局部放电的基本知识
- 格式:ppt
- 大小:990.50 KB
- 文档页数:39
局部放电特征及原理一、局部放电的特征局部放电是指发生在电极之间但并未贯穿电极的放电,它是由于设备绝缘内部存在弱点或生产过程中造成的缺陷,在高电场强度作用下发生重复击穿和熄灭的现象。
它表现为绝缘内气体的击穿、小范围内固体或液体介质的局部击穿或金属表面的边缘及尖角部位场强集中引起局部击穿放电等。
这种放电的能量是很小的,所以它的短时存在并不影响到电气设备的绝缘强度。
但若电气设备绝缘在运行电压下不断出现局部放电,这些微弱的放电将产生累积效应会使绝缘的介电性能逐渐劣化并使局部缺陷扩大,最后导致整个绝缘击穿。
局部放电是一种复杂的物理过程除了伴随着电荷的转移和电能的损耗之外,还会产生电磁辐射、超声波、光、热以及新的生成物等。
从电性方面分析,产生放电时,在放电处有电荷交换、有电磁波辐射、有能量损耗。
最明显的是反映到试品施加电压的两端,有微弱的脉冲电压出现。
如果绝缘中存在有气泡,当工频高压施加于绝缘体的两端时,如果气泡上承受的电压没有达到气泡的击穿电压,则气泡上的电压就随外加电压的变化而变化。
若外加电压足够高,即上升到气泡的击穿电压时,气泡发生放电,放电过程使大量中性气体分子电离,变成正离子和电子或负离子,形成了大量的空间电荷,这些空间电荷,在外加电场作用下迁移到气泡壁上,形成了与外加电场方向相反的内部电压,这时气泡上剩余电压应是两者叠加的结果,当气泡上的实际电压小于气泡的击穿电压时,于是气泡的放电暂停,气泡上的电压又随外加电压的上升而上升,直到重新到达其击穿电压时,又出现第二次放电,如此出现多次放电。
当试品中的气隙放电时,相当于试品失去电荷q,并使其端电压突然下降△U,这个一般只有微伏级的电源脉冲叠加在千伏级的外施电压上。
所有局部放电测试设备的工作原理,就是将这种电压脉冲检测出来。
其中电荷q称为视在放电量。
二、局部放电的机理1.局部放电的发生机理局部放电的发生机理可以用放电间隙和电容组合的电气的等值回路来代替,在电极之间放有绝缘物,对它施加交流电压时,在电极之间局部出现的放电现象,可以看成是在导体之间串联放置着2个以上的电容,其中一个发生了火花放电。
局部放电测量的基本知识邱昌容徐阳西安交大科技园博源电气有限责任公司序言局部放电(PD)是表征高压电气设备绝缘性能的重要参数,也是发生绝缘故障的有效先兆信息。
通过局部放电的检测,特别是在线监测,将为避免事故的发生和实行状态检修创造条件。
因此PD在线监测已引起广泛的关注。
为了让用户基本上了解有关PD的机理,测量技术,测试结果的分析、判断,以及本公司生产的PD在线监测系统。
针对用户关心的问题,编写这本小册子。
目录一、什么是PD,如何产生 (1)二、为什么要测量局部放电? (1)三、有哪些测量局部放电的方法 (3)四、有哪些PD表征参数 (5)五、什么是局部放电谱图 (7)六、视在放电电荷如何定量 (9)七、为什么要对变压器局部放电进行在线监测 (10)八、PD在线监测的关键技术是什么 (11)九、BYT-II系统的工作原理及其特点是什么 (15)十、如何进行绝缘诊断 (18)一、什么是PD,如何产生局部放电是指在绝缘系统中,只有局部区域发生放电,而没有击穿,即放电没有贯穿施加电压的导体之间。
局部放电可能出现在绝缘体内部、绝缘体与导体的界面上,以及绝缘体表面。
导体周围都是气体时,导体边缘的PD称为电晕。
产生局部放电的根本原因是电场不均匀。
