19.2.2 一次函数 教案1
- 格式:doc
- 大小:637.36 KB
- 文档页数:14
八年级数学下册19.2.2一次函数第一课时教案
教学目标:
1.理解一次函数的定义,知道其特点和表示方法。
2.能够通过给定的坐标点,确定出一条直线的方程。
3.能够应用一次函数解决实际问题。
教学重点:
1.了解一次函数的定义和性质。
2.学会根据给定的坐标点确定函数的方程。
教学准备:
1.教材《数学八年级下册》
2.PowerPoint演示文稿
3.活动练习纸
教学过程:
步骤一:导入新课
1.引入一次函数的概念:通过回顾之前学过的函数定义,引导学生了解一次
函数的定义。
2.提问:学生,你能告诉我一次函数的定义吗?
步骤二:一次函数的特点和表示方法
1.通过实例解释一次函数的特点和表示方法:图示一次函数的图像,强调线
性关系和斜率。
2.让学生讨论线性关系和斜率的含义,并归纳总结一次函数的特点。
步骤三:确定一次函数的方程
1.提供一个点的坐标和函数的斜率,让学生利用这些信息确定一次函数的方
程。
2.通过多个例子的练习,逐步引导学生掌握确定一次函数方程的方法。
步骤四:应用一次函数解决实际问题
1.引入实际问题解决一次函数的应用:提供一些实际问题,让学生利用一次
函数解决问题,如直线距离的计算等。
2.学生小组合作,尝试解决这些问题,并分享解决方法。
步骤五:总结与拓展
1.总结一次函数的定义、特点和表示方法。
2.提醒学生重视实际问题的应用,通过多维度思考问题的解决方法。
课后作业:
1.完成课堂练习。
2.找一些实际问题,并尝试利用一次函数解决。
第十九章一次函数19.2一次函数19.2.2 一次函数1教学目标1.1知识与技能:[1]理解一次函数和正比例函数的图象是一条直线;[2]熟练地作出一次函数和正比例函数的图象,掌握k 与 b 的取值对直线位置的影响。
1.2 过程与方法:[1]经历一次函数的作图过程,探索某些一次函数图象的异同点;[2]体会用类比的思想研究一次函数,体验研究数学问题的常用方法:由特殊到一般,由简单到复杂。
1.3情感态度与价值观:[1]体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣。
[2]在探索过程中体验成功的喜悦,树立学习的自信心。
2教学重点 / 难点2.1教学重点[1]理解掌握一次函数的图象的特征和相关的性质。
2.2教学难点[1]理解一次函数的概念。
3专家建议本节课是以类比的思想方法为主线,研究什么是一次函数这是在学生学习了函数、正比例函数的定义、图象与性质,并初步了解了如何研究一个具体函数〔从定义到图象与性质〕的根底上学习的。
学生原有知识与学习经历对本节课的类比学习奠定扎实的学习根底,在前后知识的类比学习中,学生可以进一步理解函数的知识,体验研究函数的根本思路,促进学生的认知构造的不断的完善,进而开展学生的类比、抽象与概括能力而这些目标的达成必须是在充分发挥学生的主体作用,给予学生足够的活动、探究、交流、反思的时间与空间,让在学生在类比中学习、在类比中思考的前提下才能完成的。
4教学方法启发、引导、类比、发现第1页共1页5 教学用具多媒体课件,教学用直尺、三角板等。
6 教学过程6.1 情境创设【师】前面我们学习了用描点法画函数的图象的方法, 下面请同学们根据画图象的步骤: 列表、 描点、连线,在同一平面直角坐标系中画出以下函数的图象。
( 1) y1 x ; ( 2) y 1 x2 ; 22 (3) y 3x ; (4 )y = 3x 2 =+ . 【师】提示学生要注意在同一个平面直角坐标系中完成以上四个图象。
19.2.2 一次函数(第一课时)【教学目标】1.结合具体情境理解一次函数的意义,能结合实际问题中的数量关系写出一次函数的解析式;2.能辨别正比例函数与一次函数的区别与联系;【教学重难点】重点:一次函数的概念.难点:含参数的一次函数求参数的值.【课前准备】多媒体、图片【教学过程】(-)新课导入1、什么是正比例函数?能举例说明吗?2、购买一枝钢笔需5.6元,付款总数y(元)随所购枝数x(枝)的变化而变化,用解析式表示为:.3、问题:某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y与x的关系.师生共同分析:从大本营向上当海拔每升高1km时,气温从5℃就减少6℃,那么海拔增加xkm时,气温从5℃减少6x℃.因此y与x的函数关系式为:y=5-6x(x≥0)当然,这个函数也可表示为:y=-6x+5 (x≥0)当登山队员由大本营向上登高0.5km时,他们所在位置气温就是当x=0.5时函数y=-6x+5的值,即y=-6×0.5+5=2(℃).这个函数叫什么函数,它与我们上节所学的正比例函数有何不同?我们这节课将学习这些问题.(二)知识讲解4、下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式,这些函数解析式有哪些共同特征?(1).