磨削加工原理
- 格式:docx
- 大小:1.67 MB
- 文档页数:23
磨削加工原理
磨削加工是一种常见的金属加工方法,通过磨削工具对工件进
行切削,以达到精密加工的目的。
磨削加工原理是在磨削过程中,
磨料颗粒不断接触工件表面,将工件表面的金属材料逐渐磨除,从
而形成所需的形状和尺寸。
磨削加工原理的关键在于磨料颗粒与工件表面的接触。
在磨削
过程中,磨料颗粒以一定的速度和压力接触工件表面,通过不断的
摩擦和冲击作用,磨削掉工件表面的金属材料。
这种磨削过程需要
一定的能量输入,通常是通过旋转的磨削工具或者工件本身的旋转
来提供。
磨削加工原理的另一个重要方面是磨削工具的选择和使用。
不
同的磨削工具适用于不同的工件材料和加工要求。
常见的磨削工具
包括砂轮、砂带、砂纸等,它们的磨料颗粒大小、形状和硬度都会
影响磨削加工的效果。
此外,磨削工具的转速、进给速度、磨削压
力等参数也会对磨削加工产生影响。
在磨削加工原理中,还需要考虑磨削过程中产生的热量和磨屑。
磨削过程中,由于摩擦和冲击作用,会产生大量的热量,如果不能
及时散去,会对工件和磨削工具造成损坏。
同时,磨削过程中产生的磨屑也需要及时清除,以免对加工质量产生影响。
总的来说,磨削加工原理是通过磨料颗粒不断接触工件表面,将工件表面的金属材料逐渐磨除,从而实现精密加工的目的。
在实际应用中,需要根据工件材料和加工要求选择合适的磨削工具和加工参数,同时要注意散热和清屑,以确保磨削加工的效果和质量。
磨削的基本原理及其加工本领本文StuartSalmon博士是美国“先进制造科技协会”主席。
他认为,磨削加工在很多领域内,不论从技术上或经济上,都可与切削加工相匹敌,有些领域甚至是唯一的加工方法。
但目前制造业很多人认为磨削加工效率低,不经济,因此尽量不予采纳。
Salmon认为,产生这种想法的重要原因是对磨削原理及其内在潜力缺乏了解。
撰写本文的目的就是要帮忙企业界的有关人士正确理解和运用磨削技术。
当今制造业正在急迫地找寻替代磨削的方案。
一些正在试验用来提高零件生产效率的“新”方案包括:硬切削、干切削、耐磨涂层刀具和高速切削等。
但应指出,“高速”两字对磨削并不陌生。
砂轮的常规运行表面线速度达1829m/min,高速超硬磨料砂轮的生产应用速度达4572~10668m/min,而试验室里在磨削专用设备上的速度则可达到18288m/min仅稍低于声速。
工业界不喜爱磨削的原因是对它不了解。
超硬磨料和缓进给磨削工艺不论从技术或经济角度看,都可与铣削、拉削、刨削以及某些情况下的车削相匹敌。
但制造企业中有很多人,他们的学问停留在传统加工技术水平上,往往对磨削实行排斥的态度。
但随着新材料的推动(如陶瓷、晶须强化金属和强化聚合材料、多层金属和非金属的压合材料),磨削常常是唯一可行的加工方法。
假如采纳适当的结合剂,就可以使得磨粒在加工过程中的脱落和自砺过程得到掌控。
并且砂轮变钝或显现粉屑状载荷时,可以在机床上修整。
这些优点在其它的加工方法中都是难以做到的。
砂轮可以使加工表面的公差达到数万分之一的数量级(微米级),同时还能使表面干净度和切削纹理达到最佳状态。
不巧的是,长期以来,磨削一直被看作是一种“艺术”。
直到近来的40~50年间,通过讨论人员持续地对磨削加工过程进行讨论,开发了新的、改进的磨料、粘结剂体系和各种磨削液。
这些成果的取得,使得磨削加工进入了科学王国。