这可能是由于导体尖端,或毛刺;也可能是绝缘体内部或界面存在气泡、裂纹、杂质、或是绝缘系统由多种介质复合组成。
只要在局部区域的电场强度超过该区域材料的击穿场强时,在该区域就会出现放电,即产生局部放电。
例如变压器油纸中含有气泡,则气泡中的电场强度E0 比其周围油纸中的电场强E p要大εp/ε0倍。
εp为油纸的相对介电常数约2.2;ε0为空气的相对介电常数约为1,故E0=2.2E p而气体的击穿场E B0为3kV/mm(大气压力下)而油纸的击穿场强高达15kV/mm,很明显气泡首先放电而油纸仍然保持绝缘特性,这就出现局部放电。
此外还可能因导体接触不好或有浮动电位的金属体产生的PD。
特高频局部放电检测技术知识讲解电力设备的局部放电是一种常见的电气现象,它预示着设备的绝缘状况可能出现问题。
特高频局部放电检测技术是一种先进的检测技术,能够有效地检测和识别电力设备的局部放电。
本文将详细介绍特高频局部放电检测技术的原理、应用及优势。
一、特高频局部放电检测技术原理特高频局部放电检测技术主要利用局部放电产生的电磁波进行检测。
当电力设备发生局部放电时,放电产生的电流会激发出电磁波,这些电磁波的频率通常在数吉赫兹到数百吉赫兹之间。
特高频局部放电检测设备能够捕捉到这些特高频电磁波,并对其进行处理和分析。
二、特高频局部放电检测技术的应用特高频局部放电检测技术在电力设备检测中具有广泛的应用。
例如,它可以用于变压器、电缆、断路器等电力设备的检测。
通过对特高频电磁波的分析,可以判断出设备的绝缘状况,发现潜在的故障,从而预防设备故障的发生。
三、特高频局部放电检测技术的优势特高频局部放电检测技术相比传统的检测方法具有以下优势:1、高灵敏度:特高频局部放电检测技术对局部放电产生的电磁波非常敏感,可以检测到非常微弱的放电信号,从而能够发现潜在的设备故障。
2、宽频带:特高频局部放电检测设备具有宽频带的接收能力,可以接收到的电磁波频率范围很广,从而能够获得更全面的设备信息。
3、抗干扰能力强:特高频局部放电检测技术对噪声的抑制能力较强,可以有效地避免干扰信号对检测结果的影响。
4、非接触式检测:特高频局部放电检测技术可以采用非接触式的方式进行检测,无需接触设备,从而不会对设备的正常运行产生影响。
四、结论特高频局部放电检测技术是一种先进的电力设备检测技术,具有高灵敏度、宽频带、抗干扰能力强和非接触式检测等优势。
通过对电力设备的特高频电磁波进行检测和分析,可以有效地发现潜在的设备故障,预防设备故障的发生。
在未来的电力设备检测中,特高频局部放电检测技术将会发挥越来越重要的作用。
随着电力系统的不断发展,人们对电力设备的安全与稳定性要求越来越高。
局部放电试验第一节局部放电特性及原理一、局部放电测试目的及意义局部放电:是指设备绝缘系统中部分被击穿的电气放电,这种放电可以发生在导体(电极)附近,也可发生在其它位置。
局部放电的种类:①绝缘材料内部放电(固体-空穴;液体-气泡);②表面放电;③高压电极尖端放电。
局部放电的产生:设备绝缘内部存在弱点或生产过程中造成的缺陷,在高压电场作用下发生重复击穿和熄灭现象-局部放电。
局部放电的特点:①放电能量很小,短时间内存在不影响电气设备的绝缘强度;②对绝缘的危害是逐渐加大的,它的发展需要一定时间-累计效应-缺陷扩大-绝缘击穿。
③对绝缘系统寿命的评估分散性很大。
发展时间、局放种类、产生位置、绝缘种类等有关。
④局部放电试验属非破坏试验。
不会造成绝缘损伤。
局部放电测试的目的和意义:确定试品是否存在放电及放电是否超标,确定局部放电起始和熄灭电压。
