电力备自投装置原理
- 格式:docx
- 大小:64.69 KB
- 文档页数:12
有关电力系统中备自投装置的原理简述在社会生产生活中电力需求逐渐增多的发展趋势下,变电站的运行压力逐渐加大,供电企业需要保障安全稳定供电。
在变电站中安装备自投装置,能够有效的保障电力系统的正常运行。
基于此,本文就备自投装置的基本原理做出简要阐述。
标签:电力系统;备自投装置;基本原理一、前言随着电网规模不断扩大,电网结构日趋复杂,对供电可靠性要求越来越搞,在厂站使用备用电源自投装置(以下简称备自投),它是提高供电可靠性、降低供电损耗和保证电网安全稳定运行的有效措施和重要技术手段,已在电网中得到广泛应用。
备自投的作用是系统内失去工作电源时,实现无间断地电压保持功能。
逻辑紧密,环环相接,任何一个环节出现问题,都会引起备投功能失败。
因此对备自投装置如何正确动作进行分析,熟悉备自投装置地动作机理,对分析事故具有很大作用。
下文主要对备自投的简单分類、基本要求及常见备自投实现地动作逻辑进行概述。
二、备自投的简单分类110kV备自投方式可以分为进线备自投与母联分段备自投。
备自投方式如下图所示。
备自投常用开关状态、检修压板、线路电流等判断依据,以SCJ-500型号地备自投装置为例,阐述备自投的原理。
元件状态可以分为主供、可备投、检修、不可备投四种状态,该四种状态指备自投原件状态,而非对应开关的状态。
不可备投状态不满足主供、可备投或检修状态的线路。
不满足主供、可备投或检修状态的线路。
备自投可以分为充电状态、启动状态和放电状态,如下表2所示,正确地使用好这些功能就能实现备自投装置正确可靠的动作。
以进线备自投图1为例分析备投前状态,至少一条线路(线路1)在主供状态,至少一条线路(线路2)在可备投状态,当线路1失电后,判断满足启动条件,备自投装置动作合上线路2开关为线路1供电,实现无间断供电。
根据备自投装置的动作原理,要使备自投装置正确动作,必须是在装置已充电,且满足动作条件而又无闭锁条件的情况下。
一般而言,备自投装置基本要求如下:(1)应保证在工作电源或设备断开后才投入备用电源或设备。
高压备自投工作原理
高压备自投是一种电力系统保护装置,用于保护电力系统中的高压设备(如变压器、开关设备等)免受故障的影响。
它的工作原理可以从多个角度来解释。
首先,从电气角度来看,高压备自投的工作原理基于电流和电压的测量。
当电力系统中发生故障时,如短路或过载,电流会突然增大,电压也会发生异常变化。
高压备自投通过测量电流和电压的变化来检测故障,并根据预设的保护逻辑进行判断。
一旦检测到故障,高压备自投会迅速切断故障电路,阻止故障扩大,并将故障信号传递给上级保护装置。
其次,从机械角度来看,高压备自投的工作原理基于电磁力和机械传动。
当故障发生时,高压备自投内部的电磁线圈会受到电流的作用而产生电磁力,这个力会推动机械传动装置,使其切断故障电路。
这种机械传动通常采用弹簧机构,当故障消除后,弹簧会恢复原状,使备自投回到正常位置,准备下一次的保护动作。
此外,高压备自投还可以通过其他方式实现故障检测和保护。
例如,利用光纤通信技术,通过监测电力系统中的光纤传感器来实
时获取电流、电压等信息,并进行故障判断和保护动作。
还可以利用微处理器和数字信号处理技术,对采集到的电力系统数据进行分析和处理,实现更精确的故障检测和保护。
总的来说,高压备自投的工作原理是基于电气、机械和数字技术的综合应用。
它通过测量电流、电压等参数,利用电磁力和机械传动等方式,实现对电力系统中高压设备的保护,确保电力系统的安全稳定运行。
10kv备自投工作原理
备自投工作原理是指在电力系统中,当主电源出现故障或故障时,备用电源会自动投入工作,以保障系统的稳定运行。
一般来说,备自投工作原理包括以下几个方面:
1. 检测主电源状态,备用电源系统会通过传感器或监测装置实
时监测主电源的状态,包括电压、频率等参数。
2. 比对设定值,备用电源系统会将监测到的主电源参数与预设
的设定值进行比对,以确定主电源是否处于正常工作状态。
