筏板基础设计和计算共39页
- 格式:ppt
- 大小:3.30 MB
- 文档页数:39
1 * 平板基础的内筒进行抗冲切和抗剪计算结果*说明:1.本结果是对平板基础的内筒进行抗冲切和抗剪计算2.计算依据是GB50007-2011的8.4.8和8.4.103.内筒外边界由程序使用者指定4.土反力按筏板平均反力确定筏板参数:筏板厚度h= 600.mm 保护层厚度a0=75.mm截面有效高度h0= 525.mm 混凝土强度等级C30.0最大荷载组load: 7筏板内荷载= 5550.0 kN 筏板底面积= 15.910 m2 平均基底反力= 348.8kPa平板基础的内筒抗冲切验算:内筒最大荷载Nmax= 5550.0kN 破坏面平均周长Um= 15.900m冲切锥体底面积= 20.160 m2 冲切力Fl= -1482.6kNFl/Um*h0=-177.6055<0.7*Bhp*ft/ita=802.4189平板基础的内筒抗剪验算:内筒外H0处边长= 18.00m 冲切锥体底面积= 20.16m2单位长度剪力Vs= -82.36kN/mVs=-82.3646<0.7*Bhs*ft*h0=526.5875*结束*2* 平板基础的内筒进行抗冲切和抗剪计算结果*SS说明:1.本结果是对平板基础的内筒进行抗冲切和抗剪计算2.计算依据是GB50007-2011的8.4.8和8.4.103.内筒外边界由程序使用者指定4.土反力按筏板平均反力确定筏板参数:筏板厚度h= 600.mm 保护层厚度a0=75.mm截面有效高度h0= 525.mm 混凝土强度等级C30.0最大荷载组load: 7筏板内荷载= 4514.3 kN 筏板底面积= 13.775 m2 平均基底反力= 327.7kPa 平板基础的内筒抗冲切验算:内筒最大荷载Nmax= 4514.3kN 破坏面平均周长Um= 14.910m冲切锥体底面积= 17.778 m2 冲切力Fl= -1311.7kNFl/Um*h0=-167.5640<0.7*Bhp*ft/ita=802.4189平板基础的内筒抗剪验算:内筒外H0处边长= 17.01m 冲切锥体底面积= 17.78m2单位长度剪力Vs= -77.11kN/mVs=-77.1097<0.7*Bhs*ft*h0=526.5875*结束*。
筏板基础分为平板式筏基和梁板式筏基,平板式筏基支持局部加厚筏板类型;梁板式筏基支持肋梁上平及下平两种形式,下面就筏基的分析计算做详细阐述。
(1)地基承载力验算地基承载力验算方法同独立柱基,参见第17.1.1节内容。
对于非矩形筏板,抵抗矩W采用积分的方法计算。
(2)基础抗冲切验算按GB50007-2002第8.4.5条至第8.4.8条相关条款的规定进行验算。
①梁板式筏基底板的抗冲切验算底板受冲切承载力按下式计算式中:F l——作用在图17.1.5-1中阴影部分面积上的地基土平均净反力设计值;βhp——受冲切承载力截面高度影响系数;u m——距基础梁边h0/2处冲切临界截面的周长;f t——混凝土轴心抗拉强度设计值。
图17.1.5-1 底板冲切计算示意②平板式筏基柱(墙)对筏板的冲切验算计算时考虑作用在冲切临界截面重心上的不平衡弯矩所产生的附加剪力,2处冲切临界截面的最大剪应力τmax应按下列公式计算。
距柱边h0/式中:F l——相应于荷载效应基本组合时的集中力设计值,对内柱取轴力设计值减去筏板冲切破坏锥体内的地基反力设计值;对边柱和角柱,取轴力设计值减去筏板冲切临界截面范围内的地基反力设计值;地基反力值应扣除底板自重;u m ——距柱边h0/2处冲切临界截面的周长;M unb——作用在冲切临界截面重心上的不平衡弯矩设计值;c AB——沿弯矩作用方向,冲切临界截面重心至冲切临界截面最大剪应力点的距离;I s——冲切临界截面对其重心的极惯性矩;βs——柱截面长边与短边的比值,当βs<2时,βs取2;当βs>4时,βs取4;c1——与弯矩作用方向一致的冲切临界截面的边长;c2——垂直于c1的冲切临界截面的边长;a s——不平衡弯矩通过冲切临界截面上的偏心剪力传递的分配系数;③平板式筏基短肢剪力墙对筏板的冲切验算短肢剪力墙对筏板的冲切计算按等效外接矩形柱来计算,计算方法完全同柱对筏板的冲切,等效外接矩形柱参见图17.1.5-2。