发现其它绝缘试验不能检查出来的绝缘局部隐形缺陷及故障。
局部放电主要参量:①局部放电的视在电荷q:电荷瞬时注入试品两端时,试品两端电压的瞬时变化量与试品局部放电本身所引起的电压瞬变量相等的电荷量,一般用pC(皮库)表示。
②局部放电试验电压:按相关规定施加的局部放电试验电压,在此电压下局部放电量不应超过规定的局部放电量值。
③规定的局部放电量值:在规定的电压下,对给定的试品,在规程或规范中规定的局部放电参量的数值。
④局部放电起始电压Ui:试品两端出现局部放电时,施加在试品两端的电压值。
⑤局部放电熄灭电压Ui:试品两端局部放电消失时的电压值。
(理论上比起始电压低一半,但实际上要低很多5%-20%甚至更低)二、局部放电机理:内部放电:绝缘材料中含有气隙、油隙、杂质等,在电场的作用下会出现介质内部或介质与电极之间的放电。
等效原理图:Ua Ug Cg放电局部放电放电的产生与介质内部电场分布有关,空穴与介质完好部分电压分布关系如下:介质总电容:设空穴与其串联部分介质的总电容Cn:因为介质电容充电电荷q=UC C=εS/dEg:空穴电场强度εg:空穴介电常数Eb:与空穴串联部分电场强度εb: 与空穴串联部分介电常数设qn为空穴充电电荷Ug=qn/Cg空穴电场强度Eg= Ug/dg=q/dgCgdg:空穴距离 db:串联部分完好介质厚度介质中平均场强εg=1空穴大多为空气εb>1所以空穴的E高于完好介质,同时,完好介质的临界场强远高于空气,如环氧树脂Ec=200-300(kV/cm),而空气为25-30(kV/cm),当外施电压达一定值时空穴首先击穿,其它介质完好,形成局部放电。
变压器局部放电一、变压器局放的基础知识1 概述根据国家标准规定,110kV及以上大型电力变压器要做局部放电试验,现在合同要求变压器高中压局放量小于100PC。
局部放电对绝缘的影响,一是放电质点对绝缘的直接轰击造成局部绝缘破坏,逐步发展使绝缘击穿;二是绝缘内部的局部放电虽然不形成贯穿性通道,但放电产生的热,使介质出现局部的温度升高,甚至碳化。
由于放电的电解作用,会产生臭氧、一氧化氮等一些活性气体,使局部绝缘受到腐蚀,逐渐造成绝缘的损伤,最后导致热击穿。
通常,电气绝缘的破坏或局部老化,多是从局部放电开始的,所以,局部放电的危害性是使变压器绝缘寿命降低,影响变压器的安全运行。
2 什么是局部放电对于变压器绝缘结构中,可能存在着一些绝缘弱点,它在一定的外施电压作用下会首先发生放电,但并不随即形成整个绝缘贯穿性击穿。
这种只限于绝缘局部位置(弱点)处的放电就叫局部放电。
局部放电试验的目的:就是考核变压器在长期工作电压作用下,其产品绝缘能否长期安全运行的性能,发现变压器结构和制造工艺的缺陷。
如:(1)绝缘结构中局部电场强度过高,可能是局部绝缘(如油隙或固体绝缘)击穿或沿固体绝缘表面放电;(2)绝缘混入杂质或局部带有缺陷;如绝缘纸筒、层压纸板、层压木板等,由于热压干燥工艺处理不好,就会在其内部形成空腔,当浸油以后,变压器油往往不能浸入此空腔,从而形成了气穴。
如果浸入的变压器油处理不好时,油中会有气泡存在,同时存在着水分和杂质,在电场的作用下,杂质会形成“小桥“,泄漏电流的通过会使该处发热严重,促使水分汽化,形成气泡;同时也会使该处的油发生分解产生气体。
绝缘内部存在的这些气穴(气泡),其介电常数比绝缘材料的介电常数要小,所以气穴上承受的电场强度比邻近的绝缘材料上的电场强度要高。
气体(特别是空气)的绝缘强度却比绝缘材料低。