3. 切换逻辑,一旦备用电源系统检测到主电源出现故障或不稳定,切换逻辑将被触发,自动启动备用电源并将其连接到系统中,
以维持系统的供电稳定性。
4. 人机交互,在一些情况下,备用电源系统还会设计有人机交
互界面,以便操作人员可以手动干预备用电源的投入工作,确保系
统的安全可靠。
总的来说,备自投工作原理是通过监测、比对和切换逻辑实现
的,其目的是在主电源故障时能够及时、自动地切换到备用电源,保障系统的供电可靠性。
备自投装置动作原理备自投装置是一种自动化装置,它能够根据预设的条件和动作来执行相应的任务。
它的动作原理是通过传感器和执行器的配合实现的。
备自投装置需要使用传感器来获取环境信息。
传感器可以是各种类型,如光敏传感器、温度传感器、声音传感器等。
传感器能够感知环境中的物理量,并将其转化为电信号。
这些电信号经过处理后,可以用来判断环境是否符合预设的条件。
一旦传感器检测到环境符合预设的条件,备自投装置就会触发执行器的动作。
执行器可以是各种类型,如电机、气缸、泵等。
执行器能够根据接收到的电信号进行相应的动作,如旋转、推动、抽水等。
执行器的动作可以通过电路或控制器来实现。
当执行器完成相应的动作后,备自投装置会再次使用传感器检测环境信息。
如果环境信息不再符合预设的条件,备自投装置就会停止执行器的动作。
这样,备自投装置就能够根据环境的变化来灵活地执行任务。
备自投装置的动作原理可以应用于各种场景。
例如,在工业生产中,可以使用备自投装置来自动化生产线上的操作。
在农业中,可以使用备自投装置来自动化灌溉、施肥等任务。
在家庭生活中,可以使用备自投装置来实现智能家居的控制。
备自投装置的动作原理还有许多值得探讨的问题。
例如,如何设计传感器和执行器的选择和布置,以及如何确定预设的条件和动作。
这些问题需要综合考虑实际应用的需求和技术的可行性。
备自投装置是一种通过传感器和执行器的配合来实现自动化任务的装置。
它的动作原理是通过传感器获取环境信息,并根据预设的条件和动作来触发执行器的动作。
备自投装置可以应用于各种场景,实现任务的自动化和智能化。
引言BZT装置(备用电源自动投入装置)是电力系统中非常重要的电气装置,在较低电压等级的用户供电系统中,特别是6~35KV系统,常采用BZT装置,以保证自动化生产供电不中断和避免生产装置因失电而引起停车的严重后果。
根据《电力装置的继电保护和自动装置设计规范》,BZT装置应满足以下技术要求:(1)应保证在工作电源或设备断开后BZT装置才动作;(2)工作母线和设备上的电压不论因何原因消失时BZT装置均应动作;(3)BZT装置应保证只动作一次;(4)BZT装置的动作时间以使负荷的停电时间尽可能短为原则;(5)工作母线和备用母线同时失去电压时,BZT装置不应起动;(6)当BZT装置动作时,如备用电源或设备投于故障,应使其保护加速动作;(7)手动断开工作回路时,BZT装置不应动作。
从BZT装置在电力系统的大量实际应用和动作结果中可以看到,各种工作电源发生故障时,BZT装置的正确动作对确保生产装置连续稳定运行起着重要作用。
一旦BZT装置不能正确动作,将会影响生产装置的安全运行。
工厂里几乎每年都会发生数起BZT装置故障而影响生产的事故。
因此除按以上技术要求在设计上合理配置外,解决BZT装置在实际应用中的问题具有重要意义。
1与自动重合闸装置的配合自动重合闸装置(ZCH装置)与BZT装置一样,也是电力系统保证可靠供电的重要自动装置。
在电力系统单侧电源线路中,通常在线路电源侧装设ZCH装置,ZCH装置是根据输电线路故障大多为瞬时性故障而设置的(据统计,架空线路的瞬时性故障次数约占总故障次数的80%~90%以上),一旦线路因瞬时性故障被保护断开后,由ZCH装置进行一次重合,往往就能够恢复原工作电源向负荷供电。
可见,BZT装置是在工作电源永久性故障跳闸(或瞬时性故障跳闸无重合)后投入另一路备用电源,ZCH装置是在线路瞬时性故障跳闸后,再次投入工作电源。
两者的正确配合使用,可大大提高电力系统供电的可靠性。
