高考物理练习题
- 格式:docx
- 大小:37.17 KB
- 文档页数:3
高考物理《质点的直线运动》真题练习含答案1.[2024·吉林卷](多选)一足够长木板置于水平地面上,二者间的动摩擦因数为μ.t =0时,木板在水平恒力作用下,由静止开始向右运动.某时刻,一小物块以与木板等大、反向的速度从右端滑上木板.已知t =0到t =4t 0的时间内,木板速度v 随时间t 变化的图像如图所示,其中g 为重力加速度大小.t =4t 0时刻,小物块和木板的速度相同.下列说法正确的是( )A .小物块在t =3t 0时刻滑上木板B .小物块和木板间的动摩擦因数为2μC .小物块与木板的质量比为3∶4D .t =4t 0之后小物块和木板一起做匀速运动答案:ABD解析:v t 图像的斜率的绝对值表示加速度的大小,可知t =3t 0时刻木板的加速度发生改变,故可知小物块在t =3t 0时刻滑上木板,故A 正确;设小物块和木板间动摩擦因数为μ0,根据题意结合图像可知物体开始滑上木板时的速度大小为v 0=32μgt 0,方向水平向左,物块在木板上滑动的加速度为a 0=μ0mg m =μ0g ,经过t 0时间与木板共速此时速度大小为v 共=12μgt 0,方向水平向右,故可得v 0μ0g +v 共μ0g =t 0,解得μ0=2μ,故B 正确;设木板质量为M ,物块质量为m ,根据图像可知物块未滑上木板时,木板的加速度为a =12μgt 0t 0 =12μg ,故可得F -μMg =Ma ,解得F =32μMg ,根据图像可知物块滑上木板后木板的加速度为a ′=12μgt 0-32μgt 0t 0 =-μg ,此时对木板由牛顿第二定律得F -μ()m +M g -μ0mg =Ma ′,解得m M =12 ,故C 错误;假设t =4t 0之后小物块和木板一起共速运动,对整体有F -μ()m +M g=32 μMg -32μMg =0,故可知此时整体处于平衡状态,假设成立,即t =4t 0之后小物块和木板一起做匀速运动,故D 正确.故选ABD.2.[2022·全国甲卷]长为l 的高速列车在平直轨道上正常行驶,速率为v 0,要通过前方一长为L 的隧道,当列车的任一部分处于隧道内时,列车速率都不允许超过v (v <v 0).已知列车加速和减速时加速度的大小分别为a 和2a ,则列车从减速开始至回到正常行驶速率v 0所用时间至少为( )A .v 0-v 2a +L +l vB .v 0-v a+L +2l v C .3(v 0-v )2a +L +l v D .3(v 0-v )a+L +2l v 答案:C解析:当列车恰好以速度v 匀速通过隧道时,从减速开始至回到原来正常行驶速度所用时间最短,列车减速过程所用时间t 1=v 0-v 2a,匀速通过隧道所用时间t 2=L +l v ,列车加速到原来速度v 0所用时间t 3=v 0-v a,所以列车从减速开始至回到正常行驶速率所用时间至少为t =t 1+t 2+t 3=3(v 0-v )2a+L +l v ,C 项正确. 3.[2024·浙江1月]杭州亚运会顺利举行,如图所示为运动会中的四个比赛场景.在下列研究中可将运动员视为质点的是( )A.研究甲图运动员的入水动作B .研究乙图运动员的空中转体姿态C .研究丙图运动员在百米比赛中的平均速度D .研究丁图运动员通过某个攀岩支点的动作答案:C解析:研究甲图运动员的入水动作时,运动员的身体各部位动作对所研究问题的影响不能够忽略,此时运动员不能够视为质点,A错误;研究乙图运动员的空中转体姿态时,运动员的身体各部位动作对所研究问题的影响不能够忽略,此时运动员不能够视为质点,B错误;研究丙图运动员在百米比赛中的平均速度时,运动员的身体各部位动作对所研究问题的影响能够忽略,此时运动员能够视为质点,C正确;研究丁图运动员通过某个攀岩支点的动作时,运动员的身体各部位动作对所研究问题的影响不能够忽略,此时运动员不能够视为质点,D 错误.4.[2021·湖北卷]2019年,我国运动员陈芋汐获得国际泳联世锦赛女子单人10米跳台冠军.某轮比赛中,陈芋汐在跳台上倒立静止,然后下落,前5 m完成技术动作,随后5 m 完成姿态调整.假设整个下落过程近似为自由落体运动,重力加速度大小取10 m/s2,则她用于姿态调整的时间约为()A.0.2 s B.0.4 sC.1.0 s D.1.4 s答案:B解析:运动员下落前5 m用时t1=2h1g=1 s,下落10 m用时t2=2h2g≈1.4 s,则她用于姿态调整的时间约为1.4 s-1 s=0.4 s,B正确.5.[2021·福建卷]一游客在武夷山九曲溪乘竹筏漂流,途经双乳峰附近的M点和玉女峰附近的N点,如图所示,已知该游客从M点漂流到N点的路程为5.4 km,用时1 h,M、N 间的直线距离为1.8 km,则从M点漂流到N点的过程中()A.该游客的位移大小为5.4 kmB.该游客的平均速率为5.4 m/sC.该游客的平均速度大小为0.5 m/sD.若以所乘竹筏为参考系,玉女峰的平均速度为0答案:C解析:位移指的是从M点漂流到N点的有向线段,故位移大小为1.8 km,故A错误;从M点漂流到N点的路程为5.4 km,用时1 h,则平均速率为v率=st=5.41km/h=1.5 m/s,故B错误;该游客的平均速度大小为v-=xt=1.81km/h=0.5 m/s,故C正确;以玉女峰为参考系,所乘竹筏的平均速度大小为0.5 m/s,若以所乘竹筏为参考系,玉女峰的平均速度大小也为0.5 m/s,故D错误.6.[2023·全国甲卷]一小车沿直线运动,从t=0开始由静止匀加速至t=t1时刻,此后做匀减速运动,到t=t2时刻速度降为零.在下列小车位移x与时间t的关系曲线中,可能正确的是()A BC D答案:D解析:xt图像的斜率表示速度,小车先做匀加速运动,因此速度变大即0~t1图像斜率变大,t1~t2做匀减速运动则图像的斜率变小,在t2时刻停止图像的斜率变为零.故选D.。
高考物理电磁学练习题库及答案一、选择题1. 在电场中,带电粒子的运动路径称为()A. 轨道B. 轨迹C. 路径D. 脉冲2. 下列哪项不是电磁感应现象中主要的应用?A. 电动机B. 发电机C. 变压器D. 电吹风3. 在电磁波中,波长越小,频率越()A. 大B. 小C. 相等D. 不确定4. 电流大小与导线截面积之间的关系是()A. 正比例B. 反比例C. 平方反比D. 指数关系5. 下列哪个现象与电磁感应无关?A. 磁铁吸引铁矿石B. 手持电磁铁吸附铁钉C. 相机闪光灯工作D. 电动车行驶二、填空题1. 电流的单位是()2. 电阻的单位是()3. 电势差的单位是()4. 电功的单位是()5. 法拉是电容的单位,它的符号是()三、简答题1. 什么是电磁感应?2. 什么是洛仑兹力?3. 简述电阻对电流的影响。
4. 电势差与电压的关系是什么?5. 什么是电容?四、计算题1. 一根导线质量为0.5kg,长度为2m,放在匀强磁场中,当磁感应强度为0.4T时,该导线受到的洛仑兹力大小为多少?(设导线的电流为2A)2. 一台电视机的功率为200W,使用时电流为2A,求电源的电压是多少?3. 一个电容器带电量为5μC,电容为10μF,求该电容器的电势差。
4. 一台电脑的电压为110V,电流为2A,求功率是多少?5. 一根电阻为10欧姆的导线通过电流2A,求该导线两端的电压。
五、综合题1. 请解释什么是电磁感应现象,并列举两个具体的应用。
2. 电流和电势差之间的关系是什么?请给出相关公式并解释其含义。
3. 请计算一个电感为2H的线圈,通过电流为5A,求该线圈的磁场强度。
4. 一个电容器的电容为20μF,通过电流为0.5A,求该电容器两端的电压。
5. 请简述电阻、电容和电感的区别与联系。
答案及解析如下:一、选择题1. B. 轨迹解析:带电粒子在电场中的运动路径称为轨迹。
2. C. 变压器解析:变压器是电磁感应现象的一种重要应用。
高考物理《抛体运动》真题练习含答案1.[2024·湖南省岳阳市学业水平模拟]下图中左图是葡萄牙足球明星——C 罗倒挂金钩进球的名场面,把这个过程简化为下图中右图的模型,足球被踢飞时速度沿水平方向,距地面的高度h 为1.8 m ,若足球落地前没有受到任何阻挡,且不计空气阻力.g 取10 m/s 2.则从踢飞足球开始计时到足球落地的时间为( )A .0.18 sB .0.8 sC .1.6 sD .0.6 s 答案:D解析:足球在竖直方向的分运动为自由落体运动,根据h =12 gt 2,从踢飞足球开始计时到足球落地的时间为t =0.6 s ,D 正确.2.[2024·贵州省遵义市质检]随着科技的进步,无人机在农业生产中的应用日益增多.如图所示,在进行种子播种试验时,无人机在水平地面上直线AO 正上方5 m 高处水平匀速飞行,需要将种子包(可视为质点)投放到正前方半径为0.8 m 的圆形区域.如果无人机在A 点正上方投放种子包,已知O 为区域圆心,AO =4 m ,重力加速度g 取10 m/s 2,忽略空气阻力,要使种子包落到圆形区域(含边界),则无人机的速度至少为( )A .2 m/sB .3.2 m/sC .4 m/sD .4.8 m/s 答案:B解析:种子做平抛运动h =12 gt 2,x OA -R =v min t ,无人机的速度至少为v min =3.2 m/s ,B正确.3.[2024·陕西省宝鸡市质检]2023年杭州亚运会上,宝鸡金台籍链球运动员王铮勇夺金牌为国争光.假设链球抛出后在空中的运动过程中可近似看作质点,不计空气阻力,若运动员先后三次以相同速率沿不同方向将链球抛出后的运动轨迹如图所示,则由图可知() A.链球三次落回地面的速度相同B.沿B轨迹运动的链球在空中运动时间最长C.沿C轨迹运动的链球通过轨迹最高点时的速度最大D.沿A轨迹运动的链球在相同时间内速度变化量最大答案:C解析:三次以相同速率沿不同方向将链球抛出,空气阻力不计,根据斜抛对称性,由于抛出角度不同,故落地后到地面的速度方向不同.落回到地面的速度不同,A错误;三次抛,由图可知三个物体的下落高度出竖直方向从最高点到落地过程做平抛运动,则有h=12gt2关系为h A>h B>h C,三次做平抛运动的时间关系为t A>t B>t C,根据对称性可知链球在空中运动时间为平抛运动时间的二倍,因此A轨迹时间最长,B错误;竖直方向v y=gt,C轨迹竖直方向速度最小,又因为抛出速率相同,因此C轨迹水平方向速度最大,斜抛运动水平方向速度不变,因此在最高点的速度最大,C正确;根据Δv=gt,三个物体在任意相同时间内的速度变化量一定相同,D错误.4.[2024·安徽省六安市质检]如图所示,以3 m/s的水平初速度v0抛出的物体,飞行一段时间后,垂直地撞在倾角θ为37°的斜面上,取重力加速度g=10 m/s2,sin 37°=0.6.则() A.物体完成这段飞行的时间是0.5 sB.物体落到斜面上时下落的竖直高度是1.8 mC.物体落到斜面上时水平位移的大小是0.9 mD.物体落到斜面上时的速度大小为5 m/s答案:D解析:物体做平抛运动,垂直地撞在倾角θ为37°的斜面上,在撞击点进行速度分解有v y =v 0tan θ =gt ,解得t =0.4 s ,A 错误;物体落到斜面上时下落的竖直高度是h =12 gt 2=0.8 m ,B 错误;物体落到斜面上时水平位移的大小是x =v 0t =1.2 m ,C 错误;物体落到斜面上时的速度大小为v =32+42 =5 m/s ,D 正确.5.[2024·广东省东莞市月考]在同一水平直线上的两位置分别沿同方向抛出两小球A 和B ,其运动轨迹如图所示,不计空气阻力,两球在空中P 点相遇,则( ) A .应先抛出A 球 B .应先抛出B 球C .相遇时A 球速率小于B 球速率D .抛出时A 球的初速度大于B 球的初速度 答案:D解析:由于相遇时A 、B 做平抛运动的竖直位移h 相同,由h =12 gt 2可知两球下落时间相同,两球应同时抛出,A 、B 错误;根据以上分析A 、B 做平抛运动的时间相同,但x A >x B ,由于水平方向做匀速直线运动,则v Ax >v Bx ,相遇时v =v 2x +(gt )2,则相遇时A 球速率大于B 球速率,C 错误,D 正确.6.[2024·四川省泸州市教学质量诊断]将一小球向右水平抛出并开始计时,不计空气阻力.设某时刻小球与抛出点的连线与水平方向的夹角为α,此时速度的方向与水平方向的夹角为β,下列有关图像中可能正确的是( )答案:D解析:依题意,小球做平抛运动,某时刻小球与抛出点的连线与水平方向的夹角为α,则有tan α=yx=gt2v0,此时速度的方向与水平方向的夹角为β,则有tan β=v yv x=gtv0,联立解得tan β=2tan α,可知tan β与tan α为正比关系,D正确.7.[2024·新课标卷]福建舰是我国自主设计建造的首艘弹射型航空母舰.借助配重小车可以进行弹射测试,测试时配重小车被弹射器从甲板上水平弹出后,落到海面上.调整弹射装置,使小车水平离开甲板时的动能变为调整前的4倍.