筏板基础计算书WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】高层建筑地基基础课程设计学年学期: 2014~2015学年第2学期院别:土木工程学院专业:勘查技术与工程专业方向:岩土工程班级:勘查1201学生:学号:指导教师:陈国周《高层建筑地基基础课程设计》成绩评定表班级姓名学号目录一、工程概况几工程地质条件 (13)柱位图 (13)土层信息 (13)上部荷载 (14)二、基础选型 (14)三、设计尺寸与地基承载力验算 (14)基础底面积尺寸的确定 (14)地基承载力验算 (15)四、沉降验算 (17)五、筏板基础厚度的确定 (19)抗冲切承载力验算 (19)抗剪承载力验算 (20)局部受压承载力计算 (21)六、筏板、基础梁内力计算 (22)基础底板内力计算 (23)基础梁内力计算 (24) (25) (26) (27) (29)七、梁板配筋计算 (31)底板配筋 (31) (32) (33)基础梁配筋 (34)八、粱截面配筋图 (41)九、心得体会 (44)十、参考文献 (44)一、工程概况几工程地质条件某办公楼建在地震设防六度地区,上部为框架结构8层,每层高。
地下一层,不设内隔墙,地下室地板至一楼室内地面竖向距离。
地下室外墙厚300mm。
柱截面 400×400,柱网及轴线如图所示。
室内外高差。
不考虑冻土。
上部结构及基础混凝土均采用 C40。
柱位图土层信息上部荷载柱1 柱7 柱13 (单位:kN)基本标准准永久基本标准准永久基本标准准永久1650 1222 1100 2300 1704 1533 1830 1356 1220 柱2 柱8 柱14基本标准准永久基本标准准永久基本标准准永久2450 1815 1633 2910 2156 1940 2500 1852 1667 柱3 柱9 柱15基本标准准永久基本标准准永久基本标准准永久2830 2096 1887 3140 2326 2093 2830 2096 1887 柱4 柱10 柱16基本标准准永久基本标准准永久基本标准准永久2630 1948 1753 3150 2333 2100 2680 1985 1787 柱5 柱11 柱17基本标准准永久基本标准准永久基本标准准永久2500 1852 1667 2970 2200 1980 2490 1844 1660 柱6 柱12 柱18二、基础选型根据提供的土层信息,可知建筑物所在位置的地基土多为粘土和粉质粘土,且地下水位较高,属于软土地基,且考虑到建筑的柱间距较大并设置了地下室等因素,综合考虑决定采用梁式筏板基础,梁式筏板基础其优点在于较平板式具有低耗材、刚度大,在本次设计中决定采用双向肋梁板式筏形基础。
当地基承载力很低,建筑物荷载又很大时,宜采用筏基。
沉积土层不均匀,有软弱土的不规则夹层,或者有坚硬的石芽出露,亦或石灰岩层中有不规则溶洞、溶曹时,采用筏基调节不均匀沉降或者跨越溶洞。
即使地基土相对较均匀时,对不均匀沉降敏感的结构也常采用筏基。
筏基的形式:等厚,局部加厚,上部加肋梁,下部加肋梁。
构造要求筏板厚度一般不小于柱网最大跨度的1/20,并不小于200mm,且应按抗冲切验算。
设置肋梁时宜取200-400mm。
筏基可适当加设悬臂部分以扩大基底面积和调整基底形心与上部荷载重心尽可能一致。
悬臂部分宜沿建筑物宽度方向设置。
当梁肋不外伸时板挑出长度不宜大于2m。
砼不低于c20,垫层100mm厚。
钢筋保护层不小于35mm。
地下水位以下的地下室底板应考虑抗渗,并进行抗裂度验算。
筏板配筋率一般在0.5-1.0%为宜。
当板厚小于300mm时单层配置,大于300mm时双层布置。
受力钢筋最小直径8mm,一般不小于12mm,间距100-200mm;分布钢筋8-10mm,间距200-300mm。
筏板配筋除符合计算配筋外,纵横方向支座钢筋尚应有0.15%、0.10%(全部受拉钢筋的1/2-1/3)的配筋率连通;跨中则按实际配筋率全部贯通。
双向悬臂挑出但肋梁不外伸时宜在板底放射状布附加钢筋。
平板式筏板柱下板带和跨中板带的底部钢筋应有1/2-1/3全部拉通,且配筋率不应小于0.15%;顶部按实际全部拉通。
当板厚小于250mm时分布筋为圆8间距250,板厚大于250mm时分不筋圆10间距200。
计算方法:1.简化方法倒梁法和到楼盖法(相对刚度较大);上部结构较柔时可用静力分析法。