某厂35KV总降压变电所,采用内桥接线,如附图所示。
10kv远方备自投原理10kV远方备自投原理引言:在电力系统中,远方备自投原理是一种常用的保护措施,它能够有效地保护电力设备和电网的安全稳定运行。
本文将详细介绍10kV 远方备自投原理及其应用。
一、什么是远方备自投原理?远方备自投是指在电力系统中,当远方发生故障时,通过远方保护装置对本地设备进行自动投入操作。
远方备自投原理是基于电力系统中故障传递的原理,通过检测远方故障信号来实现对本地设备的保护。
二、远方备自投原理的基本原理1. 故障传递:当电力系统中的一处设备发生故障时,故障电流会沿着电网传递,传递到其他设备上,形成故障电压。
2. 故障信号检测:远方备自投装置通过检测故障电压的存在与否来判断远方是否发生故障。
一般采用差动保护装置、零序电流保护装置等来检测故障信号。
3. 自动投入:当远方发生故障时,远方备自投装置会自动给本地设备发出投入信号,使其投入运行,以避免远方故障对本地设备造成的影响。
三、远方备自投原理的应用1. 电力变电站:在电力变电站中,远方备自投原理被广泛应用于各类电力设备的保护。
当远方发生故障时,远方备自投装置能够及时将本地设备投入运行,避免故障扩大,确保电力系统的连续供电。
2. 输电线路:在输电线路中,远方备自投原理可以用于保护线路的绝缘子串、导线等设备。
当线路发生故障时,远方备自投装置能够自动将本地设备投入运行,保护线路设备的安全运行。
3. 发电机组:在发电机组中,远方备自投原理可以用于保护发电机组的转子、定子等关键部件。
当发电机组远方发生故障时,远方备自投装置能够及时将本地设备投入运行,保护发电机组的安全运行。
四、远方备自投原理的优势1. 快速响应:远方备自投装置可以实现迅速的故障检测和投入操作,提高了电力设备的保护速度,有效减少了故障对设备的影响。
2. 自动化操作:远方备自投装置能够实现自动化操作,减少了人工干预,提高了电力系统的稳定性和可靠性。
3. 灵活性:远方备自投原理可以根据不同的电力系统和设备特点进行调整和优化,具有较高的灵活性和适用性。
电力备自投装置原理 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-《备自投装置》备自投装置由主变备自投、母联备自投和进线备自投组成。
①若正常运行时,一台主变带两段母线并列运行,另一台主变作为明备用,采用主变备自投。
②若正常运行时,每台主变各带一段母线,两主变互为暗备用,采用母联开关备自投。
③若正常运行时,主变带母线运行,两路电源进线作为明备用,两段母线均失压投两路电源进线,采用进线备自投。
一、#2主变备自投#1主变运行,#2主变备用,即1DL、2DL、5DL在合位,3DL、4DL在分位,当#1主变电源因故障或其它原因断开,2#变备用电源自动投入,且只允许动作一次。
1、充电条件:a. 66千伏Ⅰ母、Ⅱ母均三相有压;b. 2DL、5DL在合位,4DL在分位;c.当检备用主变高压侧控制字投入时,高压侧220kV母线任意侧有压。
以上条件均满足,经备自投充电时间后充电完成。
2、放电条件:a.#2主变检修状态投入;b.4DL在合位;c.当检备用主变高压侧控制字投入时,220kV两段母线均无压, 经延时放电;d.手跳2DL或5DL;e. 5DL偷跳,母联5DL跳位未启动备自投时,且66kV Ⅱ母无压;f.其它外部闭锁信号(主变过流保护动作、母差保护动作);g.2DL、4DL位置异常;母或II母TV异常,经10s延时放电;i.#1主变拒跳;j.#2主变自投动作;k.主变互投硬压板退出;l.主变互投软压板退出。
上述任一条件满足立即放电。
3、动作过程:充电完成后,Ⅰ母、Ⅱ母均无压,高压侧任意母线有压,#1变低压侧无流,延时跳开#1变高、低压侧开关1DL和2DL,联切低压侧小电源线路。
确认2DL跳开后,经延时合上#2变高压侧开关3DL,再经延时合#2变低压侧开4DL。
设置“加速备投”投退控制字。
