CF =.∴OC OF CF ==.∴60ACB ∠=︒.∴9030A ACB ∠=︒-∠=︒.【点睛】本题考查了圆的切线的性质,等腰三角形的性质,平行四边形的判定和性质,余角的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线进行解题.2.(1)见解析;(283 【来源】2020年天津市河北区九年级二模数学试题【分析】(1)连接OD ,证OD ∥AE ,由已知DE ⊥AE ,得出DE ⊥OD ,即可得出结论;(2)作OF ⊥AC 于F ,则四边形ODEF 为矩形,得出OF=DE ,证∠DAE=30°,求出DE=4,则OF=DE=4,由三角函数定义求出43,即可得出答案. 【详解】解:(1)证明:连接OD ,如图,BAC ∠的平分线AD 交O 于点D ,BAD DAC ∴∠=∠,OA OD =,OAD ODA ∠=∠∴,ODA DAC ∴∠=∠,//OD AE ∴,DE AE ⊥,DE OD ∴⊥,OD 为半径,DE ∴是O 的切线;(2)作OF AC ⊥于F60BAC ∠=︒,30DAE ∴∠=︒,在Rt ADE ∆中,tan304DE AE =⋅︒=四边形ODEF 为矩形,4OF DE ∴==,在Rt OAF ∆中,60OAF ∠=︒AF ∴=2AC AF ∴==【点睛】本题考查了切线的判定与性质、角平分线定义、垂径定理、等腰三角形的性质、平行线的判定与性质、矩形的判定与性质、三角函数定义等知识;熟练掌握切线的判定和垂径定理是解题的关键.3.(Ⅰ)65EAC ︒∠=;(Ⅱ)30CAB ︒∠=.【来源】2020年天津市和平区中考三模数学试题【分析】(1)连接ED ,由∠ABE=90°可得AE 是⊙O 的直径,根据圆周角定理可得∠ADE=∠ABE=90°,由于AD=DC ,根据垂直平分线的性质可得AE=CE ,则∠AED=∠CED=25°,则在直角三角形AED 中,可求得∠EAD 的度数;(2)首先证明三角形AEC 是等边三角形,由于AB ⊥CE ,则易求出∠CAB 的度数.【详解】解:(Ⅰ)连接DE .BC AB ⊥,延长CB 交O 于点E ,90ABE ︒∴∠=.AE ∴为O 的直径.90ADE ︒∴∠=.又D 为AC 的中点,DE ∴垂直平分AC .AE CE ∴=.11502522AED CED AEC ︒︒∴∠=∠=∠=⨯=.90902565EAC AED ︒︒︒︒∴∠=-∠=-=.(Ⅱ)EF 是O 的切线,又由(Ⅰ)得AE 为O 的直径,EF AE ∴⊥.90AEF ︒∴∠=. D 为AC 的中点,2AC CD ∴=.2CF CD =,AC CF ∴=.12CE AF AC ∴==.又由(Ⅰ)得AE CE =,AE CE AC ∴==.ACE ∴是等边三角形.60EAC ︒∴∠=.又BC AB ⊥,1302CAB EAC ︒∴∠=∠=.【点睛】本题主要考查了圆周角定理、切线的判定与性质、垂直平分线的性质的性质等知识. 4.(1)30︒;(2)60︒【来源】2020天津市西青区二模数学试题【分析】(1)连接AO ,根据ABC ∆为等边三角形得到60ABC ∠=,根据圆周角定理得到2120AOC ABC ∠=∠=,进而求得60AOP ∠=,再由切线的性质的PAO 90∠=,然后根据三角形内角和得到结果.(2))连接AO ,由已知条件证的2∠=∠OAD PAD ,根据切线的性质推出30PAD ∠=,进而求得答案.【详解】(1)连接AOABC ∆∴为等边三角形;60ABC ∴∠=;2120AOC ABC ∴∠=∠=;180AOC AOP ∴∠+∠=;60AOP ∴∠=; PA 为O 的切线,A 为切点;PA AO ∴⊥;即PAO 90∠=;90P AOP ∴∠+∠=;90906030P AOP ∴∠=-∠=-=;(2)连接AO=;PD AD∴∠=∠;P PAD=;OA OD∴∠=∠;ADO OAD∠=∠+∠=∠;ADO P PAD PAD2∴∠=∠;2OAD PADPA为O的切线,A为切点;∴⊥;PA AO即PAO90∠=;PAD OAD∴∠+∠=;90∴∠+∠=;PAD PAD290∴∠=;PAD30∴∠=∠=;260ADO PAD即ADC60∠=;∴∠=∠=;60ABC ADC【点睛】本题主要考查了切线的性质应用,结合了三角形的内角和、外角定理等知识点的考查. 5.(I)26︒(II)48︒【来源】天津市河北区2019-2020学年九年级下学期线上测试数学试题【分析】(I)根据等腰三角形中有一底角为58度时,可得∠COA=64︒,根据切线的性质得出∠OCP=90︒,进而求得∠P的度数;(II)先由(I)知∠AOC=64︒,根据圆周角定理得∠Q=1∠AOC=32︒,根据等腰三角2形的性质和三角形内角和定理得∠QAC=∠QCA=74︒,最后由三角形外角的性质可得结论.【详解】(I)∵OA=OC,∠OAC=58︒,∴∠OCA=58︒∴∠COA=180︒−2×58︒=64︒∵PC是⊙O的切线,∴∠OCP=90︒,∴∠P=90︒−64︒=26︒;(II)∵∠AOC=64︒,∠AOC=32︒,∴∠Q=12∵AQ=CQ,∴∠QAC=∠QCA=74︒,∵∠OCA=58︒,∴∠PCO=74︒−58︒=16︒,∵∠AOC=∠QCO+∠APC,∴∠APC=64︒−16︒=48︒.【点睛】本题主要考查的是切线的性质、等腰三角形的性质、三角形的外角的性质、三角形的内角和定理,熟练掌握这些性质是解题的关键.6.(1)见解析;(2)83【来源】天津市河西区2019-2020学年九年级下学期线上结果检测数学试题【分析】(1)连接OA,由=CA CB,得CA=CB,根据题意可得出∠O=60°,从而得出∠OAD=90°,则AD与⊙O相切;(2)由题意得OC⊥AB,Rt△BCE中,由三角函数得BE=43,即可得出AB的长.【详解】(1)证明:如图,连接OA,∵=CA CB,∴CA=CB,又∵∠ACB=120°,∴∠B=30°,∴∠O=2∠B=60°,∵∠D=∠B=30°,∴∠OAD=180°﹣(∠O+∠D)=90°,∴AD与⊙O相切;(2)∵∠O=60°,OA=OC,∴△OAC是等边三角形,∴∠ACO=60°,∵∠ACB=120°,∴∠ACB=2∠ACO,AC=BC,∴OC⊥AB,AB=2BE,∵CE=4,∠B=30°,∴BC=2CE=8,∴BE2CE∴AB=2BE=∴弦AB的长为【点睛】本题考查了切线的判定和性质,垂径定理,解直角三角形,熟练掌握切线的判定和性质是解题的关键.7.(Ⅰ)50°;(Ⅱ)60°【来源】2021年天津市南开区中考三模数学试卷【分析】(Ⅰ)由AM与圆O相切,根据切线的性质得到AM垂直于AC,可得出∠MAC为直角,再由∠BAC的度数,用∠MAC-∠BAC求出∠MAB的度数,又MA,MB为圆O的切线,根据切线长定理得到MA=MB,利用等边对等角可得出∠MAB=∠MBA,由底角的度数,利用三角形的内角和定理即可求出∠AMB的度数.(Ⅱ)连接AB,AD,由直径AC垂直于弦BD,根据垂径定理得到A为优弧BAD 的中点,根据等弧对等弦可得出AB=AD,由AM为圆O的切线,得到AM垂直于AC,又BD 垂直于AC,根据垂直于同一条直线的两直线平行可得出BD平行于AM,又BD=AM,利用一组对边平行且相等的四边形为平行四边形得到ADBM为平行四边形,再由邻边MA=MB,得到ADBM为菱形,根据菱形的邻边相等可得出BD=AD,进而得到AB=AD=BD,即△ABD为等边三角形,根据等边三角形的性质得到∠D为60°,再利用菱形的对角相等可得出∠AMB=∠D=60°.【详解】解:(Ⅰ)∵MA切⊙O于点A,∴∠MAC=90°.又∠BAC=25°,∴∠MAB=∠MAC-∠BAC=65°.∵MA、MB分别切⊙O于点A、B,∴MA=MB.∴∠MAB=∠MBA.∴∠AMB=180°-(∠MAB+∠MBA)=50°.(Ⅱ)如图,连接AD、AB,∵MA⊥AC,又BD⊥AC,∴BD∥MA.又∵BD=MA,∴四边形MADB是平行四边形.又∵MA=MB,∴四边形MADB是菱形.∴AD=BD.又∵AC为直径,AC⊥BD,∴AB =" AD" .∴AB=AD=BD.∴△ABD是等边三角形.∴∠D=60°.∴在菱形MADB中,∠AMB=∠D=60°【点睛】此题考查了切线的性质,圆周角定理,弦、弧及圆心角之间的关系,菱形的判定与性质,等腰三角形的判定与性质,切线长定理,以及等边三角形的判定与性质,熟练掌握性质及定理是解本题的关键.8.(1)见解析;(2)23AC=.【来源】湖南省长沙市长沙县2020-2021学年九年级上学期期末数学试题【分析】(1)利用在同一个圆中等弧对等角得出∠BAC=∠CAD,根据等腰三角形的性质、等量代换以及平行线的判定得到AD∥OC,再根据垂线的性质可以证明出OC⊥DC,根据切线的判定即可得出结论;(2)求AC可以放在Rt AOF中,结合(1)的结论以及利用勾股定理求解即可.【详解】(1)连接OC,则:∵点C为BE的中点∴CE CB=∴∠BAC=∠CAD∴OA=OC∴∠BAC=∠OCA∴∠CAD=∠OCA∴AD∥OC∵AD⊥DC∴∠ADC =90°∴∠OCD =90°∴OC ⊥DC又OC 是O 的半径∴DC 为O 的切线;(2)过点O 作AC 的垂线交于点F ,OA OC =,AOC ∴为等腰三角形, 12AF AC ∴=, AB =4,∠CAD =30°,122AO AC ∴==, 由(1)知30DAC CAB ∠=∠=︒, 112OF AO ∴==, 在Rt AOF 中,223AF AO OF ∴- 223AC AF ∴==3∴=AC 【点睛】本题考查了圆的切线、等弧对等角、平行线的判定及性质、勾股定理、等腰三角形的判定及性质,解题的关键是掌握相关知识点、添加适当辅助线进行解答.。