有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C与温度t(单位:℃)有关,即C的值约是t的7倍与35的差.(2).一种计算成年人标准体重G(单位:kg)的方法是,以厘米为单位量出身高值h,再减常数105,所得差是G的值.(3).某城市的市内电话的月收费额y(单位:元)包括月租费22元和拨打电话xmin的计时费(按0.1元/min收取).(4).把一个长10cm、宽5cm的长方形的长减少xcm,宽不变,长方形的面积y(单位:cm2)随x的值而变化.师生活动:学生先独立思考,然后小组交流,可以得到这些问题的函数解析式分别为:(1).C=7t-35.(20≤t≤25)(2).G=h-105.(3).y=0.1x+22.(4).y=-5x+50(0≤x≤10).教师引导观察后请学生代表归纳:它们的形式与y=-6x+5一样,这些函数都是常数k与自变量的积与常数b的和的形式.师:确实如此,如果我们用b来表示这个常数的话.•这些函数形式就可以写成:y=kx+b(k≠0)教师出示一次函数的定义:一般地,形如y=kx+b(k、b是常数,k≠0•)的函数,•叫做一次函数.教师引导学生继续思考当b=0时,y=kx+b是什么函数?学生思考后回答:当b=0时,y=kx+b即y=kx.所以说正比例函数是一种特殊的一次函数.5、同桌合作探究:请写出若干个变量y 与x 之间的函数解析式,让同桌判断是否是一次函数;如果是,请说出其一次项系数与常数项.(三)新知应用例1下列函数中哪些是一次函数,哪些又是正比例函数?师生活动:学生先独立思考,然后小组讨论,教师根据学生讨论情况加以点拨:如(7)和(8)这两种形式需要加以整理,最后根据学生的回答情况得出答案;解:一次函数:(1)、(4)、(5)、(7)、(8)。
19。
2.2一次函数(1)教学目标①理解一次函数与正比例函数的概念以及它们的关系,在探索过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系.②能根据问题信息写出一次函数的表达式.能利用一次函数解决简单的实际问题。
③经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力.教学重点与难点重点:①一次函数、正比例函数的概念及关系。
②会根据已知信息写出一次函数的表达式.难点:理解一次函数、正比例函数的概念及关系.在探索过程中,发展抽象思维及概括能力.教学设计复习与反思1.复习:函数与正比例函数的概念和它们之间的关系.注:在对旧知的复习中突出函数是对变量间关系的刻画,正比例函数则是对某一类关系共性的抽象反映.为完善认知与深刻理解概念做准备。
2。
问题:母亲节快到了,小明想送一大束康乃馨给妈妈,花店老板告诉他,若买10支及10支以下每支的价格为3元,买上了10支以上,超过部分的价格可打8折.如果小明买了x支康乃馨(x>10)付给了老板y元钱。
请写出y与x 之间的函数关系式.注:得到的解析式不是原先学过的正比例函数,促使学生对函数特征的思考.3.反思:这个函数是正比例函数吗?它与正比例函数有什么不同?这种形式的函数还会有吗?概念的形成1.下列问题中变量间的对应关系可用怎样的函数表示?出示教科书P.90思考①~④。
逐一出示题目并由学生完成.此处不必对自变量取值范围作深入追究,重在正确得出关系式。
注意选题时各小题表示变量的字母虽然不同,但结构相同,进一步揭示函数的本质在于对变量间对应关系的反映,而与所取符号无关。
2。
思考:上面这些函数有什么共同点?你能再举出一些例子吗?引导学生自己得出上面这些函数的形式都是自变量的k (常数)倍与一个常数的和.并把它们抽象为y=kx+b 的形式.在探索过程中,发展抽象思维及概括能力.理解抽象的符号揭示的是一般规律。
3。
抽取共性,形成概念一般地,形如y=kx+b (k 、b 是常数,k ≠O )的函数,叫做一次函数。
19.2.2 一次函数(第一课时)【教学目标】1.结合具体情境理解一次函数的意义,能结合实际问题中的数量关系写出一次函数的解析式;2.能辨别正比例函数与一次函数的区别与联系;【教学重难点】重点:一次函数的概念.难点:含参数的一次函数求参数的值.【课前准备】多媒体、图片【教学过程】(-)新课导入1、什么是正比例函数?能举例说明吗?2、购买一枝钢笔需5.6元,付款总数y(元)随所购枝数x(枝)的变化而变化,用解析式表示为: .3、问题:某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y与x的关系.师生共同分析:从大本营向上当海拔每升高1km时,气温从5℃就减少6℃,那么海拔增加xkm时,气温从5℃减少6x℃.因此y与x的函数关系式为:y=5-6x(x≥0)当然,这个函数也可表示为:y=-6x+5 (x≥0)当登山队员由大本营向上登高0.5km时,他们所在位置气温就是当x=0.5时函数y=-6x+5的值,即y=-6×0.5+5=2(℃).