当充电完成后,#1变低压侧开关2DL跳开,Ⅰ母、Ⅱ母均无压,高压侧任意母线有压(检高压侧母线电压控制字投入),#1变低压侧无流,且加速备投控制字投入则延时Tjsbzt跳#1变高、低压侧开关1DL和2DL,确认2DL跳开后经Th2 延时合上#2变高压侧开关3DL,再经Th3延时合#2变低压侧开关4DL。
备自投装置原理备自投装置是一种常用于火灾灭火系统中的自动控制装置,它能够监测并控制火灾相关设备的运行。
本文将介绍备自投装置的原理和工作机制。
一、备自投装置的概念备自投装置是指备用电源和自动投入装置的简称。
它由备用电源和自动投入装置两个部分组成,主要用于火灾灭火系统的自动启停和相应设备的操作。
二、备自投装置的工作原理备自投装置通过监测火灾探测系统中的信号,实现对火灾相关设备的控制和操作。
下面是一般的备自投装置工作原理的简述:1. 常规状态下,备自投装置接收来自火灾探测系统的信号,并将信号发送给控制器。
2. 当控制器接收到火灾探测系统的信号后,会根据设定的逻辑条件来判断是否触发灭火设备的操作。
3. 如果满足触发条件,控制器会发送指令给备用电源和自动投入装置。
4. 备用电源会立即切换为应急状态,为火灾灭火系统提供电力供应。
5. 自动投入装置会激活灭火设备,比如启动喷淋系统、自动关闭隔离门等。
6. 当火灾得到控制或者消除后,系统会自动恢复到常规状态,备用电源和自动投入装置也会恢复到正常工作状态。
三、备自投装置的重要性备自投装置在火灾灭火系统中扮演着重要的角色,它能够实现火灾探测和灭火设备的自动控制,提高灭火系统的响应速度和灵活性。
以下是备自投装置的主要优点:1. 实时性:备自投装置能够实时监测火灾探测系统的信号,并根据信号快速做出响应,避免火灾的进一步蔓延。
2. 自动化:备自投装置能够根据设定的逻辑条件自动启停灭火设备,无需人工干预,提高灭火系统的自动化水平。
3. 可靠性:备自投装置采用备用电源和自动投入装置的双重保障机制,确保在火灾发生时系统能够正常运行。
4. 灵活性:备自投装置可以根据不同的火灾情况自动调整灭火设备的操作,实现灭火控制的精准性。
5. 省时省力:备自投装置减少了人工介入的需求,减轻了人力负担,提高了灭火效率。
四、备自投装置的应用领域备自投装置广泛应用于各类建筑、工厂、仓库等场所的火灾灭火系统中。
备用电源自投装置原理一、备自投(BZT)的基本原则1)除发电厂备用电源快速切换外,应保证在工作电源或设备断开后,才投入备用电源或设备。
2)工作电源或设备上的电压,不论何种原因消失,除有闭锁信号外,自动投入装置均应动作。
3)由人工或远方遥控切除工作电源时,BZT如不需动作,应该手跳闭锁。
4)因BZT的备用对象故障,保护动作时应闭锁BZT。
5) 当工作电源失去后, BZT应保证只动作一次,因此要设BZT一次动作闭锁或增加充电条件。
6) BZT的动作延时应躲过引出线故障造成的母线电压下降,故跳闸延时应大于最长的外部故障切除时间。
同时,BZT的动作延时应考虑使负荷停电的时间尽可能短。
7) 应考虑全站的电源分布情况,为防止BZT动作造成非同期合闸等故障,应在BZT装置动作时切除相关小电源。
8)当自动投入装置动作时,如备用电源投于故障,应有保护加速跳闸。
9) 应校核备用电源自动投入时过负荷及电动机自起动的情况,如过负荷超过允许限度或不能保证自起动时,应有BZT动作时自动减负荷的措施。
10) BZT动作前可检查备用电源是否有压。
二、备自投方案的分类根据运行方式的不同,可以分为两种形式的自投:1)分段(桥)开关自投:若正常运行时,每路进线各带一段母线运行,以分段开关分开,互为备用,称为分段自投。
2)进线(主变)自投:若正常运行时,一路进线带母线上所有负荷运行,另一回进线作为备用电源,称为进线自投。
运行方式的识别:引入电源开关和母联开关的开关位置接点,判断当前系统运行方式,还可以引入相应开关的电流来校验开关位置的正确性。