2.考虑地基基础共同作用的方法2.考虑上部结构地基基础共同作用的方法。
(1)地基承载力验算筏板基础包括梁板式基础、格筏基础和含梁或不含梁的片筏基础等型式。
筏板基础的设计一般包括基础梁设计与板的设计二部分,筏板上基础梁的设计方法同第五节柱下条形基础。
筏板的设计计算内容主要包括:筏板基础地基计算、筏板内力分析、筏板截面强度验算与板厚、配筋量确定等。
第七节筏板基础max 1.2p f p f ≤⎧⎨≤⎩G —基础和上覆土重,地下水位以下应考虑浮力作用。
一、地基计算max F G p A F G Mp A W +⎧=⎪⎪⎨+⎪=+⎪⎩0.1W e A≤W 、A ——基础底面截面模量、面积。
(2)偏心距验算(整体稳定性要求)基底平面心形尽量与结构竖向永久荷载重心重合。
不能重合时要求:0111'()'m c s i i i i i si si p p s z z E E ψψαα--=⎛⎫=+- ⎪⎝⎭∑——第i 层土回弹再压缩模量(3)沉降验算考虑回弹再压缩变形的影响'si E 'ψ——考虑回弹影响的经验系数,无经验时可取1.0按作用的准永久组合计算时考虑地震作用时16W e A≤基底自重压力基底附加压力筏板内力计算可根据上部结构刚度及筏板基础刚度的大小分别采用刚性法或弹性地基基床系数法进行。
(一)刚性法当上部结构整体刚度较大,筏板基础下的地基土层分布均匀时,可不考虑整体弯曲而只计局部弯曲产生的内力。
当持力层压缩模量MPa 或板厚H 大于墙间距离时,可认为基底反力成直线或平面分布。
符合上述条件的筏板基础的内力可按刚性法计算,此时基础底面的地基净反力可按下式计算:4≤s E 61yx x y j j W e N W e N A N p p ⋅∑±⋅∑±∑=min max 二、筏板的内力计算采用刚性法计算时,在算出基底的地基净反力后,常用的倒楼盖法或刚性板条法计算筏板的内力。
框架体系下的筏板基础也可按刚性板条法计算筏板内力,其计算步骤如下:(a)先将筏板基础在x 、y 方向从跨中到跨中分成若干条带,如图所示。
从计算设置学平法之六——基础的计算设置介绍基础主要包含:条形基础、独立基础、筏形基础、基础板带、集水坑、桩承台、柱墩。
条基中的钢筋有受力筋、分布筋;独基中主要有受力筋,有些会配置短向加强筋和柱间配筋,带短柱杯口独基在短柱中会配置纵筋和箍筋;筏基中一般有底筋、面筋、中间层筋、非贯通筋;基础板带主要有上下部受力筋;集水坑一般有底筋、面筋、坑壁水平筋、斜面钢筋;桩承台的钢筋有横向、纵向、侧面受力筋、加强筋;柱墩主要有纵筋、箍筋。
下面我们一起来学习一下基础中各构件的特点及钢筋的计算:一、算量基本方法:一、条形基础:1.受力筋:受力钢筋的长度应根据计算设置中所设定的计算方法进行计算:条基宽度>=设定值,L=条基宽度*0.9;条基宽度<设定值,L=条基宽度-2*bhc。
2.分布筋:条基分布钢筋的计算需要考虑条基的主次:主条基(贯通条基):L=条基长度-2*bhc;次条基(非贯通条基):(1)两端都与主条基相交:L=次条基净长度+2*L1;(2)一端与主条基相交:L=次条基净长度-bhc+L1。
次条基净长度:两端与主条基相交时为两相邻主条基之间的净空尺寸,一端与主条基相交时为次条基长度扣除相交的主条基的长度;L1取计算设置中的第8项所设置的值,系统默认为150。
二、独立基础:1.受力筋:受力钢筋的长度应根据计算设置中所设定的计算方法进行计算:还需要考虑钢筋的弯折设置:基础底长>=设定值,L=基础底长*0.9+2*弯折长度;基础底长<设定值,L=基础底长-2*bhc+2*弯折长度。
三、筏形基础:说明:基础板带的算法同筏板钢筋的算法,当遇到筏板变截面时,按照相应的筏板变截面节点计算;当筏板钢筋遇基础梁构件时,按照梁板式筏形基础节点计算;当筏板钢筋遇剪力墙构件时,按照平板式筏形基础节点计算,在此主要讲述梁板式筏板钢筋的计算。