这个函数叫什么函数,它与我们上节所学的正比例函数有何不同?我们这节课将学习这些问题.(二)知识讲解4、下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式,这些函数解析式有哪些共同特征?(1).有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C与温度t(单位:℃)有关,即C的值约是t的7倍与35的差.(2).一种计算成年人标准体重G(单位:kg)的方法是,以厘米为单位量出身高值h,再减常数105,所得差是G的值.(3).某城市的市内电话的月收费额y(单位:元)包括月租费22元和拨打电话xmin的计时费(按0.1元/min收取).(4).把一个长10cm、宽5cm的长方形的长减少xcm,宽不变,长方形的面积y (单位:cm2)随x的值而变化.师生活动:学生先独立思考,然后小组交流,可以得到这些问题的函数解析式分别为:(1).C=7t-35.(20≤t≤25)(2).G=h-105.(3).y=0.1x+22.(4).y=-5x+50(0≤x≤10).教师引导观察后请学生代表归纳:它们的形式与y=-6x+5一样,这些函数都是常数k 与自变量的积与常数b的和的形式.师:确实如此,如果我们用b来表示这个常数的话.•这些函数形式就可以写成:y=kx+b (k≠0)教师出示一次函数的定义:一般地,形如y=kx+b(k、b是常数,k≠0 )的函数,•叫做一次函数.教师引导学生继续思考当b=0时,y=kx+b是什么函数?学生思考后回答:当b=0时,y=kx+b 即y=kx .所以说正比例函数是一种特殊的一次函数.5、同桌合作探究:请写出若干个变量 y 与 x 之间的函数解析式,让同桌判断是否是一次函数;如果是,请说出其一次项系数与常数项.(三)新知应用例1 下列函数中哪些是一次函数,哪些又是正比例函数?师生活动:学生先独立思考,然后小组讨论,教师根据学生讨论情况加以点拨:如(7)和(8)这两种形式需要加以整理,最后根据学生的回答情况得出答案; 解:一次函数:(1)、(4)、(5)、(7)、(8)。
人教版数学八年级下册19.2.2《一次函数》教学设计1一. 教材分析人教版数学八年级下册19.2.2《一次函数》是初中数学的重要内容,主要让学生了解一次函数的定义、性质及图象,能运用一次函数解决实际问题。
本节课的内容在学生学习了代数知识、平面直角坐标系的基础上进行,为后续学习二次函数、反比例函数等函数知识打下基础。
二. 学情分析八年级的学生已经掌握了代数基础知识,对平面直角坐标系有一定的了解。
但学生在学习过程中,可能对一次函数的图象与系数之间的关系理解不够深入,需要通过实例让学生感受一次函数的实际应用,提高学生的学习兴趣。
三. 教学目标1.理解一次函数的定义,掌握一次函数的性质及其图象特点。
2.学会用一次函数解决实际问题,提高学生的应用能力。
3.培养学生的团队协作精神,提高学生的表达能力和解决问题的能力。
四. 教学重难点1.一次函数的定义及其性质。
2.一次函数图象的特点。
3.一次函数在实际问题中的应用。
五. 教学方法1.采用问题驱动法,引导学生探究一次函数的定义、性质及应用。
2.利用数形结合法,让学生直观地理解一次函数的图象与系数之间的关系。
3.运用实例分析法,培养学生解决实际问题的能力。
4.小组讨论,培养学生的团队协作精神。
六. 教学准备1.准备相关的一次函数教学素材,如PPT、例题、练习题等。
2.准备一次函数的图象展示工具,如黑板、白板笔等。
3.准备一次函数的实际应用案例,如购物、出行等问题。
七. 教学过程1.导入(5分钟)利用PPT展示一次函数的实际应用案例,引导学生思考一次函数的意义,激发学生的学习兴趣。
2.呈现(10分钟)介绍一次函数的定义、性质及图象特点,让学生初步了解一次函数的基本概念。
3.操练(10分钟)让学生自主探究一次函数的性质,通过PPT展示典型例题,引导学生运用所学知识解决问题。
4.巩固(10分钟)学生进行小组讨论,分享各自在探究过程中总结的一次函数的性质,加深学生对一次函数的理解。
一次函数第1课时一次函数的概念"純載字目畅【知识与技能】1. 理解一次函数的概念以及它与正比例函数的关系2. 能根据问题的信息写出一次函数的表达式,能利用一次函数解决简单的问题【过程与方法】在探究过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系【情感态度】经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力•【教学重点】1. 一次函数的概念•2. 根据已知信息写出一次函数的表达式.【教学难点】理解一次函数的定义及与正比例函数的关系"就載字S3程一、情境导入,初步认识弓I导学生一起回忆函数、正比例函数的概念和两者间的关系问题某登山队大本营所在地的气温为5C,海拔每升高1km气温下降6C,登山队员由大本营向上登高xkm,他们所在位置的气温是y C,试用解析式表示y与x的关系.