忽略空气阻力,则小车在海面上的落点与其离开甲板处的水平距离为调整前的()A.0.25倍B.0.5倍C.2倍D.4倍答案:C解析:C对.8.[2024·湖北省十堰市调研]环保人员在一次检查时发现,某厂的一根水平放置的排污管正在向厂外的河道中满口排出污水,如图所示.环保人员利用手上的卷尺测出这根管道的直径为d,管口中心距离河水水面的高度为h(h≫d),污水入河道处到排污管管口的水平距离为x.重力加速度大小为g.该管道在时间t内排出的污水体积为()A .πxtd 22g hB .12 πxtd 22gh C .14 πxtd 22g h D .18πxtd 22g h答案:D解析:根据平抛运动规律有x =v t 0,h =12 gt 20,而V =SL =π(d 2 )2×v t ,解得V =18 πxtd 2 2gh,D 正确. 9.[2024·重庆市期中考试]已知某标准乒乓球台台面长l ,球网高h .如图所示,在某次乒乓球比赛接球过程中,一中学生从己方台面边缘中点正上方距台面高H 处,将乒乓球水平垂直球网拍出,乒乓球能直接落到对方台面上,不计空气阻力,乒乓球可视为质点,重力加速度为g .求:(1)乒乓球从拍出到第一次落到对方台面上所经过的时间; (2)乒乓球拍出后瞬时的速度大小范围. 答案:(1)2H g (2)l 2g2(H -h )≤v ≤lg 2H解析:(1)设乒乓球从拍出到第一次落到对方台面上所经过的时间为t 1, 根据H =12 gt 21解得t 1=2H g(2)设乒乓球刚好落到对方台面边缘中点时,乒乓球拍出后瞬时速度大小为v 1,水平方向有l =v 1t 1解得v 1=lg 2H设乒乓球刚好擦网飞落到对方台面上时,乒乓球拍出后瞬时速度大小为v 2,从拍出到擦网历时t 2,竖直方向有H -h =12 gt 22水平方向有l2 =v 2t 2联立可得v 2=l2g2(H -h )乒乓球能直接落到对方台面上,故拍出后瞬时的速度大小v 满足v 2≤v ≤v 1 解得l 2g2(H -h )≤v ≤lg 2H10.如图所示,在水平地面上有一高h =4.2 m 的竖直墙,现将一小球以v 0=6 m/s 的速度,从离地面高为H =6 m 的A 点水平抛出,小球撞到墙上B 点时的速度与竖直墙成37°角,不计空气阻力和墙的厚度,重力加速度g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)小球从A 到B 所用的时间t ; (2)抛出点A 到墙的水平距离s ;(3)若仍将小球从原位置沿原方向抛出,为使小球能越过竖直墙,小球抛出时的初速度大小应满足什么条件?答案:(1)0.8 s (2)4.8 m (3)v ′0≥8 m/s解析:(1)将B 点的速度分解到水平和竖直方向,有tan 37°=v 0v y竖直方向上是自由落体运动v y =gt 代入数据解得t =0.8 s(2)平抛运动在水平方向上是匀速直线运动,s =v 0t 代入数据解得s =4.8 m(3)恰好从墙上越过时,由平抛运动规律得H -h =12 gt ′2s =v ′0t ′ 解得v ′0=8 m/s.为使小球能越过竖直墙,抛出时的初速度应满足v ′0≥8 m/s.。
高考物理《机械能守恒定律》真题练习含答案1.[2024·上海市新中中学月考]如图,将质量为m 的篮球从离地高度为h 的A 处,以初始速度v 抛出,篮球恰能进入高度为H 的篮圈.不计空气阻力和篮球转动的影响,经过篮球入圈位置B 的水平面为零势能面,重力加速度为g .则篮球经过位置B 时的机械能为( )A .12 m v 2B .12 m v 2+mg (h -H )C .12 m v 2+mg (H -h )D .12 m v 2+mgh答案:B解析:不计空气阻力和篮球转动的情况下,篮球运动过程中机械能守恒,篮球经过B 点的机械能等于在A 点的机械能.以B 点所在的水平面为零势能面,篮球在A 点的重力势能E p =-mg (H -h )=mg (h -H ),则机械能E =E k +E p =12m v 2+mg (h -H ),B 正确.2.如图所示,一根轻质弹簧左端固定,现使滑块沿光滑水平桌面滑向弹簧,在滑块接触到弹簧直到速度减为零的过程中,弹簧的( )A .弹力越来越大,弹性势能越来越大B .弹力越来越小,弹性势能越来越小C .弹力先变小后变大,弹性势能越来越小D .弹力先变大后变小,弹性势能越来越大 答案:A解析:滑块接触到弹簧直到速度减为零的过程中,弹簧形变量越来越大,根据F =kx 得弹力越来越大,滑块接触到弹簧直到速度减为零的过程中,弹簧弹力一直做负功,物块的动能逐渐转化为弹簧的弹性势能,弹簧的弹性势能越来越大,A 正确.3.利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如一根长为2L 的细线系一质量为m 的小球,两线上端系于水平横杆上,A 、B 两点相距也为L ,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为( )A .6mgB .23 mgC .5mgD .533 mg答案:B解析:小球恰好过最高点时有mg =m v 21R,解得v 1=32gL ,由机械能守恒定律得mg ×3 L =12 m v 22 -12 m v 21 ,由牛顿第二定律得3 F -mg =m v 22 32L ,联立以上各式解得F =23 mg ,B 正确.4.[2024·河北省张家口市张垣联盟联考]有一条均匀金属链条,一半长度在光滑的足够高斜面上,斜面顶端是一个很小的圆弧,斜面倾角为30°,另一半长度竖直下垂,由静止释放后链条滑动,已知重力加速度g =10 m/s 2,链条刚好全部滑出斜面时的速度大小为522 m/s ,则金属链条的长度为( )A .0.6 mB .1 mC .2 mD .2.6 m 答案:C解析:设链条的质量为2m ,以开始时链条的最高点所在水平面为零势能面,链条的机械能为E =E p +E k =-12 ×2mg ×L 4 sin θ-12 ×2mg ×L 4 +0=-14 mgL (1+sin θ),链条全部滑出后,动能为E ′k =12 ×2m v 2,重力势能为E ′p =-2mg L2 ,由机械能守恒可得E =E ′k +E ′p ,即-14mgL (1+sin θ)=m v 2-mgL ,解得L =2 m ,C 正确.5.[2024·山东省济宁市期中考试]有一竖直放置的“T”形架,表面光滑,滑块A 、B 分别套在水平杆与竖直杆上,A 、B 用一根不可伸长的轻细绳相连,A 、B 质量相等,且可看做质点,如图所示,开始时细绳水平伸直,A 、B 静止.由静止释放B 后,已知当细绳与竖直方向的夹角为60°时,滑块B 沿着竖直杆下滑的速度为v ,则连接A 、B 的绳长为( )A .4v 2gB .3v 2gC .2v 23gD .4v 23g答案:D解析:如图所示,将A 、B 的速度分解为沿绳的方向和垂直于绳的方向,两物体沿绳子的方向速度大小相等,则有v B cos 60°=v A cos 30°,解得v A =33v ,由于A 、B 组成的系统只有重力做功,所以系统机械能守恒,B 减小的重力势能全部转化为A 和B 的动能,有mgh =12 m v 2A +12 m v 2B ,解得h =2v 23g ,绳长L =2h =4v 23g,D 正确.6.(多选)如图所示,轻弹簧的一端固定在O 点,另一端与质量为m 的小球连接,小球套在光滑的斜杆上,初始时小球位于A 点,弹簧竖直且长度为原长L .现由静止释放小球,当小球运动至B 点时弹簧水平,且长度再次变为原长.关于小球从A 点运动到B 的过程,以下说法正确的是( )A .小球的机械能守恒B .小球运动到B 点时的速度最大 C.小球运动到B 点时的速度为0D .小球运动到B 点时的速度为2gL答案:BD解析:在小球向下运动的过程中,弹簧的弹力做功,并不是只有重力做功,小球的机械能不守恒,A 错误;从A 到B 的过程中,弹簧弹力做功为零,小球的重力做正功最多,由动能定理得小球的速度最大,B 正确,C 错误;小球运动到B 点时,弹簧为原长,由系统的机械能守恒定律得mgL =12m v 2,解得v =2gL ,D 正确.7.(多选)在竖直平面内,一根光滑金属杆弯成如图所示形状,相应的曲线方程为y =2.5cos (kx +23 π)(单位:m),式中k =1 m -1,将一光滑小环套在该金属杆上,并从x =0处以v 0=5m/s 的初速度沿杆向下运动,取重力加速度g =10 m/s 2,则下列说法正确的是( )A.当小环运动到x =π3 时的速度大小v 1=52 m/sB.当小环运动到x =π3 时的速度大小v 1=5 m/sC .该小环在x 轴方向最远能运动到x =56 π处D .该小环在x 轴方向最远能运动到x =76 π处答案:AC解析:当x =0时,y 0=-1.25 m ;当 x =π3 时,y 1=-2.5 m .由机械能守恒定律得mg (y 0-y 1)=12 m v 21 -12 m v 20 ,解得v 1=52 m/s ,A 正确,B 错误;设小球速度为零时上升的高度为h ,由机械能守恒定律得mgh =12 m v 20 ,解得h =1.25 m ,即y =0,代入曲线方程可得x =56π,C 正确,D 错误.8.如图所示,在竖直平面内有一半径为R 的四分之一圆弧轨道BC ,与竖直轨道AB 和水平轨道CD 相切,轨道均光滑.现有长也为R 的轻杆,两端固定质量为m 的小球a 、质量为2m 的小球b (均可视为质点),用某装置控制住小球a ,使轻杆竖直且小球b 与B 点等高,然后由静止释放,杆将沿轨道下滑.设小球始终与轨道接触,重力加速度为g .则( )A .下滑过程中a 球机械能增大B .下滑过程中b 球机械能守恒C .小球a 滑过C 点后,a 球速度大于26mgR3D .从释放至a 球到滑过C 点的过程中,轻杆对b 球做正功为23 mgR答案:D解析:下滑过程中,若以两球为整体,只有重力做功,则有系统的机械能守恒,若分开单独分析,杆对a 球做负功,a 球的机械能减小,杆对b 球做正功,b 球的机械能增加,A 、B 错误;若以两球为整体,只有重力做功,则有系统的机械能守恒,则有mg ·2R +2mgR =12(m +2m )v 2,解得v =26gR 3 ,C 错误;对b 球分析,由动能定理可得W +2mgR =12 ·2m v 2,W =12 ·2m v 2-2mgR =23 mgR ,杆对b 球做正功为23mgR ,D 正确.9.[2024·浙江1月]类似光学中的反射和折射现象,用磁场或电场调控也能实现质子束的“反射”和“折射”.如图所示,在竖直平面内有三个平行区域Ⅰ、Ⅱ和Ⅲ,Ⅰ区宽度为d ,存在磁感应强度大小为B 、方向垂直平面向外的匀强磁场,Ⅱ区的宽度很小.Ⅰ区和Ⅲ区电势处处相等,分别为φⅠ和φⅢ,其电势差U =φⅠ-φⅢ.一束质量为m 、电荷量为e 的质子从O 点以入射角θ射向Ⅰ区,在P 点以出射角θ射出,实现“反射”;质子束从P 点以入射角θ射入Ⅱ区,经Ⅱ区“折射”进入Ⅲ区,其出射方向与法线夹角为“折射”角.已知质子仅在平面内运动,单位时间发射的质子数为N ,初速度为v 0,不计质子重力,不考虑质子间相互作用以及质子对磁场和电势分布的影响.(1)若不同角度射向磁场的质子都能实现“反射”,求d 的最小值;(2)若U =m v 20 2e,求“折射率”n (入射角正弦与折射角正弦的比值);(3)计算说明如何调控电场,实现质子束从P 点进入Ⅱ区发生“全反射”(即质子束全部返回Ⅰ区);(4)在P 点下方距离3m v 0eB 处水平放置一长为4m v 0eB的探测板CQD (Q 在P 的正下方),CQ 长为m v 0eB ,质子打在探测板上即被吸收中和.若还有另一相同质子束,与原质子束关于法线左右对称,同时从O 点射入Ⅰ区,且θ=30°,求探测板受到竖直方向力F 的大小与U 之间的关系.答案:(1)2m v 0Be (2)2 (3)U ≤-m v 20 cos 2θ2e(4)见解析解析:(1)根据牛顿第二定律 Be v 0=m v 20r不同角度射向磁场的质子都能实现“反射”,d 的最小值为 d min =2r =2m v 0Be(2)设水平方向为x 方向,竖直方向为y 方向,x 方向速度不变,y 方向速度变小,假设折射角为θ′,根据动能定理Ue =12 m v 21 -12 m v 20 解得 v 1=2 v 0 根据速度关系 v 0sin θ=v 1sin θ′ 解得n =sin θsin θ′ =v 1v 0=2 (3)全反射的临界情况:到达Ⅲ区的时候y 方向速度为零,即 Ue =0-12 m (v 0cos θ)2可得U =-m v 20 cos 2θ2e即应满足U ≤-m v 20 cos 2θ2e(4)临界情况有两个:1、全部都能打到,2、全部都打不到的情况,根据几何关系可得 ∠CPQ =30°所以如果U ≥0的情况下,折射角小于入射角,两边射入的粒子都能打到板上,分情况讨论如下:①当U ≥0时 F =2Nm v y 又eU =12 m v 2y-12 m (v 0cos θ)2 解得 F =2Nm34v 20 +2eUm②全部都打不到板的情况,根据几何知识可知当从Ⅱ区射出时速度与竖直方向夹角为60°时,粒子刚好打到D 点,水平方向速度为v x =v 02所以v y =v x tan 60° =36 v 0又eU =12 m v 2y-12 m (v 0cos θ)2 解得 U =-m v 20 3e即当U <-m v 203e 时F =0③部分能打到的情况,根据上述分析可知条件为(-m v 203e ≤U <0),此时仅有O 点右侧的一束粒子能打到板上,因此F =Nm v y 又eU =12 m v 2y-12 m (v 0cos θ)2 解得 F =Nm 34v 20 +2eUm。
