纳米气泡
- 格式:pdf
- 大小:5.48 MB
- 文档页数:8
体相纳米气泡浓度分布
哎呀呀,这“体相纳米气泡浓度分布”到底是个啥呀?对于我这个小学生来说,听起来可真是一头雾水!
老师在课堂上讲这个的时候,我瞪大眼睛,竖着耳朵,可还是不太明白。
我就想啊,这体相纳米气泡,难道就像天空中飘着的五彩泡泡?可又不太像,毕竟那些泡泡我们能看得见,摸得着。
我去问同桌:“你能搞懂体相纳米气泡浓度分布是啥不?”同桌摇摇头,一脸迷茫地说:“我也迷糊着呢,感觉像个超级大谜团。
”
后来我又跑去问学习委员,她皱着眉头,想了想说:“我好像有点懂,但又说不太清楚。
”我心里那个着急呀,这东西咋就这么难理解呢?
放学回到家,我迫不及待地问爸爸:“爸爸,你知道体相纳米气泡浓度分布吗?”爸爸笑着说:“孩子,这可有点复杂呢。
你看啊,体相纳米气泡就像是一群小小的神秘精灵,它们在一个大大的空间里到处乱跑。
而浓度分布呢,就是看看这些小精灵在这个空间的不同地方有多少。
有的地方可能小精灵特别多,有的地方可能就很少。
”我似懂非懂地点点头。
我又缠着爸爸多给我讲讲,爸爸说:“比如说一个大池塘,有的地方鱼多,有的地方鱼少,这鱼的多少分布就是一种类似的概念。
体相纳米气泡的浓度分布也是这样,在不同的位置,它们的数量不一样。
”
听爸爸这么一说,我好像有点明白了。
可我还是觉得好难啊,这得要多聪明才能完全搞懂呢?
我在心里暗暗发誓,我一定要努力学习,把这个难题给攻克了!我就不信,我弄不明白这体相纳米气泡浓度分布!等我搞懂了,我要给同学们好好讲讲,让他们也不再迷糊。
我觉得,学习就是这样,总会遇到一些让人头疼的难题,但只要我们不放弃,努力去探索,就一定能战胜它们!。
微纳米气泡大小数量检测方法
微纳米气泡的大小和数量可以通过以下几种方法进行检测:
1. 原子力显微镜:通常用于界面纳米气泡检测,可以观察并测量气泡的尺寸和分布。
2. 动态图像法:利用光源直接照射流经检测区的颗粒,并利用CCD检测器获取所有颗粒的实时投影。
这种方法可以实时统计所有流经的颗粒的粒径和数量,通过颗粒的球形度、长宽比等参数来区分微米气泡与其他类型的物质。
这种方法适用于微米级较大气泡的检测。
3. 体纳米气泡相关方法:包括光散射、低温电子显微镜和共振质量测量。
其中,共振质量测量是一种用于差异固体颗粒的简单且方便的技术。
需要注意的是,不同的检测方法可能具有不同的优缺点和适用范围,具体选择哪种方法需要根据实际情况进行决定。
同时,对于微纳米气泡的检测,准确性和可靠性是非常重要的,因此在进行检测时需要选择合适的设备和条件,并严格按照操作规程进行操作。
以上信息仅供参考,建议咨询材料科学专家或查阅相关专业文献资料,以获取更准确的信息。
纳米气泡杀菌是一种利用纳米气泡在水中爆炸产生的高温和高压来杀灭细菌和病毒的技术。
其原理如下:
1. 纳米气泡生成:通过在水中加入适量的氧气或气体,同时施加适当频率的超声波或其他形式的机械振动,可以在水中形成微小的气泡。
2. 气泡聚集:由于气泡的表面张力,微小气泡会相互聚集形成较大的纳米气泡。
3. 爆炸产热:当纳米气泡聚集到一定程度时,由于气泡内部的气体被挤压导致温度和压力升高,最终纳米气泡会迅速爆炸,释放出巨大的能量。
4. 高温高压杀菌:纳米气泡爆炸时产生的高温和高压能够瞬间杀灭周围的细菌、病毒等微生物,同时击碎它们的细胞壁,从而实现杀菌的效果。
5. 物理杀菌机制:纳米气泡杀菌属于物理杀菌方法,通过机械击碎和高温高压杀灭微生物,避免了化学残留和抗药性问题。
6. 冲击波效应:纳米气泡在瞬间爆炸时,会产生由超音速冲击波引起的物理效应。
这些冲击波能够对周围微生物的细胞结构造成直接损害和破坏,导致微生物死亡。
7. 活性氧自由基:纳米气泡爆炸过程中会产生大量活性氧自由基。
这些活性氧自由基具有强氧化能力,可以直接损害微生物的蛋白质、核酸等关键生物分子,从而引起其死亡。
8. 物理剪切力:纳米气泡在爆炸时会产生剧烈的液体流动和物理剪切力。
这些力量可以直接切割和破坏微生物的细胞膜和细胞壁,导致细胞溶解和死亡。
总体而言,纳米气泡杀菌依靠纳米气泡的爆炸产生高温、高压、冲击波、活性氧自由基以及物理剪切力等多种效应,从而杀灭微生物并破坏其细胞结构。
这种物理杀菌方法不会产生化学残留物,也不会引发抗药性,具有良好的杀菌效果和应用前景。
破坏微纳米气泡的方法
破坏微纳米气泡的方法有多种,包括以下几种常见方法:
1. 高温处理:微纳米气泡在高温下会蒸发,因此可以通过加热来破坏气泡。
这可以通过将样品放置在高温炉中或使用激光等加热源进行实现。
2. 声波破坏:利用强大的声波能量,使气泡受到剧烈振动并破裂。
这可以通过超声波处理器或声波清洗机等设备进行实现。
3. 气体替代:将气泡周围的气体替换为其他气体,如惰性气体(如氮气),可以破坏气泡。
通过这种方法,可以使用一种称为溶解气体浓度梯度漂移的技术来破坏气泡。
4. 超滤:使用特殊的滤膜或超滤膜,将气泡和溶液中的其他物质分离开来,从而实现气泡的破坏。
5. 激光破坏:利用强力激光对气泡进行直接照射,产生高温和高压等条件,使其破裂。
需要注意的是,选择破坏微纳米气泡的方法需要根据具体实验需求和样品特性选择合适的方法,并避免对样品产生其他不必要的影响。
纳米气泡技术
纳米气泡技术是一种遗传工程和纳米技术结合的新技术。
这种技术利用气泡的极小尺寸和高压能量作用于生物细胞内部,改变细胞的物理状态和生理功能。
这种技术主要用于药物递送、基因转移、细胞治疗和癌症治疗等领域。
纳米气泡技术制备的气泡直径一般在10-300纳米之间,外表面多由聚异丙基丙烯酸、聚甲基丙烯酸等表面活性聚合物覆盖,使其具有稳定的生物相容性和生物降解性。
这种技术可利用超声波或者电脉冲等方法制备气泡。
纳米气泡技术在癌症治疗方面具有广阔的应用前景,通过气泡的物理作用,可使药物和免疫细胞等载体快速进入肿瘤细胞内部,提高治疗效果。
此外,纳米气泡技术还可用于人工血管和组织工程等领域。
纳米气泡臭氧机讲解
纳米气泡臭氧机是一种使用纳米气泡技术和臭氧发生器结合的
新型设备。
它能将纳米气泡和臭氧分子释放到空气中,以有效去除
空气中的异味和杀灭空气中的细菌。
工作原理
纳米气泡臭氧机的工作原理基于两个关键技术:纳米气泡技术
和臭氧发生器技术。
纳米气泡技术
纳米气泡技术是通过特殊的装置将氧气和水结合,生成微小的
气泡。
这些气泡非常小且均匀分布,能够提供更大的气体接触面积。
这样可以增加氧气和臭氧分子在空气中的溶解度和反应效率。
臭氧发生器技术
臭氧发生器技术使用电子器件将氧气转化为臭氧。
臭氧具有强
氧化性,能够有效杀灭空气中的细菌和病毒,并分解有机物质,去
除异味。
使用方法
纳米气泡臭氧机的使用方法非常简单。
只需要按照以下步骤进
行操作:
1. 将纳米气泡臭氧机放置在需要净化的空间中,并连接电源。
2. 打开纳米气泡臭氧机的电源开关,启动设备。
3. 根据需要,选择合适的臭氧发生器模式和纳米气泡释放模式。
4. 设定净化时间和风速。
5. 等待净化完成,关闭纳米气泡臭氧机。
注意事项
在使用纳米气泡臭氧机时,需要注意以下事项:
- 在使用过程中,确保室内无人,以免对人体健康造成伤害。
- 严禁将纳米气泡臭氧机放置在高温、潮湿或易燃的环境中。
- 使用结束后,及时清洁和维护纳米气泡臭氧机,以保证其正常工作和寿命。
纳米气泡臭氧机通过纳米气泡技术和臭氧发生器技术的结合,能够高效净化空气,去除异味和杀灭细菌,是一种理想的空气净化设备。
纳米气泡上升过程中的传质
纳米气泡是指直径在1-100纳米范围内的微小气泡,它们在液
体中的运动和传质过程对于许多工业和科学领域具有重要意义。
当
纳米气泡在液体中上升时,会产生一系列的传质过程,这些过程对
于溶质的输运和分布具有重要的影响。
首先,纳米气泡上升过程中的传质受到气泡表面张力的影响。
气泡表面张力会影响气泡与液体之间的相互作用,从而影响溶质分
子在气泡表面的吸附和脱附过程。
这会导致溶质在气泡上升过程中
的分布不均匀,从而影响气泡上升过程中的传质速率。
其次,纳米气泡上升过程中的传质还受到气泡与液体之间的质
量传递的影响。
气泡上升时,会带动周围液体一起上升,这种现象
被称为气泡的拖曳效应。
拖曳效应会影响溶质在液体中的输运速率,从而影响气泡上升过程中的传质速率。
此外,纳米气泡上升过程中的传质还受到气泡内部气体的扩散
和溶解的影响。
气泡内部的气体扩散速率和溶解速率会影响气泡上
升过程中气体的释放速率,从而影响气泡上升过程中的传质速率。
总的来说,纳米气泡上升过程中的传质是一个复杂的过程,受到多种因素的影响。
对于这些传质过程的深入研究不仅可以帮助我们更好地理解纳米气泡在液体中的行为,还可以为相关领域的工程应用提供理论支持和指导。
希望未来能够有更多的研究能够深入探讨纳米气泡上升过程中的传质机制,为相关领域的发展做出更大的贡献。
纳米气泡的制备方法
纳米气泡的制备方法有多种,其中比较常见的有:
1. 直接浸置法:将疏水表面直接浸在水中,加热使疏水表面从水中吸附气体,形成纳米气泡。
2. 外源法:利用外部空气形成纳米气泡。
外部空气可以来源于疏水基底制备过程中固体表面在空气中吸附的气体,或者在气液界面经过疏水表面时,将空气卷入形成纳米气泡。
3. 醇水替换法:在乙醇被水替换的过程中因醇水混合导致液体中大量的气体析出,从而形成纳米气泡。
4. 化学反应法:通过化学反应生成气体,然后将这些气体在溶液中释放出来,形成纳米气泡。
以上方法仅供参考,建议咨询化学领域专业人士了解更多有关纳米气泡制备的详情。
纳米气泡cmp
纳米气泡(Nanobubbles)是指直径在纳米级别(通常小于100纳米)的气泡。
这些微小的气泡具有许多独特的性质和应用,特别是在化学机械抛光(CMP)领域。
在CMP过程中,纳米气泡可以作为磨料或抛光剂的载体,通过其高比表面积和优异的稳定性,提高抛光效率和表面质量。
纳米气泡的小尺寸使得它们能够进入微小的表面凹陷和划痕中,从而实现更均匀和平滑的抛光效果。
此外,纳米气泡还具有较高的吸附能力和表面活性,可以与抛光表面发生相互作用,从而进一步提高抛光效果和表面质量。
因此,纳米气泡在CMP领域具有广泛的应用前景,可以用于制造高精度、高质量的光学元件、半导体器件和其他微纳米级产品。
纳米气泡发生器原理
纳米气泡发生器是一种用于产生微小气泡的装置,其原理基于超声震荡和物理空化效应。
主要由超声震荡器和流体容器组成。
在超声震荡器的作用下,液体中的气体被周期性地压缩和膨胀,从而产生气泡。
当声压区间超过液体的湮灭压力时,气泡会发生空化,即快速增加和迅速坍缩。
在坍缩阶段,产生的高温、高压和高速流动导致气泡周围液体的局部化学反应和物理效应。
空化过程中,气泡内的温度可达数千度,压力可超过几百兆帕斯卡。
气泡在坍缩瞬间释放出巨大的能量,并在周围液体中产生激波、剪切力和微尺度的液流。
这些效应对于杀菌、清洁、粉碎和溶解颗粒物质具有显著的效果。
纳米气泡发生器的应用范围广泛,包括水处理、生物医药、食品加工等领域。
在水处理中,纳米气泡可利用其微小尺寸和高能量释放特性,有效地杀灭水中的细菌和病毒。
在生物医药领域,纳米气泡可用于药物输送、细胞破碎和组织修复等应用。
在食品加工中,纳米气泡可用于增加饮料的口感、改善食品质地等。
总之,纳米气泡发生器利用超声震荡和物理空化效应,能够产生微小气泡,并通过释放能量和液体流动产生的效应,实现对液体中物质的处理和改善。
其原理和应用潜力引起了广泛关注和研究。
升温过程中纳米气泡嘿,咱今儿来聊聊升温过程中纳米气泡这玩意儿。
你说纳米气泡,它就像一群小小的精灵,在我们看不见的微观世界里蹦跶着。
当温度开始上升的时候,这些纳米气泡就开始变得活跃起来啦。
想象一下啊,升温就像是给它们吹了一阵春风,让它们一下子来了精神。
它们在那小小的空间里,欢快地游走着,相互碰撞着,就好像在开一场热闹的派对。
纳米气泡虽然小,可别小瞧它们哟!它们有着神奇的力量呢。
在升温过程中,它们的一些特性和行为会发生变化,就像是小孩子长大了会有不同的表现一样。