【分析】y随x的变化规律是,从大本营向上海拔增加xkm时,气温从5C减少6x C,因此y与x的函数关系为y=5-6x,变形可写成y=-6x+5.【教学说明】找出y与x的关系式后,引导学生观察这个函数式是不是正比例函数,它的形式与正比例函数解析式有什么异同?由学生共同讨论二、思考探究,获取新知学生思考下列问题,写出对应的函数解析式:(1)有人发现,在20~25C时蟋蟀每分钟鸣叫次数C 与温度t (单位:C)有关,即C的值约(2) —种计算成年人标准体重G (单位:千克)的方法是,以厘米为单位量出身高值h, h再是t的7倍与35的差.减常数105,所得的差是G的值.(3)把一个长10cm,宽5cm的长方形的长减小xcm,宽不变,长方形的面积y (单位:cm?)随x的值而变化.【答案】(1)C=7t-35 ;(2)G=h-105 ;(3)y=-5x+50.【教学说明】让学生观察所写解析式的特点,并让学生认识到:各小题表示变量的字母虽然不同,但结构相同•变量间对应关系反映出了一种函数形式,与所取符号无关,找出这些式子的共同点,才能概括出一般规律•【归纳总结】(1)一般地,形如y=kx+b (k, b为常数,0)的函数,叫一次函数.(2)当b=0时,得y=kx,故正比例函数是一次函数的特例.三、典例精析,掌握新知例1下列函数中哪些是一次函数?哪些是正比例函数?2 2 1① y= -2x :② y :③ y=2x -3 :④ y= x+2.x 3【答案】①④是一次函数,①是正比例函数【教学说明】一次函数包括正比例函数•例2某校校办工厂的现有年产值是15万元,计划今后每年增加2万元,由此可知,年产值发生了变化.(1)在这个变化过程中,自变量、因变量各是什么?(2)如果年数用x (年)表示,年产值用y (万)元表示,那么y与x之间有什么样的关系?(3)当年数由1年增加到5年时,年产值是怎样变化的?【分析】由题意可知,现有年产值是15万元,以后每年增加2万元,可见,年数乘以2万元即为增加的产值.【答案】(1)在这个变化过程中,自变量是年数,因变量是年产值(2)y=2x+15.(3)当年数由1年增加到5年时,年产值由17万元增加到25万元.例3托运行李P千克(P 为整数)的费用为c元,已知托运第一个1千克须付2元,以后每增加1千克(不足1千克的按1 千克计)须增加费用5角,写出c与P的关系式,并计算出托运5千克行李的托运费•【分析】因为P千克可写成(P-1 )+1,其中1千克付费2元,P-1千克增加费用0.5 (P-1 ), 所以c=2+0.5 (P-1 ) =0.5P+1.5.【答案】c=2+0.5 (P-1) =0.5P+1.5.当P=5时,c=0.5 X 5+1.5=4 (元).即5千克行李的托运费是4元.【教学说明】在写关系式时,应注意( P-1 )千克是增加的重量•类似的问题还有用水、用电、话费结算等,它们都是以分段形式收费的•四、运用新知,深化理解1. 一个小球由静止开始在一个斜坡上向下滚动,其速度每秒增加2米/秒.(1)求小球速度v随时间t变化的函数关系式,它是一次函数吗?(2)求第2.5秒时小球的速度.2. 汽车油箱中原有油50升,如果行驶中每小时用油5升,求油箱中的油量y (单位:升)随行驶时间x (单位:时)变化的函数关系式,并写出自变量x的取值范围,y是x的一次函数吗?3. 气温随着高度的增加而下降,下降的一般规律是从地面到高空11km处,每升高1km,气温下降6C.高于11km时,气温几乎不再变化,设地面的气温为38C,高空中xkm的气温为y C.(1)当O w x< 11时,求y与x的关系式.(2)求当x=2, 5, 8, 11时y的值.(3)求在离地面13km的高空处,气温是多少度?(4)当气温是-16C时,问在离地面多高的地方?【教学说明】上述问题由学生思考并得出结果【答案】1. (1) v=2t,是一次函数;(2)第2.5秒时小球的速度是5米/秒.2. y=50-5x , O w x w 10, y 是x 的一次函数.3. (1) O w x w 11时,y与x之间的关系式为y=38-6x.(2)分别为26, 8, -10 , -28.(3)气温是-28C.(4)离地面9km高的地方.五、师生互动,课堂小结问题1反思函数、正比例函数、一次函数的概念及它们间的关系问题2就本节课所学、所想、所思、所获,交流体会.【教学说明】引导学生用语言表述个人见解,指导获取正确清晰的知识点和知识间联系誓「谓后毎业1. 布置作业:从教材“习题19.2 ”中选取.2. 完成练习册中本课时练习數字反思本课时重点是引领学生从整体的高度把握一次函数与正比例函数的概念间的关系,教师应选取适当的材料帮助学生从不同的角度认识这个知识点,并通过一定的练习指导学生巩固认识•教学中可重点指导学生表述、交流个人体会,再互相分析,在师生的共同探讨中逐步抓住知识的本质,再鼓励学生主动地应用于解决问题中,获得实际应用能力。
