精品人教版九年级数学上册25 概率初步 单元测试题3 含答案
- 格式:doc
- 大小:1.04 MB
- 文档页数:8
人教版九年级数学上册第二十五章《概率初步》单元测试卷(含答案)一、选择题(共8小题,4*8=32) 1. 下列事件中,是必然事件的为( ) A .3天内会下雨B .打开电视,正在播放广告C .367人中至少有2人公历生日相同D .某妇产医院里,下一个出生的婴儿是女孩2. 对“某市明天下雨的概率是75%”这句话,理解正确的是( ) A .某市明天将有75%的时间下雨B .某市明天将有75%的地区下雨C .某市明天一定下雨D .某市明天下雨的可能性较大3. 甲、乙两人做掷骰子游戏,规定:一人掷一次,若两人所投掷骰子的点数和大于7,则甲胜;否则,乙胜,则甲、乙两人中( ) A .甲获胜的可能更大 B .甲、乙获胜的可能一样大 C .乙获胜的可能更大D .由于是随机事件,因此无法估计4. 某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( ) A .19 B .16 C .13 D .235. 从长度分别为1 cm ,3 cm ,5 cm ,6 cm 四条线段中随机取出三条,则能够组成三角形的概率为( )A .14B .13C .12D .346. 已知在一个不透明的口袋中有4个只有颜色不相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为( )A.34B.23C.916D.127. 从长度分别为1,3,5,7的四条线段中任取三条作边,能构成三角形的概率为( ) A.12 B.13 C.14 D.158. 如图,一个质地均匀的正四面体的四个面上依次标有数字-2,0,1,2,连续抛掷两次,朝下一面的数字分别是a ,b ,将其作为M 点的横、纵坐标,则点M(a ,b)落在以A(-2,0),B(2,0),C(0,2)为顶点的三角形内(包含边界)的概率是( )A.38B.716C.12D.916 二.填空题(共6小题,4*6=24)9.在5张卡片上各写0,2,4,6,8中的一个数,从中抽出一张为偶数是_____事件; 10. 下表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次投中的概率约为________(精确到0.1).投篮次数n 50 100 150 200 250 300 500 投中次数m 28 60 78 104 123 152 251 投中频率mn0.560.600.520.520.490.510.5011. 某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是________.12. 一个均匀的正方体各面上分别标有数字1,2,3,4,6,8,其表面展开图如图所示,抛掷这个正方体,则朝上一面的数字恰好等于朝下一面的数字的2倍的概率是__________.13. 一个盒子里有完全相同的三个小球,球上分别标上数字-1,1,2.随机摸出一个小球(不放回),其数字记为p ,再随机摸出另一个小球,其数字记为q ,则满足关于x 的方程x 2+px +q =0有实数根的概率是_______.14. 现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为 .三.解答题(共5小题,44分)15.(6分) 请指出在下列事件中,哪些是随机事件,哪些是必然事件,哪些是不可能事件.(1)a2+b2=-1(其中a,b都是实数);(2)篮球队员在罚球线上投篮一次,未投中;(3)掷一次骰子,向上一面的点数是6;(4)任意画一个三角形,其内角和是360°;(5)水往低处流;(6)射击运动员射击一次,命中靶心.16.(8分) 有一组卡片,制作的颜色、大小相同,分别标有1~11这11个数字,现在将它们背面向上任意颠倒次序,然后放好后任意抽取一张,求下列事件的概率.(1)抽到两位数;(2)抽到的数是2的倍数;(3)抽到的数大于10.17.(8分) 某校开展“爱国主义教育”诵读活动,诵读读本有《红星照耀中国》、《红岩》、《长征》三种,小文和小明从中随机选取一种诵读,且他们选取每一种读本的可能性相同.(1)小文诵读《长征》的概率是__ __;(2)请用列表或画树状图的方法求出小文和小明诵读同一种读本的概率.18.(10分) 在四张编号为A、B、C、D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A、B、C、D 表示);(2)我们知道,满足a2+b2=c2的三个正整数a、b、c称为勾股数,求抽到的两张卡片上的数都是勾股数的概率.19.(12分) 为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务活动,班长为了解志愿服务活动的情况,收集整理数据后,绘制成以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.参考答案1-4CDCC 5-8ADCB 9.必然 10.0.5 11.1612.2313.1214.2515.解:随机事件:(2)(3)(6);必然事件:(5);不可能事件:(1)(4) 16.解:(1)P(抽到两位数)=211(2)P(抽到的数是2的倍数)=511(3)P(抽到的数大于10)=11117.解:(1)P(小文诵读《长征》)=13 ;故答案为:13 (2)记《红星照耀中国》、《红岩》、《长征》分别为A ,B ,C ,列表如下:A B C A (A ,A) (A ,B) (A ,C) B (B ,A) (B ,B) (B ,C) C(C ,A)(C ,B)(C ,C)由表格可知,共有9种等可能性结果,其中小文和小明诵读同一种读本的有3种结果,∴小文和小明诵读同一种读本的概率为39 =1318.解:(1)画树状图如下:共有12种等可能的结果数.(2)由题意,易知卡片B 、C 、D 中的三个数,是勾股数则抽到的两张卡片上的数都是勾股数的结果数为6,所以抽到的两张卡片上的数都是勾股数的概率=612=12.19.解:(1)该班全部人数:12÷25%=48.(2)48×50%=24,补全折线统计图如图所示:(3)648×360°=45°. (4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:小明 小丽 1 2 3 4 1 (1,1) (2,1) (3,1) (4,1) 2 (1,2) (2,2) (3,2) (4,2) 3 (1,3) (2,3) (3,3) (4,3) 4(1,4)(2,4)(3,4)(4,4)务活动的概率为416=14.。
《第25章概率初步》一、选择题(共10小题,每小题3分,满分30分)1.下列说法中正确的是()A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.“任意画出一个平行四边形,它是中心对称图形”是必然事件C.“概率为0.0001的事件”是不可能事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次2.从分别写有数字:﹣4,﹣3,﹣2,﹣1,0,1,2,3,4的九张一样的卡片中,任意抽取一张卡片,则所抽卡片上数字的绝对值<2的概率是()A.B.C.D.3.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次4.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上数字为7,则从3、4、5、6、8、9中任选两数,与7组成“中高数”的概率是()A.B.C.D.5.有一个正方体,6个面上分别标有1~6这6个整数,投掷这个正方体一次,则出现向上一面的数字为偶数的概率是()A.B.C.D.6.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A.B.C.D.7.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A.B.C.D.8.甲,乙,丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲,乙各比赛了4局,丙当了3次裁判.问第2局的输者是()A.甲B.乙C.丙D.不能确定9.某校举行春季运动会,需要在初一年级选取一名志愿者.初一(1)班、初一(2)班、初一(3)班各有2名同学报名参加.现从这6名同学中随机选取一名志愿者,则被选中的这名同学恰好是初一(3)班同学的概率是()A.B.C.D.10.做重复实验:抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为()A.0.22 B.0.44 C.0.50 D.0.56二、填空题11.不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.12.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.13.如图,A是正方体小木块(质地均匀)的一顶点,将木块随机投掷在水平桌面上,则A与桌面接触的概率是.14.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是.15.小芳掷一枚质地均匀的硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为.16.小球在如图所示的地板上自由滚动,并随机停留在某块正方形的地砖上,则它停在白色地砖上的概率是.17.如图,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是.18.有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为.三、解答题(共46分)19.下列问题哪些是必然事件?哪些是不可能事件?哪些是随机事件?(1)太阳从西边落山;(2)某人的体温是100℃;(3)a2+b2=﹣1(其中a,b都是实数);(4)水往低处流;(5)三个人性别各不相同;(6)一元二次方程x2+2x+3=0无实数解;(7)经过有信号灯的十字路口,遇见红灯.20.如图,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上.(1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全等但面积相等的三角形是(只需要填一个三角形)(2)先从D,E两个点中任意取一个点,再从F,G,H三个点中任意取两个不同的点,以所取得这三个点为顶点画三角形,求所画三角形与△ABC面积相等的概率(用画树状图或列表格求解).21.某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.22.有形状、大小和质地都相同的四张卡片,正面分别写有A、B、C、D和一个等式,将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.(1)用画树状图或列表的方法表示抽取两张卡片可能出现的所有情况(结果用A、B、C、D表示);(2)小明和小强按下面规则做游戏:抽取的两张卡片上若等式都不成立,则小明胜,若至少有一个等式成立,则小强胜.你认为这个游戏公平吗?若公平,请说明理由;若不公平,则这个规则对谁有利,为什么?23.在一个不透明的盒子里,装有三个分别写有数字6,﹣2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同的概率;(2)两次取出小球上的数字之和大于10的概率.24.“学雷锋活动日”这天,阳光中学安排七、八、九年级部分学生代表走出校园参与活动,活动内容有:A.打扫街道卫生;B.慰问孤寡老人;C.到社区进行义务文艺演出.学校要求一个年级的学生代表只负责一项活动内容.(1)若随机选一个年级的学生代表和一项活动内容,请你用画树状图法表示所有可能出现的结果;(2)求九年级学生代表到社区进行义务文艺演出的概率.25.某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.(1)按约定,“小李同学在该天早餐得到两个油饼”是事件;(可能,必然,不可能)(2)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.26.小明和小刚做摸纸牌游戏.如图所示,有两组相同的纸牌,每组两张,牌面数字分别是2和3,将两组牌背面朝上,洗匀后从每组牌中各摸出一张,称为一次游戏.当两张牌的牌面数字之积为奇数,小明得2分,否则小刚得1分.这个游戏对双方公平吗?请说明理由.(列表或画树状图)《第25章概率初步》参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列说法中正确的是()A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.“任意画出一个平行四边形,它是中心对称图形”是必然事件C.“概率为0.0001的事件”是不可能事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次【考点】随机事件.【分析】根据随机事件、必然事件以及不可能事件的定义即可作出判断.【解答】解:A、“任意画出一个等边三角形,它是轴对称图形”是必然事件,选项错误;B、“任意画出一个平行四边形,它是中心对称图形”是必然事件,选项正确;C、“概率为0.0001的事件”是随机事件,选项错误;D、任意掷一枚质地均匀的硬币10次,正面向上的可能是5次,选项错误.故选B.【点评】本题考查了随机事件、必然事件以及不可能事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.从分别写有数字:﹣4,﹣3,﹣2,﹣1,0,1,2,3,4的九张一样的卡片中,任意抽取一张卡片,则所抽卡片上数字的绝对值<2的概率是()A.B.C.D.【考点】概率公式.【分析】在这九个数中,绝对值<2有﹣1、0、1这三个数,所以它的概率为三分之一.【解答】解:P(<2)==.故选B.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【考点】概率的意义.【分析】根据概率的意义和必然发生的事件的概率P(A)=1、不可能发生事件的概率P(A)=0对A、B、C进行判定;根据频率与概率的区别对D进行判定.【解答】解:A、不可能事件发生的概率为0,所以A选项正确;B、随机事件发生的概率在0与1之间,所以B选项错误;C、概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D选项错误.故选A.【点评】本题考查了概率的意义:一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.4.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上数字为7,则从3、4、5、6、8、9中任选两数,与7组成“中高数”的概率是()A.B.C.D.【考点】列表法与树状图法.【专题】新定义.【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与与7组成“中高数”的情况,再利用概率公式即可求得答案.【解答】解:列表得:9 379 479 579 679 879 ﹣8 378 478 578 678 ﹣9786 376 476 576 ﹣876 9765 375 475 ﹣675 875 9754 374 ﹣574 674 874 9743 ﹣473 573 673 873 9733 4 5 6 8 9∵共有30种等可能的结果,与7组成“中高数”的有12种情况,∴与7组成“中高数”的概率是: =.故选C.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.5.有一个正方体,6个面上分别标有1~6这6个整数,投掷这个正方体一次,则出现向上一面的数字为偶数的概率是()A.B.C.D.【考点】概率公式.【专题】压轴题.【分析】投掷这个正方体会出现1到6共6个数字,每个数字出现的机会相同,即有6个可能结果,而这6个数中有2,4,6三个偶数,则有3种可能.【解答】解:根据概率公式:P(出现向上一面的数字为偶数)=.故选C.【点评】用到的知识点为:概率等于所求情况数与总情况数之比.6.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两张卡片上的数字恰好都小于3的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率==.故选A.【点评】此题考查的是用列表法或树状图法求概率.解题的关键是要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.7.