这样,当外施电压达到一定数值时,绝缘内所含气穴上的场强就会先达到使之击穿的程度,从而气穴先发生放电。
局部放电特征及原理一、局部放电的特征局部放电是指发生在电极之间但并未贯穿电极的放电,它是由于设备绝缘内部存在弱点或生产过程中造成的缺陷, 在高电场强度作用下发生重复击穿和熄灭的现象。
它表现为绝缘内气体的击穿、小范围内固体或液体介质的局部击穿或金属表面的边缘及尖角部位场强集中引起局部击穿放电等。
这种放电的能量是很小的, 所以它的短时存在并不影响到电气设备的绝缘强度。
但若电气设备绝缘在运行电压下不断出现局部放电, 这些微弱的放电将产生累积效应会使绝缘的介电性能逐渐劣化并使局部缺陷扩大,最后导致整个绝缘击穿。
局部放电是一种复杂的物理过程除了伴随着电荷的转移和电能的损耗之外,还会产生电磁辐射、超声波、光、热以及新的生成物等。
从电性方面分析,产生放电时,在放电处有电荷交换、有电磁波辐射、有能量损耗。
最明显的是反映到试品施加电压的两端, 有微弱的脉冲电压出现。
如果绝缘中存在有气泡, 当工频高压施加于绝缘体的两端时, 如果气泡上承受的电压没有达到气泡的击穿电压, 则气泡上的电压就随外加电压的变化而变化。
若外加电压足够高, 即上升到气泡的击穿电压时, 气泡发生放电, 放电过程使大量中性气体分子电离, 变成正离子和电子或负离子, 形成了大量的空间电荷, 这些空间电荷, 在外加电场作用下迁移到气泡壁上, 形成了与外加电场方向相反的内部电压, 这时气泡上剩余电压应是两者叠加的结果, 当气泡上的实际电压小于气泡的击穿电压时, 于是气泡的放电暂停, 气泡上的电压又随外加电压的上升而上升, 直到重新到达其击穿电压时, 又出现第二次放电, 如此出现多次放电。
当试品中的气隙放电时,相当于试品失去电荷 q ,并使其端电压突然下降△U ,这个一般只有微伏级的电源脉冲叠加在千伏级的外施电压上。
所有局部放电测试设备的工作原理,就是将这种电压脉冲检测出来。
其中电荷 q 称为视在放电量。
二、局部放电的机理1.局部放电的发生机理局部放电的发生机理可以用放电间隙和电容组合的电气的等值回路来代替, 在电极之间放有绝缘物, 对它施加交流电压时, 在电极之间局部出现的放电现象, 可以看成是在导体之间串联放置着 2个以上的电容, 其中一个发生了火花放电。
局部放电特征及原理一、局部放电的特征局部放电是指发生在电极之间但并未贯穿电极的放电,它是由于设备绝缘内部存在弱点或生产过程中造成的缺陷,在高电场强度作用下发生重复击穿和熄灭的现象。
它表现为绝缘内气体的击穿、小范围内固体或液体介质的局部击穿或金属表面的边缘及尖角部位场强集中引起局部击穿放电等。
这种放电的能量是很小的,所以它的短时存在并不影响到电气设备的绝缘强度。
但若电气设备绝缘在运行电压下不断出现局部放电,这些微弱的放电将产生累积效应会使绝缘的介电性能逐渐劣化并使局部缺陷扩大,最后导致整个绝缘击穿。
局部放电是一种复杂的物理过程除了伴随着电荷的转移和电能的损耗之外,还会产生电磁辐射、超声波、光、热以及新的生成物等。
从电性方面分析,产生放电时,在放电处有电荷交换、有电磁波辐射、有能量损耗。
最明显的是反映到试品施加电压的两端,有微弱的脉冲电压出现。
如果绝缘中存在有气泡,当工频高压施加于绝缘体的两端时,如果气泡上承受的电压没有达到气泡的击穿电压,则气泡上的电压就随外加电压的变化而变化。