1.端部构造:(1)端部等截面外伸:(2)端部变截面外伸:节点一:节点二:(3)端部无外伸节点:(4)中层钢筋端头节点(包含遇集水坑的情况):2.变截面部位构造:(1)筏板顶部有高差:(2)筏板底部有高差:(3)筏板顶部、底部均有高差顶:顶部、底部的钢筋均按相对应的节点计算;(4)中间层钢筋变截面构造:3.筏板遇集水坑:按下图节点计算:4.筏板遇承台、独基、柱墩:按下图节点计算:相关计算原则:筏板钢筋扣减独立基础、桩承台:(1)当独基或桩承台与筏板顶面和底面都相交时,按实际的三维体计算筏板钢筋扣独基和承台;(2)当筏板/板的底标高与承台/独立基础相交或相切,则底筋取属性设置,且从筏板/板底标高与承台/独立基础相交位置进行扣减;筏板钢筋扣减柱墩:(1)对于下柱墩,优先按与筏板底标高相交的范围,计算筏板钢筋的扣减;当与筏板底面不相交,而与顶面相交时,按与顶面相交的范围计算钢筋扣减;(2)对于上柱墩,优先按与筏板顶标高相交的范围,计算筏板钢筋的扣减;当与筏板顶面不相交,而与底面相交时,按与底面相交的范围计算钢筋扣减。
中鼎中心·智慧森林城筏板基础施工方案编制单位:广西云厦建设有限公司编制:陈聚审核:陈书豹审批:编制日期:2017年月日目录第一章、编制说明 (1)一、编制依据 (1)二、编制目的及说明 (2)第二章、工程概况 (2)第三章、施工准备 (4)一、施工现场准备工作 (5)二、技术准备 (5)三、施工材料、机具的准备 (6)第四章、钢筋施工 (8)第五章、基础模板施工 (10)第六章、大体积混凝土温度和温度应力 (11)第七章、混凝土施工 (11)第八章、基础防水工程施工 (13)第九章、防止大体积混凝土产生裂缝的措施 (13)一、原材料方面采取的措施 (13)二、浇筑方面采取的措施 (14)三、混凝土泌水处理和表面处理 (14)四、混凝土养护与试块留置 (15)五、外部养护、内部降温及温度监测措施 (16)第十章、混凝土施工注意事项 (19)第十一章、成品保护 (20)第十二章、混凝土施工主要管理措施 (20)第十三章、基础施工质量控制及保证措施 (21)第十四章、基础混凝土施工时应急措施 (22)第十五章、保证安全生产措施 (22)第十六章、文明环保要求 (24)第十七章、其它保证措施 (24)第一章、编制说明一、编制依据1、中鼎中心·智慧森林城工程项目施工图纸2、《混凝土结构工程施工质量验收规范》(GB50204-2002)3、《混凝土泵送施工技术规程》(JGJ/T10-2011)4、《混凝土质量控制标准》(GB50164-2011)5、《建筑地基基础工程施工质量验收规范》(GB50202-2002)6、《钢筋焊接及验收规范》(JGJ18-2012)7、《建筑工程施工质量验收统一标准》(GB50300-2013)8、《混凝土结构设计规范》(GB50010-2010)9、《工程测量规范》(GB50026-2007)10、《建筑施工安全检查标准》(JGJ59-2011)11、《建筑机械使用安全技术规程》(JGJ33-2012)12、《建筑施工现场环境与卫生标准》(JGJ146-2004)13、《建设工程项目管理规范》(GB/T 50326-2008)14、《建设工程施工现场供用电安全规范》(GB50194-2014)15、《施工现场临时用电安全技术规范》(JGJ46-2005)16、《砼强度检验评定标准》(GB/T50107-2010)17、建筑施工手册(第四版)二、编制目的及说明1、本工程1#~2#楼之间的地下室部分为筏板基础,其他地下室为独立基础,本方案为筏板基础施工方案。
筏板基础设计要点及计算示例
一、筏板基础设计要点
1、材料和结构:根据建筑物的使用性质,湿法筏板基础可选用钢筋混凝土组合桩作为结构材料,其中混凝土的强度等级由长期使用要求来确定。
结构厚度、网络布置等应符合国家标准的要求。
2、环境条件:筏板基础的承载力受多种因素影响,如地质、水位、温度等。
因此,对于不同环境条件,应通过地质勘查、湿度测定、电阻率测定等手段,建立筏板基础的环境参数,以确保建筑物的安全使用。
3、设计及施工:筏板基础的施工应按照国家标准给出的要求进行,结构设计应满足工程实际要求,结构的厚度、网络布置等要求应符合国家标准。
施工前,应进行现场施工前设计,并根据现场施工条件,采取必要的施工措施,以保证施工的质量,确保建筑物的安全使用。
二、计算示例:
1、确定筏板基础中心距:
根据规范要求,筏板基础中心距应不小于基础宽度1/4、也就是说,对于一个宽为2m的筏板基础,其中心距不应小于500mm。
2、确定抗拔承载力:
根据国家规范要求,组合桩的抗拔承载力可以建立如下的计算公式:Q=AφKs-Bp(φ-P)
其中,A和B是规定的系数。