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】列举出所有情况,看恰为一男一女的情况占总情况的多少即可.【解答】解:男1 男2 男3 女1 女2男1 一一√√男2 一一√√男3 一一√√女1 √√√一女2 √√√一∴共有20种等可能的结果,P(一男一女)=.故选B.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.甲,乙,丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲,乙各比赛了4局,丙当了3次裁判.问第2局的输者是()A.甲B.乙C.丙D.不能确定【考点】推理与论证.【专题】压轴题.【分析】由题意知道,甲和乙各与丙比赛了一场.丙当了三次裁判,说明甲和乙比赛了三场,这三场中间分别是甲和丙,乙和丙比赛.因此第一,三,五场比赛是甲和乙比赛,第二,四场是甲和丙,乙和丙比赛,并且丙都输了.故第二局输者是丙.【解答】解:由题意,知:三场比赛的对阵情况为:第一场:甲VS乙,丙当裁判;第二场:乙VS丙,甲当裁判;第三场:甲VS乙,丙当裁判;第四场:甲VS丙,乙当裁判;第五场:乙VS甲,丙当裁判;由于输球的人下局当裁判,因此第二场输的人是丙.故选C.【点评】解决本题的关键是推断出每场比赛的双方.9.某校举行春季运动会,需要在初一年级选取一名志愿者.初一(1)班、初一(2)班、初一(3)班各有2名同学报名参加.现从这6名同学中随机选取一名志愿者,则被选中的这名同学恰好是初一(3)班同学的概率是()A.B.C.D.【考点】概率公式.【分析】用初一3班的学生数除以所有报名学生数的和即可求得答案.【解答】解:∵共有6名同学,初一3班有2人,∴P(初一3班)==,故选B.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.10.做重复实验:抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为()A.0.22 B.0.44 C.0.50 D.0.56【考点】利用频率估计概率.【分析】根据对立事件的概率和为1计算.【解答】解:瓶盖只有两面,“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为1﹣0.44=0.56.故选D.【点评】解答此题关键是要明白瓶盖只有两面,即凸面和凹面.二、填空题11.不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.【考点】概率公式.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵共4+3+2=9个球,有2个红球,∴从袋子中随机摸出一个球,它是红球的概率为,故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.【考点】列表法与树状图法.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】解:列表得,黑1 黑2 白1 白2 黑1 黑1黑1 黑1黑2 黑1白1 黑1白2黑2 黑2黑1 黑2黑2 黑2白1 黑2白2白1 白1黑1 白1黑2 白1白1 白1白2白2 白2黑1 白2黑2 白2白1 白2白2∵由表格可知,不放回的摸取2次共有16种等可能结果,其中两次摸出的小球都是白球有4种结果,∴两次摸出的小球都是白球的概率为: =,故答案为:.【点评】本题考查概率的概念和求法,用树状图或表格表达事件出现的可能性是求解概率的常用方法.用到的知识点为:概率=所求情况数与总情况数之比.13.如图,A是正方体小木块(质地均匀)的一顶点,将木块随机投掷在水平桌面上,则A与桌面接触的概率是.【考点】概率公式.【分析】由共有6个面,A与桌面接触的有3个面,直接利用概率公式求解即可求得答案.【解答】解:∵共有6个面,A与桌面接触的有3个面,∴A与桌面接触的概率是: =.故答案为:.【点评】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.14.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是.【考点】概率公式;中心对称图形.【分析】让有中心对称图案的卡片的情况数除以总情况数即为所求的概率【解答】解:根据概率的求简单事件的概率的计算及中心对称图形概念的理解;理论上抽到中心对称图案卡片的概率是中心对称图案的卡片的个数除以所有所有卡片的个数,而中心对称图案有圆、矩形、菱形、正方形,所以概率为.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.绕某个点旋转180°后能与自身重合的图形叫中心对称图形.15.小芳掷一枚质地均匀的硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为0.5 .【考点】概率的意义.【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果,可得答案.【解答】解:掷一枚质地均匀的硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为0.5,故答案为:0.5.【点评】考查利用频率估计概率.大量反复试验下频率稳定值即概率.注意随机事件发生的概率在0和1之间.16.小球在如图所示的地板上自由滚动,并随机停留在某块正方形的地砖上,则它停在白色地砖上的概率是.【考点】几何概率.【分析】先求出瓷砖的总数,再求出白色瓷砖的个数,利用概率公式即可得出结论.【解答】解:∵由图可知,共有5块瓷砖,白色的有3块,∴它停在白色地砖上的概率=.故答案为:.【点评】本题考查的是几何概率,熟记概率公式是解答此题的关键.17.如图,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是.【考点】几何概率.【分析】首先确定阴影的面积在整个轮盘中占的比例,根据这个比例即可求出豆子落在阴影部分的概率.【解答】解:因为在两个同心圆中,三条直径把大圆分成六等份,利用整体思想,可知:阴影部分的面积是大圆面积的一半,因此若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是.【点评】确定阴影部分的面积与大圆的面积之间的关系是解题的关键.18.有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为.【考点】概率公式;解一元一次不等式组.【分析】由关于x的不等式组有解,可求得a>5,然后利用概率公式求解即可求得答案.【解答】解:,由①得:x≥3,由②得:x<,∵关于x的不等式组有解,∴>3,解得:a>5,∴使关于x的不等式组有解的概率为:.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题(共46分)19.下列问题哪些是必然事件?哪些是不可能事件?哪些是随机事件?(1)太阳从西边落山;(2)某人的体温是100℃;(3)a2+b2=﹣1(其中a,b都是实数);(4)水往低处流;(5)三个人性别各不相同;(6)一元二次方程x2+2x+3=0无实数解;(7)经过有信号灯的十字路口,遇见红灯.【考点】随机事件.【分析】必然事件就是一定发生的事件,不可能事件就是一定不会发生的事件,随机事件就是可能发生也可能不发生的事件,依据定义即可判断.【解答】解:(1)(4)(6)是必然事件,(2)(3)(5)是不可能事件,(7)是随机事件.【点评】本题考查了必然事件、不可能事件、随机事件的定义,需要正确理解概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.20.如图,在方格纸中,△ABC的三个顶点及D,E,F,G,H五个点分别位于小正方形的顶点上.(1)现以D,E,F,G,H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全等但面积相等的三角形是△DFG或△DHF (只需要填一个三角形)(2)先从D,E两个点中任意取一个点,再从F,G,H三个点中任意取两个不同的点,以所取得这三个点为顶点画三角形,求所画三角形与△ABC面积相等的概率(用画树状图或列表格求解).【考点】作图—应用与设计作图;列表法与树状图法.【分析】(1)根据格点之间的距离得出△ABC的面积进而得出三角形中与△ABC不全等但面积相等的三角形;(2)利用树状图得出所有的结果,进而根据概率公式求出即可.【解答】解:(1)∵△ABC的面积为:×3×4=6,只有△DFG或△DHF的面积也为6且不与△ABC全等,∴与△ABC不全等但面积相等的三角形是:△DFG或△DHF;(2)画树状图得出:由树状图可知共有出现的情况有△DHG,△DHF,△DGF,△EGH,△EFH,△EGF,6种可能的结果,其中与△ABC面积相等的有3种,即△DHF,△DGF,△EGF,故所画三角形与△ABC面积相等的概率P==,答:所画三角形与△ABC面积相等的概率为.故答案为:△DFG或△DHF或△EGF【点评】此题主要考查了三角形面积求法以及树状图法求概率,根据已知得出三角形面积是解题关键.21.某人的钱包内有10元、20元和50元的纸币各1张,从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.【考点】列表法与树状图法.【专题】计算题.【分析】(1)先列表展示所有3种等可能的结果数,再找出总额是30元所占结果数,然后根据概率公式计算;(2)找出总额超过51元的结果数,然后根据概率公式计算.【解答】解:(1)列表:共有3种等可能的结果数,其中总额是30元占1种,所以取出纸币的总额是30元的概率=;(2)共有3种等可能的结果数,其中总额超过51元的有2种,所以取出纸币的总额可购买一件51元的商品的概率为.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.22.有形状、大小和质地都相同的四张卡片,正面分别写有A、B、C、D和一个等式,将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.(1)用画树状图或列表的方法表示抽取两张卡片可能出现的所有情况(结果用A、B、C、D表示);(2)小明和小强按下面规则做游戏:抽取的两张卡片上若等式都不成立,则小明胜,若至少有一个等式成立,则小强胜.你认为这个游戏公平吗?若公平,请说明理由;若不公平,则这个规则对谁有利,为什么?【考点】游戏公平性;列表法与树状图法.【分析】这是一个由两步完成,无放回的实验,游戏是否公平,关键要看是否游戏双方各有50%赢的机会,本题中即小明胜或小强胜的概率是否相等,求出概率比较,即可得出结论.【解答】解:(1)列表得:(A,D)(B,D)(C,D)﹣(A,D)(B,C)﹣(D,C)(A,B)﹣(C,B)(D,B)﹣(B,C)(C,A)(D,A)∴一共有12种情况;(2)不公平.∵A、B、不成立,C、D成立∴p(小明胜)==,p(小强胜)==,∴这个游戏不公平,对小强有利.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.23.在一个不透明的盒子里,装有三个分别写有数字6,﹣2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同的概率;(2)两次取出小球上的数字之和大于10的概率.【考点】列表法与树状图法.【分析】解此题的关键是准确列表或画树形图,找出所有的可能情况,即可求得概率.【解答】解:。
第二十五章概率初步单元测试一、单选题(共10题;共30分)1、一个暗箱里装有10个黑球,6个白球,14个红球,搅匀后随机摸出一个球,则摸到白球的概率是A、 B、C、D、2、书包里有数学书3本,英语书2本,语文书5本,从中任意抽取一本,是数学书的概率是()A、 B、C、D、3、如图,一个圆形转盘被等分成八个扇形区域,上面分别标上1,3,4,5,6,7,8,9,转盘可以自由转动,转动转盘一次,指针指向的数字为偶数所在区域的概率是()A、 B、C、D、4、在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是()A、 B、C、D、5、下列模拟掷硬币的实验不正确的是()A、用计算器随机地取数,取奇数相当于下面朝上,取偶数相当于硬币正面朝下B、袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上C、在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上D、将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上6、明明的相册里放了大小相同的照片共32张,其中与同学合影8张、与父母合影10张、个人照片14张,她随机地从相册里摸出1张,摸出的恰好是与同学合影的照片的可能性是()A、B、C、D、7、历史上,雅各布.伯努利等人通过大量投掷硬币的实验,验证了“正面向上的频率在0.5左右摆动,那么投掷一枚硬币10次,下列说法正确的是()A、“正面向上”必会出现5次B、“反面向上”必会出现5次C、“正面向上”可能不出现D、“正面向上”与“反面向上”出现的次数必定一样,但不一定是5次8、一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有125次摸到白球,因此小亮估计口袋中的红球大约有()个.A、100个B、90个C、80个D、70个9、小茜课间活动中,上午大课间活动时可以先从跳绳、乒乓球、健美操中随机选择一项运动,下午课外活动再从篮球、武术、太极拳中随机选择一项运动.则小茜上、下午都选中球类运动的概率是()A、 B、C、D、10、一个不透明的布袋里装有6个黑球和3个白球,它们除颜色外其余都相同,从中任意摸出一个球,是白球的概率为()A、B、C、D、二、填空题(共8题;共24分)11、把三张形状、大小相同但画面不同的风景图片,都按同样的方式剪成相同的两片,然后堆放到一起混合洗匀,从这堆图片中随机抽出两张,这两张图片恰好能组成一张原风景图片的概率是________ .12、在一个不透明的口袋中,装有4个红球和若干个白球,它们除颜色外其它完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,从口袋中任意摸出一个球,估计它是红球的概率是________ .13、布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是________.14、有四张扑克牌,分别为红桃3,红桃4,红桃5,黑桃6,背面朝上洗匀后放在桌面上,从中任取一张后记下数字和颜色,再背面朝上洗匀,然后再从中随机取一张,两次都为红桃,并且数字之和不小于8的概率为________ .15、一个布袋中装有只有颜色不同的a(a>12)个小球,分别是2个白球、4个黑球,6个红球和b个黄球,从中任意摸出一个球,记下颜色后放回,经过多次重复实验,把摸出白球,黑球,红球的概率绘制成统计图(未绘制完整).根据题中给出的信息,布袋中黄球的个数为________16、在一个不透明的袋子中有四个完全相同的小球,分别标号为1,2,3,4.随机摸取一个小球不放回,再随机摸取一个小球,两次摸出的小球的标号的和等于4的概率是________17、流传的游戏,游戏时,双方每次任意出“石头”,“剪刀”,“布”这三种手势中的一种,那么双方出现相同手势的概率为________.18、一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,﹣1,﹣2,﹣3四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为________.三、解答题(共6题;共46分)19、在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个. 现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.20、不透明的盒中装有红、黄、蓝三种颜色的小球若干个(除颜色外均相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,是蓝球的概率为.(1)求盒中黄球的个数;(2)第一次任意摸出一个球放回后,第二次再任意摸一个球,请用列表或树状图,求两次都摸出红球的概率.21、如果手头没有硬币,但想知道掷一次这种均匀的硬币正面朝上的概率是多少,请问你能用三种不同的方法进行模拟试验吗?请写出试验过程.22、如图所示,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6;若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少?23、一不透明的袋子中装有4个球,它们除了上面分别标有的号码1、2、3、4不同外,其余均相同.