磨料的种类磨料可分为两大类:一般磨料(如氧化铝、碳化硅等)和超硬磨料(金刚石、立方氮化硼等)。
磨削加工都有哪些类型及原理特点《磨削加工》以制造工艺为主线,数据与方法相结合,汇集了我国多年来工艺工作的成就和经验,反映了国内外现代工艺水平及其发展方向。
工艺基础包括车削、镗削、铣削、锯削、钻削、扩削、铰削、拉削、刨削、插削、磨削加工,齿轮、蜗轮蜗杆、花键加工,螺纹加工,特种加工,精密加工和纳米加工,高速切削,难加工材料的切削加工,表面工程技术。
主要包括磨削原理、磨削液、磨床与磨床夹具、磨料磨具、磨削加工工艺等内容。
磨削加工磨削加工1、外圆磨削主要在外圆磨床上进行,用以磨削轴类工件的外圆柱、外圆锥和轴肩端面。
磨削时,工件低速旋转,如果工件同时作纵向往复移动并在纵向移动的每次单行程或双行程后砂轮相对工件作横向进给,称为纵向磨削法。
如果砂轮宽度大于被磨削表面的长度,则工件在磨削过程中不作纵向移动,而是砂轮相对工件连续进行横向进给,称为切入磨削法。
一般切入磨削法效率高于纵向磨削法。
如果将砂轮修整成成形面,切入磨削法可加工成形的外表面。
2、内圆磨削主要用于在内圆磨床、万能外圆磨床和坐标磨床上磨削工件的圆柱孔、圆锥孔和孔端面。
一般采用纵向磨削法。
磨削成形内表面时,可采用切入磨削法。
在坐标磨床上磨削内孔时,工件固定在工作台上,砂轮除作高速旋转外,还绕所磨孔的中心线作行星运动。
内圆磨削时,由于砂轮直径小,磨削速度常常低于30米/秒、耐磨性是普通砂轮的20-100倍,极大的减少了砂轮的修正及更换频率。
3、平面磨削主要用于在平面磨床上磨削平面、沟槽等。
平面磨削有两种:用砂轮外圆表面磨削的称为周边磨削,一般使用卧轴平面磨床,如用成形砂轮也可加工各种成形面;用砂轮端面磨削的称为端面磨削,一般使用立轴平面磨床。
4、无心磨削一般在无心磨床上进行,用以磨削工件外圆。
磨削时,工件不用顶尖定心和支承,而是放在砂轮与导轮之间,由其下方的托板支承,并由导轮带动旋转。
当导轮轴线与砂轮轴线调整成斜交1°~6°时,工件能边旋转边自动沿轴向作纵向进给运动,这称为贯穿磨削。
磨削加工原理
磨削加工是一种通过磨削工具对工件进行切削加工的方法,它是一种高效的加
工工艺,可以用于加工各种硬度的材料。
磨削加工的原理是利用磨削工具的高速旋转和对工件施加的压力,通过摩擦和磨削将工件表面的材料去除,从而达到加工工件的目的。
磨削加工的原理包括磨削工具、磨削方式和磨削参数三个方面。
首先,磨削工具是磨削加工的关键。
常见的磨削工具有砂轮、砂带、砂布等,
它们通常由磨料、结合剂和孔隙三部分组成。
磨料是磨削工具的主要切削部分,它的硬度和尺寸决定了磨削工具的磨削性能。
结合剂起到固定磨料和提供切削支撑的作用,而孔隙则可以有效排除磨屑和冷却润滑。
其次,磨削方式是磨削加工的关键。
常见的磨削方式包括平面磨削、外圆磨削、内圆磨削、表面磨削等。
不同的工件和加工要求需要选择不同的磨削方式,以达到最佳的加工效果。
最后,磨削参数是磨削加工的关键。
磨削参数包括磨削速度、进给量、切削深度、冷却润滑等。
这些参数的选择直接影响着磨削加工的效率和质量。
合理的磨削参数可以减少磨削工具的磨损,提高加工效率,同时还可以减少工件的变形和提高加工表面的质量。
总的来说,磨削加工的原理是通过磨削工具对工件进行切削加工,其关键包括
磨削工具、磨削方式和磨削参数。
只有合理选择磨削工具、磨削方式和磨削参数,才能达到最佳的加工效果。