人教版小学数学精品资料五、圆(马铁汉)一、认识圆1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母O 表示。
它到圆上任意一点的距离都相等.3、半径:连接圆心到圆上任意一点的线段叫做半径。
一般用字母r 表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d 表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,无数条直径。
所有的半径都相等,所有的直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的21。
用字母表示为:d =2r 或r =2d 8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。
(经过圆心的任意一条直线或直径所在的直线)9、长方形、正方形和圆都是对称图形,都有对称轴。
这些图形都是轴对称图形。
10、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:长方形只有3条对称轴的图形是:等边三角形只有4条对称轴的图形是:正方形; 有无数条对称轴的图形是:圆、圆环。
二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。
用字母C 表示。
2、圆周率实验:在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。
发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。
3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母π(pai)表示。
(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。
圆周率π是一个无限不循环小数。
在计算时,一般取π≈ 3.14。
(2)、在判断时,圆周长与它直径的比值是π倍,而不是 3.14倍。
(3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
沪教版六年级上册第4章《圆和扇形》压轴题专练1.如图,圆A的半径为圆B半径的13,圆A从图上所示位置出发,沿着圆B滚动,那么至少要滚动多少圈才能回到原处?2.地球的赤道是个近似的圆形,赤道的半径约6378.2千米,假设有一根绳子沿地球赤道贴紧地面绕一周,现在将绳子增加6.28米,使绳子与地面之间有均匀的缝隙,请问缝隙有多宽?一只高4厘米的蜗牛能否从该缝隙间爬过?( 取3.14)3.有一只狗被系在一建筑物的墙角上,这个建筑物是边长6米的等边三角形,绳长是8米.当绳被狗拉紧时,狗运动后所围成的图形的总周长为多少米?4.如图,小明同学分别以同一个含45°角的三角板的两个锐角顶点为圆心,以一条直角边的长为半径画弧,求这两段弧AD与AE的长的比.5.下图中,五个正方形的边长均为l,那么其中阴影部分的周长相等的图形是哪些?6.两枚如图放置的同样大小的硬币,其中一枚固定另一枚沿其周围滚动.滚动时,两枚硬币总是保持有一点相触,这在几何学上叫做相切.当滚动的一枚硬币沿固定的一枚硬币周围滚过一圈回到原来的位置时,滚动的那枚硬币自转了多少周?7.如图所示的阴影部分分别为三种标点符号:句号、逗号和问号.已知大圆半径为R,小圆半径为r,且R = 2r.哪一个标点符号的面积最小?8.如图,A与B是两个圆的圆心,那么两个阴影部分的面积相差______平方厘米.( 取3.14)9.如图是对称图形,红色部分的面积大还是蓝色部分的面积大?10.如图,扇形AOB为14个圆,半径为4厘米,以它的两条半径为直径,在扇形内部画两个半圆,求阴影部分的面积.11.正方形的边长为8厘米,一个半径为1厘米的圆沿着正方形的四边内侧滚动一周,求圆滚过的面积.12.如图,小正方形的边长4厘米,大正方形边长6厘米,DBE∆的面积为3.2平方厘米,求阴影部分的面积.13.如图,ABC∆顺时针旋转∆是一个等腰直角三角形,直角边的长度是1米,现在以C点为圆心,把ABC90°,求AB边在旋转时扫过的面积.。
2019年秋学期六年级数学上册期末复习《圆》综合测试卷一、选择题1.贝贝家圆桌直径为1m,现在要给它铺上台布,尺寸为()的台布比较合适.A.100cm×80cmB.120cm×80cmC.80cm×80cmD.120cm×120cm2.在推导圆的面积公式时,把一个圆分成若干等份后,拼成一个近似长方形,这个长方形的长是()。
A.圆的半径B.圆的直径C.圆的周长D.圆周长的一半3.任何圆的周长总是等于它的直径的()A.3倍B.3.14倍C.3.1415926倍D. 倍4.一个半圆形,半径为r,它的周长为()A.B.πr C.πr+2r D.π+r5.一个圆,半径扩大2倍,那么周长()A.不变B.也扩大2倍C.扩大4倍二、填空题6.下图的周长是厘米面积是平方厘米7.如下图,先将一个圆形纸片平均分成16份,再将每份剪下后拼成一个近似的长方形,已知长方形的长为6.28cm,这个圆形纸片的面积是()cm2。
8.用一根长4米的绳子画一个最大的圆,这个圆的半径()米,周长()米,面积()平方米。
9.一个半径为3分米的圆从左侧墙沿直线滚到右侧墙,滚动了2圈(如图),那两墙之间相距()米.10.一个挂钟的时针长5厘米,一昼夜这根时针的尖端走了()米。
11.大圆半径是小圆半径的4倍,大圆周长是小圆周长的()倍,小圆面积是大圆面积的()。
12.周长相等的正方形、长方形和圆形,的面积最大,面积最小.13.从一块周长为40分米的正方形铁皮上,要剪下一个最大的圆,这个圆的直径是分米.14.圆规两脚间的距离是3厘米,画出的圆的直径是厘米,周长是厘米,圆的面积是平方厘米.15.一个车轮的直径是70厘米,车轮转动一周大约前进米.三、解答题16.下图池塘的周长251.2米,池塘周围(阴影)是一条5米宽的水泥路,在路的外侧围一圈栏杆。
水泥路的面积是多少?栏杆长多少米?17.求如图中阴影部分的周长和面积.(单位:厘米)18.已知图中圆的面积是28.26平方厘米,那么正方形的面积是多少平方厘米?19.一辆汽车的轮胎直径是0.8米,如果车轮每分钟转500圈,4分钟后,汽车前进了多少米?20.一个运动场的两端都是半圆形,中间是一个边长是40米的正方形(如图).(1)小明每天要沿着这个运动场周围跑5圈,他每天跑多少米?(2)这个运动场占地面积是多少平方米?四、判断题21.因为直径是半径的2倍,所以半径扩大3倍,直径就扩大6倍.()22.圆的半径决定圆的大小,圆心决定圆的位置.()23.半径2厘米的圆,它的周长和面积相等.(判断对错)24.直径大的圆周长大,直径小的圆周长小..(判断对错)25.两个圆的面积相等,则两个圆的周长一定相等..(判断对错)参数答案1.D【解析】1.试题分析:求给圆桌铺上台布,尺寸为多少的台布比较合适,就是比较它的边长,只要桌布的两条边都比圆桌的直径大即可,圆桌直径1米,说明台布的边长至少要1米×1米,才能刚好遮住.解:贝贝家圆桌直径为1m,现在要给它铺上台布,尺寸为120cm×120cm的台布比较合;故选:D.2.D【解析】2.解:在推导圆的面积公式时,把一个圆分成若干等份后,拼成一个近似的长方形,这个长方形的长是圆周长的一半。