运行方式的转换有主备方式,当主供电源失电,备用电源自动投入,当主供电源恢复后,仍由主供电源供电;无主备方式,双侧电源互为备用,当前电源失电时,自动切换为另一电源供电;根据自动化程度和用户要求不同,选择的供电恢复方式也不同。
在一些对自动化要求比较高的电网或供电可靠性要求较高的负荷中心,用户可选择双电源多次自动切换的方式;其他用户可以选择只允许备自投动作一次,在排除故障后,由人工干预再次投入备自投。
备自投工作原理及动作条件备自投(BST)工作原理及动作条件。
一、BST工作原理。
备自投(BST)是一种自动化的生产工艺,其工作原理主要包括以下几个方面:1. 传感器检测,BST系统通过安装在生产线上的传感器,对产品进行实时监测和检测。
传感器可以检测产品的大小、形状、颜色等特征,从而实现对产品的准确识别。
2. 数据处理,传感器采集到的数据将传输到BST系统的数据处理模块中,经过处理和分析后,系统可以对产品进行分类、分拣和定位。
3. 机械执行,根据数据处理的结果,BST系统会指导机械手臂、输送带等设备进行相应的动作,将产品按照要求进行分拣、装配或包装。
4. 控制系统,BST系统通过控制系统对整个生产线进行自动化的控制和调度,确保生产过程的高效、稳定和可靠。
二、BST动作条件。
BST系统的正常工作需要满足一定的动作条件,主要包括以下几个方面:1. 环境条件,BST系统需要在相对稳定的环境条件下进行工作,包括温度、湿度、光照等方面的要求。
特别是对于一些对环境条件较为敏感的产品,需要更加严格的环境控制。
2. 电力供应,BST系统需要稳定的电力供应,以保证设备的正常运行。
对于一些对电力质量要求较高的设备,还需要进行额外的电力保护和滤波处理。
3. 维护保养,BST系统需要定期进行设备的维护保养,包括清洁、润滑、更换易损件等工作,以确保设备的长期稳定运行。
4. 人员配合,BST系统的工作还需要工作人员的配合和协助,包括设备的开启、关闭、故障处理等方面的工作。
5. 安全保障,BST系统需要具备完善的安全保障措施,包括防护装置、紧急停车装置、安全警示标识等,以保障工作人员和设备的安全。
总结:备自投(BST)作为一种自动化的生产工艺,其工作原理主要包括传感器检测、数据处理、机械执行和控制系统。
而BST系统的正常工作需要满足一定的动作条件,包括环境条件、电力供应、维护保养、人员配合和安全保障。
只有在这些条件的配合下,BST系统才能实现高效、稳定和可靠的生产工作。
主变备自投是电力系统中的一种保护方案,用于在主变压器发生故障时将其与系统隔离,并自动投入备用变压器供电。
下面是主变备自投的工作原理:
1. 故障检测:通过电力系统中的保护装置检测到主变压器的故障,例如过电流、过温、短路等。
2. 故障信号传输:保护装置将故障信号传输给自动装置,通常使用数字通信系统或其他方式进行传输。
3. 自动装置判断:自动装置收到故障信号后,对信号进行处理和判断,确定是否需要进行主变备自投。
4. 隔离主变压器:如果自动装置确定需要进行主变备自投,它会通过控制断路器或刀闸等开关设备,将主变压器与电力系统隔离,避免故障影响系统稳定运行。
5. 启动备用变压器:一旦主变压器与系统隔离,自动装置会发送信号给备用变压器,并启动备用变压器,以确保电力系统继续供电。
6. 过渡过程:在切换过程中,自动装置通常会对备用变压器的电压和频率进行
监测和调整,以确保其与主变压器的输出相匹配,并且不对系统的稳定性和负荷产生过大的影响。
7. 系统恢复:一旦备用变压器正常工作,并与电力系统连接稳定,自动装置会发送信号确认切换完成,并将系统恢复到正常运行状态。
总的来说,主变备自投是通过故障检测、信号传输、判断和操作开关设备等步骤实现的,目的是确保在主变压器故障时能够快速切换到备用变压器,保证电力系统的稳定供电。
备自投装置工作原理
自投装置是一种能够自动完成投放和回收操作的装置,一般用于投放和回收货物、信件、资料等。
其工作原理可以分为以下几个步骤:
1. 接收指令:自投装置通过接收外部指令来确定投放或回收的动作。
指令可以通过多种方式传输,如有线连接、无线通信等。