19.2.2一次函数教案【篇一:19.2.2一次函数(1)教学设计】一次函数的教学设计一、教学目标(一)知识目标1、理解一次函数和正比例函数的概念。
2、能根据所给条件写出简单的一次函数表达式。
(二)能力目标1、经历一般规律的探索过程、发展学生的抽象思维能力。
2、通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力。
(三)情感目标1、通过函数与变量之间的关系的联系,发展学生的数学思维能力。
2、经历利用一次函数解决实际问题的过程,发展学生的数学应用能力。
二、教学重点从具体背景中列出相应的一次函数表达式,从而概括出一次函数的概念。
三、教学难点根据已知信息写出一次函数的表达式。
四、教学方法自主─探究、归纳─总结五、教学过程(一)情境引入复习与反思1、复习函数和正比例函数的概念是什么?你能举例吗?2、问题:某登山队大本营所在地的气温为15℃,海拔每升高1km 气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.(1)试用函数解析式表示y?与x的关系.(2)当登山队员由大本营向上登高0.5km时,他们所在位置的气温是多少摄氏度?3、这个函数是正比例函数吗?它与正比例函数有什么不同?这种形式的函数你见过吗?学生活动:小组内叙述,其他成员补充。
对于问题(2)思考并写出解析式,然后与正比例函数作对比,发表见解。
设计意图:问题(2)为完善认识与深刻理解函数做准备,问题(3)促使学生对函数特征的理解。
(二)新知探究1、探究概念,概括形式特征下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式,这些函数解析式有哪些共同特征?(1)有人发现,在20~25℃时蟋蟀每分钟鸣叫次数c与温度t(℃)有关,即c?的值约是t的7倍与35的差.(2)一种计算成年人标准体重g(kg)的方法是:以厘米为单位量出身高值h,再减常数105,所得差是g的值。
(3)某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话xmin的计时费(按0.1元/min收取).(4)把一个长10cm,宽5cm的矩形的长减少xcm,宽不变,矩形面积y(cm2)随x的变化而变化.像上面写出的函数称为一次函数。
19.2.2一次函数【课标内容】1.掌握一次函数的概念,并理解正比例函数与一次函数的关系.2.能画出一次函数的图象,并能根据图象理解掌握一次函数的性质.3.了解待定系数法的概念,并能用待定系数法确定一次函数的解析式.4.能利用一次函数解决一些实际问题.【教材分析】从数学自身的发展过程看,变量和函数的引入标志着数学从初等数学向变量数学的迈进。
而一次函数是初中阶段研究的第一个函数,它的研究方法具有一般性和代表性,为后面的二次函数、反比例函数的学习都奠定了基础。
同时,在整个初中阶段,一元一次方程、一元一次不等式都存在于一次函数中。
三者相互依存,紧密联系,也为方程、不等式、函数解法的补充提供了新的途径。
.【学情分析】本节课主要是研究一次函数的图象与性质,是在学习了正比例函数的图象与性质,并初步了解了如何研究一个具体函数的图象与性质的基础上进的。
原有知识与经验对本节课的学习有着积极的促进作用,在前后知识的比较中,学生进一步理解知识,促进认知结构的完善,发展、比较、抽象与概括能力,进一步体验研究函数的基本思路,而这些目标的达成要求教学必须发挥学生的主体作用,在函数图象及其性质的探索活动中,应给予学生足够的活动、探究、交流、反思的时间与空间,不以老师的讲演代替学生的探索。
【教学目标】1.掌握一次函数的概念,并理解正比例函数与一次函数的关系.2.能画出一次函数的图象,并能根据图象理解掌握一次函数的性质.3.了解待定系数法的概念,并能用待定系数法确定一次函数的解析式.4.能利用一次函数解决一些实际问题.【教学重点】会用描点法画函数的图象,并能利用函数的三种表示方法解决实际问题.【教学难点】一次函数的实际应用.【教学方法】五步教学法、引导探究法【课前准备】教学中出示的教学插图和例题.【课时设置三课时第一课时.一、预学自检互助点拨1..探索一次函数的概念思路一2011年开始运营的京沪高速铁路全长1318 km,设列车的平均速度为300 km/h.(1) 列车从始发站北京南站到终点站上海虹桥站,约需小时.(结果保留一位小数)(2)列车从北京南站出发,离终点站的距离y(单位:km)是运行时间t(h)的函数吗?它们之间的数量关系是:.(注意:实际问题要给出自变量的范围)(3)由(2)中的关系式求出当t=2.5时,y=;当y=1200时,t=.(保留一位小数)(4)列车从北京南站出发2.5 h后,是否已经过了距始发站1100 km 的南京南站?学生思考,小组交流.答案:(1)4.4(2)y=1318-300t0≤t≤(3)5680.4(4)没有经过学生讨论:以上函数解析式有什么共同特点?