高考物理《动量守恒定律》真题练习含答案1.[2024·全国甲卷](多选)蹦床运动中,体重为60 kg的运动员在t=0时刚好落到蹦床上,对蹦床作用力大小F与时间t的关系如图所示.假设运动过程中运动员身体始终保持竖直,在其不与蹦床接触时蹦床水平.忽略空气阻力,重力加速度大小取10 m/s2.下列说法正确的是()A.t=0.15 s时,运动员的重力势能最大B.t=0.30 s时,运动员的速度大小为10 m/sC.t=1.00 s时,运动员恰好运动到最大高度处D.运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N答案:BD解析:根据牛顿第三定律结合题图可知,t=0.15 s时,蹦床对运动员的弹力最大,蹦床的形变量最大,此时运动员处于最低点,运动员的重力势能最小,故A错误;根据题图可知运动员从t=0.30 s离开蹦床到t=2.3 s再次落到蹦床上经历的时间为2 s,根据竖直上抛运动的对称性可知,运动员上升时间为1 s,则在t=1.3 s时,运动员恰好运动到最大高度处,t=0.30 s时运动员的速度大小v=10×1 m/s=10 m/s,故B正确,C错误;同理可知运动员落到蹦床时的速度大小为10 m/s,以竖直向上为正方向,根据动量定理F·Δt-mg·Δt=mv-(-mv),其中Δt=0.3 s,代入数据可得F=4 600 N,根据牛顿第三定律可知运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N,故D正确.故选BD.2.[2022·山东卷]我国多次成功使用“冷发射”技术发射长征十一号系列运载火箭.如图所示,发射仓内的高压气体先将火箭竖直向上推出,火箭速度接近零时再点火飞向太空.从火箭开始运动到点火的过程中()A.火箭的加速度为零时,动能最大B.高压气体释放的能量全部转化为火箭的动能C.高压气体对火箭推力的冲量等于火箭动量的增加量D.高压气体的推力和空气阻力对火箭做功之和等于火箭动能的增加量答案:A解析:从火箭开始运动到点火的过程中,火箭先加速运动后减速运动,当加速度为零时,动能最大,A项正确;高压气体释放的能量转化为火箭的动能和重力势能及火箭与空气间因摩擦产生的热量,B项错误;根据动量定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f的冲量矢量和等于火箭动量的变化量,C项错误;根据动能定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f对火箭做的功之和等于火箭动能的变化量,D项错误.3.[2022·湖南卷]1932年,查德威克用未知射线轰击氢核,发现这种射线是由质量与质子大致相等的中性粒子(即中子)组成.如图,中子以速度v0分别碰撞静止的氢核和氮核,碰撞后氢核和氮核的速度分别为v1和v2.设碰撞为弹性正碰,不考虑相对论效应,下列说法正确的是()A.碰撞后氮核的动量比氢核的小B.碰撞后氮核的动能比氢核的小C.v2大于v1D.v2大于v0答案:B解析:设中子质量为m0,被碰粒子质量为m,碰后中子速度为v′0,被碰粒子速度为v,二者发生弹性正碰,由动量守恒定律和能量守恒定律有m 0v 0=m 0v ′0+m v ,12 m 0v 20 =12m 0v ′20 +12 m v 2,解得v ′0=m 0-m m 0+m v 0,v =2m 0m 0+mv 0,因为当被碰粒子分别为氢核(m 0)和氮核(14m 0)时,有v 1=v 0,v 2=215 v 0,故C 、D 项错误;碰撞后氮核的动量为p 氮=14m 0·v 2=2815m 0v 0,氢核的动量为p 氢=m 0·v 1=m 0v 0,p 氮>p 氢,故A 错误;碰撞后氮核的动能为E k 氮=12·14m 0v 22 =28225 m 0v 20 ,氢核的动能为E k 氢=12 ·m 0·v 21 =12m 0v 20 ,E k 氮<E k 氢,故B 正确. 4.[2021·全国乙卷]如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦.用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动.在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统( )A .动量守恒,机械能守恒B .动量守恒,机械能不守恒C .动量不守恒,机械能守恒D .动量不守恒,机械能不守恒答案:B解析:撤去推力后,小车、弹簧和滑块组成的系统所受合外力为零,满足系统动量守恒的条件,故系统动量守恒;由于撤去推力时滑块在车厢底板上有相对滑动,存在摩擦力做功的情况,故系统机械能不守恒,所以选项B 正确.5.[2023·新课标卷](多选)使甲、乙两条形磁铁隔开一段距离,静止于水平桌面上,甲的N 极正对着乙的S 极,甲的质量大于乙的质量,两者与桌面之间的动摩擦因数相等.现同时释放甲和乙,在它们相互接近过程中的任一时刻( )A .甲的速度大小比乙的大B .甲的动量大小比乙的小C .甲的动量大小与乙的相等D .甲和乙的动量之和不为零答案:BD解析:对甲、乙两条形磁铁分别做受力分析,如图所示对于整个系统,由于μm 甲g >μm 乙g ,合力方向向左,合冲量方向向左,所以合动量方向向左,甲的动量大小比乙的小,m 甲v 甲<m 乙v 乙,又m 甲>m 乙,故v 甲<v 乙,B 、D 正确,A 、C 错误.故选BD.6.[2021·全国乙卷](多选)水平桌面上,一质量为m 的物体在水平恒力F 拉动下从静止开始运动.物体通过的路程等于s 0时,速度的大小为v 0,此时撤去F ,物体继续滑行2s 0的路程后停止运动.重力加速度大小为g .则( )A .在此过程中F 所做的功为12m v 20 B .在此过程中F 的冲量大小等于32m v 0 C .物体与桌面间的动摩擦因数等于v 20 4s 0gD .F 的大小等于物体所受滑动摩擦力大小的2倍答案:BC解析:设物体与桌面间的动摩擦因数为μ,根据功的定义,可知在此过程中,F 做的功为W F =Fs 0=12m v 20 +μmgs 0,选项A 错误;物体通过路程s 0时,速度大小为v 0,撤去F 后,由牛顿第二定律有μmg =ma 2,根据匀变速直线运动规律有v 20 =2a 2·2s 0,联立解得μ=v 20 4s 0g ,选项C 正确;水平桌面上质量为m 的物体在恒力F 作用下从静止开始做匀加速直线运动,有F -μmg =ma 1,又v 20 =2a 1s 0,可得a 1=2a 2,可得F =3μmg ,即F 的大小等于物体所受滑动摩擦力大小的3倍,选项D 错误;对F 作用下物体运动的过程,由动量定理有Ft -μmgt=m v 0,联立解得F 的冲量大小为I F =Ft =32m v 0,选项B 正确.。
高考物理《带电粒子在叠加场中的运动》真题练习含答案1.(多选)如图所示,空间存在着垂直向里的匀强磁场B 和竖直向上的匀强电场E ,两个质量不同电量均为q 的带电小球a 和b 从同一位置先后以相同的速度v 从场区左边水平进入磁场,其中a 小球刚好做匀速圆周运动,b 小球刚好沿直线向右运动.不计两小球之间库仑力的影响,重力加速度为g ,则( )A .a 小球一定带正电,b 小球可能带负电B .a 小球的质量等于qEgC .b 小球的质量等于qE -q v BgD .a 小球圆周运动的半径为EVBg答案:BD解析:a 小球刚好做匀速圆周运动,重力和电场力平衡,洛伦兹力提供向心力,所以Eq =m a g ,电场力方向竖直向上,则a 小球一定带正电,b 小球刚好沿直线向右运动,如果b 小球带负电,电场力洛伦兹力均向下,重力也向下,不能平衡,无法做直线运动,所以b 小球带正电,q v B +Eq =m b g ,A 错误;根据A 选项分析可知,a 小球的质量等于m a =qEg ,B 正确;根据A 选项分析可知,b 小球的质量等于m b =qE +q v Bg,C 错误;a 小球圆周运动的半径为Bq v =m a v 2r ,解得r =m a v Bq =E vBq,D 正确.2.(多选)如图所示,在竖直平面内的虚线下方分布着互相垂直的匀强电场和匀强磁场,电场的电场强度大小为10 N/C ,方向水平向左;磁场的磁感应强度大小为2 T ,方向垂直纸面向里.现将一质量为0.2 kg 、电荷量为+0.5 C 的小球,从该区域上方的某点A 以某一初速度水平抛出,小球进入虚线下方后恰好做直线运动.已知重力加速度为g =10 m/s 2.下列说法正确的是( )A.小球平抛的初速度大小为5 m/sB.小球平抛的初速度大小为2 m/sC.A点距该区域上边界的高度为1.25 mD.A点距该区域上边界的高度为2.5 m答案:BC解析:小球受竖直向下的重力与水平向左的电场力作用,小球进入电磁场区域做直线运动,小球受力如图所示小球做直线运动,则由平衡条件得q v B cos θ=mg,小球的速度v cos θ=v0,代入数据解得v0=2 m/s,A错误,B正确;小球从A点抛出到进入复合场过程,由动能定理得mgh=12m v2-12m v2,根据在复合场中的受力情况可知(mg)2+(qE)2=(q v B)2,解得h=E22gB2,代入数据解得h=1.25 m,C正确,D错误.3.如图所示,一带电液滴在相互垂直的匀强电场和匀强磁场中刚好做匀速圆周运动,其轨迹半径为R.已知电场的电场强度大小为E,方向竖直向下;磁场的磁感应强度大小为B,方向垂直于纸面向里.不计空气阻力,重力加速度为g,则下列说法中正确的是() A.液滴带正电B.液滴的比荷qm=g EC.液滴的速度大小v=gRBED.液滴沿逆时针方向运动答案:B解析:带电液滴刚好做匀速圆周运动,应满足mg=qE,电场力向上,与场强方向相反,液滴带负电,可得比荷为qm=gE,A错误,B正确;由左手定则可判断,只有液滴沿顺时针方向运动,受到的洛伦兹力才指向圆心,D错误;由向心力公式可得q v B=m v2R,联立可得液滴的速度大小为v=gBRE,C错误.4.(多选)空间内存在电场强度大小E=100 V/m、方向水平向左的匀强电场和磁感应强度大小B1=100 T、方向垂直纸面向里的匀强磁场(图中均未画出).一质量m=0.1 kg、带电荷量q=+0.01 C的小球从O点由静止释放,小球在竖直面内的运动轨迹如图中实线所示,轨迹上的A点离OB最远且与OB的距离为l,重力加速度g取10 m/s2.下列说法正确的是()A.在运动过程中,小球的机械能守恒B.小球经过A点时的速度最大C.小球经过B点时的速度为0D.l=25m答案:BCD解析:由于电场力做功,故小球的机械能不守恒,A项错误;重力和电场力的合力大小为(qE)2+(mg)2=2N,方向与竖直方向的夹角为45°斜向左下方,小球由O点到A点,重力和电场力的合力做的功最多,在A点时的动能最大,速度最大,B项正确;小球做周期性运动,在B点时的速度为0,C项正确;对小球由O点到A点的过程,由动能定理得2mgl=12m v2,沿OB方向建立x轴,垂直OB方向建立y轴,在x方向上由动量定理得q v y B1Δt=mΔv,累积求和,则有qB1l=m v,解得l=25m,D项正确.5.(多选)如图所示,平面直角坐标系的第二象限内(称为区域Ⅰ)存在水平向左的匀强电场和垂直纸面向里的匀强磁场B1,一质量为m、带电荷量为+q的小球从A点以速度v0沿直线AO运动,AO与x轴负方向成37°角.在y轴与MN之间的区域Ⅱ内加一电场强度最小的匀强电场后,可使小球继续做直线运动到MN上的C点,MN与PQ之间区域Ⅲ内存在宽度为d的竖直向上匀强电场和垂直纸面向里的匀强磁场B2,小球在区域Ⅲ内做匀速圆周运动并恰好不能从右边界飞出,已知小球在C点的速度大小为2v0,重力加速度为g,sin 37°=0.6,cos 37°=0.8,则下列结论正确的是()A .区域Ⅲ内匀强电场的场强大小E 3=mgqB .区域Ⅲ内匀强磁场的磁感应强度大小B 2=m v 0qdC.小球从A 到O 的过程中做匀速直线运动,从O 到C 的过程中做匀加速直线运动 D .