磨削加工1. 磨削加工的概述磨削加工是一种通过研磨工具对工件表面进行切削的加工方法。
它通过切削工具与工件之间的相对运动,在切削、研磨和磨痕的共同作用下,将工件表面不平整层次的高点消除,从而得到平整、光滑的表面。
2. 磨削加工的原理磨削加工的原理是力学切削。
在磨削过程中,磨粒对工件表面的切削作用类似于多个微小切削刃对工件表面的切削作用,因此磨削可以看成是由许多微小切削刃共同作用的切削过程。
3. 磨削加工的分类磨削加工根据磨粒的尺寸和磨粒与工件之间的相对运动情况可以分为不同的类型,主要包括:3.1 粗磨粗磨是指在切削速度较低、磨粒尺寸较大的条件下进行的磨削加工,主要目的是迅速去除工件表面的大量金属,使其达到一定的粗糙度,为后续磨削过程提供条件。
3.2 精磨精磨是指在切削速度适中、磨粒尺寸适当的条件下进行的磨削加工,主要目的是进一步消除工件表面的细小凹坑和凸起,提高工件表面的精度和光洁度。
3.3 超精磨超精磨是指在切削速度较高、磨粒尺寸小的条件下进行的磨削加工,主要用于加工高精度、高光洁度的工件,以提高工件表面的质量。
4. 磨削加工的过程磨削加工通常包括以下几个基本工序:4.1 磨削前准备在进行磨削加工之前,需要对磨削工具进行选择和准备,包括选用合适的磨粒、绑定磨料和磨具、选择适当的磨削液等。
4.2 磨削磨削是磨削加工的核心过程,主要包括以下几个步骤:固定工件,调整磨削参数,启动磨削机床,进行磨削操作。
4.3 表面质量检测在磨削加工完成后,需要对工件表面的质量进行检测。
常用的表面质量检测方法有视觉检测、触觉检测和测量仪器检测等。
4.4 后续处理在完成磨削加工后,还需要进行一些后续处理工序,例如清洗工件、除去残留物和保护处理等,以确保工件表面的质量和性能满足要求。
5. 磨削加工的优点和局限性磨削加工具有以下优点:•可加工具有复杂形状的工件•可加工高硬度材料•可获得高精度的加工结果•可提高工件表面的质量和光洁度然而,磨削加工也存在一些局限性:•生产效率低,加工速度较慢•工艺过程较为复杂,需要一定的技术和经验•磨具和磨料的消耗较大,成本较高6. 磨削加工的应用领域磨削加工在各个制造行业中都得到广泛应用,特别是对高精度、高光洁度的工件加工需求较高的领域,例如:•汽车制造业:发动机缸体、曲轴等零部件的加工•刀具制造业:高精度刀具的生产加工•航空航天业:航空发动机叶片、轴承等零部件的加工•电子制造业:半导体芯片、磁头等精密元件的加工7. 磨削加工的未来发展趋势随着制造技术和加工要求的不断提高,磨削加工也在不断发展和改进。
振动磨工作原理
振动磨是一种利用磨料在振动力的作用下对工件进行磨削加工的机械加工方法。
其工作原理主要包括以下几个方面:
1. 振动力的产生:振动磨通过电动机传动振动器产生振动力,将其传递给磨料,使磨料在工件表面振动。
2. 磨料的选择:振动磨主要使用微小的磨料颗粒进行磨削。
根据加工要求,可以选择不同种类的磨料,如砂石磨料、金刚石磨料等。
3. 磨料的作用:磨料在振动力的作用下,通过与工件表面的摩擦和冲击,实现对工件的磨削。
磨料在振动过程中不断改变其位置,从而使磨屑和磨削热分散,减少磨削温度,降低磨削应力。
4. 润滑和冷却系统:振动磨过程中,润滑和冷却系统起到重要的作用。
通过喷淋润滑剂和冷却剂,可以减少高温带来的热损伤,并提高磨削效果。
5. 控制系统:振动磨一般配备了控制系统,用于控制振动磨的振动力和频率。