2. 识别货物:在投放过程中,自投装置会通过感应器、摄像头等设备对待投放的货物进行识别。
这些设备可以识别货物的大小、形状、重量等特征,从而确定合适的投放方式和位置。
3. 投放货物:根据识别结果,自投装置会选择合适的投放方式和位置,并进行相应的投放动作。
例如,如果是投放小件货物,可以通过机械臂、传送带等设备将货物送入指定位置。
4. 确认投放:在投放完成后,自投装置会通过传感器等设备检测是否成功投放。
如果投放失败,装置会重新进行投放操作,直到成功为止。
5. 回收货物:在回收过程中,自投装置会再次通过感应器、摄像头等设备对待回收的货物进行识别。
这些设备可以识别货物的特征,从而确定回收方式和位置。
6. 回收货物:根据识别结果,自投装置会选择合适的回收方式和位置,并进行相应的回收动作。
例如,可以通过机械臂、传送带等设备将货物取出。
7. 确认回收:在回收完成后,自投装置会通过传感器等设备检测是否成功回收。
如果回收失败,装置会重新进行回收操作,直到成功为止。
以上就是自投装置的工作原理。
通过接收指令、识别货物、投放和回收货物等步骤,自投装置可以实现自动化的投放和回收操作,提高了工作效率和准确性。
备自投装置的工作原理自投装置是一种可以自动投放物品到指定位置的装置。
它的工作原理基于机械结构和电子控制系统。
自投装置需要一个接收器,用于接收用户的指令。
接收器通常是一个按钮或者一个触摸屏,用户可以通过按下按钮或者触摸屏上的指定区域来发送指令。
当接收器接收到指令后,它会将指令传输给电子控制系统。
电子控制系统是自投装置的大脑,它负责解析指令并执行相应的操作。
在执行操作之前,电子控制系统需要获取当前的位置信息。
为了实现这一点,自投装置通常会配备一个定位系统,例如全球定位系统(GPS)或者室内定位系统。
定位系统可以确定自投装置当前所处的位置。
一旦获取了当前位置信息,电子控制系统会根据接收到的指令和当前位置信息来计算出投放物品的路径。
这个路径计算通常基于预先设定的地图或者布局信息。
电子控制系统会根据路径计算结果来确定自投装置需要移动到哪个位置,并将路径信息保存在内存中。
接下来,电子控制系统会通过控制装置的电机或者驱动器来控制自投装置的移动。
装置的移动通常是通过轮子、履带或者其他运动装置实现的。
电子控制系统会根据保存的路径信息来控制自投装置沿着指定路径移动,直到达到目标位置。
一旦自投装置到达目标位置,电子控制系统会触发投放机构。
投放机构通常是一个夹爪、一个推杆或者其他适当的装置,用于将物品投放到指定位置。
电子控制系统会根据预先设定的投放方式来控制投放机构的动作,确保物品被准确地投放到目标位置。
电子控制系统会发送信号给接收器,以通知用户投放操作已经完成。
用户可以根据接收到的信号来确认自投装置的工作状态。
自投装置的工作原理是基于接收器、电子控制系统、定位系统、运动装置和投放机构的协同工作。
通过接收指令、计算路径、控制移动和触发投放动作,自投装置可以准确地将物品投放到指定位置,提高工作效率和便利性。
《备自投装置》备自投装置由主变备自投、母联备自投和进线备自投组成。
①假设正常运行时,一台主变带两段母线并列运行,另一台主变作为明备用,采用主变备自投。
②假设正常运行时,每台主变各带一段母线,两主变互为暗备用,采用母联开关备自投。
③假设正常运行时,主变带母线运行,两路电源进线作为明备用,两段母线均失压投两路电源进线,采用进线备自投。
一、#2主变备自投#1主变运行,#2主变备用,即1DL、2DL、5DL在合位,3DL、4DL在分位,当#1主变电源因故障或其它原因断开,2#变备用电源自动投入,且只允许动作一次。
1、充电条件:a.66千伏Ⅰ母、Ⅱ母均三相有压;b.2DL、5DL在合位,4DL在分位;c.当检备用主变高压侧控制字投入时,高压侧220kV母线任意侧有压。
以上条件均满足,经备自投充电时间后充电完成。