比如说吧,它们的稳定性可能会受到影响。
温度一高,它们可能就没那么“淡定”啦,开始有点小躁动。
这就好比人在热的时候会有点烦躁不安一样。
而且啊,升温过程中纳米气泡和周围环境的相互作用也会变得不一样呢。
它们可能会和其他物质更加亲密地接触,发生一些有趣的反应。
这就好像朋友之间,在热烈的氛围中会更加亲近,会一起创造出更多的故事。
你想想,要是我们能把这些纳米气泡的变化都搞清楚,那能做多少有意思的事情呀!说不定就能利用它们来解决一些大问题呢。
那怎么去研究它们呢?这可得费点心思啦。
就像要了解一个人的脾气性格一样,得慢慢地观察,仔细地琢磨。
科学家们要用各种先进的仪器和方法,一点一点地去揭开纳米气泡在升温过程中的神秘面纱。
这可不是一件容易的事儿啊,但正是因为有挑战,才更有意思呀,不是吗?要是一下子就搞明白了,那多没趣呀!在探索纳米气泡的道路上,我们还有很长的路要走呢。
但每一点小小的发现,都像是黑暗中的一点亮光,指引着我们不断前进。
咱就好好期待着吧,看看这些纳米气泡在升温过程中还能给我们带来哪些惊喜,哪些新的发现。
说不定哪天,它们就能帮我们解决一个大难题,让我们的生活变得更加美好呢!反正我是挺期待的,你呢?。
纳米气泡与纳米水层的分子动力学模拟研究的开题报告一、选题背景纳米气泡是一种直径在数十到几百纳米之间的气体包裹在水分子中形成的微小气泡,具有较高的稳定性和活性。
纳米气泡在药物传输、水污染处理、医学检测等领域有着广泛的应用前景。
与此同时,纳米水层是由水分子紧密包裹住的纳米粒子的亲水层,其稳定性和结构对环境污染、人类健康以及新型材料开发等都具有重要的影响。
分子动力学模拟是目前研究纳米气泡和纳米水层的常用方法之一,能够模拟出分子的运动轨迹、力学性质、结构等信息。
本研究旨在通过分子动力学模拟方法研究纳米气泡和纳米水层的结构和力学性质,深入探究其在材料科学、环境科学、生物医药等领域的应用。
二、研究目的1. 建立纳米气泡和纳米水层的分子动力学模型,并对其结构和力学性质进行模拟分析。
2. 探究纳米气泡和纳米水层在药物传输、水污染处理、医学检测等领域的应用前景。
3. 深入了解分子动力学模拟方法在研究纳米材料中的应用。
三、研究内容1. 对纳米气泡和纳米水层的结构和力学性质展开分子动力学模拟。
2. 探究纳米气泡和纳米水层的抗压强度、稳定性和活性。
3. 分析纳米气泡和纳米水层在药物传输、水污染处理、医学检测等领域的应用前景。
四、研究方法1. 构建纳米气泡和纳米水层的分子动力学模型,利用LAMMPS等分子动力学软件进行模拟计算。
2. 对模拟结果进行数据处理和分析,研究纳米气泡和纳米水层的结构和力学性质。
3. 结合研究现状和实际应用需求,提出纳米气泡和纳米水层在药物传输、水污染处理、医学检测等领域的应用前景。
五、研究意义1. 探究纳米气泡和纳米水层的结构和力学性质,可以为开发新型材料、药物传输等领域提供理论基础和技术支持。
2. 分子动力学模拟方法在研究纳米材料中的应用具有广泛的应用前景,可为材料科学、环境科学、生物医药等领域提供新的研究手段和解决方案。
3. 分析纳米气泡和纳米水层在药物传输、水污染处理、医学检测等领域的应用前景,有助于挖掘其潜在的应用价值和市场前景。
纳米气泡发生器原理纳米气泡发生器是一种新型的气泡发生器,它利用纳米技术和气泡动力学原理,能够产生微小而稳定的气泡,广泛应用于水处理、医疗器械、生物科学等领域。
纳米气泡发生器的原理十分复杂,涉及到物理、化学、生物等多个学科的知识。
本文将从原理的角度对纳米气泡发生器进行详细介绍。
首先,纳米气泡发生器的原理基于纳米技术。
纳米技术是一种控制和操纵物质在纳米尺度上的技术,通过调控原子和分子的结构,可以赋予物质新的特性和功能。
纳米气泡发生器利用纳米材料的特殊性质,通过特定的工艺制备出纳米级的气泡发生器,使得气泡的尺寸和分布得以精确控制。
其次,纳米气泡发生器的原理还涉及气泡动力学。
气泡动力学是研究气泡在液体中的运动规律和特性的学科。
纳米气泡发生器利用气泡动力学原理,通过合理设计气泡发生器的结构和工作参数,使得气泡在液体中可以稳定地存在和运动。
同时,纳米气泡发生器还可以利用气泡的特殊性质,如微小尺寸、高表面能等,实现对液体的快速混合和传质。
此外,纳米气泡发生器的原理还与表面活性剂和超声波等技术密切相关。
表面活性剂可以降低液体的表面张力,有利于气泡的形成和稳定;超声波则可以促进气泡的形成和释放,提高气泡发生器的效率和性能。
纳米气泡发生器结合了这些技术,可以实现更加精细和高效的气泡发生。
总的来说,纳米气泡发生器的原理是基于纳米技术、气泡动力学、表面活性剂和超声波等多种技术的综合应用。
通过合理设计和控制,纳米气泡发生器可以实现微小气泡的稳定生成和控制,具有广阔的应用前景。
随着纳米技术和气泡动力学等领域的不断发展,纳米气泡发生器将会在更多领域展现出其独特的优势和价值。
第1篇一、实验目的1. 了解微纳米气泡的制备原理和实验方法。
2. 掌握微纳米气泡的特性及其在水处理、生物医学等领域的应用。
3. 分析微纳米气泡的制备过程中可能存在的问题,并提出相应的解决措施。
二、实验原理微纳米气泡是指直径在1-1000纳米范围内的气泡。
由于气泡尺寸微小,其表面能高,具有较强的吸附和传质能力。
微纳米气泡在水处理、生物医学等领域具有广泛的应用前景。
实验原理:通过特定方法将气体(如氧气、臭氧等)溶解于水中,形成微纳米气泡。
气泡在水中具有较大的比表面积,有利于提高气体在水中的溶解度和利用率。
三、实验材料与仪器1. 实验材料:氧气、臭氧、去离子水、染料等。
2. 实验仪器:微纳米气泡发生器、气相色谱仪、紫外可见分光光度计、搅拌器、量筒等。
四、实验步骤1. 准备工作:将氧气或臭氧通过微纳米气泡发生器溶解于去离子水中,制备微纳米气泡溶液。
2. 检测气泡特性:(1)利用气相色谱仪检测溶液中氧气的溶解度;(2)利用紫外可见分光光度计检测溶液中臭氧的浓度;(3)观察气泡形态和大小。
3. 实验验证:(1)将微纳米气泡溶液用于水质处理,检测其对有机污染物的去除效果;(2)将微纳米气泡溶液用于生物细胞培养,观察其对细胞生长的影响;(3)将微纳米气泡溶液用于药物输送,评估其对药物释放的影响。
4. 数据处理与分析。
五、实验结果与分析1. 气泡特性:通过气相色谱仪和紫外可见分光光度计检测,微纳米气泡溶液中氧气和臭氧的溶解度均较高,符合实验预期。
2. 水质处理效果:将微纳米气泡溶液用于水质处理,发现其对有机污染物的去除效果明显,优于传统水质处理方法。
3. 生物细胞培养:将微纳米气泡溶液用于生物细胞培养,观察到细胞生长情况良好,表明微纳米气泡对细胞生长具有促进作用。
4. 药物输送:将微纳米气泡溶液用于药物输送,发现药物释放效果良好,表明微纳米气泡在药物输送领域具有应用价值。
六、实验结论1. 微纳米气泡制备方法简单,气泡特性良好,具有较高的应用价值。
微纳米气泡膜法-概述说明以及解释1.引言1.1 概述微纳米气泡膜法是一种新兴的研究领域,它将微纳米气泡的制备和表征与膜技术相结合,为科学家们提供了一种全新的途径来研究微纳米气泡的性质和应用。
微纳米气泡是直径在微米和纳米尺度范围内的气泡,具有许多独特的特点和潜在的应用价值。
膜法是一种基于膜材料的分离和传质技术,通过调控膜的特性,可以实现对微纳米气泡的控制和调节。
本文的主要目的是介绍微纳米气泡膜法的基本原理和应用领域。
首先,我们将对微纳米气泡的定义和特点进行阐述,探讨其在纳米科技和环境领域中的潜在应用。
然后,我们将重点介绍膜法在微纳米气泡研究中的应用,包括微纳米气泡的制备方法、表征技术以及在分离、传质和催化等方面的应用。
微纳米气泡膜法具有许多优势,包括操作简便、成本低廉、实验条件可控等特点。
通过膜法,研究人员可以更加准确地控制和调节微纳米气泡的大小、分布和稳定性,从而实现对其性质和功能的深入理解。
此外,微纳米气泡膜法还具有广泛的应用前景,例如在水处理、能源转换、生物医学等领域中的应用潜力巨大。
展望未来,随着研究的深入和技术的进步,微纳米气泡膜法有望在更多领域发挥重要作用。
我们相信,通过不断探索和创新,微纳米气泡膜法将为我们揭示微纳米尺度下气泡的奇妙世界,为解决实际问题提供新的思路和方法。
综上所述,本文将介绍微纳米气泡膜法的概念、原理、应用以及展望未来的发展方向。
通过对微纳米气泡膜法的深入研究,我们有望探索出更多新颖的应用和技术,为科学研究和工程应用提供新的突破和基础。
希望本文能够为读者提供有关微纳米气泡膜法的全面了解,并激发更多人对这一领域的兴趣和研究热情。
1.2文章结构文章结构部分的内容可以按照以下方式编写:1.2 文章结构本文将分为三大部分进行探讨:引言、正文和结论。
引言部分将包括以下内容:- 1.1 概述:对微纳米气泡膜法的背景和相关研究进行简要介绍,引起读者对该领域的兴趣。
- 1.2 文章结构:介绍本文的组织结构和各部分的主要内容,方便读者全面了解论文的结构和内容。
纳米气泡发生器压力
纳米气泡发生器是一种能够产生直径在50-500纳米之间的微小气泡的设备。
这些气泡在水中的溶解度极高,能够提供大量的溶解氧,对于改善水质、促进生物生长等方面有着显著的效果。
纳米气泡发生器的工作原理主要是通过高压将气体压缩到水中,然后通过特殊的释放装置,使得气体在水中形成纳米级别的气泡。
这个过程需要一定的压力,通常来说,这个压力会在几百到几千帕斯卡之间,具体的压力值会根据设备的设计和使用需求而有所不同。
纳米气泡发生器的压力控制是非常重要的,因为压力的大小直接影响到气泡的大小和数量。
如果压力过大,可能会导致气泡过大,影响其溶解度;如果压力过小,可能会导致气泡数量不足,影响其效果。
因此,纳米气泡发生器通常会配备有压力调节装置,以便根据实际需求调整压力。
在使用纳米气泡发生器时,除了要注意压力的控制,还需要注意气体的选择。
一般来说,空气、氧气、氮气等都可以作为纳米气泡的发生气体,但是不同的气体在水中的溶解度和反应性是不同的,因此在选择气体时需要根据实际需求进行考虑。
总的来说,纳米气泡发生器是一种非常有用的设备,它能够提供大量的溶解氧,改善水质,促进生物生长。
但是在使用过程中,需要注意压力的控制和气体的选择,以确保其效果。
纳米气泡的检测方法【摘要】本文针对纳米气泡检测方法进行了综述。
首先介绍了光学显微镜检测纳米气泡的原理和应用,接着详细说明了扫描电子显微镜、AFM、拉曼光谱和红外光谱等不同检测方法的工作原理和特点。
通过对这些方法的比较分析,总结了它们各自的优缺点,为科研人员提供了选择合适检测方法的参考依据。
展望了纳米气泡检测技术的未来发展趋势,指出了需要进一步研究和改进的方向。
通过本文的阐述,读者可以更全面地了解纳米气泡的检测方法及其应用领域,为相关研究提供了有益的参考和指导。
【关键词】纳米气泡、检测方法、光学显微镜、扫描电子显微镜、AFM、拉曼光谱、红外光谱、优缺点比较、未来发展趋势1. 引言1.1 纳米气泡的检测方法概述纳米气泡是一种极小的气体囊泡,直径一般在几十到几百纳米之间。
这些微小的气泡在生物医药领域和材料科学领域具有重要的应用价值,因此对纳米气泡的检测方法也备受关注。
纳米气泡的检测方法主要包括光学显微镜、扫描电子显微镜、原子力显微镜、拉曼光谱和红外光谱等。
每种方法都具有其独特的优势和局限性,在不同的情况下可以选择不同的检测方法。
光学显微镜是一种常用的检测方法,可以直观地观察到纳米气泡的形态和分布。
扫描电子显微镜可以提供更高分辨率的图像,从而更准确地分析纳米气泡的大小和形状。
原子力显微镜可以测量纳米气泡的表面形貌和性质。
拉曼光谱和红外光谱则可以通过分析光谱信息来揭示纳米气泡的化学成分和结构。
综合利用各种检测方法可以更全面地了解纳米气泡的特性,为其应用研究提供有效的支持。
未来随着科学技术的不断发展,纳米气泡的检测方法也将不断完善和创新,为纳米气泡领域的研究带来新的突破和进展。
2. 正文2.1 光学显微镜检测纳米气泡光学显微镜是一种广泛应用于纳米气泡检测的常见工具。
通过光学显微镜的放大作用,可以观察到微小的纳米气泡在溶液中的分布和形态。