第二十四章圆期末专项复习一.单选题1.如图,AB是⊙O的直径,C、D是⊙O上的两点,若∠CDB=30°,BC=4.5,则AB的长度为()A.12B.9C.6D.32.如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D,下列结论不一定成立的是()A.PA=PB B.∠BPD=∠APD C.AB⊥PD D.AB平分PD3.如图,AB为⊙O直径,已知为∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°的长为()4.如图,AB是⊙O的直径,C是⊙O上一点,连接AC,OC,若AB=6,∠A=30°,则BCA.6πB.2πC.32πD.π5.往直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=8cm,则水的最大深度为()A.1cm B.2cm C.3cm D.4cm6.如图,已知⊙O上三点A,B,C,半径OC=2,∠ABC=30°,切线PA交OC延长线于点P,则OP的长为()A.4B.23C.22D.2上,且不与点B,D重合),且∠ACB=∠ABD=45°,若7.如图,点C为△ABD外接圆上的一点(点C不在BADBC=8,CD=4,则AC的长为()A.8.5B.43C.1−a a=−2+432D.628.如图,菱形ABCD的边长为2,∠A=60°,以点B为圆心的圆与AD、DC相切,与AB、CB的延长线分别相交于点E、F,则图中阴影部分的面积为()A.3+π2B.3+πC.3﹣π2D.23+π2二.填空题9.如图,在等边三角形ABC中,AC=3,点D是AB的中点,以点A,B为圆心,AD、BD的长为半径画弧,分别交AC、BC于点E、F,则图中阴影部分的面积为.10.边长相等的正五边形与正六边形按如图所示拼接在一起,则∠ABO的度数为11.如图,点A、B、C、D、E在⊙O上,且弧AB为50°,则∠E+∠C=12.如图,在⊙O中,AB⏜=2AC⏜,则线段AB2AC(填“>”“<”或“=”).13.如图,在⊙O的内接四边形ABCD中,AB=AD,∠C=120°,点E在弧AD上.若AE恰好为⊙O的内接正十边形的一边,弧DE的度数为.三.解答题14.如图,在⊙O中,过弦AB的中点E作弦CD,且CE=2,DE=4,求弦AB的长.15.如图,已知AB为⊙O的直径,PA,PC是⊙O的切线,A,C为切点,∠BAC=30°.(Ⅰ)求∠P的大小;(Ⅱ)若AB=2,求PA的长(结果保留根号).16.如图,AB是⊙O的直径,AD是⊙O的弦,点F是DA延长线的一点,AC平分∠FAB交⊙O于点C,过点C作CE⊥DF,垂足为点E.求证:CE是⊙O的切线?17.如图,在⊙O中,弦AB,CD互相垂直于点E,AB被分成4cm和10cm的两段.(1)求圆心O到CD的距离.(2)若⊙O的半径为8cm,求CD的长.于点D,过点D作DE∥BC交AC的延长线18.如图,AB是⊙O的直径,点C是⊙O上一点,∠CAB的平分线AD交BC于点E.(1)求证:DE是⊙O的切线;(2)若DE=2,CE=1,求BD的长度.。
人教版六年级数学上册期末复习:《圆》(一)一、单选题1.从一张半径为3dm的圆形纸上剪去一个圆心角为90°的扇形,剩余部分的面积是()dm2。
A. πB. 9πC. πD. π2.圆的半径由2 cm增加到3 cm,则圆的面积增加了()cm2。
(π取3.14)A. 3.14B. 15.7C. 62.83.两个圆的面积不相等,原因是它们()。
A. 圆心的位置不同B. 圆周率不同C. 直径不相等4.小圆的直径等于大圆的半径,小圆的面积等于大圆面积的()。
A. B. C. D.5.要画一个直径是5cm的圆,圆规两脚之间的距离是()cm。
A. 5B. 2.5C. 10D. 156.车轮滚动一周,求所行的路程就是求车轮的()。
A. 直径B. 周长C. 面积D. 半径7.画一个周长是18.84cm的圆,圆规的两脚之间的距离应该是()cm。
A. 3B. 6C. 9D. 128.从一张圆形纸上剪去一个最大的正方形,剩余部分的面积是6.84 dm2,那么这个圆的面积是()dm2。
A. 6πB. 9πC. 9D. 8π9.在下图中有()条对称轴.A. 无数B. 2C. 4D. 310.面积相等的圆、正方形、长方形,周长最小的是()。
A. 圆B. 正方形C. 长方形二、判断题11.半径是2cm的圆,它的周长与面积相等。
()12.已知一个圆的半径是2cm,另一个圆的直径是4cm,则后者的周长长。
()13.在周长相等的圆、长方形和正方形中,圆的面积最大。
()14.同一个圆中,直径一定比半径长。
()三、填空题15.一只挂钟的分针走了60分钟,针尖走了31.4cm,那么分针长________cm,分针扫过的面积是________cm2。
16.当圆规两脚间的距离为40cm时,画出圆的周长是________cm。
17.用一根铁丝围成一个圆,半径正好是10cm,如果用这根铁丝围成一个正方形,那么正方形的边长是________。
人教版六年级数学上册期末复习:《圆》(二)一、单选题1.面积相等的圆、正方形、长方形,周长最小的是()。
A. 圆B. 正方形C. 长方形2.在一个底面是长方形的洗脸盆中,有一个直径6厘米的圆形塑料片在盆底任意滑动(如右图)。
这个塑料片不可能滑到部分的面积是()平方厘米。
A. 7.74B. 36C. 28.26D. 5.163.一个直径1米的圆,在下面的直线上从“0”开始滚动一周后,圆的位置大约在()。
(下面每格代表1米)A. B.C. D.4.下面说法错误的是()。
A. 一个圆柱体的底面半径扩大3倍,高不变,则体积扩大9倍。
B. 对图形进行旋转、平移的过程中,图形的位置和形状都发生了变化。
C. 圆有无数条对称轴。
D. 两个不同自然数(0除外)的积一定是这两个数的公倍数。
5.下图中小正方形的面积是20平方厘米,阴影部分的面积是()。
A. 20π平方厘米B. (20-5π)平方厘米C. 平方厘米D. 5π平方厘米6.一个挂钟,钟面上的时针长5厘米,经过一昼夜时针的针尖走过()厘米。
A. 15.7B. 31.4C. 62.8D. 78.57.下面各圆中涂色部分是扇形的是()A. B. C. D.8.(如图所示),圆的半径是r,请你用含有字母的式子表示正方形的周长是()A. 4rB. 4r2C. 8r9.在一个半径是50米的圆形鱼塘边上每隔3.14米栽一棵树,共栽树()棵。
A. 100B. 50C. 101D. 5110.明明用圆规画一个周长是31.4cm的圆,圆规两脚间的距离是()cm。
A. 15.7B. 5C. 10二、判断题11.两个面积相等的半圆一定可以拼成一个完整的圆。
()12.圆的直径与正方形边长相等,圆的周长大于正方形周长。
()13.当圆规两脚间的距离为2 cm时,它画成的圆的半径为1cm.()14.中国数学史上第一个对圆周率计算作出卓越贡献的是祖冲之,他用的是“割圆术”。
()15.周长相等的长方形、正方形、圆,它们的面积也相等。
r=6-42=1r=6+42=5点P 到圆上一点的最大距离是6cm ,最小距离是4cm ,圆的半径是___专题07 圆易错题圆,期末必考。
圆与其它不同是,圆中隐含条件多,圆的题解不出,往往不是由于条件不够,更多的是由于条件太多,而我们由于对模型运用不够熟练,基础知识掌握不牢造成的。
本专题精选期末圆的易错试题,并配以详细的解答,为你复习迎考助力!圆中易错两种情况1.平行弦间距2.点到圆上点的距离最大与最小:3.弦对圆周角:4.相切的上下左右EF=OE-OF=4-3=1EF=OE+OF=4+3=7AB ∥CD,AB=10,CD=8,圆的半径是5,则AB 与CD 之间的距离是____所以:∠P 2=60°,∠P 1=120°3.可得:BE=3,OB=2易证:∠1=60°,∠AOB =120°1.画出示意图。
2.作OE ⊥AB ,垂足为E 。
在半径是2的⊙O 中,弦AB=23,则AB 所对的圆周角_____.1一.选择题1.如图,△ABC 与△ACD 中,AD =AC =DC =BAC :∠B :∠ACB =1:2:3,则△ABC 的外心与△ACD 的内心之间的距离为( )A .2BC .D .3试题分析:如图,过点D 作DG ⊥AC 于点G ,并延长交AB 于点F ,得△ABC 的外心,过点A 作AE 平分∠DAC 交DG 于点E ,则点E 为△ACD 的内心,证明△ACD 和△AEF 是等边三角形,从而可以解答.答案详解:解:如图,过点D 作DG ⊥AC 于点G ,并延长交AB 于点F ,△ACD 中,AD =AC =DC =∴△ACD 是等边三角形,点G 为AC 中点,过点A 作AE 平分∠DAC 交DG 于点E ,则点E 为△ACD 的内心,∠EAC =30°,∵△ABC 中,∠BAC :∠B :∠ACB =1:2:3,∴∠BAC =30°,∠B =60°,∠ACB =90°,∴BC ∥EF ,∠EAF =∠EAC +∠BAC =60°,简记:上切下切左切右切线段直线分类讨论实战训练∴∠AFE=∠B=60°,∵AG=CG,∴点F为AB中点,即点F为△ABC的外心,∴△AEF是等边三角形,∵AC=∴在Rt△ABC中,AB=4,∴EF=AF=2.则△ABC的外心与△ACD的内心之间的距离为2.所以选:A.2.如图,Rt△ABC中,AB⊥BC,AB=4,BC=3,P是平面上的一个点,连换AP,BP,已知∠P 始终为直角,则线段CP长的最大值为( )A.6B C+2D.5试题分析:首先证明点P在以AB为直径的⊙O上,连接OC,并延长CO与交⊙O于点P,此时PC最大,利用勾股定理求出OC即可解决问题.答案详解:解:∵∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC,并延长CO与交⊙O于点P,此时PC最大,在Rt△BCO中,∵∠OBC=90°,BC=3,OB=2,∴OC=∴PC=OC+OP=+2,∴PC+2.