区域Ⅱ内匀强电场的最小场强大小为E 2=4mg5q ,方向与x 轴正方向成53°角向上答案:ACD解析:小球在区域Ⅲ内做匀速圆周运动,有mg =qE 3,解得E 3=mgq ,A 项正确;因为小球恰好不从右边界穿出,小球运动轨迹如图所示,由几何关系得d =r +r sin 37°=85 r ,由洛伦兹力提供向心力得B 2q ×2v 0=m (2v 0)2r,解得B 2=16m v 05qd ,B 项错误;带电小球在第二象限内受重力、电场力和洛伦兹力做直线运动,三力满足如图所示关系所以小球从A 到O 的过程只能做匀速直线运动.区域Ⅱ中从O 到C 的过程,小球做直线运动电场强度最小,受力如图所示(电场力方向与速度方向垂直)所以小球做匀加速直线运动,由图知cos 37°=qE 2mg ,解得E 2=4mg5q ,方向与x 轴正方向成53°角向上,C 、D 两项正确.6.如图所示,一质量为m 、电荷量为q 的带正电小球(视为质点)套在长度为L 、倾角为θ的固定绝缘光滑直杆OP 上,P 端下方存在正交的匀强电场和匀强磁场,电场方向沿PO 方向,磁场方向垂直纸面水平向里.现将小球从O 端由静止释放,小球滑离直杆后沿直线运动,到达Q 点时立即撤去磁场,最终小球垂直打到水平地面上,重力加速度大小为g ,不计空气阻力.求:(1)电场的电场强度大小E 以及磁场的磁感应强度大小B ; (2)Q 点距离地面的高度h .答案:(1)mg sin θq ,mg cos θq 2gL sin θ(2)(sin θ+1sin θ)L 解析:(1)小球滑离直杆后进入叠加场,在叠加场内的受力情况如图所示,小球做匀速直线运动,根据几何关系有sin θ=Eqmg ,cos θ=q v B mg小球在直杆上时有L =v 22g sin θ解得E =mg sin θq ,B =mg cos θq 2gL sin θ(2)根据题意可知,当磁场撤去后,小球受重力和电场力作用,且合力的方向与速度方向垂直,小球做类平抛运动,水平方向有Eq cos θ=ma xv x =v cos θ-a x t竖直方向有mg -Eq sin θ=ma y h =v sin θ·t +12a y t 2当小球落到地面时,v x =0, 即v x =v cos θ-a x t =0 解得t =m vEqh =(sin θ+1sin θ)L7.[2024·湖北省鄂东南教育教学改革联盟联考]如图所示,在竖直平面内的直角坐标系xOy 中,y 轴竖直,第一象限内有竖直向上的匀强电场E 1、垂直于xOy 平面向里的匀强磁场B 1=4 T ;第二象限内有平行于xOy 平面且方向可以调节的匀强电场E 2;第三、四象限内有垂直于纸面向外的匀强磁场B 2=1063 T .x 、y 轴上有A 、B 两点,OA =(2+3 ) m ,OB=1 m .现有一质量m =4×10-3 kg ,电荷量q =10-3 C 的带正电小球,从A 点以速度v 0垂直x 轴进入第一象限,做匀速圆周运动且从B 点离开第一象限.小球进入第二象限后沿直线运动到C 点,然后由C 点进入第三象限.已知重力加速度为g =10 m/s 2,不计空气阻力.求:(1)第一象限内电场的电场强度E 1与小球初速度v 0的大小;(2)第二象限内电场强度E 2的最小值和E 2取最小值时小球运动到C 点的速度v C ; (3)在第(2)问的情况下,小球在离开第三象限前的最大速度v m . 答案:(1)40 N/C 2 m/s (2)20 N/C 26 m/s (3)46 m/s ,方向水平向左解析:(1)小球由A 点进入第一象限后,所受电场力与重力平衡 E 1q =mg 解得E 1=40 N/C 由几何关系得r +r 2-OB 2 =OA解得r =2 m小球做匀速圆周运动,洛伦兹力提供向心力,则有q v 0B 1=m v 20r解得v 0=2 m/s(2)由几何关系得:BC 与竖直方向夹角为θ=30°小球由B 到C 做直线运动,则电场力与重力的合力与v B 均沿BC 方向,当电场力与BC 垂直时,电场力有最小值qE 2min =mg sin θ解得E 2min =20 N/C 对小球有mg cos θ=ma 根据几何关系x BC =OB cos θ =233 m 根据速度位移关系式v 2C -v 20 =2ax BC代入数据得a =53 m/s 2 v C =26 m/s(3)小球进入第三象限后,在重力、洛伦兹力作用下做变加速曲线运动,把初速度v C 分解为v 1和v 2,其中v 1满足Bq v 1=mg解得v 1=mgB 2q =26 m/s方向水平向左 则v 2=26 m/s方向与x 轴正方向夹角为60°小球的实际运动可以分解为运动一:速度为v1=26m/s,水平向左,合力为B2q v1-mg=0的匀速直线运动.运动二:速度为v2=26m/s,顺时针旋转,合力为F洛=B2q v2的匀速圆周运动.当v1和v2的方向相同时合运动的速度最大,最大速度v m=v1+v2=46m/s 方向水平向左.。
高考物理复习振动和波专题训练及其答案一、单项选择题1.如图所示为一列简谐横波t时刻的图象,已知波速为0.2m/s,以下说法正确的是()A.经过0.5s,质点a、b、c通过的路程均为75cmB.若从t时刻起质点a比质点b先回到平衡位置,则波沿x轴正方向传播C.图示时刻质点a、b、c所受的回复力大小之比为2∶1∶3D.振源的振动频率为0.4Hz2.一列向右传播的简谐横波在某一时刻的波形如图所示,该时刻,两个质量相同的质点P、Q 到平衡位置的距离相等。
关于P、Q两个质点,以下说法正确的是()A.P较Q先回到平衡位置B.再经14周期,两个质点到平衡位置的距离相等C.两个质点在任意时刻的动量相同D.两个质点在任意时刻的加速度相同3.图为一列简谐波在0=t时刻的波形图,此时质点Q正处于加速运动过程中,且质点N在1st=时第一次到达波峰。
则下列判断正确的是()A.此时质点P也处于加速运动过程B.该波沿x轴负方向传播C.从0=t时刻起,质点P比质点Q晚回到平衡位置D.在0=t时刻,质点N的振动速度大小为1m/s4.如图所示为一列机械波在t=0时刻传播的波形图,此刻图中P点速度沿y轴正方向,t=2s 时刻,图中Q点刚好在x轴上。
则下列说法正确的是()A.该机械波沿x轴正方向传播B.该机械波周期不可能是8s3C.无论周期是多少,当Q点在x轴时,P点一定离x轴最远D.P点振幅是10cm5.如图所示是沿x轴传播的一列简谐横波在t=0时刻的波形图,已知波的传播速度为16.0m/s,从此时起,图中的P质点比Q质点先经过平衡位置.那么下列说法中正确的是()A.这列波一定沿x轴正向传播B.这列波的频率是3.2HzC.t=0.25s时Q质点的速度和加速度都沿y轴负向D.t=0.25s时P质点的速度和加速度都沿y轴负向6.如图(a)所示为波源的振动图象(在t=0时刻之前波源就已经开始振动了),图(b)为xy 平面内沿x轴传播的简谐横波在t=0时刻的波形图象,t=0时刻P点向y轴负方向运动,关于图(b)上x=0.4m处的Q点的说法正确的是().A.t=0时,速度最大,其大小为0.1m/s,方向沿y轴正方向B.t=0到t=5s内,通过的路程为20cmC.t=2s时,运动到x=0.2m处D.t=3s时,加速度最大,且方向向下7.一列简谐横波在某时刻的波形图如图所示,已知图中质点b的起振时刻比质点a延迟了0.5s,b和c之间的距离是5m,以下说法正确的是()A.此列波的波长为2.5mB.此列波的频率为2HzC.此列波的波速为2.5m/sD.此列波的传播方向为沿x轴正方向传播8.P、Q、M是某弹性绳上的三个质点,沿绳建立x坐标轴。
高考物理《共点力的平衡》真题练习含答案1.[2024·河北省百师联盟联考]如图所示,小球A和B套在光滑水平杆上,两球间连接轻弹簧,A、B分别通过长度相等的轻绳一起吊起质量为300 g的小球C,当两绳与水平杆的夹角为37°时恰好处于平衡状态,此时弹簧压缩了2 cm.已知sin 37°=0.6,cos 37°=0.8,重力加速度大小取10 m/s2.弹簧始终在弹性限度内,弹簧的劲度系数为()A.200 N/m B.100 N/mC.50 N/m D.1 N/m答案:B解析:对小球C受力分析可知mg=2T sin 37°,对弹簧kx=T cos 37°,解得k=100 N/m,B正确.2.[2024·山东省威海市期末考试]如图所示,质量为0.1 kg的圆环套在固定的水平杆上,受到竖直面内与杆成53°角的拉力作用向右匀速运动,拉力大小为20 N.重力加速度取10 m/s2,sin 53°=0.8,cos 53°=0.6,则圆环与杆之间的动摩擦因数为()A.0.2 B.0.4C.0.6 D.0.8答案:D解析:对小球受力分析,受力如图所示.F N=F sin 53°-mg=15 N,F f=F cos 53°=μF N,解得μ=0.8,D正确.3.[2024·湖南省湖湘教育协作体联考](多选)某同学研究小虫子在一圆柱体上的运动,将一只小虫子置于水平放置的圆柱体顶部A,虫子在一圆柱体上缓缓爬行,圆柱体的半径比虫子大得多,θ=30°;多次观察发现:小虫子在B点上方时可以正常爬行,一旦由上往下过了B 点便会滑落,设最大静摩擦力等于滑动摩擦力,动摩擦因数为μ,虫子质量为m ,虫子在B 点时对圆柱体的压力为F N ,则( )A .μ=32 B .μ=3C .F N =33 mg D .F N =12mg 答案:BD解析:如图所示当小虫子位于B 点时刚好达到最大静摩擦力,F N =mg sin θ=12 mg ,f=μF N ,f =mg cos θ=32mg ,解得μ=3 ,B 、D 正确.4.[2024·浙江1月]如图所示,在同一竖直平面内,小球A 、B 上系有不可伸长的细线a 、b 、c 和d ,其中a 的上端悬挂于竖直固定的支架上,d 跨过左侧定滑轮、c 跨过右侧定滑轮分别与相同配重P 、Q 相连,调节左、右两侧定滑轮高度达到平衡.已知小球A 、B 和配重P 、Q 质量均为50 g ,细线c 、d 平行且与水平成θ=30°(不计摩擦),则细线a 、b 的拉力分别为( )A .2 N 1 N B. 2 N 0.5 N C .1 N 1 N D. 1 N 0.5 N 答案:D解析:由题意可知细线c 对A 的拉力和细线d 对B 的拉力大小相等、方向相反.对A 、B 整体分析可知细线a 的拉力大小为T a =(m A +m B )g =1 N ,设细线b 与水平方向夹角为α,分别对A 、B 分析有T b sin α+T c sin θ=m A g ,T b cos α=T c cos θ,解得T b =0.5 N .5.如图所示,某同学想进行一项挑战,他两手水平用力夹起一摞书保持静止,设手对书施加的水平压力F=220 N,若每本书的质量均为0.90 kg,手与书之间的动摩擦因数为μ1=0.4,书与书之间的动摩擦因数相同,均为μ2=0.3,设最大静摩擦力等于滑动摩擦力,g取10 m/s2.则该同学()A.最多能夹住9本书B.最多能夹住19本书C.最多能夹住14本书D.最多能夹住16本书答案:D解析:设最多能夹住n本书,由平衡条件得2μ1F=nmg,解得n=19本;以中间(n-2)本书为研究对象,由平衡条件得2μ2F=(n-2)mg,解得n=16,D正确.6.[2024·湖南永州市月考]如图所示,固定在水平地面上的物体A的左侧是圆弧面,右侧是倾角为θ的斜面.一根轻绳跨过物体A顶点处的小滑轮,绳两端分别系有质量为m1、m2的两个物体.若m1、m2都处于静止状态且m2所处位置与圆心的连线跟水平方向的夹角为θ,不计一切摩擦,则m1、m2之间的大小关系是()A.m1=m2tan θB.m1=m2cos θC.m1=m2tan θD.m1=m2cos θ答案:A解析:由题意,通过光滑的滑轮相连,左右两侧绳的拉力F大小相等,两物体处于平衡状态,分别对这两个物体进行受力分析可得F=m1g sin θ,F=m2g cos θ,联立两式解得m1=m2tan θ,A正确.7.如图所示,轻杆AB的左端用铰链与竖直墙壁连接,轻杆CD的左端固定在竖直墙上.图甲中两轻绳分别挂着质量为m1、m2的物体,另一端系于B点,图乙中两轻绳分别挂着质量为m3、m4的物体,另一端系于D点.四个物体均处于静止状态,图中轻绳OB、O′D 与竖直方向的夹角均为θ=30°,下列说法一定正确的是()A .m 1∶m 2=1∶1B .m 1∶m 2=2∶3C .m 3∶m 4=1∶1D .m 3∶m 4=2∶3 答案:B解析:图甲中,OB 绳的拉力T =m 1g ,由平衡条件可得m 2g =m 1g cos θ,则m 1∶m 2=2∶3 ,A 项错误,B 项正确;CD 杆固定在墙上,杆对结点D 的弹力大小和方向都不确定,则m 3、m 4的比值不确定,C 、D 两项均错误.8.[2024·山东省部分学校联考]如图所示,倾角为θ的粗糙斜面固定在水平地面上,跨过轻质滑轮的轻质细绳左端与物块A 连接,右端与物块B 连接时,物块A 恰好能沿斜面匀速下滑,仅将细绳右端的物块B 换为物块C 时,物块A 恰好能沿斜面匀速上滑.