若外加电压足够高,即上升到气泡的击穿电压时,气泡发生放电,放电过程使大量中性气体分子电离,变成正离子和电子或负离子,形成了大量的空间电荷,这些空间电荷,在外加电场作用下迁移到气泡壁上,形成了与外加电场方向相反的内部电压,这时气泡上剩余电压应是两者叠加的结果,当气泡上的实际电压小于气泡的击穿电压时,于是气泡的放电暂停,气泡上的电压又随外加电压的上升而上升,直到重新到达其击穿电压时,又出现第二次放电,如此出现多次放电。
当试品中的气隙放电时,相当于试品失去电荷q,并使其端电压突然下降■U,这个一般只有微伏级的电源脉冲叠加在千伏级的外施电压上。
所有局部放电测试设备的工作原理,就是将这种电压脉冲检测出来。
其中电荷q称为视在放电量。
二、局部放电的机理1.局部放电的发生机理局部放电的发生机理可以用放电间隙和电容组合的电气的等值回路来代替,在电极之间放有绝缘物,对它施加交流电压时,在电极之间局部出现的放电现象,可以看成是在导体之间串联放置着2个以上的电容,其中一个发生了火花放电。
局部放电特征及原理一、局部放电的特征局部放电是指发生在电极之间但并未贯穿电极的放电,它是由于设备绝缘内部存在弱点或生产过程中造成的缺陷,在高电场强度作用下发生重复击穿和熄灭的现象。
它表现为绝缘内气体的击穿、小范围内固体或液体介质的局部击穿或金属表面的边缘及尖角部位场强集中引起局部击穿放电等。
这种放电的能量是很小的,所以它的短时存在并不影响到电气设备的绝缘强度。
但若电气设备绝缘在运行电压下不断出现局部放电,这些微弱的放电将产生累积效应会使绝缘的介电性能逐渐劣化并使局部缺陷扩大,最后导致整个绝缘击穿。
局部放电是一种复杂的物理过程除了伴随着电荷的转移和电能的损耗之外,还会产生电磁辐射、超声波、光、热以及新的生成物等。
从电性方面分析,产生放电时,在放电处有电荷交换、有电磁波辐射、有能量损耗。
最明显的是反映到试品施加电压的两端,有微弱的脉冲电压出现。
如果绝缘中存在有气泡,当工频高压施加于绝缘体的两端时,如果气泡上承受的电压没有达到气泡的击穿电压,则气泡上的电压就随外加电压的变化而变化。
若外加电压足够高,即上升到气泡的击穿电压时,气泡发生放电,放电过程使大量中性气体分子电离,变成正离子和电子或负离子,形成了大量的空间电荷,这些空间电荷,在外加电场作用下迁移到气泡壁上,形成了与外加电场方向相反的内部电压,这时气泡上剩余电压应是两者叠加的结果,当气泡上的实际电压小于气泡的击穿电压时,于是气泡的放电暂停,气泡上的电压又随外加电压的上升而上升,直到重新到达其击穿电压时,又出现第二次放电,如此出现多次放电。
当试品中的气隙放电时,相当于试品失去电荷q,并使其端电压突然下降△U,这个一般只有微伏级的电源脉冲叠加在千伏级的外施电压上。
所有局部放电测试设备的工作原理,就是将这种电压脉冲检测出来。
其中电荷q称为视在放电量。
二、局部放电的机理1.局部放电的发生机理局部放电的发生机理可以用放电间隙和电容组合的电气的等值回路来代替,在电极之间放有绝缘物,对它施加交流电压时,在电极之间局部出现的放电现象,可以看成是在导体之间串联放置着2个以上的电容,其中一个发生了火花放电。
筑龙网w w w .z h u l o n 第2章 局部放电基本特性2.1 局部放电的机理2.1.1 气隙放电等值电路绝缘介质内部含有一个气隙时的放电情况是最简单的,如图1.1(a)所示。
图中c 代表气隙,b 是与气隙串联部分的介质,a 是除了b 之外其他部分的介质。
假定这一介质是处在平行板电极之中,在交流电场作用下气隙和介质中的放电过程可以用图l.1(b)所示的等效电路来分析。