学生观察思考,讨论总结其特征:这些函数都是常数k与自变量的积与常数b的和的形式.教师总结:确实如此,如果我们用b来表示这个常数的话,这些函数形式就可以写成:y=kx+b(k≠0).教师出示一次函数的定义:一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数.引导学生思考:k的值能为0吗?b的值能为0吗?当b=0 时,y=kx+b 是什么函数?一种特殊的一次函数.[设计意图]这个探索活动是学习一次函数概念的基础.借助生活实例,引出一次函数概念,这是本活动的出发点.提出追问的问题,有助于学生的认识上升到一次函数一般性的高度,有助于学生理解一次函数的概念,并且正确认识一次函数与正比例函数的关系.思路二(1)c=7t-35(20≤t≤25).(2)G=h-105.(3)y=0.1x+22.(4)y=-5x+50(0≤x<10).提问:以上函数解析式有什么共同特点?引导学生从解析式的形式上找共同点.师生共同归纳其特点:它们的形式都是自变量的k倍与一个常数的和.教师出示一次函数的定义: 一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数.教师提醒:(1)k,b的取值范围;(2)自变量的取值范围为全体实数;(3)b可以为零.追问:当b=0 时,y=kx+b是什么函数?一种特殊的一次函数.[设计意图]由学生已有的学习经验和生活经验出发,拉近了数学与生活的距离,激发学生的学习热情.通过探索活动,让学生认识一次函数解析式的特征,掌握一次函数的概念,理解一次函数与正比例函数的关系.二、合作互学探究新知2.例题讲解(补充) 下列函数中是一次函数的有哪些?并说出k和b的值.(1)y=-x;(2)y=+2;(3)y=5x2-3;(4)m=2.5n-0.3;(5)y=3x+3(1-x);(6) l=r-.引导学生分析:根据一次函数y=kx+b的特征去判断,注意(1)是正比例函数,当然也是一次函数;(5)化简得y=3,不符合k≠0的要求,故不是一次函数.解:是一次函数的有(1),其中k=-,b=0;有(4),其中k=2.5,b=-0.3;有(6),其中k=,b=-.归纳总结:(1)一次函数成立的条件:①自变量的指数为1;②一次项系数k≠0.(2)一次函数与正比例函数的关系:正比例函数一定是一次函数,但一次函数不一定是正比例函数.一次函数y=kx+b中,当b=0时,一次函数就变成了正比例函数,所以正比例函数是特殊的一次函数.(补充)已知y+b与x+a(a,b是常数)成正比例.(1)试说明y是x的一次函数;(2)如果x=3时y=5,x=2时y=2,求y与x的函数关系式.引导分析:(1)根据正比例函数的定义,把y+b与x+a分别看作一个整体,分别作为一个变量,可得y+b=k(x+a),所以y=kx+ka-b.根据一次函数的定义可知y是x的一次函数;(2)设y与x的一次函数解析式为y=mx+n,分别把x=3,y=5和x=2,y=2代入解析式中,得到关于m,n的方程组,解方程组即可.解:(1)设y+b与x+a的函数解析式为y+b=k(x+a),得y=kx+ka-b.根据一次函数的概念可知y是x的一次函数.(2)设y与x的函数解析式为y=mx+n.把x=3,y=5和x=2,y=2分别代入,得:解得则y=3x-4.归纳总结:判断一次函数,利用一次函数的定义判断即可.通常是利用待定系数法求一次函数的解析式.(补充)已知关于x的函数y=(k+2)x+k2-4,(1)当k满足什么条件时,它是正比例函数?(2)当k满足什么条件时,它是一次函数?〔解析〕(1)根据正比例函数的定义可知:k2-4=0且k+2≠0确定k的值.(2)根据一次函数的定义可知:k+2≠0确定k的值即可.解:(1)当k2-4=0且k+2≠0时,即k=2时,它是正比例函数.(2)当k+2≠0,即k≠-2时,它是一次函数.归纳总结:注意一次函数的定义,并且正确理解它和正比例函数的关系,一次函数y=kx+b中必须满足的条件是k≠0.当b=0时,一次函数也为正比例函数.三、自我检测成果展示1.下列说法中不正确的是()A.正比例函数一定是一次函数B.一次函数不一定是正比例函数C.不是一次函数就不是正比例函数D.正比例函数不是一次函数解析:利用一次函数和正比例函数的关系解决本题即可.故选D. 2.已知方程3x-2y=1,把它化成y=kx+b的形式是;这时k=,b=;当x=-2时,y=,当y=0时,x=.解析:利用一次函数的概念即可确定k,b的值,把x=-2代入解析式即可求出y的值,把y=0代入解析式即可求出x的值.答案:y=x---3.关于x的一次函数y=(m-2)x n-1+n中,m,n应满足的条件分别是.解析:根据一次函数的概念,可知m-2≠0,n-1=1,求出m,n符合的条件即可.故填m≠2,n=2.4.已知y=(m+1)x2-|m|+n+4.(1)当m,n取何值时,y是x的一次函数?(2)当m,n取何值时,y是x的正比例函数?