2、放电条件:a.#2主变检修状态投入;b.4DL在合位;c.当检备用主变高压侧控制字投入时,220kV两段母线均无压, 经延时放电;d.手跳2DL或5DL;e. 5DL偷跳,母联5DL跳位未启动备自投时,且66kV Ⅱ母无压;f.其它外部闭锁信号〔主变过流保护动作、母差保护动作〕;g.2DL、4DL位置异常;h.I母或II母TV异常,经10s延时放电;i.#1主变拒跳;j.#2主变自投动作;k.主变互投硬压板退出;l.主变互投软压板退出。
上述任一条件满足立即放电。
3、动作过程:充电完成后,Ⅰ母、Ⅱ母均无压,高压侧任意母线有压,#1变低压侧无流,延时跳开#1变高、低压侧开关1DL和2DL,联切低压侧小电源线路。
确认2DL跳开后,经延时合上#2变高压侧开关3DL,再经延时合#2变低压侧开4DL。
设置“加速备投〞投退控制字。
当充电完成后,#1变低压侧开关2DL跳开,Ⅰ母、Ⅱ母均无压,高压侧任意母线有压〔检高压侧母线电压控制字投入〕,#1变低压侧无流,且加速备投控制字投入那么延时Tjsbzt跳#1变高、低压侧开关1DL和2DL,确认2DL跳开后经Th2 延时合上#2变高压侧开关3DL,再经Th3延时合#2变低压侧开关4DL。
《备自投装置》
备自投装置由主变备自投、母联备自投和进线备自投组成。
①若正常运行时,一台主变带两段母线并列运行,另一台主变作为明备用,采用主变备自投。
②若正常运行时,每台主变各带一段母线,两主变互为暗备用,采用母联开关备自投。
③若正常运行时,主变带母线运行,两路电源进线作为明备用,两段母线均失压投两路电源进线,采用进线备自投。
一、#2主变备自投
#1主变运行,#2主变备用,即1DL、2DL、5DL在合位,3DL、4DL在分位,当#1主变电源因故障或其它原因断开,2#变备用电源自动投入,且只允许动作一次。
1、充电条件:a. 66千伏Ⅰ母、Ⅱ母均三相有压;
b. 2DL、5DL在合位,4DL在分位;
c.当检备用主变高压侧控制字投入时,高压侧220kV母线任意侧有压。
以上条件均满足,经备自投充电时间后充电完成。
2、放电条件:a.#2主变检修状态投入;
b.4DL在合位;
c.当检备用主变高压侧控制字投入时,220kV两段母线均无压, 经延时放电;
d.手跳2DL或5DL;
e. 5DL偷跳,母联5DL跳位未启动备自投时,且66kV Ⅱ母无压;
f.其它外部闭锁信号(主变过流保护动作、母差保护动作);
g.2DL、4DL位置异常;
母或II母TV异常,经10s延时放电;
i.#1主变拒跳;
j.#2主变自投动作;
k.主变互投硬压板退出;
l.主变互投软压板退出。
上述任一条件满足立即放电。
3、动作过程:充电完成后,Ⅰ母、Ⅱ母均无压,高压侧任意母线有压,#1变低压侧无流,延时跳开#1变高、低压侧开关1DL和2DL,联切低压侧小电源线路。
确认2DL跳开后,经延时合上#2变高压侧开关3DL,再经延时合#2变低压侧开4DL。
设置“加速备投”投退控制字。
当充电完成后,#1变低压侧开关2DL跳开,Ⅰ母、Ⅱ母均无压,高压侧任意母线有压(检高压侧母线电压控制字投入),#1变低压侧无流,且加速备投控制字投入则延时Tjsbzt跳#1变高、低压侧开关1DL和2DL,确认2DL跳开后经Th2 延时合上#2变高压侧开关3DL,再经Th3延时合#2变低压侧开关4DL。
如果启动跳2DL且2DL合位不消失,经Tjt延时报“#1变拒跳”,并对备投放电。
4、#2主变备自投逻辑框图
①#2主变备自投充、放电逻辑框图
②#2主变备自投动作逻辑框图
二、母联备自投
当两段母线分列运行时,装置选择母联备自投方案,采用两种方式的低压启动母联开关备自投及母联偷跳方式启动母联开关备自投。
1、充电条件:千伏Ⅰ母、Ⅱ母均三相有压;
b.2DL、4DL在合位,5DL在分位。
以上条件均满足,经15秒后充电完成。
2、放电条件:a.5DL在合位;
b.Ⅰ、Ⅱ母均无压,持续时间大于无压放电延时“Twyfd”;
c.手跳2DL 或4DL;
d.其它外部闭锁信号;
e.2DL、4DL、5DL的位置异常;
f. I母或II母TV异常,经10s延时放电;
g.#1变拒跳或#2变拒跳;