所以选:C.3.给出下列结论:①有一个角是100°的两个等腰三角形相似.②三角形的内切圆和外接圆是同心圆.③圆心到直线上一点的距离恰好等于圆的半径,则该直线是圆的切线.④等腰梯形既是轴对称图形,又是中心对称图形.⑤平分弦的直径垂直于弦,并且平分弦所对的两弧.⑥过直线外一点有且只有一条直线平行于已知直线.其中正确命题有( )个.A.2个B.3个C.4个D.5个试题分析:根据圆相关知识点进行判断即可.答案详解:解:①、因为100°是钝角,所以只能是等腰三角形的顶角,则根据三角形的内角和定理,知它们的底角也对应相等,根据两角对应相等的两个三角形是相似三角形,则两个等腰三角形相似,故正确;②、三角形的内切圆的圆心是三条角平分线的交点,外接圆的圆心是三条垂直平分线的交点,只有等边三角形的内心和外心才重合,故错误;③、应当是圆心到直线的距离而不是圆心到直线上一点的距离恰好等于圆的半径,注意两者的说法区别:前者是点到直线的距离,后者是两个点之间的距离,故错误;④、等腰梯形不是中心对称图形,故错误;⑤、平分弦中的弦不能是直径,因为任意的两条直径都是互相平分,故错误;⑥、本题是平行公理,故正确.因此正确的结论是①⑥.所以选:A.4.如图,△ABC和△AMN都是等边三角形,点M是△ABC的外心,那么MN:BC的值为( )A.23B.3C.14D.49试题分析:延长AM交BC于点D,连接BM,根据△ABC是等边三角形可知AD⊥BC,设MD=x,则BM=AM=2x,利用锐角三角函数的定义用x表示出AB的长,再根据相似三角形的性质即可得出结论.答案详解:解:如图,延长AM交BC于点D,连接BM,∵△ABC是等边三角形,点M是△ABC的外心,∴AD⊥BC,∠ABM=∠BAM=30°,AM=BM,设MD=x,则BM=AM=2x,∴AD=3x,BD,∴AB=2BD=,∵△ABC和△AMN都是等边三角形,∴AB=BC=,AM=MN=2x,∴MN:BC=2x:=所以选:B.5.如图,在平面直角坐标系中,以M(2,3)为圆心,AB为直径的圆与x轴相切,与y轴交于A,C两点,则AC的长为( )A.4B.C.D.6试题分析:设⊙M与x轴相切于点D,连接MD,过点M作ME⊥AC,垂足为E,根据垂径定理可得AC=2AE,再利用切线的性质可得∠MDO=90°,然后根据点M的坐标可得ME=2,MA=MD=3,最后在Rt△AEM中,利用勾股定理进行计算即可解答.答案详解:解:设⊙M与x轴相切于点D,连接MD,过点M作ME⊥AC,垂足为E,∴AC =2AE ,∵⊙M 与x 轴相切于点D ,∴∠MDO =90°,∵M (2,3),∴ME =2,MD =3,∴MA =MD =3,在Rt △AEM 中,AE ==∴AC =2AE =所以选:B .6.如图,AB 是⊙O 的弦,PO ⊥OA 交AB 于点P ,过点B 的切线交OP 的延长线于点C ,若⊙O 的OP =1,则BC 的长为( )A .2BC .52D 试题分析:根据切线的性质可得∠OBC =90°,从而可得∠OBA +∠ABC =90°,再根据垂直定义可得∠POA =90°,从而可得∠A +∠APO =90°,然后利用等腰三角形的性质,以及等角的余角相等,对顶角相等可得∠ABC =∠BPC ,从而可得BC =CP ,最后在Rt △OBC 中,利用勾股定理进行计算即可解答.答案详解:解:∵BC 与⊙O 相切于点B ,∴∠OBC =90°,∴∠OBA +∠ABC =90°,∵PO⊥OA,∴∠POA=90°,∴∠A+∠APO=90°,∵OA=OB,∴∠A=∠OBA,∴∠ABC=∠APO,∵∠APO=∠BPC,∴∠ABC=∠BPC,∴BC=CP,设BC=CP=x,在Rt△OBC中,OB2+BC2=OC2,2+x2=(x+1)2,∴BC=2,所以选:A.7.如图,AB是⊙O的直径,弦CD交AB于点E,连接AC、AD.若∠BAC=28°,则∠D的度数是( )A.56°B.58°C.60°D.62°试题分析:连接BC,根据直径所对的圆周角是直角可得∠ACB=90°,从而利用直角三角形的两个锐角互余可得∠B=62°,然后利用同弧所对的圆周角相等即可解答.答案详解:解:连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=28°,∴∠B=90°﹣∠BAC=62°,∴∠B=∠D=62°,所以选:D.8.如图,AB是⊙O的直径,CD是⊙O的弦,连接BD、BC,若∠ABD=56°,则∠BCD的度数为( )A.34°B.56°C.68°D.102°试题分析:连接AD,根据AB是直径可知∠ADB=90°=∠DAB+∠ABD,即可求出∠DAB,根据圆周角定的推论可得∠DAB=∠BCD,则问题得解.答案详解:解:连接AD,如图:∵AB是⊙O的直径,∴∠ADB=90°=∠DAB+∠ABD,又∵∠DAB=∠BCD,∠ABD=56°,∴∠DAB=90°﹣∠ABD=90°﹣56°=34°,∴∠BCD=34°.所以选:A.9.如图,线段AB是⊙O的直径,点C在圆上,∠AOC=60°,点P是线段AB延长线上的一点,连结PC,则∠APC的度数不可能是( )A.30°B.25°C.10°D.5°试题分析:连接CB,根据一条弧所对的圆周角等于它所对的圆心角的一半,求出∠ABC的度数,再利用三角形的外角即可解答.答案详解:解:连接CB,∵∠AOC=60°,∴∠ABC=12∠AOC=30°,∵∠ABC是△PBC的一个外角,∴∠ABC>∠APC,∴∠APC的度数不可能是30°,所以选:A.10.下列语句:①长度相等的弧是等弧;②过平面内三点可以作一个圆;③平分弦的直径垂直于弦;④90°的圆周角所对的弦是直径;⑤等弦对等弧.其中正确的个数是( )A.1个B.2个C.3个D.4个试题分析:根据等弧的概念、确定圆的条件、垂径定理的推论、圆周角定理判断即可.答案详解:解:①长度相等的弧不一定是等弧,本小题说法错误;②过平面内不在同一直线上的三点可以作一个圆,本小题说法错误;③平分弦(不是直径)的直径垂直于弦,本小题说法错误;④90°的圆周角所对的弦是直径,本小题说法正确;⑤在同圆或等圆中,等弦所对的劣等弧,所对的优弧是等弧,本小题说法错误;所以选:A.11.如图,点A,B,C,D都在圆上,线段AC与BD交于点M,MB=MD,当点B,D,M保持不变,点A在圆上自点B向点D运动的过程中(点A不与点B,点D重合),那么线段MA与MC 的乘积( )A.不变B.先变大,后变小C.变大D.先变小,后变大试题分析:根据相交弦定理直接解答即可.答案详解:解:∵点A,B,C,D都在圆上,∴MB•MD=AM•MC,∵MB=MD,当点B,D,M保持不变,∴MB•MD为定值,∴AM•MC为定值.所以选:A.二.填空题(共28小题)12.如图,半圆O的直径DE=12cm,在Rt△ABC中,∠ACB=90°,∠ABC=30°,BC=12cm.半圆O以2cm/s的速度从左向右运动,当圆心O运动到点B时停止,点D、E始终在直线BC上.设运动时间为t(s),运动开始时,半圆O在△ABC的左侧,OC=8cm.当t= 1s,4s,7s,16s 时,Rt△ABC的一边所在直线与半圆O所在的圆相切.试题分析:分4种情况讨论:①当圆心O运动到点E与点C重合是时;②当圆心O运动到AC 右侧与AC相切时;③过C点作CF⊥AB,交AB于F点,当半圆O与△ABC的边AB相切时,圆心O到AB的距离等于6cm,且圆心O又在直线BC上,即当O点运动到C点时,半圆O与△ABC的边AB相切,此时点O运动了8cm,所求运动时间为t=4.答案详解:解:①当圆心O运动到点E与点C重合是时,∵AC⊥OE,OC=OE=6cm,此时AC与半圆O所在的圆相切,点O运动了2cm,所求运动时间为t=2÷2=1(s);②当圆心O运动到AC右侧与AC相切时,此时OC=6cm,点O运动的距离为8+6=14(cm),所求运动时间为t=14÷2=7(s);③如图1,过C点作CF⊥AB,交AB于F点;∵∠ABC=30°,BC=12cm,∴FO=6cm;当半圆O与△ABC的边AB相切时,∵圆心O到AB的距离等于6cm,且圆心O又在直线BC上,∴O与C重合,即当O点运动到C点时,半圆O与△ABC的边AB相切;此时点O运动了8cm,所求运动时间为t=8÷2=4(s),当点O运动到B点的右侧,且OB=12cm时,如图2,过点O作OQ⊥直线AB,垂足为Q.在Rt△QOB中,∠OBQ=30°,则OQ=6cm,即OQ与半圆O所在的圆相切.此时点O运动了32cm.所求运动时间为:t=32÷2=16s,综上可知当t的值为1s或4s或7秒或16s时,Rt△ABC的一边所在直线与半圆O所在的圆相切.所以答案是:1s,4s,7s,16s.13.已知点M (2.0),⊙M 的半径为1,OA 切⊙M 于点A ,点P 为⊙M 上的动点,当P 的坐标为 (1,0),(3,0)(32,2) 时,△POA 是等腰三角形.