通过调节振动力和频率,可以实现对加工效果的调控,以适应不同工件的加工要求。
总的来说,振动磨利用振动力和磨料的作用,通过摩擦和冲击的方式对工件进行磨削,可以快速去除工件表面的杂质和毛刺,
提高工件的光洁度和加工精度。
此外,振动磨还可以改善工件表面的机械性能,提高工件的耐磨性和抗疲劳性能。
磨削原理3.7 磨削原理磨削是用砂轮作刀具磨削工件的主要方法之一。
它不仅能加工一可以加工一般刀具难以加工的材料磨削加工的精度可以达到IT60.02~1.25μm。
磨削加工不适合软的材料。
削工件的加工过程,是零件精加工加工一般材料(如钢、铸铁等),还的材料(如淬火钢、硬质合金等)。
~IT4,表面粗糙度Ra值可达适合磨削铝、铜等有色金属及较1.磨料:即砂轮中的硬质颗粒。
2.粒度粒度是指磨料颗粒的大小。
粒度号小的磨粒称为微粉,其号数越小,表示微粉从粗到细依次为W63、W50、W W7、W5、W3.5、W2.5、W1.5、W 度,粒度号W表示微粉,阿拉伯数字表示表示颗粒的大小为40~28μm。
砂轮的粒度对工件表面的粗糙度和磨削深度可以增加,磨削效率高,但表工作标表面上单位面积内的磨粒多,好的表面质量,但磨削效率比较低。
摩擦大,发热量大,易引起工件烧伤。
度号越大,表示磨料颗粒越小。
颗粒更表示磨料的颗粒也越小,亦即粒度越细W40、W28、W20、W14、W10、W1.0、W0.5。
微粉用显微镜测量其粒字表示磨粒的实际宽度尺寸。
例如W40度和磨削效率有较大的影响。
磨粒大,但表面质量差。
反之,磨粒小,在砂轮,磨粒切削刃的等高性好,可以获得较。
另外,粒度细砂轮与工件表面之间的。
3.结合剂结合剂用来将磨料粘合起来,使之影响砂轮的硬度、强度。
结合剂的名称及由于砂轮在高速旋转中进行磨削加击载荷以及强腐蚀性切削液的条件下工合剂本身的耐热、耐蚀性能,就成为结合使之成为砂轮。
结合剂的种类及其性质名称及其代号见表3-13。
削加工,而且又是在高温、高压、强冲下工作,所以磨料粘接的牢固程度,结为结合剂的重要要求。
4.硬度硬度是指砂轮表面上的磨粒在外力易脱落,表明砂轮的硬度低,反之,轮的硬度与磨料的硬度是两个不同的概成不同硬度的砂轮,它主要取决于结合艺。
根据GB/T2484—94标准,砂轮的硬、D、E、F、G、H、J、K、L、M、外力作用下脱落的难易程度。
坐标磨床磨削加工工作原理 (3)坐标磨床磨削加工工作原理 (3)坐标磨床磨削加工工作原理双击自动滚屏发布者:jingle发布时间:20__-4-14阅读:740次坐标磨床的磨削加工不同于其他磨床。
现对CNC坐标磨床磨削加工工作原理如下:1、磨削一个孔时,砂轮的工作边将偏离行星主轴轴心线一个工件半径值,在磨削过程中砂轮除了本身的转动外,还必须绕行星主轴进行公转。
同时,还要在龙门磨磨削过程中扩大偏心量,进行微量进给,用这种方式来得到孔的精细控制。
2、平面磨削时,行星主轴一般是不转的,而工作台沿着X向或Y向移动来实现。
而砂轮的进给仍用扩大偏心半径,进行微量进给。
3、在轮廓磨削中,CNC坐标磨床是采用点位控制式(也称定点磨削),即利用X、Y坐标的移动使行星主轴中心与工件上圆弧半径的圆心重合,并用行星主轴下端的偏心滑板来微量进给控制半径尺寸。
连续轨迹数控坐标磨上,则用范成法进行磨削。
4、在锥孔磨削中,采用组合式径向进给与垂直走刀搭配加工。