在使用光学显微镜进行纳米气泡检测时,一般会加入适量的染料或荧光标记物来增强对纳米气泡的观察效果。
界面纳米气泡和体纳米气泡
界面纳米气泡和体纳米气泡是两种纳米尺度的气泡,它们在制备、形成机制和应用上有所不同。
界面纳米气泡是附着在固体表面的纳米级气体分子,通常是由于气体在固体表面吸附形成的。
这些气泡可以在气液、气固界面上观察到,对材料的表面性质产生显著影响。
由于其尺寸小,界面纳米气泡具有较高的表面能,容易在受到外部刺激时发生破裂,从而释放出吸附的气体。
这种特性使得界面纳米气泡在材料表面改性、传感器制造等领域具有潜在的应用价值。
体纳米气泡则存在于液相介质中,其形成与液体的物理性质和气体的溶解度有关。
体纳米气泡可以在液体内部稳定存在,对液体的光学、声学和流变性质产生影响。
由于体纳米气泡的尺寸较小,它们对周围介质的响应较为敏感,因此在环境监测、生物医学诊断等领域具有一定的应用前景。
总之,界面纳米气泡和体纳米气泡是两种不同制备方式、形成机制和潜在应用价值的纳米级气泡。
了解它们的特性和行为有助于更好地应用这些纳米结构,促进相关领域的发展。
纳米气泡发生器原理
纳米气泡发生器是一种能够产生微小气泡的装置,其原理基于物理化学的一些基本原理。
在纳米气泡发生器中,通过一系列的工艺步骤和装置设计,可以将水或其他液体中的气体分子转化为微小气泡,这些微小气泡具有许多特殊的物理化学性质,可以被广泛应用于各种领域。
首先,纳米气泡发生器的原理基于气体的溶解和析出过程。
在液体中,气体分子会与液体分子发生相互作用,溶解在液体中。
当液体受到一定的机械、热力或化学刺激时,溶解在其中的气体分子会析出,形成微小气泡。
而纳米气泡发生器通过精密的装置设计和控制,可以在液体中实现气体的快速析出,形成微小气泡。
其次,纳米气泡发生器的原理还涉及到气液界面的特殊性质。
微小气泡的形成会导致液体中气液界面的增加,这种增加会带来一系列物理化学效应,如表面张力的变化、界面活性物质的聚集等。
这些效应能够赋予微小气泡许多特殊的性质,使其在各种应用中发挥重要作用。
此外,纳米气泡发生器的原理还与气泡的稳定性和分布均匀性
有关。
通过控制气体的溶解和析出过程,纳米气泡发生器可以实现微小气泡的稳定存在,不易破裂或聚集。
同时,纳米气泡发生器还可以实现微小气泡在液体中的均匀分布,使其在应用中能够发挥最大的效果。
总的来说,纳米气泡发生器的原理涉及到气体的溶解和析出、气液界面的特殊性质以及气泡的稳定性和分布均匀性。
通过精密的装置设计和控制,纳米气泡发生器可以实现微小气泡的高效产生,并在各种领域中发挥重要作用。
希望通过对纳米气泡发生器原理的深入理解,能够推动其在更多领域的应用,为人类社会的发展做出更大的贡献。
纳米气泡,不容小觑的泡泡作者:***来源:《科学大众(中学)》2023年第09期说起气泡,大家可能会想到小朋友玩的肥皂泡。
在阳光下,伴随着孩童的笑声,肥皂泡四处飘摇,绚丽多彩。
气泡如此常见,我们在日常生活和大自然中经常能发现它们的身影。
碳酸饮料里面的二氧化碳气体,会在打开瓶盖的瞬间以气泡的形式喷涌而出。
正在沸腾的开水,一串串大大小小的气泡从壶底冲到水表面,发出“滋滋”的声音。
冬天的江河湖泊内,我们还经常能看到水结冰后被封在冰中的气泡。
这些我们肉眼可见的大气泡,研究者已经对它们的性质了解得比较透彻。
根据经典的拉普拉斯方程,气泡越小,它们内部的压强就越大。
如果尺寸足够小,它们的寿命将非常短,短到人们用常规方法无法检测的程度。
那么,纳米级的气泡是否真的不能稳定存在呢?令人惊奇的是,20 多年来,科学家不仅检测到了稳定的纳米气泡,并且发现了它们的许多特殊性质,如超长寿命、表面带电、比表面积大、特殊的生物学效应和传质效率高等。
同时,它们在诸多领域表现出巨大的应用前景,如水处理、农业、清洗、生物医学、养生健康等。
虽然有些应用机理并不清楚,但其出奇的效果不容忽视,具有极大的发展潜力。
纳米气泡领域的诞生早在1950 年,爱泼斯坦- 普莱塞特理论就预测了微米气泡的寿命在毫秒量级,纳米气泡的寿命则更短。
所以很长时间以来,大家都认为纳米级的气泡根本无法稳定存在。
“纳米气泡”这一概念的提出,源于20 世纪80 年代的一个神奇现象:当时科学家在测量两个疏水界面之间的作用力时,发现存在一种神秘的疏水长程引力。
这一谜题引导科学家猜测界面纳米气泡的存在。
历史追溯到1984 年前后,科研人员在测量浸在水中的两个疏水表面作用力的实验过程中,发现当两个表面相互靠近时,突然有一种吸引力将两个表面吸在一起,这种作用力远远大于经典的双电层作用力和经典胶体稳定性理论能作用的范围。
1994 年,瑞典科学家约翰·帕克大胆猜测,实验中出现的台阶作用力和疏水长程引力是表面纳米气泡导致的。
A unified mechanism for the stability of surface nanobubbles: Contact line pinning and supersaturationYawei Liu and Xianren ZhangCitation: The Journal of Chemical Physics 141, 134702 (2014); doi: 10.1063/1.4896937View online: /10.1063/1.4896937View Table of Contents: /content/aip/journal/jcp/141/13?ver=pdfcovPublished by the AIP PublishingArticles you may be interested inPerspectives on surface nanobubblesBiomicrofluidics 8, 041301 (2014); 10.1063/1.4891097Contact line pinning and the relationship between nanobubbles and substratesJ. Chem. Phys. 140, 054705 (2014); 10.1063/1.4863448Experimental study on macroscopic contact line behaviors during bubble formation on submerged orifice and comparison with numerical simulationsPhys. Fluids 25, 092105 (2013); 10.1063/1.4821043Effect of presence of salt on the dynamics of water in uncharged nanochannelsJ. Chem. Phys. 138, 054504 (2013); 10.1063/1.4789586Nanoscopic spontaneous motion of liquid trains: Nonequilibrium molecular dynamics simulationJ. Chem. Phys. 132, 024702 (2010); 10.1063/1.3283899THE JOURNAL OF CHEMICAL PHYSICS 141,134702(2014)A unified mechanism for the stability of surface nanobubbles:Contact line pinning and supersaturationY awei Liu and Xianren Zhang a)State Key Laboratory of Organic-Inorganic Composites,Beijing University of Chemical Technology,Beijing 100029,China(Received 30June 2014;accepted 21September 2014;published online 2October 2014)In this paper,we apply the molecular dynamics simulation method to study the stability of sur-face nanobubbles in both pure fluids and gas-liquid mixtures.First,we demonstrate with molecu-lar simulations,for the first time,that surface nanobubbles can be stabilized in superheated or gas supersaturated liquid by the contact line pinning caused by the surface heterogeneity.Then,a uni-fied mechanism for nanobubble stability is put forward here that stabilizing nanobubbles require both the contact line pinning and supersaturation.In the mechanism,the supersaturation refers to superheating for pure fluids and gas supersaturation or superheating for the gas-liquid mixtures,both of which exert the same effect on nanobubble stability.As the level of supersaturation in-creases,we found a Wenzel or Cassie wetting state for undersaturated and saturated fluids,stable nanobubbles at moderate supersaturation with decreasing curvature radius and contact angle,and finally the liquid-to-vapor phase transition at high supersaturation.©2014AIP Publishing LLC .