试题分析:根据题意画出图形分三种情况讨论:当点P 在x 轴上,PA =PO =1,OA =OP ″=3,当点P 是切点时,AO =AP = 答案详解:解:如图,当P 的坐标为(1,0),(3,0),(32,2)时,△POA 是等腰三角形.理由如下:连接AM ,∵M (2.0),⊙M 的半径为1,∴OM =2,AM =PM =1,∴OP =1,∵OA 切⊙M 于点A ,∴∠MAO =90°,∴∠AOM =30°,∴∠AMO =60°,∴PA =AM =PM =1,∴OP =PA =1,∴P (1,0);当OA =OP ′时,连接AP ′交x 轴于点H ,∵OA 切⊙M 于点A ,∴OP ′切⊙M 于点P ′,∴∠P ′OM =∠AOM =30°,∴∠AOP ′=60°,∴△AOP ′是等边三角形,∴AP ′=OA ==∴OH ==32,P ′H =12AP ′∴P ′(32,2);∵MA =MP ″,∠AMO =60°,∴∠MAP ″=∠MP ″A =30°,∴∠AOP ″=∠MP ″A =30°,∴OA =OP ″,∴P ″(3,0).综上所述:当P 的坐标为(1,0),(3,0),(32,2)时,△POA 是等腰三角形.所以答案是:(1,0),(3,0),(32,2).14.已知三角形ABC 是锐角三角形,其中∠A =30°,BC =4,设BC 边上的高为h ,则h 的取值范围是 试题分析:做出三角形的外接圆,根据h ≤AO +OP 求解即可.答案详解:解:如图1,作△ABC 的外接圆⊙O ,连接OA ,OB ,OC ,过O 作OP ⊥BC ,∵∠BAC=30°,∴∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∵BC=4,∴OA=BC=4,PO=∴h≤AO+OP=如图2,A1B⊥BC,A2C⊥BC,则A1B=∵三角形ABC是锐角三角形,∴点A在A1A2之间,∴h的取值范围是:h≤所以答案是:h≤15.如图,已知Rt△ABC中,AC=5,BC=12,∠ACB=90°,P是边AB上的动点,Q是边BC上的动点,且∠CPQ=90°,则线段CQ的取值范围是 203≤CQ≤12 .试题分析:根据直径所对的圆周角是直角,则分析以CQ为直径的圆和斜边AB的公共点的情况:一是半圆和AB相切;二是半圆和AB相交.首先求得相切时CQ的值,即可进一步求得相交时CQ的范围.答案详解:解:∵Rt△ABC中,AC=5,BC=12,∠ACB=90°,∴AB=13,①当半圆O与AB相切时,如图,连接OP,则OP⊥AB,且AC=AP=5,∴PB=AB﹣AP=13﹣5=8;设CO=x,则OP=x,OB=12﹣x;在Rt△OPB中,OB2=OP2+OB2,即(12﹣x)2=x2+82,解之得x=10 3,∴CQ=2x=20 3;即当CQ=203且点P运动到切点的位置时,△CPQ为直角三角形.②当203<CQ≤12时,半圆O与直线AB有两个交点,当点P运动到这两个交点的位置时,△CPQ为直角三角形③当0<CQ<203时,半圆O与直线AB相离,即点P在AB边上运动时,均在半圆O外,∠CPQ<90°,此时△CPQ不可能为直角三角形.∴当203≤CQ≤12时,△CPQ可能为直角三角形.所以答案是:203≤CQ ≤12.16.如图,点O 为△ABC 的外接圆圆心,点E 为圆上一点,BC 、OE 互相平分,CF ⊥AE 于F ,连接DF .若OE =DF =1,则△ABC试题分析:由BC 、OE 互相平分可证明四边形BECO 为平行四边形,由OC =OB 可得BECO 为菱形,可得∠BOD =60°,∠BAE =∠EAC =30°,CF ⊥AE 于F ,可证△AGC 为等边三角形,F 为中点,则由中位线性质可得BG =2DF .在Rt △BHC 中利用勾股定理可求GH ,进而得到AB 、AC ,得到△ABC 的周长.答案详解:解:延长CF 交AB 于点G ,过C 作CH ⊥AB 于H ,连BO .∵BC 、OE 互相平分,∴四边形BECO 为平行四边形,∵OB =OC ,∴四边形BECO 为菱形,∴BE =EC ,∵OE =∴Rt △BOD 中,tan ∠OBD =OD BD =∴∠OBD =30°,∴∠BOD =60°,∴∠BAE =∠EAC =30°,∵CF ⊥AE ,∴F为GC中点,△AGC为等边三角形,∴BG=2DF=2,在Rt△BCH中,BH2+HC2=BC2,∴(2+GH)2+)2=62,解得GH GH∴AG=AC=﹣1∴△ABC的周长为所以答案是:17.如图,D为△ABC的内心,点E在AC上,且AD⊥DE,若DE=2,AD=CE=3,则AB的长43 .试题分析:延长ED交AB于点F,连接BD,将线段AB分为AF和BF两部分,分别计算:先证明△ADE≌△ADF,利用勾股定理得AE的长度,即为AF的长度,再证明△BFD∽△DEC,利用相似,列比例式求得BF,两者相加即可.答案详解:解:如图,延长ED交AB于点F,连接BD,∵AD⊥DE∴∠ADE=∠ADF=90°∵D为△ABC的内心∴∠DAE=∠DAF∵AD=AD∴△ADE≌△ADF(ASA)∵AE=AF,DE=DF=2∴AE∴AF∵∠ABC+∠ACB+∠BAC=180°∴∠ADC=180°﹣(∠DAC+∠DCA)=180°−12(∠BAC+∠ACB)=180°−12(180°﹣∠ABC)=90°+12∠ABC=90°+∠ABD=90°+∠CBD=90°+∠CDE∴∠ABD=∠CBD=∠CDE ∵△ADE≌△ADF∠AFD=∠AED∴∠BFD=∠DEC∴△BFD∽△DEC∴BFDE=DFCE∴BF2=23∴BF=4 3∴AB=AF+BF 4 34318.如图,在△ABC中,∠BAC=30°,∠ACB=60°,BC=1,点P从点A出发沿AB方向运动,到达点B时停止运动,连结CP,点A关于直线CP的对称点为A',连结A'C,A'P.点P到达点B 时,线段A'P扫过的面积为 43π−试题分析:依据轴对称的性质,即可得到AC =A 'C ,进而得出点A '的运动轨迹为以C 为圆心,AC 长为半径的一段圆弧;再根据扇形面积的计算公式,即可得到线段A 'P 扫过的面积.答案详解:解:∵△ABC 中,∠BAC =30°,∠ACB =60°,BC =1,∴∠ABC =90°,AC =2BC =2,AB =如图①所示,点A 关于直线CP 的对称点为A ',∴AC =A 'C ,∴点A '的运动轨迹为以C 为圆心,AC 长为半径的一段圆弧,当点P 与点B 重合时,线段A 'P 扫过的区域为弓形,如图②,∠APA '=180°,∠ACA '=120°,∴线段A 'P 扫过的面积为120π×22360−12××1=43π−所以答案是:43π−19.点M 是半径为5的⊙O 内一点,且OM =4,在过M 所有⊙O 的弦中,弦长为整数的弦的条数为 8 .试题分析:先求出过M 所有⊙O 的弦的取值范围,再取整数解.答案详解:解:过点M 作AB ⊥OM 于M ,连接OA ,因为OM =4,半径为5,所以AM =3,所以AB =3×2=6,所以过点M 的最长弦为5×2=10,最短弦为6,在6和10之间的整数有7,8,9,由于左右对称,弦的条数有6条,加上AB 和OM ,共8条.20.AB=AC=AD,∠CAB=100°,则∠BDC= 50°或130° .试题分析:分两种情况,当点D在优弧BDC上时,当点D′在劣弧BC上时,然后利用圆周角定理进行计算即可解答.答案详解:解:如图:∵AB=AC=AD,∴点B、C、D在以点A为圆心,以AB长为半径的圆上,当点D在优弧BDC上时,∵∠CAB=100°,∴∠BDC=12∠BAC=50°,当点D′在劣弧BC上时,∵四边形BDCD′是圆内接四边形,∴∠BD′C=180°﹣∠BDC=130°,综上所述:∠BDC=50°或130°,所以答案是:50°或130°.21.如图,AB是⊙O的弦,AB=P是优弧APB上的动点,∠P=45°,连接PA,PB,AC是△ABP的中线.(1)若∠CAB=∠P,则AC= 2 ;(2)AC试题分析:(1)作BH⊥AC,根据△BAC∽△BPA,求出BC=2,再证明H和C重合即可得到答案;(2)确定点C的运动轨迹,轨迹点圆关系找到AC的最大值就是AC'长,再计算求解.答案详解:解:如图1,过点B作BH⊥AC于点H,∵∠B=∠B,∠CAB=∠P,∴△BAC∽△BPA,∴BABP=BCBA,∴BA2=BC•BP,∵AC是△ABP的中线,∴BP=2BC,∴(2=BC•2BC,∴BC=2,在Rt△ABH中,∠CAB=∠P=45°,AB=∴BH=AH=2,又∵BC=2,∴点H和点C重合,∴AC=AH=2.所以答案是:2;(2)如图2,∵点P的运动轨迹是圆,∴点C的运动轨迹是OB为直径的圆,∴当AC'经过圆心O'时最大.∵∠P=45°,∴∠AOB=90°,又∵AB=∴AO=BO=2,OO'=1,∴AO'=∵O'C'=1,∴AC'=1+∴AC的最大值为1+所以答案是:1+22.