将小球搅匀,并从袋中任意取出一球后放回;再将小球搅匀,并从袋中再任意取出一球.若把两次号码之和作为一个两位数的十位上的数字,两次号码之差的绝对值作为这个两位数的个位上的数字,请用“画树状图”或“列表”的方法求所组成的两位数是奇数的概率.24、有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B 布袋中有三个完全相同的小球,分别标有数字-1,-2和-3.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为.(Ⅰ)用列表或画树状图的方法写出点Q的所有可能坐标;(Ⅱ)求点Q落在抛物线y=x2-2x-1上的概率.答案解析一、单选题1、【答案】 D【考点】概率公式【解析】【分析】概率的求法:概率=所求情况数与所有情况数的比.由题意得摸到白球的概率是,故选D.【点评】本题属于基础应用题,只需学生熟练掌握概率的求法,即可完成.2、【答案】 B【考点】概率公式【解析】【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,∵书包里有数学书3本,英语书2本,语文书5本,共10本书,∴从中任意抽取一本,是数学书的概率是.故选B.3、【答案】 B【考点】概率公式【解析】【分析】先求出转盘上所有的偶数,再根据概率公式解答即可.∵在1,3,4,5,6,7,8,9中,偶数有4,6,8,∴转动转盘一次,指针指向的数字为偶数所在区域的概率=.故选B.4、【答案】 B【考点】概率公式【解析】【解答】∵在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,∴从中任意摸出一个球,则摸出白球的概率是:=.故选B.【分析】由在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,直接利用概率公式求解即可求得答案.5、【答案】 D【考点】模拟实验【解析】【解答】A、用计算器随机地取数,取奇数相当于下面朝上,取偶数相当于硬币正面朝下,正确,不合题意;B、袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上,正确,不合题意;C、在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上,正确,不合题意;D、将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上,由于奇数与偶数个数不相同,故不能模拟掷硬币的实验,故符合题意.故选:D.【分析】利用模拟实验只能用更简便方法完成,验证实验目的,但不能改变实验目的,进而分析得出即可.6、【答案】C【考点】可能性的大小【解析】【解答】解:∵明明的相册里放了大小相同的照片共32张,其中与同学合影8张,∴她随机地从相册里摸出1张,摸出的恰好是与同学合影的照片的可能性是:=.故选;C.【分析】利用与同学合影的照片数量除以相片总数,即可得出答案.7、【答案】C【考点】利用频率估计概率【解析】【解答】解:A、“正面向上”不一定会出现5次,故本选项错误;B、“反面向上”不一定会出现5次,故本选项错误;C、“正面向上”可能不出现,只是几率不太大,故本选项正确;D、“正面向上”与“反面向上”出现的次数可能不一样,故本选项错误;故选C.【分析】利用频率估计概率时,只有做大量试验,才能用频率会计概率,但少数实验不能确定一定会出现和概率相符的结果.8、【答案】 D【考点】利用频率估计概率【解析】【解答】解:球的总数是:10÷=80(个),则红球的个数是:80﹣10=70(个).故选D.【分析】小亮共摸了1000次,其中有125次摸到白球,则白球所占的比例是,据此即可求得球的总数,进而求解.9、【答案】 A【考点】列表法与树状图法【解析】【解答】解:画树状图为:共有9种等可能的结果数,其中小茜上、下午都选中球类运动的结果数为1,所以小茜上、下午都选中球类运动的概率= .故选A.【分析】画树状图展示所有9种等可能的结果数,再找出小茜上、下午都选中球类运动的结果数,然后根据概率公式计算.10、【答案】B【考点】概率公式【解析】【解答】解:∵个不透明的布袋里装有6个黑球和3个白球,∴中任意摸出一个球,是白球的概率= = .故选B.【分析】直接根据概率公式即可得出结论.二、填空题11、【答案】【考点】列表法与树状图法【解析】【解答】设三张风景图片分别剪成相同的两片为:A1, A2, B1, B2, C1, C2;如图所示:,所有的情况有30种,符合题意的有6种,故这两张图片恰好能组成一张原风景图片的概率是:.故答案为:.【分析】把三张风景图片剪成相同的两片后用A1, A2, B1, B2, C1, C2来表示,根据题意画树形图,数出可能出现的结果利用概率公式即可得出答案.12、【答案】【考点】利用频率估计概率【解析】【解答】解:∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,即.故答案为:.【分析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率即可.13、【答案】【考点】概率公式【解析】【解答】∵一个布袋里装有3个红球和6个白球,∴摸出一个球摸到红球的概率为:.【分析】求摸到红球的概率,即用红球除以小球总个数即可得出得到红球的概率.14、【答案】【考点】列表法与树状图法【解析】【解答】解:画树状图为:共有12种等可能的结果数,其中两次都为红桃,并且数字之和不小于8的结果数为4,所以两次都为红桃,并且数字之和不小于8的概率==.故答案为.【分析】先画树状图展示所有12种等可能的结果数,再找出两次都为红桃,并且数字之和不小于8的结果数,然后根据概率公式求解.15、【答案】 8【考点】利用频率估计概率【解析】【解答】解:球的总数:4÷0.2=20(个),2+4+6+b=20,解得:b=8,故答案为:8.【分析】首先根据黑球数÷总数=摸出黑球的概率,再计算出摸出白球,黑球,红球的概率可得答案.16、【答案】【考点】列表法与树状图法【解析】【解答】解:画树状图得:由树状图可知:所有可能情况有12种,其中两次摸出的小球标号的和等于4的占2种,所以其概率==,故答案为:.【分析】先画树状图展示所有12种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,然后根据概率的概念计算即可.17、【答案】【考点】列表法与树状图法【解析】【解答】解:画树状图得:∵共有9种等可能的结果,双方出现相同手势的有3种情况,∴双方出现相同手势的概率P= .故答案为:.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与双方出现相同手势的情况,再利用概率公式即可求得答案.18、【答案】【考点】列表法与树状图法【解析】【解答】解:画树状图得:∵共有16种等可能的结果,两次摸出的小球上两个数字乘积是负数的有6种情况,∴两次摸出的小球上两个数字乘积是负数的概率为:= .故答案为:.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及两次摸出的小球上两个数字乘积是负数的情况,再利用概率公式即可求得答案.三、解答题19、【答案】此游戏不公平.理由如下:列树状图如下,列表如下,<img style="vertical-align:middle;"src=://tikupic.21cnjy./97/21/97721dbd27213200cd2440eb37ed9372.png color:blue;">【考点】列表法与树状图法,游戏公平性【解析】【解答】游戏是否公平,关键要看游戏双方获胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等。
九年级数学(上)第25章《概率初步》单元检测题一、选择题(每小题3分,共30分)1. “抛一枚均匀硬币,落地后正面向上”这一事件是( B )A .必然事件 B. 随机事件 C. 确定事件 D. 不可能事件2. 从只装有4个红球的袋中随机摸出一球,若摸到白球的概率是1P ,摸到红球的概率是2P ,则( B )A. 1P =1,2P =1B. 1P =0,2P =1C. 1P =0,2P =14D. 1P =2P =143. 如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上相应的颜色,转动转盘,转盘停止后,指针指向蓝色区域的概率是( B ) A.16 B.13 C.12 D.234. 掷一个质地均匀的正方体骰子,当骰子停止后,朝上一面的点数为5的概率是( C )A. 1B. 15C. 16D. 0 5. 在抛掷一枚硬币的实验中,某一组做了500次实验,其出现正面的频率是49.6%,可以推知出现正面的次数是( A )A. 248B. 250C. 258D. 无法确定6.(2015绍兴)在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是( B )A. 13B. 25C. 12D. 357. 一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有6个黄球. 每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n 大约是( D )A. 6B. 10C. 18D. 208.(2015德州)经过某十字路口的汽车,可能直行,也可能左转或者右转. 如果这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆左转,一辆右转的概率是( C )A. 47B.49C.29D.199. 如图,转动两个转盘,当指针所指的数之和为奇数时,小明胜,否则小亮胜,则小亮获胜的概率是( D )A. 13B.12C.49D.5910. 一个盒子里有完全相同的三个小球,球上分别标有数字-1,1,2. 随机摸出一个小球(不放回),其数字记为p,再随机摸出另一个小球,其数字记为q,则满足关于x的方程2++x px q=0有实数根的概率是( A )A. 12B.13C.23D.56二、填空题(每小题3分,共18分)11. 如图,是一幅普通扑克牌中的13张黑桃牌,将它们洗均匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于9的概率为 . (813)12. 在英语句子“Wish you success!”(祝你成功)中任选一个字母,这个字母为“s”的概率是 . (3 14)13. 在一个不透明的口袋中有颜色不同的红、白两种小球,其中红球3只,白球n只,若从袋中任取一个球,摸出白球的概率为34,则n= . (9)14. 为了估计不透明的袋子里装有多少白球,先从袋中摸出10个球都做上标记,然后放回袋中去,充分摇匀后再摸出10个球,发现其中有一个球有标记,那么你估计袋中大约有个白球 .(100)15.(2015河南)现有四张分别标有数字1,2,3,4的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张后放回,再背面朝上洗匀,从中随机抽取一张,则两次抽取的卡片所标数字不同的概率是.(58)16. 如图,第(1)个图有1个黑球;第(2)个图为3个同样大小球叠成的图形,最下层的2个球为黑色,其余为白色;第(3)个图为6个同样大小球叠成的图形,最下一层的3个球为黑色,其余为白色;则从第(n)个图中随机取出一个球是黑球的概率是 .(21n)三、解答题(共8题,共72分)17.(本题8分)布袋中装有1个红球,2个白球,3个黑球,它们除了颜色外完全相同,从袋中任意摸出一个球,求摸出的球是白球的概率 .解:1 318.(本题8分)一个口袋中有3个大小相同的小球,球面上分别写有数字1、2,3,从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出的球上的数字和为偶数的概率.解:(1)共有9种等可能的结果;(2)由(1)得:两次摸出的球上的数字和为偶数的有5种情况,所以两次摸出的球上的数字和为偶数的概率为59.19.(本题8分)商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率是;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率 .解:(1)14; (2)∵共有12种等可能结果,他恰好买到雪碧和奶汁的有两种情况∴他恰好买到雪碧和奶汁的概率为:21126= .20.(本题8分)在一个不透明的口袋中装有红、白、黑三种颜色的小球若干个,它们只有颜色不同,其中有白球2个、黑球1个. 已知从中任意摸出1个球得白球的概率为12. (1)求口袋中有多少个红球;(2)求从袋中一次摸出2个球,得一红一白的概率.(要求画出树状图)解:(1)设袋中有x 个红球,据题意得21212=++x ,解得x=1 ∴袋中有红球1个; (2)P (摸得一红一白)=1321.(本题8分)“阳光体育”运动关乎每个学生未来的幸福生活,今年五月,我市某校开展了以“阳光体育我是冠军”为主题的一分钟限时跳绳比赛,要求每个班选2-3名选手参赛,现将80名选手比赛成绩(单位:次/分钟)进行统计. 绘制成频数分布直方图,如图所示 .(1)图中a 值为 ;(2)将跳绳次数在160-190的选手依次记为1A 、2A 、3A ,从中随机抽取两名选手作经验交流,请用画树状图或列表法求恰好抽取到的选手是1A 和2A 的概率 .解:(1)根据题意得:a=80-8-40-28=4,故答案为4 ;(2)画树状图略, ∵共有12种等可能的结果,恰好抽取到选手1A 和2A 的有两种情况∴恰好抽取到选手1A 和2A 的概率为:21126= .22.(本题10分)(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人的某一人. 求第二次传球后球回到甲手里的概率.(请用“画树状图”或“列表”等方式给分析过程)(2)如果甲跟另外n(n ≥2)个人做(1)同样的游戏,那么,第三次传球后球回到甲手里的概率是 ________.(请直接写出结果).解:(1)画树状图略,∵共有9种等可能的结果,其符合要求的结果有3种∴P (第二次传球后球回到甲手里)=3193= (2)21-n n23.(本题10分)某校组织了一次初三科技小制作比赛,有A .B .C ,D 四个班共提供了100件参赛作品. C 班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图l 和图2两幅尚不完整的统计图中 .(1)B 班参赛作品有多少件?(2)请你将图②的统计图补充完整;(3)通过计算说明,哪个班的获奖率高?(4)将写有A ,B ,C ,D 四个字母的完全相同的卡片放入箱中,从中一次随机抽出两张卡片,求抽到A ,B 两班的概率 .解:(1)100(1-35%-20%-20%)=25(件),答:B班参赛作品有25件;(2)∵C班提供的参赛作品的获奖率为50%∴C班的参赛作品的获奖数量为:100×20%×50%=10(件),画图略;(3)A班的获奖率为1410035%⨯×100%=40%,B班的获奖率为1125×100%=44%,C班的获奖率为50%,D班的获奖率为810020%⨯×100%=40%,故B班的获奖率高;(4)画图略,一共有12种等可能的情况,符合题意的有2种情况,则从中一次随机抽出两张卡片,抽到A,B两班的概率为21 126=.24.(本题12分)已知M(x,y)是平面直角坐标系xOy中的点,其中x是从l、2、3三个数中任取的一个数,y是从l、2、3、4四个数中任取的一个数 .(l)计算由x、y确定的点M(x,y)在函数y= -x+5的图象上的概率;(2)小明和小红约定做一个游戏,其规则为:若x、y满足xy>6则小明胜;若x、y满足xy<6则小红胜,这个游戏公平吗?说明理由. 若不公平,请写出公平的游戏规则;(3)定义“点M(x,y)在直线x+y=n上”为事件A(2≤n≤7,n为整数),则当A的概率最大时,n的所有可能的值为 .(不需要解答过程)解:(1)14;(2)P(小明胜)=14,P(小红胜)=712;游戏规则改为:若x,y满足xy>6则小明得7分,若x、y满足xy<6则小红得3分;(3)4、5 .。