h. 母联备自投动作;
i. 母联自投硬压板退出;
j. 母联自投软压板退出;
上述任一条件满足立即放电。
3、动作过程:a.方式1:
Ⅰ母无压、#1变低压侧无流,Ⅱ母有压,延时Tt1后跳开#1变高、低压侧开关1DL与2DL,联切Ⅰ母小电源线路及负荷,确认2DL跳开后,经延时Th1合上5DL。
装置设置“加速备投”投退控制字。
当充电完成后,#1变高、低压侧开关1DL与2DL跳开,Ⅰ母无压、#1变低压侧无流,Ⅱ母有压,加速备投控制字投入则延时Tjsbzt跳#1变高、低压侧开关1DL与2DL,联切小电源线路及负荷。
确认2DL跳开后,经延时Th1合上5DL。
如果启动跳2DL且2DL合位不消失,经Tjt延时报“#1变拒跳”,同时备投放
电。
b.方式2:
Ⅱ母无压、#2变低压侧无流,Ⅰ母有压,延时Tt2后跳开#2变高、低压侧开关3DL与4DL,联切Ⅱ母小电源线路及负荷。
确认4DL跳开后,经延时Th1合上5DL。
装置设置“加速备投”投退控制字。
当充电完成后,#2变高、低压侧开关3DL与4DL跳开,Ⅱ母无压、#2变低压侧无流,加速备投控制字投入则延时Tjsbzt跳#2变高、低压侧开关3DL与4DL,联切小电源线路及负荷。
确认4DL 跳开后,Ⅰ母有压,经延时Th1合上5DL。
如果启动跳4DL且4DL合位不消失,经Tjt延时报“#2变拒跳”,同时备投放电。
4、母联备自投逻辑框图
①母联备自投充、放电逻辑框图
②母联备自投动作逻辑框图
三、进线备自投
1、充电条件:a.#1主变低压侧开关合位或#2主变低压侧开关合位;
b. 联络线1开关分位;
c. 联络线2开关分位;
d.Ⅰ母或Ⅱ母任一母线有压。
2、放电条件:a.闭锁进线备投开入;
b. #1主变低压侧开关、#2主变低压侧开关、联络线1、联络线2跳位异常;
c. 联络线1开关合位;
d. 联络线2开关合位;
e.手跳2DL且2#变检修压板投入;
f.手跳4DL且1#变检修压板投入;
母或II母TV异常,经10s延时放电;
h.#1变拒跳、或#2变拒跳、或母联拒跳;
i. 进线备自投动作;
j. 进线备投硬压板退出;
k. 进线备投软压板退出。
上述任一条件满足立即放电。
3、动作过程:
a.方式1:变压器备自投不成功
Ⅰ母、Ⅱ母均无压,#1、#2主变低压侧均无流,则经延时Ttbl(躲过变压器备自投动作时间)跳#1、#2主变低压侧开关2DL和4DL以及母联开关5DL,并
联切小电源线路及负荷,确认2DL、4DL 和5DL开关均跳开后,经整定延时Thz 合上联络线1、联络线2开关。
b.方式2:变压器检修或母联检修
1#主变检修状态:
1#主变检修硬压板投入时,Ⅰ母、Ⅱ母均无压,1#、2#主变低压侧均无流,则经延时Ttb跳2#主变低压侧开关4DL以及母联开关5DL,确认4DL 和5DL开关均跳开后,经整定延时Thz合上联络线1、联络线2开关。
2#主变检修状态:
2#主变检修硬压板投入时,Ⅰ母、Ⅱ母均无压,1#、2#主变低压侧均无流,则经延时Ttb跳1#主变低压侧开关4DL以及母联开关5DL,确认2DL 和5DL开关均跳开后,经整定延时Thz合上联络线1、联络线2开关。
母联检修状态:
母联检修硬压板投入时,Ⅰ母、Ⅱ母均无压,1#、2#主变低压侧均无流,则经延时Ttb跳1#、2#主变低压侧开关2DL和4DL,确认2DL和4DL开关均跳开后,经整定延时Thz合上联络线1、联络线2开关。
对于方式2,装置设置“加速备投”投退控制字。
当充电完成后,满足启动条件且加速备投控制字投入则延时Tjsbz t跳1#、2#主变低压侧开关2DL 和4DL以及母联开关5DL,并联切小电源线路及负荷,确认2DL、4DL和5DL 开关均跳开后,经整定延时Thz合上联络线1、联络线2开关。
以上两种方式:如果启动跳2DL、4DL和5DL且2DL或4DL或5DL合位不消失,经Tjt延时报“1#变拒跳”、“2#变拒跳”或“母联拒跳”,同时备自投放电。
4、母联备自投逻辑框图
①进线备自投充、放电逻辑框图
②进线备自投动作逻辑框图。