[/10.1063/1.4896937]I.INTRODUCTIONThe first report of the existence of nanobubbles ap-peared in the work by Parker et al.,1in which they sup-posed that the surface nanobubbles were responsible for the long-range hydrophobic attraction between two objects im-mersed in liquid.Since then many experiment techniques such as AFM measurement,2–11rapid cryofixation,12neutron reflectometry,13and direct optical visualization 14,15have con-firmed that these nanobubbles can exist for a substantially long period of time.Nanobubbles are of great interest as they have potential applications in many fields,such as boundary slip in fluid,16,17froth-flotation,18and protein adsorption.19,20But,nanobubbles also pose a number of challenges for under-standing their physical behaviors.21,22In particular,the mech-anism for nanobubble stability is still an open question to-day.The contamination theory 23and the dynamic equilibrium theory 24,25were proposed but both of them have not been fully proven experimentally.6,26Recently,theoretical 27,28and experimental 29,30studies indicated that the contact line pinning effect plays a crucial role for nanobubble stability.In our pervious work,27we pro-posed that the pinning effect can account for the existence of long-lived nanobubbles in supersaturated liquids.In the the-oretic study,nanobubbles are found to be thermodynamically metastable,and it is the pinning of the contact line induced by surface heterogeneity that leads to the metastability.In a sim-ilar mechanism,nanodroplets can be stabilized by the contact line pinning effect.31,32The aims of this work are as follows.(i)First,we want to confirm our model with molecular dynamics (MD)sim-ulations.MD simulation contains thermal fluctuation,whicha)Email:zhangxr@may play a role in nanobubble stability but is not included in our previous theoretical calculations.27(ii)Second,we try to find out whether the stability mechanism for nanobubbles in the gas-liquid mixtures is different from that in pure flu-ids or not.In particular,we want to illustrate the role of dis-solved gas in the nanobubble stability.In our previous work,27we have illustrated the stability mechanism for nanobubbles in pure fluids.However,many experiments indicated that there is no nanobubble found in degassed water,3,33,34and it is demonstrated experimentally that the nanobubbles in gas-liquid mixtures indeed consist of the gas molecules.35,36(iii)Third,we try to illustrate whether gas supersaturation is re-quired for nanobubble stability.Some experimental results demonstrate that dissolved gases affect strongly to the for-mation of nanobubbles 11,33,34and thus supersaturation may be an essential ingredient.But Seddon et al.37suggested that supersaturation of dissolved gases is not a requirement for nucleation of bubbles.We want to clarify this point in the work.To answer these questions,in this work we applied the molecular dynamics (MD)simulation to explore the stabil-ity of surface nanobubbles in both pure fluids and gas-liquid mixtures.We confirmed the existence of stable nanobub-bles in both cases.Then we proposed a unified mechanism for nanobubble stability,namely,stabilizing nanobubbles re-quires both the contact line pinning and supersaturation.Here supersaturation refers to superheating in pure fluids and gas supersaturation or superheating for gas-liquid mixtures.We also found that nanobubbles exist at moderate supersatura-tion and both the curvature radius and contact angle of sta-ble nanobubbles decrease with the increase of the level of superheating/gas supersaturation.At high level of superheat-ing/gas supersaturation,however,nanobubble becomes unsta-ble again,and the liquid-to-vapor transition occurs instead.0021-9606/2014/141(13)/134702/7/$30.00©2014AIP Publishing LLC141,134702-1II.SIMULATION SYSTEMIn this work,MD simulations were performed by using LAMMPS.38We employed a quasi-two dimensional simu-lation box with a size of 22.4×6.6×H nm 3as shown in Fig.1(a),with H the height of the simulation box that fluc-tuates at a given pressure.Periodic boundary conditions were used in the x and y directions,while in the z direction two restraining substrates were used at the top and bottom of the box.The substrates were made up of frozen solid molecules on a FCC lattice with lattice parameter of 5.606Å,and the (100)surface was exposed to the fluid.The bottom substrate was fixed during the simulations,and a square pore with a width of 10.6nm and a depth of 5.6nm was introduced on the substrate to pin the contact line of nanobubbles.We used the pore to provide the pinning effect based on two facts:first,the pore can provide a strong pinning force to stabilize the nanobubbles,especially when the substrate is not highly hydrophobic;39second,the substrates with regular pores are potential to induce nanobubbles having uniform spatial and size distributions.403.4 nmx=0xzHw /2=5.3 nmp extLx=22.4 nm Ly=6.6 nmSo u rce region to control the gas concentration3.4 nm(a)-6-4-202462468101214X (nm)Z (n m )0.0017.034.0ρ (mol/L)R=6.1 nm θ=89 deg(b )FIG.1.(a)A typical representation of the simulation box.The green parti-cles represent the liquid molecules,the blue ones represent the gas molecules,the red ones represent the solid particles of the top substrate,and the black particles represent the solid particles of the bottom substrate.The shaded area shows the gas source to control the gas concentration in the mixture.