人教版九年级数学上《第25章概率初步》单元测试含答案解析一、选择题:1.同时掷两枚质地平均的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中是不可能事件的是()A.点数之和为12 B.点数之和小于3C.点数之和大于4且小于8 D.点数之和为132.下列说法正确的是()A.可能性专门小的事件在一次实验中一定可不能发生B.可能性专门小的事件在一次实验中一定发生C.可能性专门小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生3.下列事件是确定事件的为()A.太平洋中的水常年不干B.男生比女生高C.运算机随机产生的两位数是偶数D.星期天是晴天4.一只小鸟自由悠闲地在空中飞行,然后随意落在图中所示的某个方格中中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有6个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与那个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是()A.B.C.D.不能确定6.在一个不透亮的袋子中装有2个红球,3个白球,它们除颜色外其余均相同,随机从中摸出一球,记录下颜色后将它放回袋子中,充分摇匀后,再随机摸出一球,则两次都摸到红球的概率是()A.B.C.D.7.下列说法正确的是()A.一颗质地平均的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说改日下雨的概率是50%,因此改日将有一半时刻在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等8.在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类.其中必测项目为耐力类,抽测项目为:速度类有50米,100米,50米×2往返跑三项,力量类有原地掷实心球,立定跳远,引体向上(男)或仰卧起坐(女)三项.市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50米×2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是()A.B.C.D.9.元旦游园晚会上,有一个闯关活动:将20个大小重量完全要样的乒乓球放入一个袋中,其中8个白色的,5个黄色的,5个绿色的,2个红色的.假如任意摸出一个乒乓球是红色,就能够过关,那么一次过关的概率为()A.B.C.D.10.关于频率和概率的关系,下列说法正确的是()A.频率等于概率;B.当实验次数专门大时,频率稳固在概率邻近;C.当实验次数专门大时,概率稳固在频率邻近;D.实验得到的频率与概率不可能相等二、填空题11.在一个不透亮的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个,搅匀后,从中同时摸出2个小球,请你写出那个实验中的一个可能事件:.12.掷一枚平均的骰子,2点向上的概率是,7点向上的概率是.13.设盒子中有8个小球,其中红球3个,黄球4个,蓝球1个,若从中随机地取出1个球,记事件A为“取出的是红球”,事件B为“取出的是黄球”,事件C为“取出的是蓝球”,则P(A)= ,P(B)= ,P(C)= .14.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1,2,3,4,5中的一个,将这5个球放入不透亮的袋中搅匀,假如不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.15.下面图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形既是轴对称图形又是中心对称图形的概率为.16.从下面的6张牌中,任意抽取两张.求其点数和是奇数的概率为.17.在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是.18.在一个不透亮的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则n= .三、解答题19.某出版社对其发行的杂志的质量进行了5次“读者调查问卷”,结果如下:被调查人数n 1001 1000 1004 1003 1000中意人数m 999 998 1002 1002 1000中意频率(1)运算表中各个频率;(2)读者对该杂志中意的概率约是多少?(3)从中你能说明频率与概率的关系吗?20.一个布袋中放有红、黄、白三种颜色的球各一个,它们除颜色外其他都一样,小明从布袋中摸出一个球后放回去摇匀,再摸出一个球,请你利用画树状图法分析并求出小明两次都能摸到白球的概率.21.杨华与季红用5张同样规格的硬纸片做拼图游戏,正面如图1所示,背面完全一样,将它们背面朝上搅匀后,同时抽出两张.规则如下:当两张硬纸片上的图形可拼成电灯或小人时,杨华得1分;当两张硬纸片上的图形可拼成房子或小山时,季红得1分(如图2).问题:游戏规则对双方公平吗?请说明理由;若你认为不公平,如何修改游戏规则才能使游戏对双方公平?22.在一个不透亮的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000摸到白球的次数m 65 124 178 302 481 599 1803摸到白球的频率0.65 0.62 0.593 0.604 0.601 0.599 0.601(1)请估量:当n专门大时,摸到白球的频率将会接近;(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(白球)= ;(3)试估算盒子里黑、白两种颜色的球各有多少只?《第25章概率初步》参考答案与试题解析一、选择题:1.同时掷两枚质地平均的正方体骰子,骰子的六个面上分别刻有1到6的点数,下列事件中是不可能事件的是()A.点数之和为12 B.点数之和小于3C.点数之和大于4且小于8 D.点数之和为13【考点】随机事件.【分析】找到一定可不能发生的事件即可.【解答】解:A、6点+6点=12点,为随机事件,不符合题意;B、例如:1点+1点=2点,为随机事件,不符合题意;C、例如:1点+5点=6点,为随机事件,不符合题意;D、两枚骰子点数最大之和为12点,不可能是13点,为不可能事件,符合题意.故选:D.【点评】本题考查事件的分类,事件依照其发生的可能性大小分为必定事件、随机事件、不可能事件.不可能事件是指在一定条件下,一定不发生的事件.2.下列说法正确的是()A.可能性专门小的事件在一次实验中一定可不能发生B.可能性专门小的事件在一次实验中一定发生C.可能性专门小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生【考点】可能性的大小.【分析】事件的可能性要紧看事件的类型,事件的类型决定了可能性及可能性的大小.【解答】解:A、可能性专门小的事件在一次实验中也会发生,故A错误;B、可能性专门小的事件在一次实验中可能发生,也可能不发生,故B错误;C、可能性专门小的事件在一次实验中有可能发生,故C正确;D、不可能事件在一次实验中更不可能发生,故D错误.故选:C.【点评】一样地必定事件的可能性大小为1,不可能事件发生的可能性大小为0,随机事件发生的可能性大小在0至1之间.注意可能性较小的事件也有可能发生;可能性专门大的事也有可能不发生.3.下列事件是确定事件的为()A.太平洋中的水常年不干B.男生比女生高C.运算机随机产生的两位数是偶数D.星期天是晴天【考点】随机事件.【分析】确定事件包括必定事件和不可能事件.必定事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件.【解答】解:B,C,D差不多上不一定发生的事件,属于不确定事件.是确定事件的为:太平洋中的水常年不干.故选A.【点评】明白得概念是解决这类基础题的要紧方法.注意确定事件包括必定事件和不可能事件.4.一只小鸟自由悠闲地在空中飞行,然后随意落在图中所示的某个方格中(2020•汕头模拟)中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有6个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与那个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是()A.B.C.D.不能确定【考点】概率公式.【分析】先运算出此观众前两次翻牌均获得若干奖金后,现在还有多少个商标牌,其中有奖的有多少个,它们的比值即为所求.【解答】解:∵某观众前两次翻牌均获得若干奖金,即现在还有18个商标牌,其中有奖的有4个,∴他第三次翻牌获奖的概率是=.故选B.【点评】本题考查的是随机事件概率的求法,假如一个事件有n种可能,而且这些事件的可能性相同,其中事件A显现m种结果,那么事件A的概率P(A)=.6.在一个不透亮的袋子中装有2个红球,3个白球,它们除颜色外其余均相同,随机从中摸出一球,记录下颜色后将它放回袋子中,充分摇匀后,再随机摸出一球,则两次都摸到红球的概率是()A.B.C.D.【考点】列表法与树状图法.【专题】压轴题.【分析】依据题意先用列表法或画树状图法分析所有等可能的显现结果,然后依照概率公式求出该事件的概率即可.【解答】红1 红2 白1 白2 白3 红1 红1红1 红1红2 红1白1 红1白2 红1白3红2 红2红1 红2红2 红2白1 红2白2 红2白3白1 白1红1 白1红2 白1白1 白1白2 白1白3白2 白2红1 白2红2 白2白1 白2白2 白2白3白3 白3红1 白3红2 白3白1 白3白2 白3白3解:由列表可知共有5×5=25种可能,两次都摸到红球的有4种,因此概率是.故选D.【点评】考查概率的概念和求法,用树状图或表格表达事件显现的可能性是求解概率的常用方法.用到的知识点为:概率=所求情形数与总情形数之比.7.下列说法正确的是()A.一颗质地平均的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说改日下雨的概率是50%,因此改日将有一半时刻在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等【考点】概率的意义.【专题】压轴题.【分析】概率是反映事件发生气会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【解答】解:A、是随机事件,错误;B、中奖的概率是1%,买100张该种彩票不一定会中奖,错误;C、改日下雨的概率是50%,是说改日下雨的可能性是50%,而不是改日将有一半时刻在下雨,错误;D、正确.故选D.【点评】正确明白得概率的含义是解决本题的关键.注意随机事件的条件不同,发生的可能性也不等.8.在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力量类.其中必测项目为耐力类,抽测项目为:速度类有50米,100米,50米×2往返跑三项,力量类有原地掷实心球,立定跳远,引体向上(男)或仰卧起坐(女)三项.市中考领导小组要从速度类和力量类中各随机抽取一项进行测试,请问同时抽中50米×2往返跑、引体向上(男)或仰卧起坐(女)两项的概率是()A.B.C.D.【考点】概率公式.【专题】压轴题.【分析】依据题意找到所有等可能的显现结果,然后依照概率公式求出该事件的概率.【解答】解:共有3×3=9种可能,同时抽中50米×2往返跑、引体向上(男)或仰卧起坐(女)两项的有1种,因此概率是.故选D.【点评】用到的知识点为:概率=所求情形数与总情形数之比.9.元旦游园晚会上,有一个闯关活动:将20个大小重量完全要样的乒乓球放入一个袋中,其中8个白色的,5个黄色的,5个绿色的,2个红色的.假如任意摸出一个乒乓球是红色,就能够过关,那么一次过关的概率为()A.B.C.D.【考点】概率公式.【专题】应用题.【分析】让红球的个数除以球的总个数即为所求的概率.【解答】解:全部20个球,只有2个红球,因此任意摸出一个乒乓球是红色的概率是=.故选D.【点评】此题考查概率的求法:假如一个事件有n种可能,而且这些事件的可能性相同,其中事件A显现m种结果,那么事件A的概率P(A)=.10.关于频率和概率的关系,下列说法正确的是()A.频率等于概率;B.当实验次数专门大时,频率稳固在概率邻近;C.当实验次数专门大时,概率稳固在频率邻近;D.实验得到的频率与概率不可能相等【考点】利用频率估量概率.【分析】大量反复试验时,某事件发生的频率会稳固在某个常数的邻近,那个常数就叫做事件概率的估量值,而不是一种必定的结果.【解答】解:A、频率只能估量概率;B、正确;C、概率是定值;D、能够相同,如“抛硬币实验”,可得到正面向上的频率为0.5,与概率相同.故选B.【点评】考查利用频率估量概率,大量反复试验下频率稳固值即概率.二、填空题11.在一个不透亮的箱子里放有除颜色外,其余都相同的4个小球,其中红球3个、白球1个,搅匀后,从中同时摸出2个小球,请你写出那个实验中的一个可能事件:摸到1个红球,1个白球.【考点】随机事件.【专题】开放型.【分析】填写一个有可能发生,也可能不发生的事件即可.【解答】解:摸到1个红球,1个白球或摸到2个红球.【点评】可能事件确实是可能发生,也可能不发生的事件.12.掷一枚平均的骰子,2点向上的概率是,7点向上的概率是0 .【考点】概率公式.【分析】由掷一枚平均的骰子有6种等可能的结果,其中2点向上的有1种情形,7点向上的有0种情形,直截了当利用概率公式求解即可求得答案.【解答】解:∵掷一枚平均的骰子有6种等可能的结果,其中2点向上的有1种情形,7点向上的有0种情形,∴2点向上的概率是:,7点向上的概率是:0.故答案为:,0.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情形数与总情形数之比.13.设盒子中有8个小球,其中红球3个,黄球4个,蓝球1个,若从中随机地取出1个球,记事件A为“取出的是红球”,事件B为“取出的是黄球”,事件C为“取出的是蓝球”,则P(A)= ,P(B)= ,P(C)= .【考点】概率公式.【分析】分别用所求的情形与总情形的比值即可得答案.【解答】解:∵盒子中有8个小球,其中红球3个,黄球4个,蓝球1个,∴若从中随机地取出1个球,则P(A)=,P(B)==,P(C)=.故答案为:,,.【点评】此题考查概率的求法:假如一个事件有n种可能,而且这些事件的可能性相同,其中事件A显现m种结果,那么事件A的概率P(A)=.14.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1,2,3,4,5中的一个,将这5个球放入不透亮的袋中搅匀,假如不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是.【考点】列表法与树状图法.【分析】列举出所有情形,看所求的情形占总情形的多少即可.【解答】解:列表得:(1,5)(2,5)(3,5)(4,5)﹣(1,4)(2,4)(3,4)﹣(5,4)(1,3)(2,3)﹣(4,3)(5,3)(1,2)﹣(3,2)(4,2)(5,2)﹣(2,1)(3,1)(4,1)(5,1)∴一共有20种情形,这两个球上的数字之和为偶数的8种情形,∴这两个球上的数字之和为偶数的概率是=.【点评】列表法能够不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;解题时还要注意是放回实验依旧不放回实验.用到的知识点为:概率=所求情形数与总情形数之比.15.下面图形:四边形,三角形,正方形,梯形,平行四边形,圆,从中任取一个图形既是轴对称图形又是中心对称图形的概率为.【考点】概率公式;轴对称图形;中心对称图形.【分析】四边形,三角形,正方形,梯形,平行四边形,圆中任取一个图形共有6个结果,且每个结果显现的机会相同,其中既是轴对称图形又是中心对称图形的正方形和圆两个.【解答】解:∵在四边形,三角形,正方形,梯形,平行四边形,圆6个图形中,既是轴对称图形又是中心对称图形的正方形和圆两个.∴从中任取一个图形既是轴对称图形又是中心对称图形的概率为.【点评】正确认识轴对称图形和中心对称图形以及明白得列举法求概率是解题的关键.用到的知识点为:概率=所求情形数与总情形数之比.16.从下面的6张牌中,任意抽取两张.求其点数和是奇数的概率为.【考点】概率公式.【分析】一个奇数和一个偶数得和是奇数,6张牌中,任意抽取两张总共有6×5=30种情形,运算出和是奇数的情形个数,利用概率公式进行运算.【解答】解:一个奇数和一个偶数总共有2×2×4=16种情形,故点数和是奇数的概率为.【点评】假如一个事件有n种可能,而且这些事件的可能性相同,其中事件A显现m种结果,那么事件A的概率P(A)=.17.在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是.【考点】概率公式.【分析】让红球的个数除以球的总数即为摸到红球的概率.【解答】解:∵袋子中共有2+3=5个球,2个红球,∴从中任意摸出一个球,则摸到红球的概率是.故答案为:.【点评】此题考查概率的求法:假如一个事件有n种可能,而且这些事件的可能性相同,其中事件A显现m种结果,那么事件A的概率P(A)=.18.在一个不透亮的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则n= 1 .【考点】概率公式.【专题】压轴题.【分析】依照白球的概率公式列出关于n的方程,求出n的值即可.【解答】解:由题意知:,解得n=1.【点评】用到的知识点为:概率=所求情形数与总情形数之比.三、解答题19.