如图,已知点A(3,0)、B(﹣1,0)点Q是y轴上一点,当∠AQB=135°时点Q的坐标是 试题分析:分两种情况:①如图,当Q在y轴的负半轴上时,作辅助线,构建全等三角形和等腰直角三角形,证明△QEC≌△CFB,设CE=a,根据三角函数列方程可解答;②同理Q在y轴的正半轴上时,根据对称得出点Q的坐标.答案详解:解:分两种情况:①如图,当Q在y轴的负半轴上时,过点B作BC⊥AQ,交AQ的延长线于C,过点C作EF⊥y 轴于E,过点B作BF⊥EF于F,∵∠AQB=135°,∴∠CQB=45°,∵∠BCQ=90°,∴△BCQ是等腰直角三角形,∴CQ=CB,∵∠BCF+∠ECQ=∠ECQ+∠CQE=90°,∴∠BCF=∠CQE,∵∠F=∠CEQ=90°,∴△QEC≌△CFB(AAS),∴EQ=CF,CE=BF,设CE=a,则CF=EQ=3﹣a,BF=CE=a,∴OQ=a﹣(3﹣a)=2a﹣3,∵∠AQO=∠CQE,∴tan∠AQO=tan∠CQE,即AOOQ =CE EQ,∴12a−3=a3−a,解得:a1a2=,当a=OQ=2a﹣32,∴Q(0,2;②当Q在y轴的正半轴上时,同理可得Q(02).综上,点Q的坐标为(0,202).所以答案是:(0,202).23.已知等腰△ABC的外心是O,AB=AC,∠BOC=100°,则∠ABC= 25°或65° .试题分析:画出相应图形,分△ABC为锐角三角形和钝角三角形2种情况解答即可.答案详解:解:(1)圆心O在△ABC外部,在优弧BC上任选一点D,连接BD,CD.∴∠BDC=12∠BOC=50°,∴∠BAC=180°﹣∠BDC=130°;∵AB=AC,∴∠ABC=(180°﹣∠BAC)÷2=25°;(2)圆心O在△ABC内部.∠BAC=12∠BOC=50°,∵AB=AC,∴∠ABC=(180°﹣∠BAC)÷2=65°;所以答案是25°或65°.24.已知⊙O中,两弦AB和CD相交于点P,若AP:PB=2:3,CP=2cm,DP=12cm,则弦AB 的长为 10 cm.试题分析:根据相交弦定理“圆内两弦相交于圆内一点,各弦被这点所分得的两线段的长的乘积相等”进行计算.答案详解:解:设AP=2x,由AP:PB=2:3得PB=3x,由相交弦定理得:PA•PB=PC•PD,∴2x•3x=2×12,x=2(舍去负值),∴AB=AP+PB=5x=10cm.25.在△ABC中,AB=6,AC=8,高AD=4.8,设能完全覆盖△ABC的圆的半径为r,则r的最小值为 5或4 .试题分析:分类讨论:当AD在△ABC内部,利用勾股定理求法可得三角形第3边长,可得三角形的形状为直角三角形,完全覆盖△ABC的圆的最小半径为直角三角形斜边的一半;当AD在△ABC外部,即△ABC是钝角三角,以AC为直径的圆是能完全覆盖△ABC的最小圆.答案详解:解:(1)当AD在△ABC内部,如图:∵AB=6,AC=8,高AD=4.8,∴BD=3.6,CD=6.4,∴BC=10,∵62+82=102.∴△ABC是以BC为斜边的直角三角形,∴完全覆盖△ABC的圆的最小半径为10×12=5;(2)当AD在△ABC外部,即△ABC是钝角三角,∵以AC为直径的圆是能完全覆盖△ABC的最小圆,∴能完全覆盖△ABC的圆的半径R的最小值为8×12=4,所以答案是:5或4.26.已知△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣1,﹣3),C(3,﹣3)则△ABC外接试题分析:三角形的外心是三边中垂线的交点,设△ABC的外心为M;由A、B、C的坐标知:AB、BC的垂直平分线正好经过(1,0),由此可得到M(1,0),由勾股定理即可求得⊙M的半径长.答案详解:解:设△ABC的外心为M,如图:∵A(﹣1,3),B(﹣1,﹣3),C(3,﹣3),∴AB、BC的垂直平分线过(1,0),故M(1,0);MA就是⊙M的半径长,由勾股定理得:MA即△ABC27.如图,AB是⊙O的直径,AD、BC是⊙O的切线,P是⊙O上一动点,若AD=3,AB=4,BC=6,则△PDC的面积的最小值是 4 .试题分析:由CD是固定的,所以当P到CD的距离最小时△PCD的面积最小,过P作EF∥CD,交AD于点E,交BC于点F,当EF与⊙O相切时,P到CD的距离最短,连接OP并延长交CD于点Q,过O作OH∥BC,交EF于点G,交CD于点H,则可知OH为梯形ABCD的中位线,OG为梯形ABFE的中位线,可求得OH,过D作DM⊥BC于点M,可求得CD=EF=5,由切线长定理可知AE=EP,BF=PF,可得AE+BF=EF=5,可求得OG=2.5,可求得GH=2,又OP=2,且OPPQ=OGGH,可求得PQ=1.6,可求得△PCD的面积,可得出答案.答案详解:解:由CD是固定的,所以当P到CD的距离最小时△PCD的面积最小,如图,过P作EF∥CD,交AD于点E,交BC于点F,当EF与⊙O相切时,P到CD的距离最短,连接OP并延长交CD于点Q,过O作OH∥BC,交EF于点G,交CD于点H,则可知OH为梯形ABCD的中位线,OG为梯形ABFE的中位线,∴OH=12(AD+BC)=4.5,过D作DM⊥BC于点M,则DM=AB=4,MC=BC﹣AD=3,∴CD=EF=5,由切线长定理可知AE=EP,BF=PF,∴AE+BF=EF=5,∴OG=12(AE+BF)=2.5,∴GH=OH﹣OG=4.5﹣2.5=2,又∵OP=2,且OPPQ=OGGH,∴2PQ=2.52,∴PQ=1.6,∴S△PCD =12PQ•CD=12×1.6×5=4,所以答案是:4.28.如图,⊙O既是正△ABC的外接圆,又是正△DEF的内切圆,则内外两个正三角形的相似比是 12 .试题分析:过O作OM⊥AC于M,ON⊥EF于N,连接OC、OF,设OC=ON=R,根据等边三角形性质推出∠MCO =∠OFN =30°,求出OM 、OF 的值,根据勾股定理求出CM 、FN ,根据垂径定理求出AC 、EF 值,即可求出答案.答案详解:解:过O 作OM ⊥AC 于M ,ON ⊥EF 于N ,连接OC 、OF ,设OC =ON =R ,∵⊙O 既是正△ABC 的外接圆,又是正△DEF 的内切圆,∴∠MCO =∠OFN =30°,∵∠CMO =∠FNO =90°,∴OM =12R ,OF =2R ,由勾股定理得:CM ==2R ,由垂径定理得:AC =2CM =,同理EF =2NF =,即内外两个正三角形的相似比是AC :EF =1:2=12,所以答案是:12.29.如图,点C 在以O 为圆心的半圆内一点,直径AB =4,∠BCO =90°,∠OBC =30°,将△BOC 绕圆心逆时针旋转到使点C 的对应点C ′在半径OA 上,则边BC 扫过区域(图中阴影部分)面积为 π .(结果保留π)试题分析:根据直角三角形的性质求出OC 、BC ,根据扇形面积公式计算即可.答案详解:解:∵∠BCO =90°,∠OBC =30°,∴OC =12OB =1,BC则边BC 扫过区域的面积为:120π×22360+12××1−120π×12360−12××1=43π−13π−=π.所以答案是:π.30.如图,C 、D 是⊙O 上两点,位于直径AB 的两侧,设∠ABC =24°,则∠BDC = 66 °.试题分析:根据直径所对的圆周角是直角可得∠ACB =90°,然后利用直角三角形的两个锐角互余可得∠A =66°,从而利用同弧所对的圆周角相等即可解答.答案详解:解:∵AB 是⊙O 的直径,∴∠ACB =90°,∵∠ABC =24°,∴∠A =90°﹣∠ABC =66°,∴∠BDC =∠A =66°,所以答案是:66.31.某园林单位要在一个绿化带内开挖一个△ABC 的工作面,使得∠ACB =60°,CD 是AB 边上的高,且CD =6,则△ABC 的面积最小值是试题分析:作△ABC 的外接圆⊙O ,连接OA 、OB 、OC ,作OE ⊥AB 于E ,设OA =OC =2x .根据圆周角和等腰三角形的性质得OE =12OA =x ,AE =,再由线段的不等关系可得最小值,最后根据三角形面积公式答案.答案详解:解:作△ABC 的外接圆⊙O ,连接OA 、OB 、OC ,作OE ⊥AB 于E ,设OA =OC =2x .∵∠AOB =2∠ACB ,∠ACB =60°,∴∠AOB =120°,∠ACB =60°,OA =OB =R ,OE ⊥AB ,∴AE =EB ,∠AOE =∠BOE =60°,∴OE =12OA =x ,AE =,∵OC +OE ≥CD ,CD =6,∴3x ≥6,∴x ≥2,∴x 的最小值为2.∵E 为AB 中点,∴AB =AE +BE =2AE =,∵AB 的最小值为∴S △ABC 的最小值=12CD ⋅AB =12×6×=所以答案是:32.如图,正方形ABCD 的边长为4,E 是AD 的中点,点P 是边AB 上的一个动点,连接PE ,以P为圆心,PE 的长为半径作⊙P .当⊙P 与正方形ABCD 的边相切时,则AP 的长为 32或试题分析:分⊙P 与BC 相切、⊙P 与DC 相切两种情况,根据切线的性质、勾股定理计算即可.