解析:一次函数y=kx+b的解析式中k≠0,自变量的次数为1,常数项b可以为任意实数;正比例函数的解析式中,比例系数k是常数,k≠0,自变量的次数为1.解:(1)根据一次函数的定义,得2-|m|=1,解得m=±1.又∵m+1≠0,即m≠-1,∴当m=1,n为任意实数时,这个函数是一次函数. (2)根据正比例函数的定义,得2-|m|=1,n+4=0,解得m=±1,n=-4,又∵m+1≠0,即m≠-1,∴当m=1,n=-4时,这个函数是正比例函数.四、应用提升挑战自我5.某种气体在0 ℃时的体积为100 L,温度每升高1 ℃,它的体积增加0.37 L.(1)写出气体体积V(L)与温度t(℃)之间的函数解析式;(2)求当温度为30 ℃时气体的体积;(3)当气体的体积为107.4 L时,温度为多少摄氏度?五、经验总结反思收获本节课你学到了什么?写出来(设计思路:师生共同回忆所学内容,共同小结,渐渐补充.充分利用学案资源帮助学生理解、消化、新的知识,能够灵活的运用这节课所学习的内容.教师引导学生总结今天学习的主要内容,在学习后进行适当总结有助于学生更加深刻理解内容.)【板书设计】第1课时1.一次函数的概念2.例题讲解例1例2例3【备课反思】本节课从知识与方法、能力与素质的层面确定了相应的教学目标.把学生的探索和验证活动放在首位,一方面要求学生在老师的引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,达到培养能力的目的.整节课以“问题情境——分析探究——总结升华”为主线,使学生亲身体验一次函数特征的探索,深化一次函数与正比例函数的关系的理解,努力做到由传统的数学课堂向实验课堂转变.。
19.2.2 一次函数(第一课时)【教学目标】1.结合具体情境理解一次函数的意义,能结合实际问题中的数量关系写出一次函数的解析式;2.能辨别正比例函数与一次函数的区别与联系;3.初步体会用待定系数法求一次函数解析式的方法.【教学重难点】重点:一次函数的概念.难点:求一次函数解析式.【教学过程】(-)导入新课问题:某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y•与x的关系.师生共同分析:从大本营向上当海拔每升高1km时,气温从5℃就减少6℃,那么海拔增加xkm时,气温从5℃减少6x℃.因此y与x的函数关系式为:y=5-6x(x≥0)当登山队员由大本营向上登高0.5km时,他们所在位置气温就是当x=0.5时函数y=-6x+5的值,即y=-6×0.5+5=2(℃).这个函数叫什么函数,它与我们上节所学的正比例函数有何不同?我们这节课将学习这些问题.(二)探究新知下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式,这些函数解析式有哪些共同特征?(1).有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C与温度t(单位:℃)有关,即C•的值约是t 的7倍与35的差.(2).一种计算成年人标准体重G(单位:kg)的方法是,以厘米为单位量出身高值h,再减常数105,所得差是G的值.(3).某城市的市内电话的月收费额y(单位:元)包括月租费22元和拨打电话xmin的计时费(按0.1元/min收取).(4).把一个长10cm、宽5cm的长方形的长减少xcm,宽不变,长方形的面积y(单位:cm2)随x的值而变化.师生活动:学生先独立思考,然后小组交流,可以得到这些问题的函数解析式分别为:(1).C=7t-35.(20≤t≤25)(2).G=h-105.(3).y=0.1x+22.(4).y=-5x+50(0≤x≤10).引导观察后请学生代表归纳:它们的形式与y=-6x+5一样,这些函数都是常数k与自变量的积与常数b的和的形式.师:确实如此,如果我们用b来表示这个常数的话.•这些函数形式就可以写成:y=kx+b(k≠0)出示一次函数的定义:一般地,形如y=kx+b(k、b是常数,k≠0 )的函数,•叫做一次函数.引导学生继续思考当b=0 时,y=kx+b是什么函数?学生思考后回答:当b=0时,y=kx+b即y=kx.所以说正比例函数是一种特殊的一次函数.同桌合作探究:请写出若干个变量y 与x 之间的函数解析式,让同桌判断是否是一次函数;如果是,请说出其一次项系数与常数项.(三)新知应用例1 下列函数中哪些是一次函数,哪些又是正比例函数?学生先独立思考,然后小组讨论,根据学生讨论情况加以点拨:如(7)和(8)这两种形式需要加以整理,最后根据学生的回答情况得出答案;例2、 已知一次函数 y =kx +b ,当 x =1时,y =5;当x =-1时,y =1.求 k 和 b 的值.分析:与前面求正比例函数的解析式同样的方法,将已知的x 、y 的数值代入即可求得。