某出版社对其发行的杂志的质量进行了5次“读者调查问卷”,结果如下:被调查人数n 1001 1000 1004 1003 1000中意人数m 999 998 1002 1002 1000中意频率0.998 0.998 0.998 0.999 1.000(1)运算表中各个频率;(2)读者对该杂志中意的概率约是多少?(3)从中你能说明频率与概率的关系吗?【考点】利用频率估量概率.【分析】(1)概率确实是中意的人数与被调查的人数的比值;(2)依照题目中中意的频率估量出概率即可;(3)从概率与频率的定义分析得出即可.【解答】解:(1)由表格数据可得:≈0.998, =0.998,≈0.998,≈0.999, =1.000;(2)由第(1)题的结果知出版社5次“读者问卷调查”中,收到的反馈信息是:读者对杂志中意的概率约是:P(A)=0.998;(3)频率在一定程度上反映了事件发生的可能性大小.尽管每进行一连串(n次)试验,所得到的频率能够各不相同,但只要 n相当大,频率与概率是会专门接近的.因此,概率是能够通过频率来“测量”的,频率是概率的一个近似.概率是频率稳固性的依据,是随机事件规律的一个表达.实际中,当概率不易求出时,人们常通过作大量试验,用事件显现的频率去近似概率.【点评】此题考查了利用频率估量概率,大量反复试验下频率稳固值即概率.用到的知识点为:频率=所求情形数与总情形数之比.20.一个布袋中放有红、黄、白三种颜色的球各一个,它们除颜色外其他都一样,小明从布袋中摸出一个球后放回去摇匀,再摸出一个球,请你利用画树状图法分析并求出小明两次都能摸到白球的概率.【考点】列表法与树状图法.【分析】依据题意先用画树状图法分析所有等可能的显现结果,然后依照概率公式求出该事件的概率.【解答】解:画树形图如下:由图可知,两次摸球可能显现的结果共有9种,而显现(白,白)的结果只有一种,因此,小明两次摸球都摸到白球的概率为P=.【点评】画树状图法能够不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情形数与总情形数之比.21.(2005•南通)杨华与季红用5张同样规格的硬纸片做拼图游戏,正面如图1所示,背面完全一样,将它们背面朝上搅匀后,同时抽出两张.规则如下:当两张硬纸片上的图形可拼成电灯或小人时,杨华得1分;当两张硬纸片上的图形可拼成房子或小山时,季红得1分(如图2).问题:游戏规则对双方公平吗?请说明理由;若你认为不公平,如何修改游戏规则才能使游戏对双方公平?【考点】游戏公平性.【分析】游戏是否公平,关键要看是否游戏双方赢的机会是否相等,即判定双方取胜的概率是否相等,或转化为在总情形明确的情形下,判定双方取胜所包含的情形数目是否相等. 【解答】解:(1)那个游戏对双方不公平. ∵P (拼成电灯)=;P (拼成小人)=;P (拼成房子)=;P (拼成小山)=,∴杨华平均每次得分为(分); 季红平均每次得分为(分).∵<,∴游戏对双方不公平.(2)改为:当拼成的图形是小人时杨华得3分,其余规则不变, 就能使游戏对双方公平.(答案不惟一,其他规则可参照给分)【点评】本题考查的是游戏公平性的判定.判定游戏公平性就要运算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情形数与总情形数之比.22.(2008•贵阳)在一个不透亮的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000 摸到白球的次数m 65 124 178 302 481 599 1803 摸到白球的频率0.650.620.5930.6040.6010.5990.601(1)请估量:当n 专门大时,摸到白球的频率将会接近 0.6 ;(精确到0.1) (2)假如你摸一次,你摸到白球的概率P (白球)= 0.6 ; (3)试估算盒子里黑、白两种颜色的球各有多少只? 【考点】利用频率估量概率. 【专题】图表型.【分析】(1)运算出其平均值即可; (2)概率接近于(1)得到的频率;(3)白球个数=球的总数×得到的白球的概率,让球的总数减去白球的个数即为黑球的个数.【解答】解:(1)∵摸到白球的频率为0.6,∴当n专门大时,摸到白球的频率将会接近0.6.(2)∵摸到白球的频率为0.6,∴假如你摸一次,你摸到白球的概率P(白球)=0.6.(3)盒子里黑、白两种颜色的球各有40﹣24=16,40×0.6=24.【点评】本题比较容易,考查利用频率估量概率.大量反复试验下频率稳固值即概率.用到的知识点为:部分的具体数目=总体数目×相应频率.。
人教版九年级上册数学第二十五章概率初步含答案一、单选题(共15题,共计45分)1、掷一枚质地均匀的硬币10次,下列说法正确的是()A.有5次正面朝上B.不可能10次正面朝上C.不可能10次正面朝下D.可能有5次正面朝上2、有A、B两只不透明口袋,每只口袋里装有两只相同的球,A袋中的两只球上分别写了“快”“慢”的字样,B袋中的两只球上分别写了“审”“答”的字样,从每只口袋里各摸出一只球,刚好能组成“慢审”字样的概率是()A. B. C. D.3、如图,是一块绿化带,将阴影部分修建为花圃.已知,,,阴影部分是的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为().A. B. C. D.4、下列说法正确的是()A.随机抛掷一枚硬币,反面一定朝上B.数据3,3,5,5,8的众数是8 C.某商场抽奖活动获奖的概率为,说明毎买50张奖券中一定有一张中奖 D.想要了解广安市民对“全面二孩”政策的看法,宜采用抽样调查5、小兰和小潭分别用掷A、B两枚骰子的方法来确定P(x,y)的位置,她们规定:小兰掷得的点数为x,小谭掷得的点数为y,那么,她们各掷一次所确定的点落在已知直线y=-2x+6上的概率为()A. B. C. D.6、一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了200次,其中有50次摸到红球.则此口袋中估计白球的个数是()个.A.20B.30C.40D.507、掷一枚均匀的骰子,骰子的6个面上分别刻有1、2、3、4、5、6点,则点数为奇数的概率是()A. B. C. D.8、下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生 D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次9、如图,在空白网格内将某一个小正方形涂成阴影部分,且所涂的小正方形与原阴影图形的小正方形至少有一边重合.小红按要求涂了一个正方形,所得到的阴影图形恰好是轴对称图形的概率为()A. B. C. D.10、下列事件是必然事件的是()A. NBA 球员投篮 10 次,投中十次B.明天会下雪C.党的十九大于2017 年 10 月 18 日在北京召开D.抛出一枚硬币,落地后正面朝上11、如图是一个可以自由转动的转盘,转盘分成黑、白两种颜色指针的位置固定,转动的转盘停止后,指针恰好指向白色扇形的穊率为(指针指向OA时,当作指向黑色扇形;指针指OB时,当作指向白色扇形),则黑色扇形的圆心角∠AOB=()A.40°B.45°C.50°D.60°12、下列事件中,属于必然事件的是()A.小明买彩票中奖B.在—个只有红球的盒子里摸球,摸到了白球C.任意抛掷一只纸杯,杯口朝下D.任选三角形的两边,其差小于第三边13、在抛掷硬币的试验中,下列结论正确的是()A.经过大量重复的抛掷硬币试验,可发现“正面向上”的频率越来越稳定 B.抛掷10000次硬币与抛掷12000次硬币“正面向上”的频率相同 C.抛掷50000次硬币,可得“正面向上”的频率为0.5 D.若抛掷2000次硬币“正面向上”的频率是0.518,则“正面向下”的频率也为0.51814、下列说法正确的是()A.“购买1张彩票就中奖”是不可能事件B.“掷一次骰子,向上一面的点数是6”是随机事件C.了解我国青年人喜欢的电视节目应作全面调查 D.甲、乙两组数据,若S甲2>S乙2,则乙组数据波动大15、小米和小美在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1个,这些球除颜色外无其他差别,从箱子中随机摸出1个球,然后放回箱子中,轮到下一个人摸球,小米和小美摸到的球都是红球的概率是().A. B. C. D.二、填空题(共10题,共计30分)16、某商场的打折活动规定:凡在本商场购物,结账时可转动一次如图所示的转盘(转到公共线位置时重转),并根据所转结果打折或不打折,某顾客在结账时转动一次该转盘,其结果是不打折的概率为________17、在抛掷两枚均匀骰子的试验中,如果没有骰子,请你提出两种替代方式:________.18、如图,在4×4的方格中,A、B、C、D、E、F分别位于格点上,以点A、点B为顶点,再从C、D、E、F四点中任取一点作为第三个顶点画三角形,则所画三角形为等腰三角形的概率是________.19、一个不透明的口袋里装有若干除颜色外其他完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述实验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球________个.20、同时掷两枚标有数字1~6的正方形骰子,数字和为1的概率是________。
人教版九年级上册数学第二十五章概率初步含答案一、单选题(共15题,共计45分)1、如图是从一幅扑g牌中取出的两组牌,分别是黑桃1,2,3,4红桃1,2,3,4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌面数字之和等于7的概率是()A. B. C. D.2、某口袋中有20个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则获胜.则当x=()时,游戏对甲乙双方公平.A.3B.4C.5D.63、在6张完全相同的卡片上分别画上线段、等边三角形、平行四边形、直角梯形、正方形和圆,在看不见图形的情况下随机摸出1张,这张卡片上的图形是中心对称图形的概率是()A. B. C. D.4、下列说法中,正确的是()A.“任意画一个四边形,它是轴对称图形”属于随机事件B.“366人中至少有2个人的生日是相同的”属于随机事件C.“任意买一张电影票,座位号是2的倍数”属于必然事件D.“阴天一定下雨”属于不可能事件5、从长度分别为2、3、6、7、9的5条线段中任取3条作为三角形的边,能组成三角形的概率为()A. B. C. D.6、育种小组对某品种小麦发芽情况进行测试,在测试基本情况相同的条件下,得到如下数据:抽查小麦100 500 1000 2000 3000 4000粒数发芽粒数95 486 968 1940 2907则a的值最有可能是()A.3680B.3720C.3880D.39607、有四张背面完全相同且不透明的卡片,每张卡片的正面分别写有数字﹣2,, 0,,将它们背面朝上,洗均匀后放置在桌面上,若随机抽取一张卡片,则抽到的数字恰好是无理数的概率是()A. B. C. D.18、小刚掷一枚均匀的硬币,一连99次都掷出正面朝上,当他第100次掷硬币时,出现正面朝上的概率是()A.0B.1C.D.9、如图,在4×4正方形网格中,任选取一个白色的小正方形并涂红,使图中红色部分的图形构成一个轴对称图形的概率是()A. B. C. D.10、一只不透明的袋子中装有1个黑球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出1 个球,摸到黑球的概率为()A. B. C. D.11、如图①,有6张写有实数的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图②摆放,从中任意翻开两张都是无理数的概率是 ( )A. B. C. D.12、已知实数a<0,则下列事件中是必然事件的是()A.a+3<0B.a﹣3<0C.3a>0D.a 3>013、A,B,C,D四名同学随机分为两组,两个人一组去參加辩论赛,问A、B两人恰好分到一组的概率()A. B. C. D.14、一个不透明的袋子中有3个白球、2个黄球和1个红球,这些球除颜色不同外其他完全相同,则从袋子中随机摸出一个球是黄球的概率为()A. B. C. D.15、在某次国际乒乓球单打比赛中,甲、乙两名中国选手进入最后决赛,那么下列事件为必然事件的是()A.冠军属于中国选手B.冠军属于外国选手C.冠军属于中国选手甲 D.冠军属于中国选手乙二、填空题(共10题,共计30分)16、如图所示是一飞镖游戏板,大圆的直径把一组同心圆分成四等份,假设飞镖击中圆面上每一个点都是等可能的,则飞镖落在黑色区域的概率是________.17、若正整数使得在计算的过程中,各数位不产生进位现象,则称为“本位数.现从所有大于0,且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为= ________ .18、一枚质地均匀的正方体,其六面分别刻有﹣2,0,﹣3,﹣2,5,4这六个数字.投掷这枚正方体一次,则向上一面的数字是﹣2的概率是________.19、有一个只放满形状大小都一样的白色小球的不透明盒子,小刚想知道盒内有多少白球,于是小刚向这个盒中放了8个黑球(黑球的形状大小与白球一样),摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中80次摸到黑球,估计盒中大约有白球________.20、农业部门引进一批新麦种,在播种前做了五次发芽试验,目的是想了解一粒这样的麦种发芽情况,实验统计数据如下:实验的麦种数/粒500 500 500 500 500发芽的麦种数/粒492 487 491 493 489发芽率/% 98.40 97.40 98.20 98.60 97.80估计在与实验条件相同的情况下,种一粒这样的麦种发芽的概率约为________21、某同学遇到一道不会做的选择题,在四个选项中有且只有一个是正确的,则他选对的概率是________22、在一个不透明的袋子中装有除颜色外其余均相同的7个小球,其中红球2个,黑球5个,若再放入m个一样的黑球并摇匀,此时,随机摸出一个球是黑球的概率等于,则m的值为________.23、小明要用如图的两个转盘做“配紫色”游戏(红色和蓝色配成紫色),每个转盘均被等分成若干个扇形,他同时转动两个转盘,停止时指针所指的颜色恰好配成紫色的概率为________.24、在一个不透明的袋中装有一红一白2个球,这些球除颜色外都相同,小刚从袋中随机摸出一个球,记下颜色后放回袋中,再从袋中随机摸出一个球,两次都摸到红球的概率是________.25、有一个正十二面体,12个面上分别写有1~12这12个整数,投掷这个正十二面体一次,向上一面的数字是3的倍数或4的倍数的概率是________.三、解答题(共5题,共计25分)26、有四张正面分别写有数字:20,15,10,5的卡片,背面完全相同,将卡片洗匀后背面朝上.放在桌面上小明先随机抽取一张,记下牌面上的数字(不放回),再从剩下的卡片中随机抽取一张,记下牌面上的数字.如果卡片上的数字分别对应价值为20元,15元,10元,5元的四件奖品,请用列表或画树状图法求小明两次所获奖品总值不低于30元的概率?27、将背面相同,正面分别标有数字1、2、3、4的四张卡片洗匀后,背面朝上放在桌面上,先从中随机的抽取一张卡片(不放回),将该卡片正面上的数字作为十位数字,再随机的抽取一张卡片,将该卡片正面上的数字作为个位数字,则组成的两位数恰好是4的倍数的概率是多少?请用树状图或列表法加以说明.28、“数学文化节”中,获得“数学之星”称号的小颖得到了,,,四枚纪念章(除头像外完全相同)如图所示,四枚纪念章上分别印有四位数学家的头像她将纪念章背面朝上放在桌面上,然后从中随机选取两枚送给妹妹,求小颖送给妹妹的两枚纪念章中恰好有一枚印有华罗庚头像的概率.29、一盒乒乓球中共有6只,其中2只次品,4只正品,正品和次品大小和形状完全相同,每次任取3只,出现了下列事件:(1)3只正品;(2)至少有一只次品;(3)3只次品;(4)至少有一只正品.指出这些事件分别是什么事件.30、七巧板是我国流传已久的一种智力玩具.小鹏在玩七巧板时用它画成了3幅图案并将它贴在3张完全相同的不透明卡片上,如图.小鹏将这3张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,放回后洗匀,再随机抽取一张卡片.请你用列表法或画树状图(树形图)法,帮助小鹏求出两张卡片上的图案都是小动物的概率(卡片名称可用字母表示).参考答案一、单选题(共15题,共计45分)1、B2、B3、D4、A5、B6、C7、B8、C9、A10、A11、D12、B13、C14、B15、A二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