CNC坐标磨床几种常用的磨削方式坐标磨削的方式一般有三种:即径向进给式磨削、切入式磨削和插磨法磨削。
1、径向进给磨削。
这种方式的特点是利用砂轮的圆周面进行磨削,进给时每次砂轮沿着偏心半径的方向相对于工件作少量的移动。
这是一种最常见的磨削方式,最容易掌握,因此应用最广泛。
当采用陶瓷结合剂砂轮时,由于砂轮表面可以修得很平整,因此可以获得很高的尺寸精度和很低的粗糙度。
这种方式的缺点是,由于砂轮受到较大的挤压力,每次进给量较小,发热量较大,要有较长的去火花清磨时间,适用于磨削各种内孔和外圆柱面。
2、切入式磨削。
这种磨削方式是利用砂轮的端面来进行,也称为端面磨削,进给时砂轮龙门刨沿轴向进给。
由于热量和切屑不易排出,磨削条件恶劣,为了改善磨削条件,砂轮的端面应修正成中凹的形状。
在磨削时,也要特别小心,以免进给过大引起砂轮爆裂。
如果没有绝对的必要(如磨削台肩面、球面、端面等),一般不采用这种方式。
磨削加工中的陶瓷磨削技术磨削加工在工业生产中是一种非常重要的工艺,它可以使工件的尺寸精度和表面质量得到大幅度的提高。
而陶瓷作为一种重要的磨料材料,能够在磨削加工中发挥重要的作用。
本文将从陶瓷磨削的基本原理入手,探讨陶瓷磨削技术在磨削加工中的应用及其优缺点。
一、陶瓷磨削的基本原理陶瓷磨料具有高硬度、高耐磨性、高化学稳定性等优点,因此在磨削加工中得到了广泛应用。
陶瓷磨料的磨削过程中,主要有微切削和微碾压两种磨削机制。
微切削是指陶瓷磨料刃口与工件表面相互作用产生的削切效应,而微碾压则是指磨料与工件表面相互作用时产生的压力和热量效应。
这两种机制的相互作用会导致工件表面的材料剥落和微观塑性变形,从而达到磨削的目的。
二、陶瓷磨削技术的应用由于陶瓷磨料具有高硬度和高耐磨性的优点,因此它在磨削加工中的应用非常广泛。
下面将从精密磨削、超精密磨削和砂带磨削三个方面来介绍陶瓷磨削技术的应用。
1. 精密磨削精密磨削是一种高度精密的磨削工艺,其目的在于对工件表面进行高精度的加工。
在精密磨削中,陶瓷磨料通常被用作磨盘和砂轮的磨料。
陶瓷磨盘和砂轮能够产生高精度的磨削效果,并能够对工件表面进行光洁度的改善,从而提高工件的使用寿命和使用效果。
2. 超精密磨削超精密磨削是一种高度精密的磨削工艺,其目的在于对工件表面进行超高精度的加工。
在超精密磨削中,陶瓷磨料常常被用作超精密磨削工具的磨料。
陶瓷磨料在超精密磨削中能够产生高精度的磨削效果,并且能够对工件表面进行光洁度的改善,从而提高工件的使用寿命和使用效果。
3. 砂带磨削砂带磨削是一种高效的磨削工艺,其目的在于对工件表面进行快速加工。
在砂带磨削中,陶瓷磨料常被用作砂带的磨料。
陶瓷磨料在砂带磨削中能够产生高效的磨削效果,并且能够对工件表面进行光洁度的改善,从而提高工件的使用寿命和使用效果。
三、陶瓷磨削技术的优缺点陶瓷磨削技术作为一种高效的磨削技术,其优点在于:1. 磨削效率高:陶瓷磨料具有高硬度和高耐磨性的特性,因此能够在磨削中产生高效的磨削效果。
7.3.2珩磨珩磨是磨削加工的 1 种特殊形式,属于光整加工。
需要在磨削或精镗的基础上进行。
珩磨加工范围比较广,特别是大批大量生产中采用专用珩磨机珩磨更为经济合理,对于某些零件,珩磨已成为典型的光整加工方法,如发动机的气缸套,连杆孔和液压缸筒等。
(1)珩磨原理在一定压力下,珩磨头上的砂条(油石)与工件加工表面之间产生复杂的的相对运动,珩磨头上的磨粒起切削、刮擦和挤压作用,从加工表面上切下极薄的金属层。