已知物块A 与斜面间的动摩擦因数为0.5,滑轮摩擦不计,取重力加速度大小g =10 m/s 2,sin θ=0.6,则物块B 、C 的质量之比等于( )A .1∶2B .1∶3C .1∶4D .1∶5 答案:D解析:当悬挂物块B 时有m A g sin θ=μm A g cos θ+m B g ,当悬挂物块C 时有m A g sin θ+μm A g cos θ=m C g ,解得m B m C =15,D 正确.9.[2024·河南省普高联考]某小组设计实验,利用手中的氢气球测量风力和气球所受浮力的大小.将质量为m 的重物悬挂在O 点,在水平风力、竖直浮力和绳的拉力作用下,气球处于静止状态,如图所示.经测量发现上段细绳与竖直方向夹角、下段细绳与水平方向的夹角均为30°.已知氢气球的质量是M ,重力加速度大小为g ,则此时风力和浮力的大小分别是( )A .32 mg 32mg +Mg B .32 mg 32 mg +MgC .32 mg +Mg 32 mgD .32 mg +Mg 32mg 答案:A解析:对气球受力分析,根据共点力平衡条件可知,竖直方向有Mg +T cos 30°=F 浮,水平方向有T sin 30°=F 风,对O 点受力分析,根据共点力平衡条件得T ′sin 30°=T 1cos 30°,T ′cos 30°=T 1sin 30°+mg ,联立解得F 风=32 mg ,F 浮=32mg +Mg ,A 正确.10.[2024·湖南省娄底市期末考试]如图所示,建筑工地上某人在一水平台上用轻质绳OB 拉住质量为m =20 kg 的重物,另一轻质绳OA 与竖直方向夹角θ=37°,OA 与OB 绳打结于O点且恰好垂直.已知人的质量M =60 kg ,重物与人均处于静止状态,(取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)则:(1)OA 绳与OB 绳的拉力分别为多大;(2)人受到的平台对他的支持力与摩擦力的大小. 答案:(1)160 N 120 N (2)672 N 96 N解析:(1)对O点受力分析如图所示,由平衡条件,T A、T B的合力与重物的重力大小相等,方向相反,可得T A=mg cos 37°,T B=mg sin 37°解得T A=160 N,T B=120 N(2)对人受力分析如图所示,由牛顿第三定律可知T B=T′B由平衡条件可知N B=T′B sin 37°+MgT′B cos 37°=f解得N B=672 N,f=96 N.11.[2024·重庆巴南检测]如图所示,一条轻质细绳跨过光滑的定滑轮连接两个小球A、B,它们都穿在一根光滑的竖直杆上,不计滑轮的质量,当两球平衡时OA绳与水平方向的夹角为2θ,OB绳与水平方向的夹角为θ,B球的质量为m,重力加速度大小为g,则(1)细绳上的张力是多少?(2)A球的质量是多少?(3)滑轮受到细绳的作用力是多少?答案:(1)mgsin θ(2)2m cos θ(3)mgsinθ2解析:(1)对B球受力分析可知,T sin θ=mg则细绳上的张力T=mgsin θ(2)对A球受力分析可知T sin 2θ=m A g解得A球的质量是m A=2m cos θ(3)由几何关系可知,绕过滑轮的两边绳子之间的夹角为θ,则滑轮受到细绳的作用力F=2T cos θ2=mg sinθ2.。
高考物理经典名题练习班级考号姓名总分1、甲、乙两个储气罐储存有同种气体(可视为理想气体).甲罐的容积为V,罐中气体的压强为p;乙罐的容积为2V,罐中气体的压强为p.现通过连接两罐的细管把甲罐中的部分气体调配到乙罐中去,两罐中气体温度相同且在调配过程中保持不变,调配后两罐中气体的压强相等.求调配后(i)两罐中气体的压强;(ii)甲罐中气体的质量与甲罐中原有气体的质量之比.2、在磁感应强度为 B 的匀强磁场中,一个静止的放射性原子核发生了一次α衰变,放射出的α粒子在与磁场垂直的平面内做圆周运动,其轨道半径为R.以m、q 分别表示α粒子的质量和电荷量,M 表示新核的质量,放射性原子核用表示,新核的元素符号用Y表示,该衰变过程释放的核能都转化为α粒子和新核Y 的动能,则()A.新核Y 和α粒子的半径之比B.α粒子的圆周运动可以等效成一个环形电流,环形电流大小(Wewuli)C.新核的运动周期D.衰变过程的质量亏损为3、如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为,长为,导轨平面与水平面的夹角为,在导轨的中部刷有一段长为的薄绝缘涂层,匀强磁场的磁感应强度大小为,方向与导轨平面垂直,质量为的导体棒从导轨的顶端由静止释放,在滑上涂层之前已经做匀速运动,并一直匀速滑到导轨底端。
导体棒始终与导轨垂直,且仅与涂层间有摩擦,接在两导轨间的电阻为,其他部分的电阻均不计,重力加速度为,求:(1)导体棒与涂层间的动摩擦因数;(2)导体棒匀速运动的速度大小;(3)整个运动过程中,电阻产生的焦耳热。
4、如图,一物块在水平拉力F的作用下沿水平桌面做匀速直线运动。
若保持F的大小不变,而方向与水平面成60°角,物块也恰好做匀速直线运动。
学.科网物块与桌面间的动摩擦因数为()A. B. C. D.5、如图,位于竖直水平面内的光滑轨道由四分之一圆弧ab和抛物线bc组成,圆弧半径Oa 水平,b点为抛物线顶点。
已知h=2m,,s=。
高考物理《电功、电功率》真题练习含答案1.[2024·江苏省五市十一校阶段联测]电阻R 的两端的电压为U 时,在t 时间内产生的热量为Q ,若在电阻R 两端加的电压为2U ,则在t 时间内产生的热量为( )A .4QB .2QC .Q 2D .Q 4答案:A解析:电阻R 的两端的电压为U 时,在t 时间内产生的热量为Q ,则Q =I 2Rt =U 2Rt ,若在电阻R 两端加的电压为2U ,则在t 时间内产生的热量为Q′=I′2Rt =(2U )2R t =4U 2R t=4Q ,A 正确.2.把6个相同的电灯接成如图甲、乙所示两电路,通过调节供电电压与变阻器R 1、R 2的阻值,使两组电灯均能正常发光,并且两电路消耗的总电功率也相同,则R 1、R 2大小满足( )A .R 2=9R 1B .R 2=6R 1C .R 2=3R 1D .R 1=R 2 答案:A解析:设每个灯泡正常发光时的电流为I ,则题图甲中总电流为3I ,题图乙中总电流为I ,要使两电路消耗的总电功率也相同,需使P R1=P R2,即(3I)2R 1=I 2R 2,故R 2=9R 1,A 正确.3.[2024·河北省张家口市张垣联盟联考]如图所示电路中电阻R 1、R 2、R 3的阻值相等,A 、B 间电压恒定.开关S 接通后和接通前电阻R 2的电功率之比( )A .12B .23C .49D .14答案:C解析:设A 、B 间电压为U ,根据题意有R 1=R 2=R 3=R ,开关S 接通前电阻R 2的电功率为P 1=(U R 1+R 2 )2R 2=U 24R ,R 2、R 3的并联电阻为R 并=R 2R 3R 2+R 3 =R 2 ,开关S 接通后电阻R 2两端的电压为U 1=U R 1+R 并 R 并=U 3 ,开关S 接通后电阻R 2的电功率为P 2=U 21R 2 =U 29R ,开关S 接通后和接通前电阻R 2的电功率之比P 2P 1 =49,C 正确.4.如图所示,一个电阻R 和一个灯泡L 串联接在电压恒为U 的电源上,电路中的电流为I.电阻两端的电压为U 1,电功率为P 1;灯泡两端的电压为U 2,电功率为P 2,则下列关系式正确的是( )A .P 1=UIB .U 2=U -IRC .P 2=U 2RD .U 1=U -IR 答案:B解析:电阻的电功率为P 1=U 1I ,故A 错误;电阻两端的电压为U 1=IR ,灯泡两端的电压为U 2=U -U 1=U -IR ,故B 正确,D 错误;灯泡的电功率为P 2=U 2I ,故C 错误. 5.电路图如图甲所示,图乙是电路中的电源的路端电压随电流变化的关系图像,滑动变阻器的最大阻值为15 Ω,定值电阻R 0=3 Ω.以下说法中正确的是( )A .电源的内阻为10 ΩB .当R =10.5 Ω时电源的输出功率最大C .当R =4.5 Ω时电源的输出功率最大D .当R =7.5 Ω时R 消耗的功率最大 答案:C解析:根据闭合电路欧姆定律可得U =-Ir +E 可知UI 图像的纵轴截距等于电动势,则有E =20 V ,UI 图像的斜率绝对值等于内阻,则有r =⎪⎪⎪⎪ΔU ΔI =20-52 Ω=7.5 Ω,A 错误;设电路外电阻为R 外,则电源的输出功率为P =I 2R 外=(E R 外+r )2R 外=E 2R 外+r 2R 外+2r ,可知当外电阻R 外=r =7.5 Ω时,电源的输出功率最大,则有R =R 外-R 0=7.5 Ω-3 Ω=4.5 Ω,B 错误,C 正确;R 消耗的功率为P R=I 2R =(ER +R 0+r)2R =E 2R +(R 0+r )2R+2(R 0+r ),可知当R =R 0+r =10.5 Ω时,R 消耗的功率最大,D 错误.6.一台电动机线圈的电阻为0.4 Ω,当电动机正常工作时,通过线圈的电流为5 A ,则这台电动机正常工作2 s 产生的焦耳热为( )A .20 000 JB .2 000 JC .200 JD .20 J 答案:D解析:由焦耳定律可知Q =I 2rt ,代入数据可得2 s 产生的焦耳热为Q =I 2rt =20 J ,D 正确.7.(多选)如图所示为某品牌的电动车,质量为m =60 kg ,驱动电动机正常工作的额定输入电流I =6 A ,额定输入电压为45 V ,电动车电池的容量为18 000 mA ·h .电动车行驶时所受阻力大小为车所受重力的0.05;该电动车在水平地面上由静止开始以额定功率运行t =5 s 通过x =15 m 的距离,速度达到v =5 m /s ,忽略电动机转动时的摩擦,重力加速度g =10 m /s 2.下列说法正确的是( )A .电池能使电动机以额定电流运行的最长时间为120 minB .驱动电动机的输出功率为230 WC .驱动电动机的内阻为56 ΩD .电动车能达到的最大速度为8 m /s 答案:CD解析:电池能使电动机以额定电流运行的最长时间为t =q I =18 000 mA ·h6 000 mA =3 h =180min ,A 错误;由动能定理Pt -kmgs =12 mv 2,解得P =240 W ,B 错误;根据IU =P +I 2r ,解得驱动电动机的内阻为r =56 Ω,C 正确;电动车能达到的最大速度v m =Pkmg =2400.05×600m /s =8 m /s ,D 正确.。
高考物理热学练习题及答案一、选择题1.以下哪个选项表示物体温度的单位?A. JB. WC. ℃D. m答案:C2.将100g的水加热,当水温从25℃升高到50℃时,已吸收的热量为3000J,求水的比热容。
A. 2J/g℃B. 4J/g℃C. 6J/g℃D. 8J/g℃答案:A3.以下哪种情况能使物体的温度降低?A. 吸热B. 放热C. 等热D. 绝热答案:B4.一块物体受到300J的热量,使其温度升高10℃,求该物体的热容量。
A. 3J/℃B. 10J/℃C. 30J/℃D. 3000J/℃答案:C5.以下情况中,将加热器和冷凝器内的水混合会发生温度变化的是:A. 两器内水温度相同B. 加热器内水较热C. 冷凝器内水较热 D. 两器内水温度不同答案:D二、填空题1.物体放热的方式有两种,分别是_____________和______________。
答案:传导,传播2.热量的单位是______________。
答案:焦耳(J)3.热平衡是指处于同一温度下的物体之间没有_____________。
答案:能量交换4.若一个物体的热容量为100J/℃,已知该物体温度变化为5℃,则吸收或放出的热量为_____________。
答案:500J5.热传导的方式包括_____________、_____________、_____________。
答案:导热、对流、辐射三、计算题1.一块200g的铁块温度为20℃,将其放入100g的水中,水的温度由15℃升高到30℃,求铁和水的热平衡温度。
解答:设最终热平衡温度为x℃。
根据热平衡定律,有:[m(Fe) * c(Fe) * (Tf - 20)] + [m(water) * c(water) * (Tf - 30)] = 0其中,m(Fe)为铁的质量,c(Fe)为铁的比热容,m(water)为水的质量,c(water)为水的比热容。
代入已知数据,得:[200 * 0.45 * (x - 20)] + [100 * 4.18 * (x - 30)] = 0化简方程,得:90(x - 20) + 418(x - 30) = 0解方程,得:90x - 1800 + 418x - 12540 = 0508x - 14340 = 0x = 28.22所以,铁和水的热平衡温度约为28.22℃。