人教版九年级数学(上)第二十五章《概率初步》检测卷(120分钟150分)一、选择题(本大题共10小题,每小题4分,满分40分)1.下列事件是随机事件的是A.火车开到月球上B.抛出的石子会下落C.明天上海会下雨D.早晨的太阳从东方升起2.下列事件中,随机事件是A.任意画一个圆的内接四边形,其对角互补B.现阶段人们乘高铁出行在购买车票时,采用网络购票方式C.从分别写有数字-1,3,4的三个纸团中随机抽取一个,抽到的数字是0D.通常情况下,海南在大寒这一天的最低气温会在0 ℃以下3.某个密码锁的密码由三个数字组成,每个数字都是0~9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开.如果仅忘记了密码的最后一位数字,那么一次就能打开该密码锁的概率是A.110B.19C.13D.124.有五张背面完全相同的卡片,正面分别写有√9,(√2)0,√8,227,2-2,把卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是无理数的概率是A.15B.25C.35D.455.年假期间小明约同学玩“三国杀”游戏,有9位同学参与游戏,开始每人先摸四张牌,通过抽牌决定谁先出牌,事先做好9张卡牌(除所写文字不同,其余均相同),其中有过河拆桥牌2张,杀手牌3张,闪牌4张.小明参与游戏,如果只随机抽取一张,那么小明抽到闪牌的概率是A.19B.49C.13D.236.狗年春节到了,小英制作了5张大小相同的卡片,在每张卡片上分别写上“金”“狗”“迎”“春”“到”五个字,并随机放入一个不透明的信封中,然后让小芳从信封中摸出一张卡片,小芳摸出的卡片是“狗”字的概率是A.12B.13C.14D.157.如图,正方形ABCD内接于☉O,☉O的直径为√2cm,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是A.2πB.π2C.12πD.√2π8.如图,两个标有数字的轮子可以分别绕中心旋转,旋转停止时,每个轮子上的箭头各指向轮子上的一个数字,若左图上方箭头指着的数字为a,右图中指着的数字为b.数对(a,b)所有可能的个数为n,其中a+b恰为偶数的不同数对个数为m,则mn等于A.12B.16C.512D.349.小明、小颖和小凡都想去看安徽第二届文博会,但现在只有一张门票,三人决定一起做游戏,谁获胜谁就去,游戏规则是:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜,若两枚反面朝上,则小颖获胜;若一枚正面朝上,一枚反面朝上,则小凡获胜,关于这个游戏,下列判断正确的是A.三人获胜的概率相同B.小明获胜的概率大C.小颖获胜的概率大D.小凡获胜的概率大10.一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球大约为A.60个B.50个C.40个D.30个二、填空题(本大题共4小题,每小题5分,满分20分)11.下列事件中,①打开电视,它正在播关于扬州特产的广告;②太阳绕着地球转;③掷一枚正方体骰子,点数“4”朝上;④13人中至少有2人的生日是同一个月.属于随机事件的个数是2.12.现有50张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为15.13.如图,一只蚂蚁在正方形ABCD区域内爬行,点O是对角线的交点,∠MON=90°,OM,ON分.别交线段AB,BC于M,N两点,则蚂蚁停留在阴影区域的概率为1414.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2 m的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是1平方米.三、(本大题共2小题,每小题8分,满分16分)15.班里有18名男生,15名女生,从中任意抽取a人打扫卫生.(1)若女生被抽到是必然事件,求a的取值范围;(2)若女生小丽被抽到是随机事件,求a的取值范围.解:(1)∵班里有18名男生和15名女生,从中任意抽取a人打扫卫生,女生被抽到的是必然事件,∴18<a≤33.(2)∵班里有18名男生和15名女生,从中任意抽取a人打扫卫生,女生小丽被抽到是随机事件,∴a≥1,∴1≤a<33.16.如图,一个转盘被平均分成12份,每份上写上不同的数字,游戏方法:先猜数后转动转盘,若指针指向的数字与所猜的数一致,则猜数者获胜.现提供三种猜数方法:①猜是“奇数”,或是“偶数”;②猜是“大于10的数”,或是“不大于10的数”;③猜是“3的倍数”,或是“不是3的倍数”.如果你是猜数者,你愿意选择哪一种猜数方法?怎样猜?并说明理由.解:选择第③种方法,猜是“3的倍数”.理由如下:∵转盘中,奇数与偶数的个数相同,大于10与不大于10的数的个数也相同,∴①与②游戏是公平的.∵转盘中的数是3的倍数的有7个,不是3的倍数的有5个,∴猜3的倍数,获胜的机会大.四、(本大题共2小题,每小题8分,满分16分)17.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小李做摸球试验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:(1)请估计:当试验次数为5000次时,摸到白球的频率将会接近;(精确到0.1)(2)假如你摸一次,摸到白球的概率P=;(3)试验估算这个不透明的盒子里黑球有多少只?解:(1)0.6.(2)0.6.(3)盒子里黑球有40×(1-0.6)=16(只).18.小明和小新分别转动标有“0~9”十个数字的转盘四次,每次将转出的数填入表示四位数的四个方格中的任意一个,比较两人得到的四位数,谁大谁获胜.已知他们四次转出的数字如下表:(1)小明和小新转出的四位数最大分别是多少?(2)小明可能得到的四位数中“千位数字是9”的有哪几个?小新呢?(3)小明一定能获胜吗?请说明理由.解:(1)小明转出的四位数最大是9730;小新转出的四位数最大是9520.(2)小明可能得到的“千位数字是9”的四位数有6个,分别为9730,9703,9370,9307,9073,9037;小新可能得到的“千位数字是9”的四位数有6个,分别为9520,9502,9250,9205,9052,9025.(3)不一定,因为如果小明得到的是9370,小新得到的是9520,则小新获胜.五、(本大题共2小题,每小题10分,满分20分)19.小敏的爸爸买了一张嘉峪关的门票,她和哥哥都想去,可门票只有一张,读九年级的哥哥想了一个办法,拿了8张扑克牌,将数字为2,3,5,9的四张牌给小敏,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小敏和哥哥从各自的四张牌中随机抽取一张,然后将抽出的两张牌数字相加,如果和为偶数,则小敏去,如果和为奇数,则哥哥去.(1)请你用列表或树状图的方法求小敏去的概率.(2)哥哥设计的游戏规则公平吗?请说明理由.解:(1)根据题意,画出如图所示的树状图,从树状图中可以看出,所有可能出现的结果共有16个,这些结果出现的可能性相等.而和为偶数的结果共有6个,所以小敏去的概率P(和为偶数)=616=38.(2)不公平.理由:哥哥去的概率P(和为奇数)=1-38=58,因为38<58,所以哥哥设计的游戏规则不公平.20.小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:(1)计算“3点朝上”的频率和“5点朝上”的频率.(2)小颖说:“根据实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?(3)小颖和小红各投掷一枚骰子,用列表或画树状图的方法求出两枚骰子朝上的点数之和为3的倍数的概率.解:(1)“3点朝上”出现的频率是660=110,“5点朝上”出现的频率是2060=13.(2)小颖的说法是错误的.这是因为:“5点朝上”的频率最大并不能说明“5点朝上”这一事件发生的概率最大.只有当实验的次数足够大时,该事件发生的频率稳定在事件发生的概率附近;小红的判断是错误的,因为事件发生具有随机性,故“6点朝上”的次数不一定是100次. (3)列表如下:P(点数之和为3的倍数)=1236=13.六、(本题满分12分)21.有四张正面分别标有数字2,1,-3,-4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m,再随机地摸取一张,将卡片上的数字记为n.(1)请画出树状图并写出(m,n)所有可能的结果;(2)求所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的概率.解:(1)画树状图得:则(m,n)共有12种等可能的结果:(2,1),(2,-3),(2,-4),(1,2),(1,-3),(1,-4),(-3,2),(-3,1),(-3,-4),(-4,2),(-4,1),(-4,-3).(2)∵所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的有:(-3,-4),(-4,-3),∴所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的概率为212=16.七、(本题满分12分)22.为了了解全校3000名同学对学校设置的体操、篮球、足球、跑步、舞蹈等课外活动项目的喜爱情况,在全校范围内随机抽取了若干名同学,对他们喜爱的项目(每人选一项)进行了问卷调查,将数据进行了统计,并绘制成了如图所示的条形统计图和扇形统计图(均不完整),请回答下列问题:(1)在这次问卷调查中,一共抽查了名同学;(2)补全条形统计图;(3)估计该校3000名同学中喜爱足球活动的人数;(4)学校准备从随机调查喜欢跑步和喜欢舞蹈的同学中分别任选一位参加课外活动总结会.若被随机调查的同学中,喜欢跑步的男生有3名,喜欢舞蹈的女生有2名,请用列表或画树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.解:(1)50.(2)喜欢足球人数:50-5-20-5-3=17.补全统计图:(3)该校3000名同学中喜爱足球活动的有3000×17=1020(名).50(4)画树状图得:∵共有15种等可能的结果,所选两位同学恰好是一位男同学和一位女同学的有8种情况,∴所选两位同学恰好是一位男同学和一位女同学的概率为8.15八、(本题满分14分)),E(0,-6),从这五个点中23.在平面直角坐标系中给定以下五个点A(-2,0),B(1,0),C(4,0),D(-2,29选取三点,使经过三点的抛物线满足以y轴的平行线为对称轴.我们约定经过A,B,E三点的抛物线表示为抛物线ABE.(1)符合条件的抛物线共有多少条?不求解析式,请用约定的方法一一表示出来.11 (2)在五个形状、颜色、质量完全相同的乒乓球上标上A ,B ,C ,D ,E 代表以上五个点,玩摸球游戏,每次摸三个球.请问:摸一次,三球代表的点恰好能确定一条符合条件的抛物线的概率是多少?(3)小强、小亮用上面的五球玩游戏,若符合要求的抛物线开口向上,小强可以得1分;若抛物线开口向下,小亮得5分,你认为这个游戏谁获胜的可能性大一些?说说你的理由.解:(1)从A ,B ,C ,D ,E 五个点中任意选取三点,共有以下10种组合,分别如下:ABC ABD ABE ACD ACE.ADE BCD BCE BDE CDE.∵A ,D 所在直线平行于y 轴,A ,B ,C 都在x 轴上,∴A ,D 不能在符合要求的同一条抛物线上,A ,B ,C 也不能在符合要求的同一条抛物线上, 于是符合条件的抛物线有如下六条:ABE ACE BCD BCE BDE CDE(2)摸一次,三球代表的点恰好能确定一条符合条件的抛物线的概率为610=35.(3)这个游戏两人获胜的可能性一样.理由是:在可以确定的六条抛物线中,通过观察五点位置可知:抛物线BCE 开口向下,其余五条开口向上,每摸一次,小强获得分数的平均值为510×1=12;小亮获得分数的平均值为110×5=12,∴这个游戏两人获胜的可能性一样.。
人教版九年级数学上第25章概率初步单元测试题(有答案)一、选择题(共16 小题,每小题 3 分,共48 分)1.下列事件中,为必然事件的是()A.购买一张彩票B.打开电视,正在播放广告C.抛掷一枚普通的硬币,一定正面朝上D.一个袋中只装有个黑球,从中摸出一球是黑球2.某班级中男生和女生各若干,若随机抽取人,抽到男生的概率是,则抽到女生的概率是()A.不确定B.C.D.3.在毕业晚会上,有一项同桌默契游戏,规则是:甲、乙两个不透明的纸箱中都放有红、黄、白三个球(除颜色外完全相同),同桌两人分别从不同的箱中各摸出一球,若颜色相同,则能得到一份默契奖礼物.同桌的小亮和小洁参加这项活动,他们能获得默契奖礼物的概率是()A. B. C. D.4.一个不透明的口袋里装有分别标有汉字“陕”、“西”、“美”、“丽”的个小球,除汉字不同之外,小球没有任何区别,小航从中任取两球,则取出的两个球上的汉字恰能组成“陕西”或“美丽”的概率是()A. B. C. D.5.下列事件中,属于必然事件的是()A.明天枫亭镇会下雨B.打开电视机,正在播广告C.球员在罚球区上投篮一次就投中D.盒中装有个红球和个白球,从中摸出两球,其中至少有一个是红球6.下列事件中发生概率大于且小于的是()A.太阳从西方慢慢升起B.小树会慢慢长高C.水往低处流D.某大桥在分钟内通过了辆汽车7.如图,在的正方形网格中有个格点,已经取定点和,在余下的个点中任取一点,使为直角三角形的概率是()A. B. C. D.8.从个白球、个红球中任意摸一个,摸到红球的概率是()A. B. C. D.9.学校评选出名优秀学生,要选名代表参加全市优秀学生表彰会,已经确定了名代表,则剩余学生参加全市优秀学生表彰会的概率是()A. B. C. D.10.同时抛掷两枚元的硬币,菊花图案都朝上的概率是()A. B. C. D.11.河南新郑黄帝故里“同根同祖同源,和平和睦和谐”拜祖大典,志愿翻译小组有五名同学,其中一名只会翻译法语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是()A. B. C. D.12.桌子上放着颗糖果,小明和小军玩游戏,两人商定的游戏规则为:两人轮流拿糖果,每人每次至少要拿颗,至多可以拿颗,谁先拿到第颗谁就获胜,获胜者可以把剩下的颗糖果全部拿走,其结果是()A.后拿者获胜B.先拿者获胜C.两者都可能胜D.很难预料13.小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为()A. B. C. D.14.下列说法正确的是()A.打开电视机,正在播放新闻B.调查炮弹的发射距离远近情况适合普查C.给定一组数据,那么这组数据的中位数一定只有一个D.盒子里装有三个红球和三个黑球,搅匀后从中摸出两球,一定一红一黑15.小宏和小倩抛硬币游戏,规定:将一枚硬币连抛三次,若三次国徽都朝上则小宏胜,若三次中只有一次国徽朝上则小倩胜,你认为这种游戏公平吗()A.公平B.小倩胜的可能大C.小宏胜的可能大D.以上答案都错16.如果身边没有质地均匀的硬币,下列方法可以模拟掷硬币实验的是()A.掷一个瓶盖,盖面朝上代表正面,盖面朝下代表反面B.掷一枚图钉,钉尖着地代表正面,钉帽着地代表反面C.掷一枚质地均匀的骰子,奇数点朝上代表正面,偶数点朝上代表反面D.转动如图所示的转盘,指针指向“红”代表正面,指针指向“蓝”代表反面二、填空题(共6 小题,每小题 3 分,共18 分)17.对某名牌衬衫抽检的结果如下表:如果销售件该名牌衬衫,那么至少要多准备________件合格品,以便供顾客更换.18.在抽签中,抽中的概率为,则抽不中的概率为________.19.现在某实验室有,二项互相独立的实验,已知成功的概率是,成功的概率是,二项实验同时成功的概率是________.20.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是,摸出白球的概率是,那么摸出黑球的概率是________.21.如果鸟卵孵化后,雏鸟为雌为雄的概率相同.如果枚卵全部成功孵化,则只雏鸟都为雄鸟的概率是________.22.在不透明的袋子中装有个白球和个黄球,这些球除了颜色外其它都相同,现从袋子中随机摸出一个球,则它是黄球的概率是________.三、解答题(共5 小题,共54 分)23.(10分) 一只不透明的袋子里共有个球,其中个白球,个红球,它们除颜色外均相同.从袋子中随机摸出一个球是白球的概率是多少?从袋子中随机摸出一个球,不放回袋子,摇匀袋子后再摸一个球,请用列表或画树状图的方法,求出两次摸出的球都是白球的概率.24.(11分) 有两个可以自由转动的转盘、,转盘被分成四个相同的扇形,分别标有数字、、、,转盘被分成三个相同的扇形,分别标有数字、、.小明自由转动转盘,小颖自由转动转盘,当两个转盘都停止后,记下各个转盘指针所指区域内对应的数字(指针指向分界线时重转)完成下列问题:计算所得两数之积为的倍数的概率,并用画树状图或列表法说明理��.小明和小颖用上述两个转盘做游戏,规则如下:若转出的两数之积为奇数,小明赢;若转出的两数之积为偶数,小颖赢,你认为这个游戏公平吗?若不公平,请你重新设计一个对游戏双方公平的游戏规则.25.(11分) 如图可以自由转动的转盘被等分,指针落在每个扇形内的机会均等.现随机转动转盘一次,停止后,指针指向数字的概率为________;小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.26.(11分) 某小区为了促进生活垃圾的分类处理,将生活垃圾分为厨余、可回收和其他三类,分别记为,,,并且设置了相应的垃圾箱,“厨余垃圾”箱、“可回收物”箱和“其他垃圾”箱,分别记为,,.若小明将一袋分好类的生活垃圾随机投入一类垃圾箱,请画树状图或列表求垃圾投放正确的概率;为调查居民生活垃圾分类投放情况,现随机抽取了该小区三类垃圾箱中总共吨生活垃圾,数据统计如下表(单位:吨):27.(11分)在一个口袋中有个完全相同的小球,把它们分别标号为,,,随机地摸取一个小球然后放回,再随机地摸出一个小球.记事件为“两次取的小球的标号的和是的整数倍”,记事件为“两次取的小球的标号的和是或的整数倍”,请你判断等式是否成立,并说明理由.答案1.D2.C3.B4.A5.D6.D7.D8.A9.D10.C11.B12.B13.B14.C15.B16.C17.18.19.20.21.22.23.解:(1)(摸出一个球是白球),画树形图:共有中等可能的结果,(两次摸出的求都是白球).24.解:画树状图如下:共有种等可能的结果,其中两数之积为的倍数有种可能,所以所得两数之积为的倍数的概率;这个游戏不公平,理由如下:小明赢的概率,小颖赢的概率,则,所以这个游戏不公平.对游戏双方公平的游戏规则可为:若转出的两数之积为的倍数,小明赢;若转出的两数之积为的倍数,小颖赢.25.列表得:所有等可能的情况有种,其中两数之积为偶数的情况有种,之积为奇数的情况有种,∴(小明获胜),(小华获胜),∵,∴该游戏不公平.26.解:画树状图得:∵共有种情况,其中投放正确的有种情况,∴;∵,∴估计该小区“厨余垃圾”投放正确的概率约为.27.解:等式不成立,理由:列表得:共种等可能的结果,其中为的倍数的有种,为或的倍数的有种,故,,故不成立.人教版数学九年级上册《第二十五章概率初步》单元测试卷一、填空题1.一个布袋里装有2个红球和2个白球,它们除颜色外都相同,从中任意摸出2个球,摸到的两个球都是红球的概率为________.2.一枚质地匀均的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率是________.3.林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组统计数据:估计该种幼树在此条件下移植成活的概率为________。