(2)珩磨方法珩磨所用的工具是由若干砂条 ( 油石 ) 组成的珩磨头,四周砂条能作径向张缩,并以一定的压力与孔表面接触,珩磨头上的砂条有 3 种运动 ( 如图7.3 a ) ;即旋转运动、往复运动和加压力的径向运动。
珩磨头与工件之间的旋转和往复运动,使砂条的磨粒在孔表面上的切削轨迹形成交叉而又不相重复的网纹。
珩磨时磨条便从工件上切去极薄的一层材料,并在孔表面形成交叉而不重复的网纹切痕 ( 如图 7.3 b ), 这种交叉而不重复的网纹切痕有利于贮存润滑油,使零件表面之间易形成—层油膜,从而减少零件间的表面磨损。
(3)珩磨的特点1)珩磨时砂条与工件孔壁的接触面积很大,磨粒的垂直负荷仅为磨削的 1/50~1/100 。
此外,珩磨的切削速度较低,一般在 100m/min 以下,仅为普通磨削的 1/30~1/100 。
在珩磨时,注入的大量切削液,可使脱落的磨粒及时冲走,还可使加工表面得到充分冷却,所以工件发热少,不易烧伤,而且变形层很薄,从而可获得较高的表面质量。
2)珩磨可达较高的尺寸精度、形状精度和较低的粗糙度,珩磨能获得的孔的精度为 IT6~IT7 级,表面粗糙度 Ra 为 0.2~0.025 。
由于在珩模时,表面的突出部分总是先与沙条接触而先被磨去,直至砂条与工件表面完全接触,因而珩磨能对前道工序遗留的几何形状误差进行一定程度的修正,孔的形状误差一般小于 0.005mm 。
3)珩磨头与机床主轴采用浮动联接,珩磨头工作时,由工件孔壁作导向,沿预加工孔的中心线作往复运动,故珩磨加工不能修正孔的相对位置误差,因此,珩磨前在孔精加工工序中必须安排预加工以保证其位置精度。
一般镗孔后的珩磨余量为 0.05~0.08mm ,铰孔后的珩磨余量为 0.02~0.04mm ,磨孔后珩磨余量为 0.01~0.02mm 。
余量较大时可分粗、精两次珩磨。
4)珩磨孔的生产率高,机动时间短,珩磨 1 个孔仅需要 2~3min ,加工质量高,加工范围大,可加工铸铁件、淬火和不淬火的钢件以及青铜件等,但不宜加工韧性大的有色金属,加工的孔径为15~ 500mm ,孔的深径比可达 10 以上。
珩磨工艺及其在汽车零部件制造中的应用作者:熊元一郭建忠侯军丽李贵贤摘要:珩磨工艺(HoningProcess)是磨削加工的一种特殊形式,又是精加工中的一种高效加工方法。
这种工艺不仅能去除较大的加工余量,而且是一种提高零件尺寸精度、几何形状精度和表面粗糙度的有效加工方法,在汽车零部件的制造中应用很广泛。
珩磨加工原理珩磨是利用安装于珩磨头圆周上的一条或多条油石,由涨开机构(有旋转式和推进)。
珩磨工艺(Honing Process)是磨削加工的一种特殊形式,又是精加工中的一种高效加工方法。
这种工艺不仅能去除较大的加工余量,而且是一种提高零件尺寸精度、几何形状精度和表面粗糙度的有效加工方法,在汽车零部件的制造中应用很广泛。
珩磨加工原理珩磨是利用安装于珩磨头圆周上的一条或多条油石,由涨开机构(有旋转式和推进式两种)将油石沿径向涨开, 使其压向工件孔壁,以便产生一定的面接触。
同时使珩磨头旋转和往复运动,零件不动;或珩磨头只作旋转运动,工件往复运动,从而实现珩磨。
在大多数情况下,珩磨头与机床主轴之间或珩磨头与工件夹具之间是浮动的。
这样,加工时珩磨头以工件孔壁作导向。
因而加工精度受机床本身精度的影响较小,孔表面的形成基本上具有创制过程的特点。