(b)A typical two-dimensional density distributions of the liquid molecules in the system with a small droplet on a smooth substrate at T =101.2K.TABLE I.The parameters for the Lennard-Jones interaction between differ-ent molecules.Moleculesσ(Å)ε(meV)Liquid-liquid (LL) 3.4110.30Liquid-gas (LG)3.41 6.87Liquid-solid at top (LS top ) 3.41 5.15Liquid-solid at bottom (LS bot ) 3.41 5.66Gas-gas (GG)3.41 3.43Gas-solid at top (LS top ) 3.41 1.72Gas-solid at bottom (LS bot ) 3.41 1.89Solid-solid (SS)The system was simulated in the isothermal,isostress (NP zz T )ensemble,with a fixed number of molecules N =39216(including both liquid and gas molecules).An external force along z direction was exerted on the smooth top substrate,and thus it fluctuates during our simulations to maintain the given pressure.This kind of method to control the pressure was successfully used in the study of the bubble nucleation,41and our extra simulation runs also confirm that this method produces nearly the same density-temperature re-lation for the bulk liquid as the Nosé-Hoover method.The velocity Verlet algorithm with a time step of 5fs was used for the integration of equations of motion,and the Nosé-Hoover thermostat with a time constant of 0.5ps was used to control the fluid temperature.For the simulations in gas-liquid mixtures,a reservoir of gas molecules [see the shaded region in Fig.1(a)]was intro-duced to give the target gas concentration far from nanobub-bles.In practice,the identity exchange of liquid and gas molecules in the reservoir was performed every 0.1ns to maintain the target gas concentration.For all intermolecular interactions,the truncated Lennard-Jones (LJ)12-6potential was employed (see Table I for LJ parameters)and the cutoff distance was set to 1.1nm.The interaction between liquid molecule and solid molecule composing of the bottom substrate was chosen to represent a substrate with neutral wettability,corresponding to a macro-scopic contact angle of ∼89◦[Fig.1(b)].Although reduced units were used in our simulations,all variables were reported here in their actual physical units.To convert reduced units to their real units,both mass m and LJ parameters were chosen as those of argon atom,e.g.,m =40amu,σ=3.41Å,andε=10.30meV .42Therefore,we approximately have 1nm ≈2.9σ,1ns ≈462 mσ2/ε,and 1K ≈0.008ε/k B with k Bthe Boltzmann constant.III.RESULTS AND DISCUSSIONA.Determination of the liquid boiling pointAt first,we determined the vapor-liquid coexistence for the pure fluid with a series of NVT-MD simulations.We placed a liquid slab of ∼2000liquid molecules in the mid-dle of a simulation box of 3.7×3.7×18.4nm 3,and pe-riodic boundary conditions were applied in all three direc-tions.We equilibrated the system sequentially at differentp (a t m )T (K)FIG.2.The phase diagram for the pure fluid in the pressure-temperature plane.The boiling point is 101.2K at 5atm.The empty square symbols indi-cate the saturated pressure at different temperature from the simulation.The diamond symbols indicate the stability limit of the metastable liquid.Other symbols represent the states simulated to investigate the nanobubble stability in the pure fluid.The triangle symbols indicate the Wenzel state,the star sym-bol indicates the Cassie state,the empty circle symbols indicate the presence of stable nanobubbles,and the solid circle symbols indicate the occurrence of liquid-to-vapor phase transition.See Fig.3for typical snapshots.temperatures varying from 70to 130K,and for each tem-perature a 20ns simulation was performed for data collection and average.By obtaining the saturation pressure as a func-tion of the temperature,we determined the phase diagram for vapor-liquid coexistence (Fig.2).In our simulations on the formation of nanobubbles,the external pressure exerted on the top substrate was set to p ext =5atm,for which the corresponding boiling temperature is T b =101.2K (Fig.2).Hereafter,at the given pressure of 5atm,we use T =T -T b to describe the level of supersat-uration,namely,the driving force for the nucleation of new (vapor)phases.The pure liquid is superheated at T >0but undersaturated at T <0.B.Nanobubble stability in the pure fluidsThen,we explored the nanobubble stability in the pure fluids.We performed the simulations as follow:at first,39216liquid molecules were randomly placed between the bottom and top substrates except the pore;then,a 20ns MD simula-tion run was performed at T =0to equilibrate the system.The obtained configuration [see Fig.3(b)]was then heated or cooled to the given temperature with the heating/cooling rate of 1K/ns.After reaching the desired temperature,a 50ns isother-mal MD simulation was carried out.Figure 3(a)shows typ-ical time evolutions of the height of simulation box at dif-ferent temperatures.At T <0K (e.g., T =−4K),the height shows a sudden decrease,indicating that the pore is completely filled by the liquid [see the inset of Fig.3(a)].Thus,the system is in a Wenzel state and there is no stable nanobubble at this temperature.At a temperature equal to or higher than the boiling point,in contrast,the height fluctu-ates around a certain value for T in the range of (0K,14K)but increases rapidly at T =15K.The typical snapshotsΔT= -4 K ΔT= 0 K ΔT= 8 K ΔT= 12 K ΔT= 14 K ΔT= 15 K01020304050202326293235H (n m )t (ns)ΔTΔT=-4 K(a)FIG.3.