第二十五章 《概率初步》单元测试卷(全卷总分150分,考试时间120分钟)一、选择题(每小题4分,共40分) 1.下列事件是必然事件的是( )A .抛掷一枚硬币四次,有两次正面朝上B .打开电视频道,正在播放《十二在线》C .射击运动员射击一次,命中十环D .方程x 2-2x -1=0必有实数根 2.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.1”.下列说法正确的是( )A .抽10次必有一次抽到一等奖B .抽1次不可能抽到一等奖C .抽10次也可能没有抽到一等奖D .抽9次没有抽到一等奖,那么第10次肯定抽到一等奖3.同时抛掷两枚质地均匀的正方体骰子1次,下列事件中是不可能事件的是( )A .朝上的点数之和为13B .朝上的点数之和为12C .朝上的点数之和为2D .朝上的点数之和小于34.如图,小明周末到外婆家,走到十字路口处,记不清前面哪条路通往外婆家,那么他能一次选对路的概率是( )A.12B.13C.14D .0 5.有一副扑克牌,共52张(不包括大、小王),其中梅花、方块、红心、黑桃四种花色各有13张,把扑克牌充分洗匀后,随意抽取一张,抽得红心的概率是( )A.113 B.14 C.152 D.4136.在一个不透明的盒子中装有12个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球是白球的概率是13,则黄球的个数为( )A .18B .20C .24D .28 7.书架上有3本小说、2本散文,从中随机取2本都是小说的概率是( )A.310 B.625 C.925 D.358.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球( )A .12个B .16个C .20个D .30个9.有一个从袋子中摸球的游戏,小红根据游戏规则作出了如图所示的树状图,则此次摸球的游戏规则是( )A .随机摸出一个球后放回,再随机摸出一个球B .随机摸出一个球后不放回,再随机摸出一个球C .随机摸出一个球后放回,再随机摸出三个球D .随机摸出一个球后不放回,再随机摸出三个球10.甲、乙两布袋装有红、白两种小球,两袋装球总数量相同,两种小球仅颜色不同.甲袋中,红球个数是白球个数的2倍;乙袋中,红球个数是白球个数的3倍,将乙袋中的球全部倒入甲袋,随机从甲袋中摸出一个球,摸出红球的概率是( )A.512B.72C.1724D.25二、填空题(每小题3分,共30分)11.“清明时节雨纷纷”是 事件.(填“必然” “不可能”或“随机”) 12.下表记录了一名球员在罚球线上罚篮的结果:投篮次数n 100 150 300 500 800 1 000 投中次数m 58 96 174 302 484 601 投中频率mn0.5800.6400.5800.6040.6050.601这名球员投篮一次,投中的概率约是 .13.小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是 .14.一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则女生当选组长的概率是 .15.从-1、0、2、0.3、π、13这六个数中任意抽取一个,抽取到无理数的概率为 .16.小明“六一”去公园玩投掷飞镖的游戏,如图,投中阴影部分有奖品(飞镖盘被平均分成8份),小明能获得奖品的概率是 .17.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是.18.一次测验中有2道题是选择题,每题均有4个选项且只有1个选项是正确的.若对这两题均每题随机选择其中任意一个选项作为答案,则2道选择题答案全对的概率为.19.从甲、乙、丙、丁4名学生中随机抽取2名学生担任数学小组长,则抽取到甲和乙概率为.20.在一个不透明的盒子里,装有三个分别写有数字1,2,3的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出1个小球,记下数字,前后两次的数字分别记为x,y,并以此确定点P(x,y),那么点P在抛物线y=-x2+3x上的概率为.三、(本大题12分)21.在一个不透明的袋子中,装有9个大小和形状一样的小球,其中3个红球,3个白球,3个黑球,它们已在口袋中被搅匀,现在有一个事件:从口袋中任意摸出n个球,在这n个球中,红球、白球、黑球至少各有一个.(1)当n为何值时,这个事件必然发生?(2)当n为何值时,这个事件不可能发生?(3)当n为何值时,这个事件可能发生?四、(本大题12分)22.“石头、剪子、布”是小朋友都熟悉的游戏,游戏时小聪、小明两人同时做“石头、剪子、布”三种手势中的一种,规定“石头”(记为A)胜“剪子”,“剪子”(记为B)胜“布”,“布”(记为C)胜“石头”,同种手势不分胜负,继续比赛.(1)请用树状图或表格列举出同一回合中所有可能的对阵情况;(2)假定小聪、小明两人每次都等可能地做这三种手势,那么同一回合中两人“不谋而合”(即同种手势)的概率是多少?23.一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.(1)求摸出1个球是白球的概率;(2)摸出1个球,记下颜色后放回,并搅匀,再摸出1个球.求两次摸出的球恰好颜色不同的概率(要求画树状图或列表);(3)现再将n 个白球放入布袋,搅匀后,使摸出1个球是白球的概率为57.求n 的值.六、(本大题14分)24.如图的方格地面上,标有编号A 、B 、C 的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.(1)一只自由飞行的鸟,将随意地落在图中的方格地面上,问小鸟落在草坪上的概率是多少?(2)现从3个小方格空地中任意选取2个种植草坪,则刚好选取A 和B 的2个小方格空地种植草坪的概率是多少(用树状图或列表法求解)?七、(本大题12分)25.A 、B 两组卡片共5张,A 中三张分别写有数字2,4,6,B 中两张分别写有3,5,它们除数字外没有任何区别.(1)随机地从A 中抽取一张,求抽到数字为2的概率;(2)随机地分别从A 、B 中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果.现制定这样一个游戏规则:若所选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲、乙双方公平吗?为什么?26.主题班会课上,王老师出示了如图所示的一幅漫画,经过同学们的一番热议,达成以下四个观点:A.放下自我,彼此尊重;B.放下利益,彼此平衡;C.放下性格,彼此成就;D.合理竞争,合作双赢.要求每人选取其中一个观点写出自己的感悟,根据同学们的选择情况,小明绘制了如图两幅不完整的图表,请根据图表中提供的信息,解答下列问题:观点频数频率A a 0.2B 12 0.24C 8 bD 20 0.4(1)参加本次讨论的学生共有人;(2)表中a=,b=;(3)将条形统计图补充完整;(4)现准备从A,B,C,D四个观点中任选两个作为演讲主题,请用列表或画树状图的方法求选中观点D(合理竞争,合作双赢)的概率.参考答案:11. 随机. 12.0.6.13.21. 14.52.15.31.16.83.17.61.18.161.19. 61.20.92.三、(本大题12分)21.解:(1)当n =7或8或9时,这个事件必然发生.(2)当n =1或2时,这个事件不可能发生. (3)当n =3或4或5或6时,这个事件可能发生. 22.解:(1)略.(2)P(不谋而合)=13.23.解:(1)摸出1个球是白球的概率为13.(2)列表得:∴一共有9种等可能的结果,两次摸出的球恰好颜色不同的有4种. ∴两次摸出的球恰好颜色不同的概率为49.(3)由题意,得n +1n +3=57,解得n =4.24.解:(1)P(小鸟落在草坪上)=69=23.(2)P(编号为A 、B 的2个小方格空地种植草坪)=13.25.解:(1)P =13.(2)画树状图:一共有6种情况,甲获胜的情况有4种,P(甲胜)=46=23,乙获胜的情况有2种,P(乙胜)=26=13,∴这样的游戏规则对甲乙双方不公平. 26. (1)50;(2)a =10,b =0.16; (3)(4)根据题意画出树状图如下:由树状图可知,共有12种等可能情况,选中观点D (合理竞争,合作双赢)的情况有6种,所以选中观点D (合理竞争,合作双赢)的概率为612=12.。
人教版九年级上册(新)第25章《概率初步》全章试题班级: 姓名: 分数一、单选题1.“抛一枚均匀硬币,落地后正面朝上”.这一事件是 ( )A. 随机事件B. 确定事件C. 必然事件D. 不可能事件 2.下列说法不正确的是A .选举中,人们通常最关心的数据是众数( )B .从1、2、3、4、5中随机取一个数,取得奇数的可能性比较大C .必然事件的概率为1D .某游艺活动的中奖率是60%,说明参加该活动10次就有6次会获奖3.在一个不透明的口袋中,装有3个红球,2个白球,除颜色不同外其余都相同,则随机从口袋中摸出一个球为红色的概率是( ) A .31 B .52 C .51 D .53 4.在一个不透明袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是( ) A .14 B .13C .12D .23 5.为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼,如果在这200条鱼中有5条鱼是有记号的,则鱼塘中鱼的可估计为( )A .3000条B .2200条C .1200条D .600条6.下表是某种抽奖活动中,封闭的抽奖箱中各种球的颜色、数量,以及它们所代表的奖项:为了保证抽奖的公平性,这些小球除了颜色外,其他都相同,而且每一个球被抽中的机会均相等,则该抽奖活动抽中一等奖的概率为( ) A.16 B. 51C. 310D. 12 7.某奥体中心的构造如图所示,其东、西面各有一个入口A 、B ,南面为出口C ,北面分别有两个出口D 、E .聪聪若任选一个入口进入,再任选一个出口离开,那么他从入口A 进入并从北面出口离开的概率为( ) A .16 B .15 C .13D .12第8题图8. 如图,正方形ABCD 内接于⊙O ,⊙O 的直径为2分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD 内的概率是( )A .π2 B .2π C .π21D .π29.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为( )A.14 B. 12 C. 34D. 1 10. 从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M :“这个四边形是等腰梯形” .下列判断正确的是( ) A .事件M 是不可能事件 B .事件M 是必然事件 C .事件M 发生的概率为 15D .事件M 发生的概率为 25二、填空题11.一个盒子内装有大小、形状相同的四个球,其中红球1个,绿球1个,白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是 ; 12.同时抛掷两枚硬币正面均朝上的概率为____ .13.在一个木制的棱长为3的正方体的表面涂上颜色,将它的棱三等分,然后从等分点把正方体锯开,得到27个棱长为l 的小正方体,将这些小正方体充分混合后,装入口袋,从这个口袋中任意取出一个第7题图小正方体,则这个小正方体的表面恰好涂有两面颜色的概率是 .14.在一个不透明的袋子里装有黄色、白色乒乓球共40个,除颜色外其他完全相同.小明从这个袋子中随机摸出一球,放回.通过多次摸球实验后发现,摸到黄色球的概率稳定在15%附近,则袋中黄色球可能有___________个.15.一只盒子中有红球m 个,白球8个,黑球n 个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m +n = .16.甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5、6、7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张.若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽的两张牌面数字的积为偶数,则乙获胜.这个游戏 .(填“公平”或“不公平”).17. 在x 2□2xy□y 2的空格□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是___________.18.从-2,-1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是 .19. 从-2、-1、0、1、2这5个数中任取一个数,作为关于x 的一元二次方程20x x k -+= 的k 值,则所得的方程中有两个不相等的实数根的概率是 .20.如图,第(1)个图有1个黑球;第(2)个图为3个同样大小球叠成的图形,最下一层的2个球为黑色,其余为白色;第(3)个图为6个同样大小球叠成的图形,最下一层的3个球为黑色,其余为白色;;则从第(n )个图中随机取出一个球,是黑球的概率是 .三、解答题21.有3张形状材质相同的不透明卡片,正面分别写有1、2、-3,三个数字.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字作为一次函数b kx y +=中k 的值;第二次从余下的两张卡片中再随机抽取一张,上面标有的数字作为b 的值.(1)k 的值为正数的概率是 ; (2)用画树状图或列表法求所得到的一次函数b kx y +=的图像经过第一、三、四象限的概率.22.小英与她的父亲、母亲计划清明小长假外出旅游,初步选择了苏州、常州、上海、南京四个城市,由于时间仓促,他们只能去其中一个城市,到底去哪一个城市三个人意见不统一,在这种情况下,小英父亲建议,用小英学过的摸球游戏来决定,规则如下:①在一个不透明的袋子中装一个红球(苏州)、一个白球(常州)、一个黄球(上海)和一个黑球(南京),这四个球除颜色不同外,其余完全相同;②小英父亲先将袋中球摇匀,让小英从袋中随机摸出一球,父亲记录下其颜色,并将这个球放回袋中摇匀,然后让小英母亲从袋中随机摸出一球,父亲记录下它的颜色;③若两人所摸出球的颜色相同,则去该球所表示的城市旅游,否则,前面的记录作废,按规则②重新摸球,直到两人所摸出球的颜色相同为止.按照上面的规则,请你解答下列问题:(1)已知小英的理想旅游城市是常州,小英和母亲随机各摸球一次,,请用画树状图或列表法求两人均摸出白球的概率是多少?(2)已知小英母亲的理想旅游城市是上海,小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是多少?参考答案一、填空题1、A2、D 3、D 4、A 5、A 6、A 7、A 8、A 9、B 10、B 二、填空 11、61、12、41 13、4914、6 15、 8 16: 不公平 17、21 18、31 19、53 20、21n三、解答题 21、(1)32 (2)3222、答案:解:(1)画树状图得:········· 2分∵共有16种等可能的结果,均摸出白球的只有1种情况,·········3分∴小英和母亲随机各摸球一次,均摸出白球的概率是:;·········5分(2)由(1)得:共有16种等可能的结果,至少有一人摸出黄球的有7种情况,··6分∴小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是:.·········8分。