高考物理《自由落体运动和竖直上抛运动》真题练习含答案1.[2024·安徽省宿州市十三校联考]从发现情况到采取相应行动所经过的时间叫反应时间.两位同学合作,用刻度尺可测人的反应时间:如图所示,甲捏住尺的上端,乙在尺的下部做握尺的准备(但不与尺接触),当看到甲放开手时,乙立即握住尺.若乙做握尺准备时,手指位置指示在刻度尺20.00 cm 处,尺子下落后握住尺的位置指示在65.00 cm 处,由此测得乙同学的反应时间约为( )A .0.02 sB .0.1 sC .0.2 sD .0.3 s答案:D解析:在人的反应时间中,直尺下降的距离为h =45 cm =0.45 m ,根据h =12gt 2得t = 2h g = 2×0.4510s =0.3 s ,D 正确. 2.[2024·安徽省蚌埠市学业水平监测]高空坠物现象被称为“悬在城市上空的痛”,给社会带来很大的危害.一物体从高处自由落下,不计空气阻力,物体落地前1 s 内的位移是其下落第1 s 内位移的7倍,则该物体释放点距地面的高度约为( )A .80 mB .60 mC .45 mD .16 m答案:A解析:设物体下落总共用时为t 秒,则下落高度为H ,有H =12gt 2,落地前1 s 的位移为h 1,有h 1=H -12 g (t -1)2,下落第1 s 内的位移为h ,有h =12 gt 21=5 m ,由题意有h 1=7h ,整理有H =80 m ,A 正确.3.[2024·贵州省毕节市质检]一名宇航员在某星球上利用小球的自由落体运动实验,测星球的等效重力加速度.让一个小球从16 m 的高度自由下落,测得小球在第1 s 内的位移恰为小球在最后1 s 位移的三分之一.则该星球的等效重力加速度为( )A .6 m/s 2B .8 m/s 2C .10 m/s 2D .12 m/s 2答案:B解析:设该星球的等效重力加速度为g ,落地瞬间的速度大小为v ,则有2gH =v 2,小球在第1 s 内的位移为h 1=12 gt 21 ,根据逆向思维可得小球在最后1 s 的位移为h ′=v t 1-12 gt 21,由题意可得h ′=3h 1,联立解得g =8 m/s 2,B 正确.4.[2024·山东省菏泽市期末测试](多选)真空中羽毛和钢球从同一高度同时自由下落,如图是用频闪相机得到的它们下落过程中的一张局部照片.已知频闪相机闪光的时间间隔为T ,由照片提供的信息,下列说法正确的是( )A .一定满足关系x 1∶x 2∶x 3=1∶3∶5B .一定满足关系x 3-x 2=x 2-x 1C .拍照当地的重力加速度g =x 3-x 1T 2D .羽毛下落到位置C 时的速度大小为x 2+x 32T答案:BD解析:根据初速度为零的匀加速直线运动规律可知,若A 点为下落起点位置,则满足x 1∶x 2∶x 3=1∶3∶5,由于A 点的速度不一定为零,则不一定满足关系x 1∶x 2∶x 3=1∶3∶5,故A 错误;根据匀变速直线运动的推论Δx =gT 2=x 2-x 1=x 3-x 2,解得拍照当地的重力加速度g =x 3-x 12T 2,一定满足关系x 3-x 2=x 2-x 1,B 正确,C 错误;根据匀变速直线运动中间时刻的瞬时速度等于该过程平均速度,羽毛下落到位置C 时的速度大小为v C =x 2+x 32T,D 正确.5.[2024·浙江省A9协作体联考]如图所示,一长为D =0.4 m 的金属管从楼顶自由下落,金属管下端的正下方h =0.8 m 处有一高为L =2 m 的窗户,取g =10 m/s 2,则下列说法正确的是( )A .金属管穿过窗户所用时间为0.5 sB .金属管下端到达窗户上沿的速度为2 m/sC .金属管下端到达窗户下沿的速度为215 m/sD .金属管上端到达窗户下沿的速度为8 m/s答案:D解析:根据h =12 gt 21,解得金属管下端到达窗户上沿的时间t 1=0.4 s ,根据D +h +L =12 gt 22,解得金属管上端过窗户下沿时间t 2=0.8 s ,金属管穿过窗户所用时间t =t 2-t 1=0.4 s ,A 错误;根据v 21 =2gh ,解得金属管下端到达窗户上沿的速度v 1=4 m/s ,B 错误;根据v 22 =2g (h +L ),解得金属管下端到达窗户下沿的速度v 2=214 m/s ,C 错误;根据v 23 =2g (h +L +D ),解得金属管上端到达窗户下沿的速度v 3=8 m/s ,D 正确.6.[2024·江苏省连云港市期中考试]调节家中水龙头,让水一滴一滴由静止开始不断下落,每两个相邻水滴之间时间间隔相等,忽略空气阻力和水滴间的相互影响,则在水滴落地前,下列说法正确的是( )A.1、2两水滴之间的距离保持不变B .1、2两水滴在下落过程中距离越来越大C .1、2两水滴之间的速度差越来越大D .以水滴3为参考系,水滴1做匀加速直线运动答案:B解析:设两滴水滴之间的时间间隔为Δt ,则第2滴水下落时间t 时刻两滴水的距离Δh =12 g (t +Δt )2-12 gt 2=g Δt ·t +12g Δt 2,则随时间t 的增加1、2两水滴在下落过程中距离越来越大,A 错误,B 正确;1、2两水滴之间的速度差Δv =g (t +Δt )-gt =g Δt ,保持不变,C 错误;以水滴3为参考系,因水滴的加速度均相同,可知水滴1做匀速直线运动,D 错误.7.[2024·辽宁省朝阳市建平实验中学期中考试](多选)将一物体从某位置在t =0时刻以一定初速度竖直向上拋出,t =0.4 s 时物体的速度大小变为4 m/s ,(不计空气阻力,g =10 m/s 2),则下列说法正确的是( )A .0.4 s 时物体的运动方向可能向下B .物体一定是在1.6 s 时回到拋出点C .物体的初速度一定等于8 m/sD .0.9 s 时物体一定在初始位置下方答案:BC解析:若0.4 s 时物体的运动方向向下,则物体下落的时间为t =v g =410s =0.4 s ,与竖直上抛相矛盾,A 错误;因0.4 s 时物体的运动方向向上,可知物体抛出时的初速度v 0=v +gt =4+10×0.4 m/s =8 m/s ,则物体上升的时间和下落的时间均为0.8 s ,则物体一定是在1.6 s 时回到拋出点,B 、C 正确;物体在1.6 s 时回到拋出点,则0.9 s 时物体的位移一定在初始位置上方,D 错误.。
高考物理力学大题习题20题1.一长木板在光滑水平地面上匀速运动,在t=0时刻将一物块无初速轻放到木板上,此后长木板运动的速度﹣时间图象如图所示.已知长木板的质量M=2kg ,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.取g=10m/s 2,求:(1)物块的质量m ;(2)这一过程中长木板和物块的内能增加了多少? 【答案】(1)4kg (2)2211()24J 22Q Mv M m v =-+=共 【解析】(1)长木板和物块组成的系统动量守恒:)Mv M m v 共(=+ 将2M kg =, 6.0/v m s =, 2.0?/v m s =共,代入解得:4m kg = 。
(2)设这一过程中长木板和物块的内能增加量为Q ,根据能量守恒定律:2211()24J 22Q Mv M m v =-+=共 点睛:解决本题的关键理清物块和木板的运动规律,结合牛顿第二定律和运动学公式进行求解,知道图线的斜率表示加速度,图线与时间轴围成的面积表示位移。
2.如图所示的水平地面。
可视为质点的物体A 和B 紧靠在一起,静止于b 处,已知A 的质量为3m ,B 的质量为m 。
两物体在足够大的内力作用下突然沿水平方向左右分离。
B 碰到c 处的墙壁后等速率反弹,并追上已停在ab 段的A ,追上时B 的速率等于两物体刚分离时B 的速率的一半。
A 、B 与地面的动摩擦因数均为μ,b 与c 间的距离为d ,重力加速度为g 。
求:(1)分离瞬间A 、B 的速率之比; (2)分离瞬间A 获得的动能。
【答案】(1) (2)【解析】【详解】(1)分离瞬间对A 、B 系统应用动量守恒定律有:解得:;(2) A 、B 分离后,A 物体向左匀减速滑行,对A 应用动能定理:对B 从两物体分离后到追上A 的过程应用动能定理:两物体的路程关系是分离瞬间A 获得的动能联立解得:。
3.甲、乙两车同时同向从同一地点出发,甲车以v1=16 m/s 的初速度,a1=-2 m/s 2的加速度做匀减速直线运动,乙车以v2=4 m/s 的初速度,a2=1 m/s 2的加速度做匀加速直线运动,求两车再次相遇前两车相距最大距离和再次相遇时两车运动的时间。
高考物理一轮复习《曲线运动》练习题(含答案)一、单选题1.在弯道上高速行驶的汽车,后轮突然脱离赛车,关于脱离了的后轮的运动情况,以下说法正确的是()A.仍然沿着汽车行驶的弯道运动B.沿着与弯道垂直的方向飞出C.沿着脱离时轮子前进的方向做直线运动,离开弯道D.上述情况都有可能2.“旋转纽扣”是一种传统游戏。
如图,先将纽扣绕几圈,使穿过纽扣的两股细绳拧在一起,然后用力反复拉绳的两端,纽扣正转和反转会交替出现。
拉动多次后,纽扣绕其中心的转速可达50r/s,此时纽扣上距离中心1cm处的点向心加速度大小约为()A.10m/s2B.100m/s2C.1000m/s2D.10000m/s23.如图所示,A、B两篮球从相同高度同时抛出后直接落入篮筐,落入篮筐时的速度方向相同,下列判断正确的是()A.A比B先落入篮筐B.A、B运动的最大高度相同C.A在最高点的速度比B在最高点的速度小D.A、B上升到某一相同高度时的速度方向相同4.无人配送小车某次性能测试路径如图所示,半径为3m的半圆弧BC与长8m的直线路径AB相切于B点,与半径为4m的半圆弧CD相切于C点。
小车以最大速度从A点驶入路径,到适当位置调整速率运动到B点,然后保持速率不变依次经过BC和CD。
为保证安全,小车速率最大为4m/s。
在ABC段的加速度最大为21m/s。
小车2m/s,CD段的加速度最大为2视为质点,小车从A 到D 所需最短时间t 及在AB 段做匀速直线运动的最长距离l 为( )A .7π2s,8m 4t l ⎛⎫=+= ⎪⎝⎭B .97πs,5m 42⎛⎫=+= ⎪⎝⎭t lC .576π26s, 5.5m 126⎛⎫=++= ⎪⎝⎭t lD .5(64)π26s, 5.5m 122⎡⎤+=++=⎢⎥⎣⎦t l 5.如图所示,某同学用一个小球在O 点对准前方的一块竖直放置的挡板,O 与A 在同一高度,小球的水平初速度分别是123v v v 、、,不计空气阻力。
2025届高考物理复习:经典好题专项(动力学中的图像问题)练习1.(多选)一物体静止在粗糙程度均匀的水平地面上,在0~4 s内所受水平拉力F随时间t的变化关系图像如图甲所示,在0~2 s内的速度与时间关系图像如图乙所示,最大静摩擦力大于滑动摩擦力。
关于物体的运动,下列说法正确的是()A.物体的质量为2 kgB.0~4 s内物体的位移为8 mC.0~4 s内拉力F做功为16 JD.在4 s末物体的速度大小为4 m/s2.(2023ꞏ内蒙古包头市二模)水平力F方向确定,大小随时间变化的图像如图a所示,用力F 拉静止在水平桌面上的小物块,在F从0开始逐渐增大的过程中,物块的加速度a随时间变化的图像如图b所示,重力加速度大小为10 m/s2,最大静摩擦力大于滑动摩擦力,由图示可知()A.物块的质量m=2 kgB.物块与水平桌面间的动摩擦因数为0.2C.在4 s末,物块的动量大小为12 kgꞏm/sD.在2~4 s时间内,小物块速度均匀增加3. 在用DIS探究超重和失重的实验中,某同学蹲在压力传感器上完成一次起立动作,在计算机屏幕上得到压力传感器示数F随时间t变化的图像如图所示,则此过程该同学重心的运动速度v随时间t变化的图像最接近图()4.(多选)如图甲所示,用一水平力F 拉着一个静止在倾角为θ的光滑固定斜面上的物体。
逐渐增大F ,物体做变加速运动,其加速度a 随外力F 变化的图像如图乙所示,g =10 m/s 2,sin 37°=0.6,最大静摩擦力等于滑动摩擦力。
根据图乙中所提供的信息可以计算出( )A .物体的质量B .斜面的倾角C .物体能静止在斜面上所施加的最小外力D .加速度为6 m/s 2时物体的速度5.(多选)如图甲所示,一倾角θ=30°的足够长斜面体固定在水平地面上,一个物块静止在斜面上。
现用大小为F =kt (k 为常量,F 、t 的单位分别为N 和s)的拉力沿斜面向上拉物块,物块受到的摩擦力F f 随时间变化的关系图像如图乙所示,物块与斜面间的最大静摩擦力等于滑动摩擦力,重力加速度g 取10 m/s 2。
历年(2019-2023)高考物理真题专项(动量)练习 一、单选题A.铝框所用时间相同C.铝框中的电流方向相同3.(2022ꞏ重庆ꞏ高考真题)在测试汽车的安全气囊对驾乘人员头部防护作用的实验中,A.速度的变化量等于曲线与横轴围成的面积C.动能变化正比于曲线与横轴围成的面积④着陆阶段,运动员落地时两腿屈膝,两臂左右平伸。