答案详解:解:当⊙P 与BC 相切时,PE =PB =4﹣AP ,在Rt △PAE 中,AP 2+AE 2=PE 2,即AP 2+22=(4﹣AP )2,解得:AP =32,当⊙P 与DC 相切时,PE =4,则AP ==综上所述,当⊙P 与正方形ABCD 的边相切时,则AP 的长为32或所以答案是:32或33.如图,在扇形AOB 中,OA =2,点P 为AB 上一动点,过点P 作PC ⊥OA 于点C ,PD ⊥OB 于点D ,连接CD ,当CD 取得最大值时,扇形OAB 的周长为 4+π .试题分析:∠AOB =90°时,CD 最大,由求出扇形的周长即可.答案详解:解:由PC ⊥OA ,PD ⊥OB 可知,∠OCP +∠ODP =180°,∴O 、C 、P 、D 四点共圆,CD 为此圆直径时,CD 最大,∴当∠AOB =90°时,CD 最大,如图:此时扇形周长为2+2+90⋅π⋅2180=4+π.所以答案是:4+π.34.如图,圆内一条弦CD 与直径AB 相交成30°角,且分直径成1cm 和5cm 两部分,则这条弦的弦心距是 1cm .试题分析:首先过点O 作OF ⊥CD 于点F ,设弦CD 与直径AB 相交于点E ,由分直径成1cm 和5cm两部分,可求得直径,半径的长,继而求得OE的长,又由圆内一条弦CD与直径AB相交成30°角,即可求得这条弦的弦心距.答案详解:解:过点O作OF⊥CD于点F,设弦CD与直径AB相交于点E,∵分直径成1cm和5cm两部分,∴AB=6cm,∴OA=12AB=3cm,∴OE=OA﹣AE=2cm,∵∠OEF=30°,∴OF=12OE=1(cm).所以答案是:1cm.35.已知圆的两条平行弦分别长6dm和8dm,若这圆的半径是5dm,则两条平行弦之间的距离为 7dm 或1dm .试题分析:如图,AB∥CD,AB=6dm,CD=8dm,过O点作OE⊥AB于E,交CD于F点,连OA、OC,根据垂径定理得AE=BE=12AB=3,由于AB∥CD,EF⊥AB,则EF⊥CD,根据垂径定理得CF=FD=12CD=4,然后利用勾股定理可计算出OE=4,OF=3,再进行讨论:当圆心O在AB与CD之间时,AB与CD的距离=OE+OF;当圆心O不在AB与CD之间时,AB与CD 的距离=OE﹣OF.答案详解:解:如图,AB∥CD,AB=6dm,CD=8dm,过O点作OE⊥AB于E,交CD于F点,连OA、OC,∴AE=BE=12AB=3,∵AB∥CD,EF⊥AB,∴EF⊥CD,∴CF=FD=12CD=4,在Rt△OAE中,OA=5dmOE4,同理可得OF=3,当圆心O在AB与CD之间时,AB与CD的距离=OE+OF=4+3=7(dm);当圆心O不在AB与CD之间时,AB与CD的距离=OE﹣OF=4﹣3=1(dm).所以答案是7dm或1dm.36.如图,P(x,y)是以坐标原点为圆心、5为半径的圆周上的点,若x、y都是整数,则这样的点共有 12 个.试题分析:因为P(x,y)是以坐标原点为圆心、5为半径的圆周上的点,根据题意,x2+y2=25,若x、y都是整数,其实质就是求方程的整数解.答案详解:解:∵P(x,y)是以坐标原点为圆心、5为半径的圆周上的点,即圆周上的任意一点到原点的距离为5,=5,即x2+y2=25,又∵x、y都是整数,∴方程的整数解分别是:x=0,y=5;x=3,y=4;x=4,y=3;x=5,y=0;x=﹣3,y=4;x=﹣4,y=3;x=﹣5,y=0;x=﹣3,y=﹣4;x=﹣4,y=﹣3;x=0,y=﹣5;x=3,y=﹣4;x=4,y=﹣3.共12对,所以点的坐标有12个.分别是:(0,5);(3,4);(4,3);(5,0);(﹣3,4);(﹣4,3);(﹣5,0);(﹣3,﹣4);(﹣4,﹣3);(0,﹣5);(3,﹣4);(4,﹣3).37.在⊙O中,若弦BC垂直平分半径OA,则弦BC所对的圆周角等于 60或120 °.试题分析:根据弦BC垂直平分半径OA,可得OD:OB=1:2,得∠BOC=120°,根据同弧所对圆周角等于圆心角的一半即可得弦BC所对的圆周角度数.答案详解:解:如图,∵弦BC垂直平分半径OA,∴OD:OB=1:2,∴∠BOD=60°,∴∠BOC=120°,∴弦BC所对的圆周角等于60°或120°.所以答案是:60或120.38.圆中一条弦所对的圆心角为60°,那么它所对的圆周角度数为 30或150 度.试题分析:由圆周角定理知,弦所对的优弧上的圆周角是30°;由圆内接四边形的对角互补可知,弦所对劣弧上的圆周角=180°﹣30°=150°.因此弦所对的圆周角度数有两个.答案详解:解:如图,∠AOB=60°;则∠C=12∠AOB=30°;∵四边形ADBC是⊙O的内接四边形,∴∠D=180°﹣∠C=150°;因此弦AB所对的圆周角度数为30°或150°.39.一圆中两弦相交,一弦长为2a且被交点平分,另一弦被交点分成1:4两部分,则另一弦长为 5a2 .试题分析:设另一条弦被分成的两段长分别是x,4x,根据相交弦定理求解.圆内两条相交弦,被交点分成的线段的乘积相等.答案详解:解:设另一条弦被分成的两段长分别是x,4x.根据相交弦定理,得x•4x=a2,x=a 2.所以5x=52 a.三.解答题40.如图,CD为⊙O的直径,CD⊥AB,垂足为F,AO⊥BC,垂足为E,连接AC.(1)求∠B的度数;(2)若CE=O的半径.试题分析:(1)根据垂径定理求出BE=CE,根据线段垂直平分线性质求出AB=AC,同理得AC =BC,则△ABC是等边三角形,从而得结论;(2)求出∠BCD=30°和OE=4,根据直角三角形中含30°角的性质求出圆O的半径即可.答案详解:解:(1)如图,∵AO⊥BC,AO过O,∴CE=BE,∴AB=AC,同理得:AC=BC,∴AB=AC=BC∴△ABC是等边三角形∴∠B=60°;(2)∵△ABC是等边三角形,∴∠ACB=60°,∵AC=BC,CD⊥AB,∴∠BCD=30°,∵CE=在Rt△CEO中,OE=4,∴OC=2OE=8,即圆O的半径为8.41.如图,AB是⊙O的直径,点C,D是⊙O上的点,且OD∥BC,AC分别与BD,OD相交于点E,F.(1)求证:点D为AC的中点;(2)若DF=4,AC=16,求⊙O的直径.试题分析:(1)根据直径所对的圆周角是直角可得∠C=90°,从而利用平行线的性质可得∠OFA =∠C=90°,从而可得OF⊥AC,然后利用垂径定理即可解答;(2)利用垂径定理可得AF=12AC=8,然后在Rt△AFO中,利用勾股定理进行计算即可解答.答案详解:(1)证明:∵AB是⊙O的直径,∴∠C=90°,∵OD∥BC,∴∠OFA=∠C=90°,∴OF⊥AC,∴AD=CD,∴点D为AC的中点;(2)解:∵OF⊥AC,∴AF=12AC=8,在Rt△AFO中,AO2=AF2+OF2,∴OA2=64+(OD﹣DF)2,∴OA2=64+(OA﹣4)2,∴OA=10,∴⊙O的直径为20.42.如图,AB是⊙O的直径,弦CD交AB于点E,连接AC、AD.若∠BAC=35°,(1)求∠D的度数;(2)若∠ACD=65°,求∠CEB的度数.试题分析:(1)连接CB,根据直径所对的圆周角是直角可得∠ACB=90°,从而利用直角三角形的两个锐角互余可得∠ABC=55°,然后利用同弧所对的圆周角相等即可解答;(2)利用三角形的外角性质,进行计算即可解答.答案详解:解:(1)连接CB,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=35°,∴∠ABC=90°﹣∠BAC=55°,∴∠ABC=∠D=55°,∴∠D的度数为55°;(2)∵∠CEB是△ACE的一个外角,∴∠CEB=∠BAC+∠ACD=100°,∴∠CEB的度数为100°.43.如图,AB是⊙O的直径,点C为⊙O上一点,D为弧BC的中点,过D作DF⊥AB于点E,交⊙O于点F,交弦BC于点G,连接CD,BF.(1)求证:BC=DF.(2)若BC=8,BE=2,求⊙O的半径.试题分析:(1)根据AAS证明△CDB≌△DBF,可得结论;(2)先根据垂径定理可得DE=4,设⊙O的半径为r,利用勾股定理求解即可.答案详解:(1)证明:∵D是BC的中点,∴BD=CD,∵AB为⊙O的直径,DF⊥AB,∴BD=BF,∴BD=BF=CD,∴BF=CD=BD,∠DCB=∠BDF=∠CBD=∠F,∴△CDB≌△DBF(AAS),∴BC=DF;(2)解:如图,连接OD交BC于点M,∵AB为⊙O的直径,DF⊥AB,∴DE=EF,。