19.2.2一次函数(1)教学重点理解一次函数和正比例函数的概念.教学难点能根据所给条件写出简单的一次函数表达式,发展学生的抽象思维能力.kx b(,k b为常数y为因变量).特别地0时,则y学生先独立完成3x,(2)5y x ,(3)4y x ,223x x ,(5)2yx(6)12yx 中是 ,是正比例函数的是 .2.若函数(63)44ym x n 是一次函数,则,m n ;若是正比例函数,则,m n 应 .时,函数28(3)5kykx 是关于x 展示 点评 1.下列语句中,具有正比例函数关系的是( ) (A ) 长方形花坛的面积不变,长y 与宽x 之间的关系; (B ) 正方形的周长不变,边长x 与面积S 之间的关系;(C ) 三角形的一条边不变,这条边上的高h 与面积S 之间的关系;(D ) 圆的面积为S ,半径为r ,S 与r 之间的关系.2、 写出下列各题中x 与y 之间的关系式,并判断:y 是否为x 的一次函数?是否为正比例函数?(1)汽车以60千米/时的速度匀速行驶,行驶路程y (千米)与行驶时间x (时)之间的关系;作业设计:C类(学困生):导学案训练案B类(中等生)1.某电信公司手机的A类收费标准如下:不管通话时间多长,每部手机每月必须缴月租费50元,另外,每通话1分钟交费0.4元.(1)写出每月应缴费用y(元)与通话时间x(分)之间的关系式;(2)某手机用户这个月通话时间为152分,他应缴费多少元?(3)如果该手机用户本月预交了200元的话费,那么该用户本月可通话多长时间?2.某电信公司手机的B类收费标准如下:没有月租费,但每通话1分钟收费0.6元.按照此类收费标准,分别完成第2题中的各小题.A类(优等生)根据上面第2,3题中的条件,完成下列各题:(1)若每月平均通话时间为300分,你选择哪类收费方式?(2)每月通话多长时间时,按A,B两类收费标准缴费,所交话费相等?。
19.2.2 一次函数
板书设计
19.2.2 一次函数(2)
19.2.2 一次函数(3)
教学过程设计
板书设计
19.2.2 一次函数(第4课时)【教学任务分析】
目标方法法.
情感
态度
在数学建模的过程中,发展创新实践能力,培养学生的数学应用意识.
重
点
灵活运用知识解决相关问题.
难
点
分类讨论的分析方法.
【教学环节安排】
环节教学问题设计教学活动设计
情境引入【问题1】今年某地区发生严重干旱,自来水公司为
了鼓励市民节约用水,采取分段收费标准,若某户居
民每月应交水费y(元)是用水量x(吨)的函数,
当0≤x≤5时,y=0.72x,当x>5时,y=0.9x-0.9.
(1)画出函数的图象;
(2)观察图象,利用函数图象,回答自来水公司采
取的收费标准.
分析:本题y随x变化的规律分成两段:当0≤x≤5
时,y=0.72x,当x>5时,y=0.9x-0.9. 画图象时也
要分成两段来画,且要注意各自变量的取值范围.
提醒:解决这类函数问题,要特别注意自变量取值范
围的划分,既要科学合理,又要符合实际.
生自主探究,通过教师
引领,鼓励合作交流、
互帮互助.
教师选择两个同学进行
板练,同时进行.其他在
练习本上练习.(板练的
小组采取合作的形式,
一人画图,一人写步骤,
一人负责组织语言准备
讲解.
自主探究【问题2】“黄金1号”玉米种子的价格为5元/千克,
如果一次购买2千克以上的种子,超过2千克部分的
种子的价格打8折.
(1)填出下表:
买种子的
数
量/千克
1
2
1 3
2
2 5
2
3 7
2
4 …
付款金额/…
【分析】付款金额与种
子价格相关,种子价格
是变化的,它与购买的
种子数量有关.设购买x
千克种子,当x取
______________时,种
子的价格为5元/千克;
当x取___________时,
元 (2)(2)写出购买种子数量与付款金额之间的函数解析式,并画出函数图象.
总结:1.解决含有多个变量的问题时,可以分析这些变量间的关系,选取其中某个变量作为自变量,然后根据问题条件寻求可以反映实际问题的函数.这样就可以利用函数知识来解决了 2.分段函数的书写:当02x ≤≤时,5y x =,
当2x >时,4(2)1042y x x =-+=+也可以写成5(02)
42(2)x x y x x ≤≤⎧=⎨+>⎩
种子的价格分两部分:2
千克按5元/千克,其余的(即超出部分)
___________按8折,即_________计价. 因此,写函数解析式与画图时,应对______________和
_________________分段讨论.
问题2关注学生是否分段考虑,分段求解析式,这是解题的关键.
尝 试 应 用
一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题. (1)农民自带的零钱是多少? (2)试求降价前y 与x 之间的关系式
(3)由表达式你能求出降价前每千克的土豆价格是多少?
(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?
成 果 展 示
回顾以上的题目,利用分段函数解决实际问题时,应该注意哪些问题?
先独立思考,然后在小组内交流,在班内展示.。