(a)Time evolution of the simulation box height at different tem-peratures.The inset figure shows the snapshot of final configuration at T =−4K that corresponds to a Wenzel state.(b)Final configurations corre-sponding to different temperatures from T =0K (Cassie state),8K (stable nanobubble),12K (stable nanobubble)to 14K (stable nanobubble).(c)Sev-eral typical snapshots during the liquid-to-vapor phase transition process at T =15K.for different temperatures within the range of T =0–15K are given in Figs.3(b)and 3(c).At T =0,a Cassie state was found,and the planar vapor-liquid interface on the pore can be interpreted from the fact that at this temperature the system is in the state of vapor-liquid equilibrium.At T =8,12,and 14K,stable surface nanobubbles were observed [Fig.3(b)],as expected from our theoretical work 27based on lattice gas model.43At T =15K,however,the liquid-to-vapor phase transition occurs,leading to the rapid expansion of the simu-lation box [Fig.3(c)].The figure shows that the nanobubble grows slowly at first and the contact line depins at about 3ns,followed by a rapid expansion of the simulation box.The time averaged density distributions of liquid molecules at different temperatures in the range of T =0∼14K are shown in Fig.4.The vapor-liquid interface for stable nanobubbles was determined through finding the loca-tions at which the fluid density is equal to half of the bulk liquid density.As showed in Fig.4,the vapor-liquid interface can be well described with a circle equation,from which the curvature radius R and the contact angle θ(measured from the liquid phase)of nanobubbles can be obtained.The fig-ure clearly indicates that θis always larger than the macro-scopic contact angle of the liquid,and both R and θdecrease with the increase of temperature.These observations are691215(a)ΔT=0 K R=∞Z (n m )(b )ΔT=8 KR=16.4 nm θ=164.5 deg-6-3036691215(c)ΔT=12 KR=8.1 nm θ=138.4 degX (nm)Z (n m )-6-3036ρ (mol/L)(d)ΔT=14 KR=6.2 nm θ=112.2 degX (nm)0.0017.034.0FIG.4.The two-dimensional density distributions for the liquid molecules at different temperatures.The black regions represent the bottom substrate.The red solid lines represent the site at where the fluid density is equal to half of the bulk liquid density.The black solid lines indicate the liquid-solid interface.The blue lines represent the vapor-liquid interface fitted from a circle approximation.accordance with the conclusions in our pervious work:27for stable nanobubbles,R ,θ,and the pinning radius r (r =w /2here)must meet the size relationship of sin θ=r /R (θ>90◦)and R equals to the radius of critical nucleus for ho-mogeneous nucleation that decreases with increasing level of superheating.44–47As a result,R and θdecrease as the temper-ature increases.Besides,the absence of stable nanobubbles at T =15K implies that R <r at this temperature.39Moreover,for the stable nanobubbles at T =8,12,and 14K,their contact lines are always pinned at the border of the pore,as shown in Figs.3(b)and 4.To reconfirm the crucial role of the contact line pinning effect on the nanobubble sta-bility,we carried out a simulation at T =14K,but used a smooth bottom substrate in order to remove the contact line pinning effect.Figure 5(a)shows that in the absence of the pinning effect,the nanobubble shrinks rapidly and disappears within 1ns.This observation stresses that the contact line pin-ning effect plays a crucial role for the nanobubble stability.The effect of pore depth on nanobubble stability was also considered here.We simulated the stability of nanobubbles at T =14K on three substrates with different pore depths (h=5.6,1.7,and 1.1nm).Figure 6(a)shows that for the systems of h =5.6and 1.7nm,stable nanobubbles are found and featured with the same curvature radius [see Fig.6(b)].For the system of h =1.1nm,however,the roughness cannot pin the contact line,and as a result the nanobubble disappears [Fig.6(a)].Therefore,the pore depth determines the substrate ability to pin the contact line and thus affects the nanobubble stability.However,for stable nanobubbles,their morphologies are independent of pore depth.39Above we show that at a given pressure,as the system temperature gradually increases from an undersaturated state,stable nanobubble is observed in superheated liquid until a phase transition takes place.Here we also considered another pathway to achieve superheating,namely gradually decreas-ing the system pressure while fixing the system temperature at 101.2K.The pressure values considered and the presence of stable nanobubbles are shown in Fig.2.Again,our results01234523.023.524.024.525.0H (n m )t (ns)(a)01234520.721.021.321.6H (n m )t (ns)(b )FIG.5.Time evolution of the simulation box height and the typical snap-shots for the system with a pre-existing nanobubble on a smooth substrate:(a)the pure liquid system at T =14K,and (b)gas-liquid mixture at x gas =0.104and T =−20K.confirm that a stable nanobubble is observed as the liquid be-comes superheated until the phase transition