所谓创制过程是油石和孔壁相互对研、互相修整而形成孔壁和油石表面。
其原理类似两块平面运动的平板相互对研而形成平面的原理。
珩磨时由于珩磨头旋转并往复运动或珩磨头旋转工件往复运动,使加工面形成交叉螺旋线切削轨迹,而且在每一往复行程时间内珩磨头的转数不是整数, 因而两次行程间,珩磨头相对工件在周向错开一定角度,这样的运动使珩磨头上的每一个磨粒在孔壁上的运动轨迹亦不会重复。
此外,珩磨头每转一转,油石与前一转的切削轨迹在轴向上有一段重叠度,使前后磨削轨迹的衔接更平滑均匀。
这样,在整个珩磨过程中,孔壁和油石面的每一点相互干涉的机会差不多相等。
因此,随着珩磨的进行孔表面和油石表面不断产生干涉点,不断将这些干涉点磨去并产生新的更多的干涉点,又不断磨去,使孔和油石表面接触面积不断增加,相互干涉的程度和切削作用不断减弱,孔和油石的圆度和圆柱度也不断提高,最后完成孔表面的创制过程。
为了得到更好的圆柱度,在可能的情况下,珩磨中经常使零件掉头,或改变珩磨头与工件轴向的相互位置。
需要说明的一点:由于珩磨油石采用金刚石和立方氮化硼等磨料,加工中油石磨损很小,即油石受工件修整量很小。
因此,孔的精度在一定程度上取决于珩磨头上油石的原始精度。
所以在用金刚石和立方氮化硼油石时,珩磨前要很好地修整油石,以确保孔的精度。
珩磨的切削过程:定压进给珩磨定压进给中进给机构以恒定的压力压向孔壁,共分三个阶段。
第一个阶段是脱落切削阶段,这种定压珩磨,开始时由于孔壁粗糙,油石与孔壁接触面积很小,接触压力大,孔壁的凸出部分很快被磨去。
而油石表面因接触压力大,加上切屑对油石粘结剂的磨耗,使磨粒与粘结剂的结合强度下降,因而有的磨粒在切削压力的作用下自行脱落,油石面即露出新磨粒,此即油石自锐。
第二阶段是破碎切削阶段,随着珩磨的进行,孔表面越来越光,与油石接触面积越来越大,单位面积的接触压力下降,切削效率降低。
同时切下的切屑小而细,这些切屑对粘结剂的磨耗也很小。
因此,油石磨粒脱落很少,此时磨削不是靠新磨粒,而是由磨粒尖端切削。
因而磨粒尖端负荷很大,磨粒易破裂、崩碎而形成新的切削刃。
第三阶段为堵塞切削阶段,继续珩磨时油石和孔表面的接触面积越来越大,极细的切屑堆积于油石与孔壁之间不易排除,造成油石堵塞, 变得很光滑。
因此油石切削能力极低, 相当于抛光。
若继续珩磨,油石堵塞严重而产生粘结性堵塞时,油石完全失去切削能力并严重发热,孔的精度和表面粗糙度均会受到影响。
此时应尽快结束珩磨。
定量进给珩磨定量进给珩磨时,进给机构以恒定的速度扩张进给,使磨粒强制性地切入工件。
因此珩磨过程只存在脱落切削和破碎切削,不可能产生堵塞切削现象。
因为当油石产生堵塞切削力下降时,进给量大于实际磨削量,此时珩磨压力增高,从而使磨粒脱落、破碎,切削作用增强。
用此种方法珩磨时,为了提高孔精度和表面粗糙度,最后可用不进给珩磨一定时间。
定压--定量进给珩磨开始时以定压进给珩磨,当油石进入堵塞切削阶段时,转换为定量进给珩磨,以提高效率。
最后可用不进给珩磨,提高孔的精度和表面粗糙度。
珩磨加工特点:加工精度高特别是一些中小型的通孔,其圆柱度可达0.001mm 以内。
一些壁厚不均匀的零件,如连杆,其圆度能达到0.002mm。
对于大孔(孔径在200mm以上),圆度也可达0.005mm,如果没有环槽或径向孔等,直线度达到0.01mm/1m以内也是有可能的。