下列说法正确的是( )A .助滑阶段,运动员深蹲是为了减小与滑道之间的摩擦力B .起跳阶段,运动员猛蹬滑道主要是为了增加向上的速度C .飞行阶段,运动员所采取的姿态是为了增加水平方向速度D .着陆阶段,运动员两腿屈膝是为了减少与地面的作用时间5.(2022ꞏ北京ꞏ高考真题)质量为1m 和2m 的两个物体在光滑水平面上正碰,其位置坐标x 随时间t 变化的图像如图所示。
下列说法正确的是( )A .碰撞前2m 的速率大于1m 的速率B .碰撞后2m 的速率大于1m 的速率C .碰撞后2m 的动量大于1m 的动量D .碰撞后2m 的动能小于1m 的动能 6.(2022ꞏ江苏ꞏ高考真题)上海光源通过电子-光子散射使光子能量增加,光子能量增加后( )A .频率减小B .波长减小C .动量减小D .速度减小 7.(2022ꞏ海南ꞏ高考真题)在冰上接力比赛时,甲推乙的作用力是1F ,乙对甲的作用力是2F ,则这两个力( )A .大小相等,方向相反B .大小相等,方向相同C .1F 的冲量大于2F 的冲量D .1F 的冲量小于2F 的冲量8.(2022ꞏ湖北ꞏ统考高考真题)一质点做曲线运动,在前一段时间内速度大小由v 增大到2v ,在随后的一段时间内速度大小由2v 增大到5v 。
前后两段时间内,合外力对质点做功分别为W 1和W 2,合外力的冲量大小分别为I 1和I 2。
下列关系式一定成立的是( )A . 213W W =,213I I ≤B . 213W W =,21I I ≥C .217W W =,213I I ≤D .217W W =,21I I ≥9.(2022ꞏ湖南ꞏ统考高考真题)1932年,查德威克用未知射线轰击氢核,发现这种射线是由质量与质子大致相等的中性粒子(即中子)组成。
章末综合检测(三)第三章机械波一、单项选择题(本题共7小题,每小题4分,共28分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.医院有一种先进的检测技术——彩超,向病人体内发射频率已精确掌握的超声波.超声波经血液反射后被专用仪器接收,测出反射波的频率变化,就可以知道血液的流速.这一技术主要体现了哪一种物理现象()A.多普勒效应B.波的衍射C.波的干涉D.共振2.如图为波源O传出的一列水波,相邻实线间的距离等于一个波长,下列说法正确的是()A.波通过孔A,不发生明显的衍射现象B.波通过孔B,不发生衍射现象C.波遇到障碍物C,发生明显的衍射现象D.波遇到障碍物D,发生明显的衍射现象3.如图所示,两个可发射无线电波的天线对称地固定于飞机跑道两侧,两天线同时发出频率为f1和f2的无线电波.飞机降落过程中,当接收到f1和f2的信号都保持最强时,表明飞机已对准跑道.则下列说法正确的是()A.此系统利用的是波的干涉原理B.在跑道上,频率为f1与f2的这两种无线电波干涉加强,所以跑道上的信号最强C.只有跑道上才能接收到f1的最强信号,其他地方f1的信号都比跑道上的弱D.只有在跑道的中心线上才能接收到f1和f2的最强信号,跑道的其他地方是无法同时接收到f1和f2的最强信号的4.在学校运动场上50 m直跑道的两端,分别安装了由同一信号发生器带动的两个相同的扬声器.两个扬声器连续发出波长为5 m的声波.一同学从该跑道的中点出发,向某一端点缓慢行进10 m.在此过程中,他听到扬声器声音由强变弱的次数为() A.2B.4C.6D.85.一列简谐横波向x 轴负方向传播,在t =0时的波形如图所示,该时刻波刚好传播到x =1 m 处,P 、Q 两质点的平衡位置的坐标分别为(-1,0)、(-7,0).已知t =0.6 s 时,质点P 第二次出现波谷,则下列说法正确的是( )A .该波的波长为4 mB .该波的传播速度为103m/sC .振源的起振方向沿y 轴负方向D .当质点Q 位于波峰时,质点P 位于波峰6.一列简谐横波在均匀介质中沿x 轴负方向传播,已知x =54 λ处质点的振动方程为y=A cos (2πT t ),则t =34T 时刻的波形图正确的是( )7.如图(a)为一列简谐横波在t =2 s 时的波形图,图(b)为介质中平衡位置在x =1.5 m 处的质点的振动图像,P 是平衡位置为x =2 m 的质点.下列说法错误的是( )A .波速为0.5 m/sB .波的传播方向向左C .0~2 s 内,P 运动的路程为8 cmD .0~2 s 内,P 向y 轴正方向运动二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分.)8.关于振动和波的关系,下列说法中正确的是( ) A .振动是波形成的原因,波是振动的传播形式B .振动是单个质点呈现的运动现象,波是许多质点联合起来呈现的运动现象C .波的传播速度就是质点振动的速度D .波源停止振动时,波立即停止传播 9.如图所示,在原点处做简谐运动的波源产生的机械波沿x轴正方向传播,波速v=400 m/s.为了接收信号,在x=400 m处设有一接收器A(图中未标出).已知t=0时,波已经传播到x =40 m处,则下列说法中不正确的是()A.波源振动的周期为0.05 sB.x=40 m处的质点在t=0.5 s时位移最大C.接收器在t=1.0 s时才能接收到此波D.若波源向x轴负方向移动,则接收器接收到的波的频率将小于20 Hz10.如图所示,甲图是一列沿x轴正方向传播的横波在2 s时的波的图像,乙图是该波上某质点从零时刻起的振动图像,a、b是介质中平衡位置为x1=3 m和x2=5 m的两个质点,下列说法正确的是()A.该波的波速是2 m/sB.在t=2 s时刻,a、b两质点的速度相同C.若该波在传播过程中遇到频率为0.25 Hz的另一列横波时,可能发生稳定的干涉现象D.x=100 m处的观察者向x轴负方向运动时,接收到该波的频率一定为0.25 Hz三、非选择题(本题共5小题,共54分.按题目要求作答.计算题要有必要的文字说明和解题步骤,有数值计算的要注明单位.)11.(6分)坐标原点O处的波源t=0时刻开始沿着y轴方向做简谐运动,形成沿x轴正方向传播的简谐波.t=0.3 s时刻,波刚传播到x=3 m处的P点,t=0.3 s时刻的波形如图所示.求:(1)波的传播速度;(2)从图示时刻再经过多长时间,位于x=8 m处的Q点第一次到达波谷;(3)在图中画出t=0.5 s时刻的波形(不用写出推导过程).12.(10分)甲、乙两人分乘两只小船在湖中钓鱼,两船相距24 m.有一列水波在湖面上传播,使每只船每分钟上下浮动20次,当甲船位于波峰时,乙船位于波谷,这时两船之间还有5个波峰.(1)此水波的波长为多少?波速为多少?(2)若此波在传播过程中遇到一根竖立的电线杆,是否会发生明显的衍射现象?(3)若该波经过一跨度为30 m的桥洞,桥墩直径为3 m,桥墩处能否看到明显衍射?(4)若该桥有一3 m宽的涵洞,洞后能否发生明显衍射?13.(12分)x轴上的波源S1、S2分别位于x1=0和x2=1.4 m处,t=0时刻两波源同时开始振动,产生的两列简谐横波沿S1、S2连线相向传播,t1=1 s时两列波的图像如图所示.质点M的平衡位置位于x3=0.7 m处,求:(1)两列波传播速度的大小;(2)质点M从开始振动到t2=2.5 s时运动的路程.14.(12分)一列简谐横波正在沿x轴的正方向传播,波速为0.5 m/s,t=0时刻的波形如图甲所示.(1)求横波中质点振动的周期T.(2)在图乙中画出t=1 s时刻的波形图(至少画出一个波长).(3)在图丙中画出平衡位置为x=0.5 m处质点的振动图像(从t=0时刻开始计时,在图中标出横轴的标度,至少画出一个周期).15.(14分)如图所示,实线表示一列横波在某时刻的波形图线,虚线是经过0.2 s后的波形图线.(1)若波向左传播,求它在这段时间内传播的距离;(2)若波向右传播,求它的最大周期;(3)若波的传播速度为115 m/s,试判断波的传播方向.。
高考物理《超重和失重》真题练习含答案1.[2024·浙江1月]如图所示,2023年12月9日“朱雀二号”运载火箭顺利将“鸿鹄卫星”等三颗卫星送入距离地面约500 km 的轨道.取地球质量 6.0×1024 kg ,地球半径6.4×103 km ,引力常量6.67×10-11 N·m 2/kg 2.下列说法正确的是( )A .火箭的推力是空气施加的B. 卫星的向心加速度大小约8.4 m/s 2C .卫星运行的周期约12 hD .发射升空初始阶段,装在火箭上部的卫星处于失重状态答案:B解析:根据反冲现象的原理可知,火箭向后喷射燃气的同时,燃气会给火箭施加反作用力,即推力,A 错误;根据万有引力定律可知G Mm (r +h )2=ma ,解得卫星的向心加速度大小为a =GM (R +h )2 ≈8.4 m/s 2,B 正确;卫星环绕地球做圆周运动,万有引力提供向心力,则有G Mm (R +h )2 =m 4π2T 2 (R +h ),则卫星运行的周期为T =2π(R +h )3GM≈1.6 h ,C 错误;发射升空初始阶段,火箭加速度方向向上,装在火箭上部的卫星处于超重状态,D 错误.2.[2024·广东省深圳市红岭中学第二次考试]林老师将手机放在叉车的升降机上,利用传感器得到一速度—时间图像,如图所示.手机传感器中速度向上时为正值,下列说法正确的是( )A.0.8 s时手机处于失重状态B.1.2 s时手机处于超重状态C.0.9 s~1.2 s升降机处于匀加速上升阶段D.2.4 s~2.6 s手机对升降机的力等于升降机对手机的力答案:D解析:由图可知0.8 s时,手机向上加速,加速度竖直向上,处于超重状态,A错误;由图可知1.2 s时手机速度不变,处于平衡状态,B错误;由图可知0.9 s~1.2 s升降机处于匀速上升阶段,C错误;手机对升降机的力与升降机对手机的力为一对相互作用力,大小相等,方向相反,D正确.3.[2024·福建省莆田市期末考试](多选)如图所示,电梯的顶部挂有一个弹簧秤,秤下端挂了一个重物,电梯匀速直线运动时,弹簧秤的示数为10 N,在某时刻电梯中的人观察到弹簧秤的示数变为8 N,关于电梯的运动,以下说法正确的是(g取10 m/s2)() A.电梯可能向上加速运动,加速度大小为2 m/s2B.电梯可能向下加速运动,加速度大小为2 m/s2C.电梯可能向上减速运动,加速度大小为2 m/s2D.电梯可能向下减速运动,加速度大小为2 m/s2答案:BC解析:电梯匀速直线运动时,弹簧秤的示数为10 N,物体处于平衡状态,有mg=10 N,物体的质量为m=1 kg,弹簧秤的示数变为8.0 N时,对物体受力分析,据牛顿第二定律可得mg-F=ma,解得a=2 m/s2,方向竖直向下,电梯加速度大小为2 m/s2,可能向下加速运动,也可能向上减速运动,B、C正确.4.如图所示,在上端开口的矿泉水瓶的左侧面戳一个小孔,在瓶中灌些水,当手持饮料瓶保持静止时,小孔有水向外喷出.假设矿泉水瓶在下列运动中,没有发生转动且忽略空气阻力的作用,那么水将继续从小孔向外喷出的过程是()A.矿泉水瓶自由下落的过程中B.矿泉水瓶被竖直向上抛出后的运动过程中C.矿泉水瓶被斜向右上方抛出后的运动过程中D.手持矿泉水瓶向上加速直线运动的过程中答案:D解析:瓶自由下落、平抛以及在空中做抛体运动时,均只受到重力的作用,加速度为重力加速度,处于完全失重状态,水不会流出,故A、B、C错误;手持饮料瓶向上加速运动的过程中,由于水处于超重状态,故水之间存在压力,水会向外喷出,D正确.5.[2024·陕西省汉中市第四次联考]很多智能手机都有加速度传感器,加速度传感器能通过图像显示加速度情况.用手掌托着手机,打开加速度传感器,手掌从静止开始迅速上下运动,得到如图所示的手机在竖直方向上的加速度随时间变化的图像,该图像以竖直向上为正方向,取重力加速度大小g=10 m/s2,下列说法正确的是()A.手机始终与手掌存在作用力B.手机在t1时刻处于平衡状态C.手机在t2时刻改变运动方向D.手机在t3时刻处于完全失重状态答案:D解析:由图可知,t3时刻手机的加速度为-10 m/s2,即此时手机只受重力作用,与手掌间没有相互作用力,手机处于完全失重状态,A错误,D正确;手机在t1时刻加速度大于10 m/s2,且加速度向上,手机处于超重状态,B错误;手机在t2时刻加速度方向改变,手机开始做减速运动,速度方向不变,即运动方向不变,C错误.6.[2024·北京市海淀区期中考试](多选)某同学设计制作了一个“竖直加速度测量仪”,其结构如图所示.一根轻弹簧上端固定,在弹簧旁沿弹簧长度方向固定一根直尺,弹簧下端挂一个质量m=0.10 kg的重物,重物静止时弹簧的伸长量x0=5.00 cm,指针指在O点.已知图中OM=ON=1.00 cm,规定竖直向下为正方向,取重力加速度g=10 m/s2.下列说法正确的是()A.若指针指在OM之间某点时,被测物体处于失重状态B.若指针指在ON之间某点时,被测物体可能在减速上升C.M点应标记的加速度值为-2.0 m/s2D.