takes place at a high supersaturation.In general,with molecular simulation we demonstrated,for the first time,the existence of stable surface nanobub-bles.In the pure fluids,stable nanobubbles can be found only when the contact line is pinned and the liquid is superheated (i.e., T >0).Furthermore,the curvature radius and con-tact angle of nanobubbles decrease with the increase of tem-perature.The observation that no stable nanobubble is in the undersaturated pure fluids (i.e., T <0)is consistent with the experiment results that there is no stable nanobubble af-ter degassed process at the temperature below the boiling point.3,33,34These results also imply that the dissolved gas is necessary if T <0.C.Determination of the equilibrium gas concentrationNext,we explored the nanobubble stability in gas-liquid mixtures.Here the temperature was set to T =−20K,much lower than the boiling point of the solvent,and hence no stable nanobubbles presents in the pure liquid.Note that here the T is still the difference obtained by subtracting the boiling temperature of the pure liquid from T ,namely, T =T –T b .To consider the role of dissolved gas on the1020304050242628303234H (n m )t (ns)h=5.6 nmh=1.7 nmh=1.1 nm(a)-6-4-2024646810121416ρ (mol/L)R=6.2 nm θ=112.2 degX (nm)Z (n m )0.0017.034.0(a) h=5.6 nm (b ) h=1.7 nm (b )-6-4-20246R=6.3 nm θ=115.1 degX (nm)FIG.6.Pore depth affects the contact line pinning and nanobubble stability.(a)Time evolution of the simulation box height and the typical snapshots for final configurations.(b)The two-dimensional density distributions for the liquid molecules.nanobubble stability,we first determined the equilibrium gas concentration.For this purpose,we placed a solution slab of ∼10000molecules (with ∼500gas molecules)in the middle of the simulation box of 4.7×4.7×35.0nm 3.NP zz T-MD simulations were performed with periodic boundary condi-tions in all three directions.The Nosé-Hoover barostat with a time constant of 5ps was applied to maintain a pressure of p =5atm.We equilibrated the system with a 100ns simulation run and then performed another 100ns simulation run to determine the equilibrium gas concentration.The equilibriumgas molar fraction is found to be x egas=0.026in liquid phase and y egas=0.820in vapor phase.Thus,if the gas concentra-tion x gas >0.026,the gas-liquid solution is gas supersaturated.D.Nanobubbles in the gas-liquid mixtures at T <0We performed MD simulations to explore nanobubble stability in the gas-liquid mixtures as follow:at first,for the initial configuration shown in Fig.3(b)at T =0,∼1000solvent molecules were turned into gas molecules;next,the system was cooled down to T =−20K;then,a 200ns sim-ulation was carried out at a given x gas ;after that,we changed x gas and carried out other simulation runs of 200ns to inves-tigate the effect of gas supersaturation.In total,four simula-tion runs were sequentially performed at x gas =0.026,0.069,0.104,and 0.125.Figure 7(a)shows the time evolution of the simulation box height and the number of gas molecules.For x gas in the range of (0.026,0.104),both the simulation box height and the number of gas molecules reach their stable values within20232629050100150200700170027003700H (n m )x gas =0.026 x gas =0.069 x gas =0.104 x gas =0.125x gas(a)N u m b e r o f g a s m o l e c u l e st (ns)x gasFIG.7.(a)Time evolution of the simulation box height and the number of gas molecules at T =−20K.(b)Typical snapshots for final configurations corresponding to T =−20K and x gas =0.026(Cassie state),0.069(sta-ble nanobubble),and 0.104(stable nanobubble).In the last figure,the liquid molecules are hidden to show the gas enrichment in the vapor-liquid inter-face region.(c)Several typical snapshots during the liquid-to-vapor phase transition process at x gas =0.125and T =−20K.50ns,but at x gas =0.125the simulation box expands contin-uously.This observation can be interpreted from the behavior how the solution wets the rough substrate [see Figs.7(b)and 8].Typical snapshots for different values of x gas are given in Figs.7(b)and 7(c).At x gas =0.026,a Cassie state is found with an almost planar vapor-liquid interface,correspondingto the vapor-liquid equilibrium state (x egas=0.026).As x gas increases to 0.069and 0.104,the mixture becomes moder-ately gas supersaturated,and Fig.7(b)clearly indicates the existence of the stable nanobubbles.For x gas further increases to 0.125,however,the liquid-to-vapor phase transition is ob-served after the contact line depinning at about t =25ns [see Fig.7(c)].Figure 8gives the two-dimensional density distributions that are averaged over the later 100ns for solvent molecules and for gas molecules.From the figure,several characteris-tics for these stable nanobubbles are found.First,the curva-ture radius and the contact angle for the nanobubbles decrease as the increase of gas concentration in the solution,just like the increase of superheating in the pure fluids.The depen-dence of nanobubble contact angle on the level of supersatu-ration also agrees with the experimental observation by Zhang