珩磨比磨削加工精度高,因为磨削时支撑砂轮的轴承位于被珩孔之外,会产生偏差,特别是小孔加工,磨削精度更差。
珩磨一般只能提高被加工件的形状精度,要想提高零件的位置精度,需要采取一些必要的措施。
如用面板改善零件端面与轴线的垂直度(面板安装在冲程托架上,调整使它与旋转主轴垂直,零件靠在面板上加工即可)。
表面质量好表面为交叉网纹,有利于润滑油的存储及油膜的保持。
有较高的表面支承率(孔与轴的实际接触面积与两者之间配合面积之比),因而能承受较大载荷,耐磨损,从而提高了产品的使用寿命。
珩磨速度低(是磨削速度的几十分之一),且油石与孔是面接触,因此每一个磨粒的平均磨削压力小,这样珩磨时,工件的发热量很小,工件表面几乎无热损伤和变质层,变形小。
珩磨加工面几乎无嵌砂和挤压硬质层。
加工范围广主要加工各种圆柱形孔:通孔、轴向和径向有间断的孔,如有径向孔或槽的孔、键槽孔、花键孔、盲孔、多台阶孔等。
另外,用专用珩磨头,还可加工圆锥孔、椭圆孔等,但由于珩磨头结构复杂,一般不用。
用外圆珩磨工具可以珩磨圆柱体,但其去除的余量远远小于内圆珩磨的余量。
珩磨几乎可以加工任何材料,特别是金刚石和立方氮化硼磨料的应用,进一步拓展了珩磨的运用领域,同时也大大提高了珩磨加工的效率。
切削余量少为达到图纸所要求的精度,采用珩磨加工是所有加工方法中去除余量最少的一种加工方法。
在珩磨加工中,珩磨工具是以工件作为导向来切除工件多余的余量而达到工件所需的精度。
珩磨时,珩磨工具先珩工件中需去余量最大的地方,然后逐渐珩至需去除余量最少的地方。
纠孔能力强由于其余各种加工工艺方面存在不足,致使在加工过程中会出现一些加工缺陷。
如:失圆、喇叭口、波纹孔、尺寸小、腰鼓形、锥度、镗刀纹、铰刀纹、彩虹状、孔偏及表面粗糙度等。
采用珩磨工艺加工可以通过去除最少加工余量而极大地改善孔和外圆的尺寸精度、圆度、直线度、圆柱度和表面粗糙度。
珩磨技术在汽车制造中的应用先进的精密孔加工设备和技术在汽车及零部件加工业的应用十分广泛,比较典型的应用有发动机缸体、缸套、连杆、齿轮、油泵油嘴、刹车泵、刹车鼓、油缸、转向器、增压器等。
如:珩磨在油泵油嘴行业的应用善能KGM-5000系列珩磨机是针对油泵油嘴行业的柱塞而开发的高精度珩磨机,去除量为0.01mm,加工总周期为30秒;圆度0.0005mm;直线度0.0007mm;表面粗糙度Ra 0.06。
实现了完全以珩代磨的目标,从而大大延长了提高了油泵油嘴的性能和寿命,完全达到家排污标准。
珩磨在齿轮内孔中的应用现在广泛使用珩磨工艺的汽车齿轮有行星轮、太阳轮、双联齿轮等。
珩磨在增压器零件上的应用根据增压器中间壳的材料和内孔的特殊结构形式,可采用电镀金刚石磨粒套作为珩磨工具,多立轴结构型式,可以实现在一个循环过程中完成粗加工、半精加工、精加工和去毛刺等多个加工部序,多工位转台可以实现加工过程的自动化,提高工作效率。
第十七讲磨孔与孔的精密加工一、高速精细镗高速精细镗也称金刚镗,广泛应用于不适宜用于内圆磨削加工的各种结构零件的精密孔,例如发动机的气缸孔、连杆孔,活塞销孔以及变速箱的主轴孔等。
由于高速精细镗切削速度高和切屑截面很小,因而切削力非常小,这就保证了加工过程中工艺系统弹性变形小,故可获得较高的加工精度和表面质量,孔径精度可达IT6~IT7级,表面粗糙度可达Ra0.8~0.1um。
孔径在15~100mm范围内,尺寸误差可保持在5~8 um以内,还能获得较高的孔轴心线的位置精度。