单相异步电动机基本原理课件
- 格式:ppt
- 大小:2.54 MB
- 文档页数:66
单相异步电动机的基本原理一、单相异步电动机的结构单相异步电动机中,专用电机占有很大比例,它们的结构各有特点,形式繁多。
但就其共性而言,电动机的结构都由固定部分---定子、转动部分----转子、支撑部分---端盖和轴承等三大部分组成。
1、机座2、铁心3、绕组4、端盖5、轴承6、离心开关或起动继电器和PTC起动器7、铭牌1、机座机座结构随电动机冷却方式、防护型式、安装方式和用途而异。
按其材料分类,有铸铁、铸铝和钢板结构等几种。
铸铁机座,带有散热筋。
机座与端盖联接,用螺栓紧固。
铸铝机座一般不带有散热筋。
钢板结构机座,是由厚为1.5-2.5毫米的薄钢板卷制、焊接而成,再焊上钢板冲压件的底脚。
有的专用电动机的机座相当特殊,如电冰箱的电动机,它通常与压缩机一起装在一个密封的罐子里。
而洗衣机的电动机,包括甩干机的电动机,均无机座,端盖直接固定在定子铁心上。
2、铁心铁心包括定子铁心和转子铁心,作用与三相异步电动机一样,是用来构成电动机的磁路。
3、绕组单相异步电动机定子绕组常做成两相:主绕组(工作绕组)和副绕组(启动绕组)。
两种绕组的中轴线错开一定的电角度。
目的是为了改善启动性能和运行性能。
定子绕组多采用高强度聚脂漆包线绕制。
转子绕组一般采用笼型绕组。
常用铝压铸而成。
4、端盖相应于不同的机座材料、端盖也有铸铁件、铸铝件和钢板冲压件。
5、轴承轴承有滚珠轴承和含油轴承。
6、离心开关或起动继电器和PTC起动器(1)离心开关在单相异步电动机中,除了电容运转电动机外,在起动过程中,当转子转速达到同步转速的70%左右时,常借助于离心开关,切除单相电阻起动异步电动机和电容起动异步电动机的起动绕组,或切除电容起动及运转异步电动机的起动电容器。
离心开关一般安装在轴伸端盖的内侧。
(2)起动继电器有些电动机,如电冰箱电动机,由于它与压缩机组装在一起,并放在密封的罐子里,不便于安装离心开关,就用起动继电器代替。
继电器的吸铁线圈串联在主绕组回路中,起动时,主绕组电流很大,衔铁动作,使串联在副绕组回路中的动合触点闭合。
图3 单相异步电动机的机械特性单相异步电动机原理及正反转单相异步电动机是指用单相交流电源供电的异步电动机。
单相异步电动机具有结构简单、成本低廉、噪声小、使用方便、运行可靠等优点,因此广泛用于工业、农业、医疗和家用电器等方面,最常见于电风扇、洗衣机、电冰箱、空调等家用电器中。
但是单相异步电动机与同容量的三相异步电动机相比,体积较大,运行性能较差。
因此,单相异步电动机一般只制成小容量的电动机,功率从几瓦到几千瓦。
单相异步电动机在家用电器中的应用特别广泛,与人们的生活密切相关。
单行异步电动机的结构如下图:一、 单相异步电动机的工作原理和机械特性 当单相正弦交流电通入定子单相绕组时,就会在绕组轴线方向上产生一个大小和方向交变的磁场,如图1所示。
这种磁场的空间位置不变,其幅值在时间上随交变电流按正弦规律变化,具有脉动特性,因此称为脉动磁场,如图2(a)所示。
可见,单相异步电动机中的磁场是一个脉动磁场,不同于三相异步电动机中的旋转磁场。
(a)交变脉动磁场 (b)脉动磁场的分解 图2 脉动磁场分解成两个方向相反的旋转磁场为了便于分析,这个脉动磁场可以分解为大小相等,方向相反的两个旋转磁场,如图2(b)所示。
它们分别在转子中感应出大小图1 单相交变磁场相等,方向相反的电动势和电流。
两个旋转磁场作用于笼型转子的导体中将产生两个方向相反的电磁转矩T+和T- ,合成后得到单相异步电动机的机械特性,如图3所示。
图中,T+为正向转矩,由旋转磁场B m1产生;T- 为反向转矩,由反向旋转磁场B m2产生,而T为单相异步电动机的合成转矩。
从图3可知,单相异步电动机一相绕组通电的机械特性有如下特点:1.当n=0时,T + =T-,合成转矩T=0。
即单相异步电动机的启动转矩为零,不能自行启动。
2.当n>0时,T>0;n<0时,T<0。
即转向取决于初速度的方向。
当外力给转子一个正向的初速度后,就会继续正向旋转;而外力给转子一个反向的初速度时,电机就会反转。
单相异步电动机的基本原理1.磁场产生:单相异步电动机的定子上有两个互补的线圈,一个称为主线圈(也称为运行线圈)而另一个称为辅助线圈(也称为起动线圈)。
主线圈连接到供电网络,生成主磁场。
辅助线圈连接到电容器,产生辅助磁场。
2.起动:当电动机开始运行时,主磁场在定子中产生一个旋转磁场。
然而,由于单相供电只能提供单一方向的电流,这个旋转磁场开始时无法旋转。
3.相位差:为了产生转矩并启动电动机,需要一个起动电流或一个辅助磁场。
起动线圈和电容器通过一个助激线圈连接在一起,可以产生一个相位差。
4.相位转移:在电力网络的每个半周期中,电容器上的电压不断变化,导致辅助线圈中的电流也在变化。
这个不断变化的电流开始产生一个旋转磁场,并与主磁场交互作用。
5.启动转矩:随着辅助磁场的旋转,与周围磁场相互作用,电动机开始获得转矩。
这个转矩足够大,使得电动机能够克服转动阻力,并开始转动。
6.单相供电:因为单相异步电动机只能通过单相供电,产生的磁场频率要比三相电动机低很多。
这意味着单相异步电动机的运行效率一般比较低,功率较小,适用于轻负载应用。
7.辅助线圈:辅助线圈的作用是产生足够大小的辅助磁场,以便启动电动机。
一旦电动机启动,辅助线圈的作用相对较小,它可以与主线圈并联,继续提供额外的启动助力。
8.高效运行:为了提高单相异步电动机的效率,通常会使用额外的设备,如启动电容器和启动开关。
这些设备可以帮助电动机在启动阶段获得更大的转矩,并且在运行时减小功率损耗。
总结起来,单相异步电动机的基本原理是通过主线圈和辅助线圈产生旋转磁场,并通过相位差和电动机的转动相互作用,使得电动机能够启动和运行。
虽然与三相电动机相比,单相异步电动机的效率较低,但它仍然是常见的家庭和小型工业应用中使用的电动机之一。