人教版九年级上册数学第二十五章概率初步含答案一、单选题(共15题,共计45分)1、一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是()A. B. C. D.2、小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A. B. C. D.3、下列事件为必然事件的是()A.如果a,b是实数,那么a•b=b•aB.抛掷一枚均匀的硬币,落地后正面朝上C.汽车行驶到交通岗遇到绿色的信号灯D. 口袋中装有3个红球,从中随机摸出一球,这个球的白球4、定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V 数”如“967”就是一个“V数”.若十位上的数字为4,则从3,5,7,9中任选两数,能与4组成“V数”的概率是()A. B. C. D.5、如果小明将镖随意投中如图所示的正方形木板(假设投中每个小正方形是等可能的),那么镖落在阴影部分的概率为A. B. C. D.6、下列说法正确的是()A.25人中至少有3人的出生月份相同B.任意抛掷一枚均匀的1元硬币,若上一次正面朝上,则下一次一定反面朝上C.天气预报说明天降雨的概率为10%,则明天一定是晴天D.任意抛掷一枚均匀的骰子,掷出的点数小于3的概率是7、如图,有两个可以自由转动的转盘(每个转盘均被等分),同时转动这两个转盘,待转盘停止后,两个指针同时指在偶数上的概率是()A. B. C. D.8、下列事件中,属于随机事件的有( ) .①下周六下雨②在只装有5个红球的袋中摸出1个球,是红球③买一张电影票,座位号是偶数④掷一次骰子,向上的一面是8A.1个B.2个C.3个D.4个9、小明把如图所示的3×3的正方形网格纸板挂在墙上玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域(四个全等的直角三角形的每个顶点都在格点上)的概率是()A. B. C. D.10、如图,在4×4的正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )A. B. C. D.11、从一副扑g牌中任意抽出一张,以下四种牌中抽到可能性较大的是()A.大王B.红色图案C.梅花D.老K12、在如图的地板行走,随意停下来时,站在黑色地板上的概率是()A. B. C. D.13、下列说法正确的是()A.“明天降雨的概率是75%”表示明天有75%的时间都在降雨B.“抛一枚硬币正面朝上的概率为”表示每抛2次就有1次正面朝上C.“抛一枚均匀的正方体骰子,朝上的点数是2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数是2”这一事件发生的频率稳定在左右D.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖14、“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.如图,是一“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上),则投掷一次飞镖扎在中间小正方形区域(含边线)的概率是()A. B. C. D.15、如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1、2、3、4、5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有奇数所在区域的概率为P(奇数),则P(奇数)等于()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在4×4的正方形网络中,已将部分小正方形涂上阴影,有一个小虫落到网格中,那么小虫落到阴影部分的概率是________.17、向上抛掷两枚硬币,落地后一枚正面朝上,别一枚反面朝上的概率是________.18、在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为它是黄球的概率的0.5,则n=________.19、同时投掷两个骰子,它们点数之和不大于4的概率是________.20、不透明的盒中装着大小、外形、质地一样的红色、黑色、白色的乒乓球共20个,通过多次摸球实验后发现其中摸到红色、黑色球的概率稳定在5%和15%,则盒子中白色球的个数很可能是________个.21、用2,3,4这三个数字排成一个三位数,则排成的三位数是奇数的概率是________.22、如图,在一块菱形菜地ABCD中,对角线AC与BD相交于点O,若在菱形菜地内均匀地撒上种子,则种子落在阴影部分的概率是________.23、一只蚂蚁在如图所示的树枝上寻觅食物,蚂蚁从点A出发,在每个岔路口都会随机地选择一条路径,则它获得食物的概率是________ .24、如图,正方形的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为________.25、用1,2,3三个数字排成一个三位数,则排出的数是偶数的概率是________.三、解答题(共5题,共计25分)26、有3个完全相同的小球,把它们分别标号为1,2,3,放在一个不透明的口袋中,从口袋中随机摸出一个小球,记下标号后放回,再从口袋中随机摸出一个小球,记下标号.用画树状图(或列表)的方法,求两次摸出的小球号码恰好都大于1的概率.27、请你设计一个转盘,使得自由转动这个转盘,转盘停止后,指针落在1号区域的概率为,落在2号区域的概率为,落在3号区域的概率.28、n是一个两位正数,若n的个位数字小于十位数字,则称n为“两位递减数”(如21,73,42).从数字1,2,4,5中随机抽取2个数字组成一个两位数,用画树状图(或列表)的方法,求这个两位数是“两位递减数”的概率.29、小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由.若不公平,如何修改规则才能使游戏对双方公平?30、小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC.为了知道它的面积,小明在封闭图形内划出了一个半径为1米的圆,在不远处向圈内掷石子,且记录如下:求出封闭图形ABC的面积.掷石子次数石子落在的区域50次150次300次石子落在⊙O内(含⊙O上)的次数m 14 43 93 石子落在阴影内的次数n 19 85 186参考答案一、单选题(共15题,共计45分)2、C3、A4、D5、B6、A7、B8、B9、C10、B11、B12、A13、C14、C15、B二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
第二十五章检测卷时间:120分钟 满分:120分班级:__________ 姓名:__________ 得分:__________一、选择题(每小题3分,共30分)1.下列事件中,是必然事件的是( ) A .两条线段可以组成一个三角形 B .400人中有两个人的生日在同一天 C .早上的太阳从西方升起D .打开电视机,它正在播放动画片2.2016年3月,某市举办了首届中学生汉字听写大会,从甲、乙、丙、丁4套题中随机抽取一套训练,抽中甲的概率是( )A.12B.13C.14D .1 3.下列说法中,正确的是( ) A .不可能事件发生的概率为0 B .随机事件发生的概率为12C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次4.袋子里有10个红球和若干个蓝球,这些球除颜色外其余均相同,小明从袋子里有放回地任意摸球,共摸100次,其中摸到红球次数是25次,则袋子里蓝球大约有( )A .20个B .30个C .40个D .50个5.学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是( )A.19B.16C.13D.126.在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④,随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是( )A.116B.316C.14D.5167.在数-1,1,2中任取两个数作为点的坐标,那么该点刚好在一次函数y =x -2图象上的概率是( )A.12B.13C.14D.168.如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影,转动指针,指针落在有阴影的区域内的概率为a ,如果投掷一枚硬币,正面向上的概率为b ,关于a ,b 大小关系的正确判断是( )A .a >bB .a =bC .a <bD .不能判断第8题图 第10题图9.有一箱子装有3张分别标示4,5,6的号码牌,已知小武以每次取一张且取后不放回的方式,先后取出2张牌,组成一个两位数,取出的第1张牌的号码为十位数,第2张牌的号码为个位数.若先后取出2张牌组成两位数的每一种结果发生的机会都相同,则组成的两位数为6的倍数的概率为( )A.16B.14C.13D.1210.如图,一个质地均匀的正四面体的四个面上依次标有数字-2,0,1,2,连续抛掷两次,朝下一面的数字分别是a ,b ,将其作为M 点的横、纵坐标,则点M (a ,b )落在以A (-2,0),B (2,0),C (0,2)为顶点的三角形内(包含边界)的概率是( )A.38B.716C.12D.916二、填空题(每小题3分,共24分)11.用“必然事件”“不可能事件”“随机事件”填空:(1)明天要下雨___________;(2)小明身高3.5m____________;(3)两直线平行,同位角相等___________.12.如图,一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为_______.第12题图 第13题图13.一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是________.14.如图,有五张背面完全相同的纸质卡片,其正面分别标有数:6,7,11,-2,5,将它们背面朝上洗匀后,从中随机抽取一张卡片,则其正面的数比3小的概率是______.6711 -2515.在一个不透明的盒子中装有n 个小球,它们除了颜色不同外,其余都相同,其中有4个白球,每次试验前,将盒子中的小球摇匀,随机摸出一个球记下颜色后再放回盒中.大量重复上述试验后发现,摸到白球的频率稳定在0.4,那么可以推算出n 的值大约是_______.16.在一个不透明的箱子中装有4件同型号的产品,其中合格品3件、不合格品1件,现在从这4件产品中随机抽取2件检测,则抽到的都是合格品的概率是________.17.一个口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是________.18.天水市某校从三名男生和两名女生中选出两名同学作为“伏羲文化节”的志愿者,则选出一男一女的概率为_________.三、解答题(共66分) 19.(8分)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:(4分)(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m 的值.20.(8分)甲、乙、丙、丁4位同学进行一次乒乓球单打比赛,要从中选2名同学打第一场比赛.(1)已确定甲同学打第一场比赛,再从其余3名同学中随机选取1名,恰好选中乙同学的概率是__________;(2)随机选取2名同学,求其中有乙同学的概率.21.(8分)有甲、乙两个不透明的布袋,甲袋中有2个完全相同的小球,分别标有数字0和-2;乙袋中有3个完全相同的小球,分别标有数字-2,0和1,小明从甲袋中随机取出1个小球,记录标有的数字为x ,再从乙袋中随机取出1个小球,记录标有的数字为y ,这样确定了点Q的坐标(x,y).(1)写出点Q所有可能的坐标;(2)求点Q在x轴上的概率.22.(10分)有四张背面完全相同的纸牌A,B,C,D,其中正面分别画有四个不同的几何图形(如图),小华将这四张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用画树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A,B,C,D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.23.(10分)如图,一条直线上有两只蚂蚁,甲蚂蚁在点A处,乙蚂蚁在点B处,假设两只蚂蚁同时出发,爬行方向只能沿直线AB在“向左”或“向右”中随机选择,并且甲蚂蚁爬行的速度比乙蚂蚁快.(1)甲蚂蚁选择“向左”爬行的概率为;(4分)(2)利用列表或画树状图的方法求两只蚂蚁开始爬行后会“触碰到”的概率.24.(10分)甲、乙两人玩一种游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,洗匀后甲从中任意抽取一张,记下数字后放回;又将卡片洗匀,乙也从中任意抽取一张,计算甲、乙两人抽得的两个数字之积,如果积为奇数则甲胜,若积为偶数则乙胜.(1)用列表或画树状图等方法,列出甲、乙两人抽得的数字之积所有可能出现的情况;(2)请判断该游戏对甲、乙双方是否公平?并说明理由.25.(12分)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;(3)如果锐锐每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.答案1.B2.C3.A4.B5.C6.C7.D8.B9.A 10.B 解析:列表如下:共有16种等可能结果,而落在以A (-2,0),B (2,0),C (0,2)为顶点的三角形内(包含边界)有(-2,0),(0,0),(1,0),(2,0),(0,1),(1,1),(0,2)共7种可能情况,所以落在以A (-2,0),B (2,0),C (0,2)为顶点的三角形内(包含边界)的概率是716.故选B. 11.随机事件 不可能事件 必然事件 12.37 13.13 14.35 15.10 16.12 17.316 18.35 19.解:(1)4 2,3(4分)(2)根据题意得6+m 10=45,解得m =2,所以m 的值为2.(8分)20.解:(1)13(3分)(2)画树状图如下:(6分)共有12种等可能的结果,其中选取2名同学中有乙同学的结果数为6,所以有乙同学的概率P =612=12.(8分)21.解:(1)画树状图如下:(2分)共有6种等可能的结果,点Q 的坐标为(0,-2),(0,0),(0,1),(-2,-2),(-2,0),(-2,1);(4分)(2)点Q 在x 轴上的情况有(0,0),(-2,0)两种,所以点Q 在x 轴上的概率P =26=13.(8分) 22.解:(1)画树状图如下:则共有16种等可能的结果;(5分)(2)∵既是中心对称又是轴对称图形的只有B ,C ,∴既是轴对称图形又是中心对称图形的有4种情况,∴既是轴对称图形又是中心对称图形的概率为416=14.(10分)23.解:(1)12(4分)(2)画树状图如下:∵共有4种等可能情况,两只蚂蚁开始爬行后会“触碰到”的有(右,左)(右,右)2种情况,∴两只蚂蚁开始爬行后会“触碰到”的概率为24=12.(10分)24.9种;(5分)(2)该游戏对甲、乙双方不公平,理由如下:其中积为奇数的情况有4种,偶数有5种,∴P (甲)<P (乙),则该游戏对甲、乙双方不公平.(10分)25.解:(1)14(3分) (2)16(6分)(3)锐锐每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,(8分)画树状图如下:(10分)共有6种等可能的结果,锐锐顺利通关的只有1种情况,1∴锐锐顺利通关的概率为6.(12分)。