该测量仪上的刻度所对应加速度的值是均匀的答案:BCD解析:重物静止时弹簧的伸长量x0,可得kx0=mg,若指针指在OM之间某点时,弹簧的伸长量增大,弹簧弹力大于物体重力,物体有向上的加速度,被测物体处于超重状态,A 错误;若指针指在ON之间某点时,弹簧的伸长量减小,弹簧弹力小于物体重力,物体有向下的加速度,被测物体处于失重状态,被测物体可能在减速上升,B正确;指针指在M点时,有mg-k(x0+x OM)=ma,M点应标记的加速度值为a=-2.0 m/s2,C正确;设O点至指针所指位置的位移为x,可得mg-k(x0+x)=ma′,可得a′=-gx0x,故该测量仪上的刻度所对应加速度的值是均匀的,D正确.7.[2024·天津市第四十七中期中考试]根据海水中的盐分高低可将海水分成不同密度的区域,当潜艇从海水高密度区域驶入低密度区域,浮力顿减,称之为“掉深”.如图甲所示,我国南海舰队某潜艇在高密度海水区域沿水平方向缓慢航行.t=0时,该潜艇“掉深”,随后采取措施自救脱险,在0~50 s内潜艇竖直方向的vt图像如图乙所示(设竖直向下为正方向).不计水的粘滞阻力,则()A.潜艇在t=20 s时下沉到最低点B.潜艇竖直向下的最大位移为600 mC.潜艇在“掉深”和自救时的加速度大小之比为3∶2D.潜艇在0~20 s内处于超重状态答案:C解析:在50 s内先向下加速后向下减速,则50 s时潜艇向下到达最大深度,A错误;由图像可知潜艇竖直向下的最大位移为h=12×30×50 m=750 m,B错误;潜艇在“掉深”=1.5 m/s2,在自救时加速度大小为a′时向下加速,则由图像可知加速度大小为a=3020m/s2=30m/s2=1 m/s2,加速度大小之比为3∶2,C正确;潜艇在0~20 s内向下加速,50-20加速度向下,处于失重状态,D错误.8.[2024·广东省东莞市月考]升降机箱内底部放一个质量为m的物体,当箱从高空某处以初速度v0下落时,其速度—时间图像如图乙所示,以下说法正确的是()A.0~t1内箱内底对物体的支持力保持不变B.0~t1内箱内底对物体的支持力可能为0C.物体在0~t1时间内处于失重状态D.物体在0~t1时间内处于超重状态答案:D解析:在vt图中,图线切线的斜率表示物体速度变化的快慢,即物体的加速度,由图可知,在0~t1时间内物体的加速度逐渐减小.向下做加速度减小的减速,加速度向上,处于超重状态,根据牛顿第二定律F-mg=ma,0~t1内箱内底对物体的支持力逐渐减小,不可能为零,D正确.。
一、力学部分1. 一物体从静止开始沿光滑斜面下滑,已知斜面倾角为30°,求物体下滑5m时的速度。
2. 质量为m的物体放在水平地面上,受到一个水平推力F作用,物体与地面间的动摩擦因数为μ。
求物体从静止开始加速到速度v所需的时间。
3. 一颗子弹以v0的速度水平射入一块厚度为d的木板,木板对子弹的阻力为f。
求子弹穿过木板所需的时间。
4. 质量为m的物体悬挂在轻质弹簧上,弹簧的劲度系数为k。
现将物体从平衡位置向下拉一段距离,然后释放,求物体通过平衡位置时的速度。
5. 一物体在水平面上做匀速圆周运动,半径为r,速度为v。
求物体在运动过程中所受的向心力。
二、电磁学部分1. 一根长直导线通有电流I,距离导线r处一点的磁场强度为H。
求该点的磁感应强度B。
2. 一个平面电磁波在真空中传播,其电场强度为E0。
求电磁波的传播速度。
3. 一个平行板电容器,两板间距为d,板面积为S,充电后板间电压为U。
求电容器的电容C。
4. 一个半径为R的均匀磁场区域,磁感应强度为B。
求穿过该磁场区域的磁通量。
5. 一个闭合回路中的磁通量发生变化,求回路中产生的感应电动势。
三、热学部分1. 一理想气体在等压过程中,温度从T1升高到T2,求气体体积的变化量。
2. 质量为m的物体从高温热源吸收热量Q,然后对外做功W,求物体的熵变。
3. 一个密闭容器内装有理想气体,已知气体的压强、体积和温度。
求气体的内能。
4. 一块质量为m的冰在0℃时融化成水,求冰融化过程中吸收的热量。
5. 一个物体从高温状态冷却到低温状态,求物体在冷却过程中对外放出的热量。
四、光学部分1. 一束单色光从空气射入水中,求折射角。
2. 一平面镜将一束光反射,求反射光线的方向。
3. 一凸透镜成像,物距为u,求像距v。
4. 一束光通过狭缝发生衍射,求衍射图样的特点。
5. 一束光通过双缝干涉装置,求干涉条纹的间距。
五、原子物理与近代物理部分1. 求氢原子基态的电离能。
2. 求一个电子在电场中的加速度。
高考物理《电场中的图像问题》真题练习含答案1.(多选)一电荷从电场中A点由静止释放,只受电场力作用,沿电场线运动到B点,它运动的vt图像如图所示.则A、B两点所在区域的电场线分布情况可能是选项中的()答案:CD解析:根据vt图像可知电荷的加速度逐渐增大,即电荷所受电场力逐渐增大,又根据电场线越密集电场强度越大可知,从A到B电场线逐渐密集,由于题干没说明是带正电还是带负电,故电荷所受电场力方向与电场强度方向可能相同、可能相反,综上所述可知,A、B错误,C、D正确.2.在真空中某区域有一电场,其中一条电场线如图甲所示,O、A、B为电场线上间距相等的三个点,这一条电场线上各点的电势φ分布如图乙所示,下列说法正确的是()A.O点的电势小于A点的电势B.O点的电场强度小于A点的电场强度C.将正电荷沿该直线从A移到B的过程中,电场力做负功D.O、A两点间的电势差大于A、B两点间的电势差答案:D解析:根据乙图可知,O点的电势大于A点的电势,故A错误;电势变化越快的地方场强越大,根据图线斜率可以得出,O点的电场强度大于A点的电场强度,故B错误;将正电荷沿该直线从A移到B的过程中,电场力做正功,故C错误;O、A两点间的电势差大于A、B两点间的电势差,故D正确.3.[2024·江苏省南通市教学质量调研]真空中有一静止、半径为r0的均匀带正电的球体,场强E沿半径r方向分布情况如图所示,图中E0、r0、r1、r2以及静电力常量k都是已知量,下列说法中正确的是()A.r0处电势最高B.r1、r2两处的电场强度方向相反C.r1、r2两处的电势差等于E0(r2-r1)D.利用已知量可求出球体所带的电荷量答案:D解析:由图可知,场强E沿半径r方向始终大于0,r1、r2两处的电场强度方向相同,电势沿着场强方向逐渐降低,故r0处不是电势最高处,可知球心处的电势最高,A、B错误;在Er图像中,曲线与坐标轴所围成的面积表示电势差的大小,故可得r1、r2两处的电势差大于E0(r2-r1),C错误;根据r2处的场强为E0,有E0=k Qr22,解得Q=E0r22k,D正确.4.(多选)一带负电的粒子只在电场力作用下沿x轴正向运动,其电势能E p随位移x变化的关系如图所示,其中O~x2段是对称的曲线,x2~x3段是直线.下列说法正确的是() A.x1处电场强度为零B.从x2到x3,电场强度逐渐增大C.x1、x2、x3处电势φ1、φ2、φ3的关系为φ1>φ2>φ3D.粒子在0~x2段做匀变速运动,在x2~x3段做匀速直线运动答案:AC解析:E p x 图像的斜率表示电场力(也是合外力),图线在x 1处的斜率为零,则电场力为零,电场强度为零,A 正确;从x 2到x 3,斜率不变,电场力不变,电场强度不变,B 错误;由φ=E p -q,由图像得0<E p 1<E p 2<E p 3,联立解得0>φ1>φ2>φ3,C 正确;在0~x 2段,粒子受到的电场力变化,加速度变化,不是匀变速运动;x 2~x 3段,电场力恒定,做匀变速直线运动,D 错误.5.[2024·甘肃省甘南期中考试](多选)空间中某一静电场方向平行于x 轴,电势φ随x 变化情况如图所示.一质量为4.0×10-20 kg 、电荷量为2.0×10-10 C 的带负电粒子(不计重力)从x 轴上x =-2 cm 处由静止释放,仅在电场力作用下沿x 轴做往复运动,下列说法正确的是( )A .在x 轴正、负半轴分布着方向相反的匀强电场B .在-2 cm <x<0区域内电场强度大小为800 V /mC .在0<x<4 cm 区域内电场强度大小为600 V /mD .该粒子运动过程中经过x =0速度最大,最大速度是4×105 m /s答案:ABD解析:由φx 图像的斜率表示电场强度可知,在x 轴正、负半轴分布着方向相反的匀强电场,A 正确;在-2 cm ≤x <0区域内电场强度大小E 1=⎪⎪⎪⎪Δφ1d 1 =162×10-2 V /m =800 V /m ,方向沿x 轴负方向,B 正确;在0<x ≤4 cm 区域内电场强度大小E 2=⎪⎪⎪⎪Δφ2d 2 =164×10-2 V /m=400 V /m ,C 错误;粒子在-2≤x <0 cm 沿x 轴正向做匀加速运动,则0<x ≤4 cm 区域内沿x 轴正向做匀减速运动,可知粒子经过x =0处时速度最大,粒子从x =-2 cm 运动到x=0的过程,由动能定理可得qU =12mv 2m ,其中U =16 V ,代入数值可得v m =4×105 m /s ,D 正确.6.空间存在一静电场,电场中x 轴上的电势φ随x 坐标的变化规律如图所示,下列说法正确的是( )A.x=4 m处的电场强度为零B.x=4 m处电场方向一定沿x轴正方向C.电荷量为e的负电荷沿x轴从O点移动到6 m处,电势能增大8 eVD.若电荷只在电场力作用下沿x轴正方向移动,加速度先增大后减小答案:C解析:图像的斜率等于电场强度,则x=4 m处的电场强度不为零,A错误;从0到x =4 m处电势不断降低,但问题中没有说明电场线是否与x轴平行,则x=4 m处的电场方向不一定沿x轴正方向,故B错误;负电荷沿x轴正方向移动,电势降低,电势能增大的量为ΔE p=-e·(-4 V-4 V)=8 eV,C正确;根据牛顿第二定律qE=ma,加速度与电场强度成正比,由图像可知,斜率先减小后增大,则电场强度先减小后增大,即加速度先减小后增大,D错误.7.空间中存在一静电场,一电子仅在电场力作用下沿x轴正方向运动,其电势能E p 随位置x的变化关系如图所示,则电子从x1向x3运动的过程中,下列说法正确的是()A.在x1处电子速度最大B.在x2处电子加速度最大C.在x3处电场强度最大D.在x2处电势最高答案:C解析:电子仅在电场力作用下运动,动能与电势能之和是恒定的,则电子从x1向x3运动的过程中,在x3处的电势能最小,则动能最大,速度最大,A错误;E px图像的斜率绝对值表示电子受到的电场力大小,在x2处图像的斜率为0,则电场力为0,故电子的加速度为0,B错误;电子从x1向x3运动的过程中,x3处的图像斜率绝对值最大,则电场力最大,电场强度最大,C正确;电子从x1向x3运动的过程中,电子在x2处电势能最大,但由于电子带负电,故在x2处电势最低,D错误.。
高考物理练习题
尊敬的读者,高考物理练习题是学生备战高考中重要的一环。
为了帮助同学们更好地准备物理考试,本文将为您提供一些常见的高考物理练习题及解答。
希望这些题目能够帮助您提高物理知识的掌握和解题能力。
【题目一】
小明通过斜面把一物体推上一高度为h的平台,已知物体的质量为m,斜面与水平面的夹角为θ,忽略摩擦力。
求:
1. 物体在斜面上所受的分力大小和方向。
2. 物体在推上平台的过程中所做的功。
【解答】
1. 物体在斜面上所受的分力大小和方向可以分解为垂直于斜面方向和平行于斜面方向的两个分力。
垂直于斜面的分力为物体的重力分量mgcosθ,平行于斜面的分力为物体的重力分量mgsinθ,分别向下和沿斜面向上。
【题目二】
一质点从静止开始自由下落,下落过程中受到空气阻力,且阻力大小与速度成正比。
已知质点下落时的加速度为g',质点下落过程中的速度与时间的关系为v = at,其中v为质点的速度,t为时间。
求:
1. 质点下落过程中速度与时间的关系式。
2. 质点下落过程中阻力与速度的关系式。
【解答】
1. 质点下落过程中速度与时间的关系式可以通过将加速度g'代入速度与时间的关系式v = at中,得到v = g't。
2. 质点下落过程中阻力与速度的关系式可以表示为F = kv,其中F 为阻力,k为与速度相关的比例常数。
【题目三】
在真空中,一质点在水平面上做匀速圆周运动,质点的质量为m,半径为r,速度为v。
求:
1. 质点所受的向心力大小和方向。
2. 质点做匀速圆周运动的周期。
【解答】
1. 质点所受的向心力可以通过将质点的质量m、速度v和半径r代入向心力的公式F = mv²/r中计算得到。
2. 质点做匀速圆周运动的周期可以通过将质点的速度v和半径r代入周期的公式T = 2πr/v中计算得到。
【题目四】
一电流为I的导线在磁感应强度为B的磁场中垂直于导线方向受力,力的大小为F。
已知导线长度为L,求:
1. 导线所受的力的大小与导线形状、电流方向和磁场方向之间的关
系式。
2. 导线所受力的方向。
【解答】
1. 导线所受的力的大小与导线形状、电流方向和磁场方向之间的关
系式可以通过将导线长度L、电流大小I和磁感应强度B代入洛伦兹力的公式F = BIL中计算得到。
2. 导线所受力的方向可以通过右手定则确定,即将右手的食指指向
电流方向,中指指向磁场方向,那么拇指的方向就是力的方向。
通过以上的物理练习题及解答,相信您对高考物理知识的掌握会更
深入。
在备战高考的过程中,请多多进行物理练习,提高解题能力和
应试技巧,相信您一定能在高考中取得优异的成绩!祝您成功!。