δ-气隙厚度 d -整个介质的厚度 R c 、C c -气泡的电阻和电容 R b 、C b -与气泡串联部分介质的电阻和电容R a 、C a 一其余部分介质的电阻和电容图2.1 含有单气隙的绝缘介质,(a )绝缘介质中的气隙,(b )放电等效电路(a )(b )假定在介质中的气隙是扁平状而且是与电场方向相垂直,则按电流连续性原理可得(2.1) b b c c Y U Y U &&&&= 式中c U &、b U &分别气隙和介质上的电压, 、分别为气隙和介质的等效电导 Y c & Y b & 。
工频电场中若c γ和b γ均小于10-11(Ω·m)-1,则气隙和b 部分绝缘上的电压的数值关系可简化为)()()(2222δεδεωωωγωγ−==++==d C C C C U U u u c b c b c c b b bc b c && (2.2) c ε式中、b ε分别为气隙和绝缘介质的相对介电常数,气隙和介质中的电场强度E c 、E b 的关系为cb b C bcd u u E E εεδδ=−=)( (2.3) 由式(2.3)可见:(1) 气隙放电在工频电场中气隙中的电场强度是介质中电场强度的c b εε倍。
通常情况下1=c ε1>b ε,而,即气隙中的场强要比介质中的高,而另一方面气体的击穿场强一般都比气体的击穿场强低,因此,在外加电压足够高时,气隙首先被击穿,而周围的介质仍然保持其绝缘特性,电极之间并没有形成贯穿性的通道。
局部放电(一)局部放电指纹固体绝缘、空气中局部放电油中局部放电GIS局部放电(二)放电信号的传播特性(三)放电信号的数学模型(一)局部放电指纹(1)固体绝缘、空气中局部放电由第二章《局部放电的基本特性》可知:分类标准:局部放电发生的位置和机理具体分类:(1)绝缘介质内部的局部放电;(2)绝缘介质表面的局部放电;(3)高压电极尖端的电晕放电。
讨论主要内容:起始电压和放电波形(一)绝缘介质内部的局部放电起始放电电压:当气隙上电压升到气隙击穿电压U CB 时,施加于试样两端的电压u i 为起始放电电压。
按照电路图计算的起始电压值与实际测得值往往不完全相符,但差别一般不超过 士15%。
放电波形第一组:外加电压高低的对比通常绝缘介质内部的气泡放电,在椭圆示波器上可以看到正负半周放电脉冲的图形基本上是对称的。
在放电初始(外加电压较低时),局部放电总是出现在试验电压瞬时值上升接近90°或270°的相位上;随着外加电压的增高,出现放电脉冲的相位范围逐渐扩展,甚至可以超过0°和180°,但在90°和270°之后的一段相位内不会出现放电脉冲。
另外,各次放电大小不等、疏密度不均匀,放电量小的间隔时间短、放电次数多;放电量大的间隔时间长、放电次数较少。
如下图所示:(a) (b)图2.3 内部局部放电波形oo第二组:靠气隙一边的导体是高压端和接地的对比当气隙处于金属(电极)与绝缘介质之间时,椭圆示波图上的工频正负半周放电波形是不对称的。
如果靠气隙一边的导体是高压端,则放电的波形是正半周放电大而稀,负半周放电小而密。
如图2.4所示,如果靠气隙一边的导体是接地的,则放电波形也反过来,即负半周是大而稀正半周是小而密。
这是由于导体为负极性时发射电子容易,气隙的击穿电压U CB 降低,因此出现小而密。
图2.4 气隙处于金属(电极)与绝缘介质之间的放电波形此处表明:内部局部放电的波形脉冲与气隙在绝缘内部的位置有关 第三组:气隙内表面电阻高低时对比 当气隙内表面电阻高时,由于放电而产生的电荷只是集中在放电通道所对应的气隙表面上,而不会均匀分布在气隙的上下底的整个表面上。