2020年11月上第 49 卷 第 21 期施 工 技 术CONSTRUCTION TECHNOLOGY75DOI : 10.7672/sgjs2020210075超咼层建筑超厚筏板施工技术**中建八局科技研发课题:巨柱外框+斜柱转换全钢内筒超高层结构施工关键技术研究(2019-3-39)[作者简介]梁月利,工程师,E-mail : 812606980@ [收稿日期]2020-08-15梁月利,黄贵,何震华,郭伟,徐珍,王翔,郭青云,洪杰文,魏永锋,陈松(中国建筑第八工程局有限公司南方分公司,广东深圳518048)[摘要]广商中心工程采用桩筏+承台基础,筏板厚度较大且变化较多,最大厚度达7.8m 。
为此,在超厚筏板中布置附加箍筋,将筏板面筋与底筋连为一体,提高筏板整体受力性能。
由于巨型钢柱尺寸较大,因此采用埋入式柱脚,以保证结构安全。
通过采用跳仓法施工、安装附加箍筋、预埋柱脚等关键施工技术,加快施工进度,保证筏板施工质量,达到良好施工效果。
[关键词]高层建筑;超厚筏板;附加箍筋;埋入式柱脚;施工技术[中图分类号]TU74[文献标识码]A [文章编号]1002-8498(2020)21-0075-03Construction Technology of Super Thick Raft inSuper High-rise BuildingLIANG Yueli , HUANG Gui , HE Zhenhua , GUO Wei , XU Zhen , WANG Xiang ,GUO Qingyun , HONG Jiewen , WEI Yongfeng , CHEN Song(South Branch of China Construction Eighth Engineering Division Co., Ltd., Shenzhen, Guangdong 518048, China )Abstract :The foundation of pile raft and pile cap is adopted in Guangzhou Commercial Center project. The thickness of rafts is large and varied , and the maximum thickness is 7. 8m. Therefore , additional stirrups are arranged in the super thick rafts to connect the surface reinforcement and bottomreinforcement ,which can improve the overall mechanical performance of rafts. Due to the size of the huge steel columns is large , the embedded column base is adopted to ensure the structural safety. By adopting the key construction technologies such as sequence method construction , installation of additional stirrupsand embedded column base , the construction progress is accelerated , the construction quality of rafts is guaranteed , and the good construction effect is achieved.Keywords :tall buildings;super thick rafts;additional stirrups;embedded column base; construction1 工程概况广商中心工程采用桩筏+承台基础,筏板面积 约6 287. 8m 2,混凝土浇筑总量约13 000m 3,大部分筏板厚1mo 本工程采用巨型柱框架(钢管混凝土 柱)-钢支撑+偏心支撑结构体系,底板4个大型承台 (CT1,CT1a,CT2,CT3)上设有8根巨型钢柱,柱下筏板厚度包括4.75,5,5. 75,6. 05,7. 8m,采用埋入式柱脚。