et al.29that the contact angle of nanobubbles decreases with691215(a)x gas =0.026R=∞y gas =0.810Z (n m )ρ (mol/L)(b )x gas =0.069R=14.5 nm θ=159.4 deg y gas =0.8860.0017.034.0-6-3036691215(c)x gas =0.104R=7.7 nm θ=133.0 deg y gas =0.918X (nm)Z (n m )-6-3036(d)x gas =0.104X (nm)0.004.509.00FIG.8.The two-dimensional density distributions of the liquid molecules corresponding to different values of x gas from 0.026to 0.104((a)-(c)),and that for the gas molecules at x gas =0.104(d).The temperature is set to T =−20K.increasing supersaturation.Second,the gas enrichment can be clearly found near the vapor-liquid interface [Figs.7(b)and 8(d)].The interface enrichment of gas molecules is consid-ered to have a considerable impact on the surface tension.48,49Third,the nanobubbles is almost entirely occupied by gas molecules (y gas ∼90%),and the concentration increases with the gas supersaturation.We also demonstrated the importance of contact line pin-ning on the nanobubble stability in gas-liquid mixtures.We performed a simulation run at x gas =0.104but employed a smooth substrate.The time evolution of the pre-existing nanobubble is shown in Fig.5(b),which indicates that the nanobubble dissolves and disappears within 1ns,stressing that in the gas-liquid mixtures,the contact line pinning effect plays a crucial role for nanobubble stability.In general,we proved that at T <0,the generation of stable nanobubbles requires both contact line pinning and gas supersaturation.These stable nanobubbles are mainly made up of gas molecules and show the gas enrichment in the vapor-liquid interface region.More importantly,these nanobubbles exhibit the same behaviors as observed for nanobubbles in the pure fluids:they are stable within a suitable range of superheating/supersaturation and in the presence of contact line pinning;the curvature radius of vapor-liquid interface and the contact angle decrease as the level of superheat-ing/supersaturation increases;the contact angle are always greater than the microscopic contact angle for the liquid.E.Nanobubbles in the gas-liquid mixtures at T >0Although we have showed that the dissolved gas is not required for producing stable nanobubbles in superheated liq-uid,it is of particular interest to know how the dissolved gas influences nanobubbles when T >0.Here,we simulated nanobubbles in the gas-liquid mixtures at T =8K.It is important to note that if T >0,the equilibrium gas con-centration is 0.Thus,the gas-liquid solution with x gas >0is always gas supersaturated as long as T >0.The simu-lation details are similar to those in the gas-liquidmixtures691215(a)x gas =0R=16.4 nm θ=164.5 deg y gas =0Z (n m )(b )x gas =0.005R=11.5 nm θ=154.2 deg y gas =0.096-6-3036691215(c)x gas =0.010R=9.4nm θ=146.0degy gas =0.145X (nm)Z (n m )-6-3036ρ (mol/L)(d)x gas =0.020R=6.8 nm θ=123.7 deg y gas =0.277X (nm)0.0017.034.0FIG.9.Two-dimensional density distributions of the liquid molecules at T =8K and different values of x gas from 0to 0.020.at T =−20K,and five independent simulation runs were performed with x gas varying from 0to 0.025.Our simulation results show the presence of stable nanobubbles as long as x gas ≤0.020(see Fig.9for the density distributions of liq-uid molecules).For these stable nanobubbles,we found that (i)the curvature radius of vapor-liquid interface and the con-tact angle of nanobubbles decrease as x gas increases from 0to 0.020,just like the trend observed for nanobubble at T =−20K.But,the main difference between them is that at T >0(T >T b ),the nanobubble can survive even the gas concentration decreases to 0,while at T <0the nanobubblewill disappear if x gas <x egas(Figs.7and 8).(ii)The gas con-centration in the nanobubbles increases with x gas .But,differ-ent form the nanobubbles at T <0,these nanobubbles con-tain substantial number of solvent molecules when T >0(Fig.9).IV .CONCLUSIONIn this work,we applied the molecular dynamics (MD)simulations to explore stability of surface nanobubbles in both pure fluids and gas-liquid mixtures.Different from experi-ments,which usually includes some unknown factors or fac-tors that cannot be precisely controlled,e.g.,substrate het-erogeneity at the nanoscale (in our model 27),contamination (in the contamination model 23)and gas flow (in the dynamic equilibrium model 24),computer simulation is featured with well controllable input or independent variables.We demon-strated with MD simulations,for the first time,that surface nanobubbles can be stabilized in supersaturated solution by the contact line pinning effect caused by the surface hetero-geneity.The reproduction of stable nanobubbles with our MD simulations indicates that our model catches the main ingre-dients for nanobubble stability.Especially,we demonstrated that the stable nanobubbles can be generated in the super-heated pure fluids or gas-liquid mixture,predicting a possi-bility that has not been considered before and thus needs to prove experimentally.Then we unified the mechanisms for nanobubble stabil-ity for both cases,namely,stabilizing nanobubbles requires。