圆的期末复习检测试题一、精心选一选(本大题共10小题,每小题3分,共计30分)1、下列命题:①长度相等的弧是等弧 ②任意三点确定一个圆 ③相等的圆心角所对的弦相等 ④外心在三角形的一条边上的三角形是直角三角形,其中真命题共有( ) A .0个 B .1个 C .2个 D .3个2、同一平面内两圆的半径是R 和r ,圆心距是d ,若以R 、r 、d 为边长,能围成一个三角形,则这两个圆的位置关系是( )A .外离B .相切C .相交D .内含3、如图1,四边形ABCD 内接于⊙O ,若它的一个外角∠DCE=70°,则∠BOD=( ) A .35° B.70° C .110° D.140°4、如图2,⊙O 的直径为10,弦AB 的长为8,M 是弦AB 上的动点,则OM 的长的取值 范畴( )A .3≤OM ≤5B .4≤OM ≤5C .3<OM <5D .4<OM <5 5、如图3,⊙O 的直径AB 与弦CD 的延长线交于点E ,若DE=OB, ∠AOC=84°,则∠E 等于( ) A .42 ° B .28° C .21° D .20°图1 图 2 图3 6、如图4,△ABC 内接于⊙O ,AD ⊥BC 于点D ,AD=2cm ,AB=4cm ,AC=3cm ,则⊙O 的直径是( )A 、2cmB 、4cmC 、6cmD 、8cm 7、如图5,圆心角差不多上90°的扇形OAB 与扇形OCD 叠放在一起,OA =3,OC =1,分不连结AC 、BD ,则图中阴影部分的面积为( )A.12π B. π C. 2π D. 4π 8、已知⊙O 1与⊙O 2外切于点A ,⊙O 1的半径R =2,⊙O 2的半径r =1, 若半径为4的⊙C 与⊙O 1、⊙O 2都相切,则满足条件的⊙C 有( )A 、2个B 、4个C 、5个D 、6个9、设⊙O 的半径为2,圆心O 到直线l 的距离OP =m ,且m 使得关于x 的方程012222=-+-m x x 有实数根,则直线l 与⊙O 的位置关系为( )A 、相离或相切B 、相切或相交C 、相离或相交D 、无法确定 10、如图6,把直角△ABC 的斜边AC 放在定直线l 上,按顺时针的方向在直线l 上转动两次,使它转到△A 2B 2C 2的位置,设AB=3,BC=1,则顶点A 运动到点A 2的位置时,点A 所通过的路线为( )A 、(1225 +23)π B 、(34 +23)π C 、2π D 、3πBA M O · ABCD E图4图5 AA 1A 2BCC 2B 1l二、细心填一填(本大题共6小题,每小4分,共计24分).11、(2006山西)某圆柱形网球筒,其底面直径是100cm,长为80cm,将七个如此的网球筒如图所示放置并包装侧面,则需________________2cm的包装膜(不计接缝,π取3).13、假如圆的内接正六边形的边长为6cm,则其外接圆的半径为.14、如图8,已知:在⊙O中弦AB、CD交于点M、AC、DB的延长线交于点N,则图中相似三角形有________对.15、(2006年北京)如图9,直角坐标系中一条圆弧通过网格点A、B、C,其中,B点坐标为(4,4),则该圆弧所在圆的圆心坐标为.16、(原创)如图10,两条互相垂直的弦将⊙O分成四部分,相对的两部分面积之和分不记为S1、S2,若圆心到两弦的距离分不为2和3,则︱S1-S2︱= .图8 图9 图10三、认真算一算、答一答(17~23题,每题8分,24题10分,共计66分).17、(2006年丽水)为了探究三角形的内切圆半径r与周长L、面积S之间的关系,在数学实验活动中,选取等边三角形(图甲)和直角三角形(图乙)进行研究.⊙O是△ABC的内切圆,切点分不为点D、E、F.(1)用刻度尺分不量出表中未度量的△ABC的长,填入空格处,并运算出周长L和面积S.(结果精确到0.1厘米)(2)观看图形,利用上表实验数据分析.推测专门三角形的r与L、S之间关系,并证明这种关系对任意三角形(图丙)是否也成立?图甲图乙图丙18、(2006年成都)如图,以等腰三角形ABC的一腰AB为直径的⊙O交BC于点D,交AC于点G,连结AD,并过点D作DE AC⊥,垂足为E.依照以上条件写出三个正确结论(除AB AC AO BO ABC ACB===,,∠∠外)是:AC BC AB r L S图甲0.6图乙 1.0ABCDMNOABOGEDA C P ED HF O (1) ;(2) ; (3) . 19、(2004年黄冈)如图,要在直径为50厘米的圆形木板上截出四个大小相同的圆形凳面。
咨询如何样才能截出直径最大的凳面,最大直径是多少厘米? 20、(2005年山西)如图是一纸杯,它的母线AC 和EF 延长后形成的立体图形是圆锥,该圆锥的侧面展开图形是扇形OAB.经测量,纸杯上开口圆的直径是6cm,下底面直径为4cm,母线长为EF=8cm.求扇形OAB 的圆心角及那个纸杯的表面积(面积运算结果用π表示) .21、如图,在△ABC 中,∠BCA =90°,以BC 为直径的⊙O 交AB 于点P ,Q 是AC 的中点.判定直线PQ 与⊙O 的位置关系,并讲明理由. 22、(2006年黄冈)如图,AB 、AC 分不是⊙O 的直径和弦,点D 为劣弧AC 上一点,弦ED 分不交⊙O 于点E ,交AB 于点H ,交AC 于点F ,过点C 的切线交ED 的延长线于点P . (1)若PC=PF ,求证:AB ⊥ED ; (2)点D 在劣弧AC 的什么位置时,才能使AD 2=DE ·DF ,什么缘故?23、(改编2006年武汉)有如此一道习题:如图1,已知OA 和是⊙O 的半径,同时OA ⊥OB ,P 是OA 上任一点(不与O 、A 重合),BP 的延长线交⊙O 于Q ,过Q 点作⊙O 的切线交OA 的延长线于R .讲明:RP =RQ . 请探究下列变化: 变化一:交换题设与结论.已知:如图1,OA 和OB 是⊙O 的半径,同时OA ⊥OB ,P 是OA 上任一点(不与O 、A 重合),BP 的延长线交⊙O 于Q ,R 是OA 的延长线上一点,且RP =RQ . . 讲明:RQ 为⊙O 的切线. .变化二:运动探求. 1.如图2,若OA2.如图3,假如P 在OA 的延长线上时,BP 交⊙O 于过点Q 作⊙O 的切线交OA 的延长线于R 还成立吗?什么缘故?3.若OA 所在的直线向上平移且与⊙O 无公共点,请你根 据原题中的条件完成图4,并判定结论是否还成立? (只需交待判定)24、(2004年深圳南山区)如图,在平面直角坐标系中,矩形ABCO 的面积为15,边OA 比OC 大2.E 为BC 的中点,以OE 为直径的⊙O ′交x 轴于D 点,过点D 作DF ⊥AE 于点F .(1)求OA 、OC 的长;(2)求证:DF 为⊙O ′的切线;(3)小明在解答本题时,发觉△AOE 是等腰三角形.由此,他确信:“直线BC 上一定存在除点E 以外的点P ,使△AOP 也是等腰三角形,且点P 一定在⊙O ′外”.你同意他的看法吗?请充分..讲明理由.一、选择题1.B 2.C 3.D 4.A 5.B 6.C 7.C 8.D 9.B 10.B 二、填空题11.12000 12.第二种 13.6cm 14.4 15.(2,0) 16.24(提示:如图1,由圆的对OR BQ A P 图1图3 • OA 图4称性可知, ︱S 1-S 2︱等于e 的面积,即为2×3×4=24) 三、解答题17.(1)略 (2)由图表信息推测,得S=21Lr,同时对一样三角形都成立.连接OA 、OB 、OC,运用面积法证明. 18.(1)BD DC =,(2)Rt Rt DEC ADC △∽△,(3)DE 是O 的切线(以及∠BAD=∠BAD ,AD ⊥BC ,弧BD=弧DG 等).19.设计方案如图2所示,在图3中,易证四边形OAO /C 为正方形,OO /+O /B=25,因此圆形凳面的最大直径为25(2-1)厘米图1 图2 图3 20.扇形OAB 的圆心角为45°,纸杯的表面积为44π.21.连接OP 、CP ,则∠OPC=∠OCP.由题意知△ACP 是直角三角形,又Q 是AC 的中点,因此QP=QC, ∠QPC=∠QCP.而∠OCP+∠QCP=900,因此∠OPC+∠QPC=900即OP ⊥PQ,PQ 与⊙O 相切. 22.(1)略 (2)当点D 在劣弧AC 的中点时,才能使AD 2=DE ·DF . 23.变化一、连接OQ ,证明OQ ⊥QR ; 变化二 (1)、结论成立 (2)结论成立,连接OQ ,证明∠B=∠OQB ,则∠P=∠PQR ,因此RQ=PR (3)结论仍旧成立 24.(1)在矩形OABC 中,设OC=x 则OA= x +2,依题意得(2)15x x += 解得:123,5x x ==- 25x =-(不合题意,舍去) ∴OC=3, OA=5(2)连结O ′D 在矩形OABC 中,OC=AB ,∠OCB=∠ABC=900,CE=BE=52∴ △OCE ≌△ABE ∴EA=EO ∴∠1=∠2在⊙O ′中, ∵ O ′O= O ′D ∴∠1=∠3∴∠3=∠2 ∴O ′D ∥AE , ∵DF ⊥AE ∴ DF ⊥O ′D 又∵点D 在⊙O ′上,O ′D 为⊙O ′的半径 ,∴DF 为⊙O ′切线. (3) 不同意. 理由如下:①当AO=AP 时,以点A 为圆心,以AO 为半径画弧交BC 于P 1和P 4两点 过P 1点作P 1H ⊥OA 于点H ,P 1H = OC = 3,∵A P 1= OA = 5 ∴A H = 4, ∴OH =1求得点P1(1,3)同理可得:P4(9,3)②当OA=OP时,同上可求得::P2(4,3),P3( 4,3)因此,在直线BC上,除了E点外,既存在⊙O′内的点P1,又存在⊙O′外的点P2、P3、P4,它们分不使△AOP为等腰三角形.。