焦炉煤气的综合利用技术
- 格式:doc
- 大小:52.50 KB
- 文档页数:3
焦炉煤气甲烷化制SNG、CNG/LNG技术开发张新波,李泽军,杨宽辉(西南化工研究设计院,工业排放气综合利用国家重点实验室,四川成都610225)摘要:利用焦炉煤气制合成天然气SNG、压缩天然气CNG和液化天然气LNG 是焦炉煤气利用的一个新领域。
讨论了利用焦炉煤气甲烷化制合成天然气SNG的不同工艺流程,比较了各种工艺流程的优缺点,并进行了经济评价。
结果表明,焦炉煤气甲烷化后制合成天然气工艺,并进一步加工生产压缩天然气和液化天然气原料利用率更高,环保效果更佳,且经济效益更优。
关键词:焦炉煤气;甲烷化;合成天然气;经济效益Abstract: The method of using of the coke-oven gas to made synthetic natural gas (SNG), compressed natural gas (CNG) and liquefied natural gas (LNG) is a new area. Discusses the different processes of using the coke-oven gas to make SNG, and compares the advantages and disadvantages of various technological, last make economic evaluation. The result indicated that technology of using the coke-oven gas to made synthetic natural gas, and further processes the production compressed natural gas and the liquefied natural gas raw material use factor is higher, the environmental protection effect is better, and the economic efficiency is more superior.Key word: coke oven gas; methanation; synthetic natural gas; economic effectiveness前言天然气是一种十分清洁的一次能源,但是目前天然气消费量占我国一次能源消费比例只有3~4%,所占比例远低于世界平均水平(25%),也低于亚洲平均水平(8.8%)。
以焦炉煤气制合成氨的主要工艺分析与选择景志林,张仲平(山西焦化股份有限公司,山西洪洞041606)2007-12-14山西焦化股份有限公司现拥有80 kt/a合成氨,130 kt/a尿素的生产能力。
公司拟建设15 Mt/a焦炉扩建项目(二期工程)。
焦炉装置建成后,产生的焦炉煤气除自用外,可外供焦炉气32650 m3/h,这些焦炉气若不及时加以利用,不仅对当地大气环境造成不利的影响,还会造成能源的极大浪费。
对于富裕焦炉煤气利用问题,公司经过多方论证,考虑到多年氮肥生产的技术和管理优势,计划配套建设以焦炉煤气制180 kt/a合成氨,300 kt/a尿素的生产装置。
本文介绍“18·30”项目合成氨制备中主要工艺技术路线的选择。
1 焦炉气配煤造气制合成氨的必要性焦炉气生产合成氨类似天然气生产合成氨,焦炉煤气自身的特点是氢多碳少,C/H低,焦炉气成分如表1。
单独用于合成氨生产时,原料气耗量大,弛放气排放量多,单位产品能耗高。
必须补碳。
综合考虑,周边煤炭资源丰富,价格便宜,宜采用煤制气补碳,煤制气有效成分(H2+CO)高,可以把合成气调整合理,最大限度地利用原料气。
因此,要想取得好的经济效益,合理地利用原料资源,采用煤、焦、化一体化的联合流程,不仅将能源和环境保护结合起来,而且将传统的焦化工业与化学工业及化肥工业有机地结合起来,生产大宗支农产品——尿素,是新一代焦炉气综合利用的好途径。
2 工艺生产路线概述将来自焦化厂净化后的剩余焦炉煤气,进入气柜进行混合、缓冲,然后通过罗茨鼓风机升压,湿法脱硫装置脱除焦炉气中的H2S,再加压至2.3 MPa,送干法脱硫装置,将气体中的总硫脱至7 mg/m3以下,利用深冷空分装置送来的富氧,混入蒸汽进行催化部分氧化转化,将气体中的甲烷及少量其他烃转化为CO 和H2,转化后的高温气体经废锅回收热量降温后,补加蒸汽进入变换工序的中变炉,进行CO变换反应,调整CO含量至3%,然后进入ZnO 精脱硫槽,将气体中的总硫脱至(1~3)×10-6,再进入装有铜锌催化剂的低温变换炉,控制变换气中CO含量为0.3%。
焦炉煤气净化技术研究焦炉煤气是指在炼焦过程中产生的一种高热值、高含碳气体,由于其含有大量的有毒有害物质,如苯、二苯、全芳烃、硫化氢等,对环境和人体健康造成威胁。
因此,在炼焦厂中,必须对焦炉煤气进行净化处理,以达到大气污染物排放标准。
本文将介绍焦炉煤气净化技术的研究现状及未来发展趋势。
一、历史发展焦炉煤气净化技术起源于20世纪30年代,当时的焦炉煤气净化主要采用化学吸收法和灰袋过滤法,但由于设备结构单一、净化效率低等缺陷,限制了其应用范围。
20世纪60年代,大量研究表明,活性炭吸附法是一种更加有效的焦炉煤气净化技术。
而随着环保法律法规的逐步完善,传统的焦炉煤气净化技术已不能满足现代社会对环保的要求。
近年来,新型的焦炉煤气净化技术如膜分离法、等离子体处理技术和生物技术等得到了快速发展。
二、目前研究现状1. 活性炭吸附法活性炭吸附法在焦化炉气体净化中得到广泛应用,其吸附剂具有强的吸附、选择性和再生性能,能够高效地去除苯、二苯、全芳烃等有害成分。
目前活性炭吸附法中存在着吸附剂失活、吸附速率慢等问题,研究人员正在通过改变吸附剂结构、增加吸附剂表面积等措施来提高活性炭吸附效率。
2. 膜分离法膜分离技术在气体分离领域具有广泛应用,可高效地分离和去除焦炉煤气中的有害成分。
与传统的吸附法相比,膜分离法具有操作简单、净化效率高等优点。
目前,膜分离技术研究仍处于实验室规模,尚未得到工业化应用。
3. 等离子体处理技术等离子体处理技术是一种新型的焦炉煤气净化技术,其原理是利用高能等离子体对有害物质进行氧化降解,将其转化为无害成分。
该技术具有能耗低、处理效率高等优点,在焦化炉气体净化方面存在广阔的应用前景。
4. 生物技术生物技术在焦化炉气体净化中应用也逐渐得到重视,其原理是利用微生物对有害成分进行降解,将其转化为无害物质。
与传统的焦炉煤气净化技术相比,生物技术有着对环境影响小、操作简单等优点,但目前该技术还存在处理效率低、微生物保存等问题,需要进一步完善。
直冷方式可冷却煤气,也可净化焦炉煤气。
而间接冷却方式在冷却焦炉煤气过程中,煤气不会直接与冷却水接触,而是借助于换热器来完成冷却过程。
间接冷却方式过程中由于冷却水不直接接触煤气,可不受煤气污染,因此,间接冷却方式所用冷却水可重复利用,适用于水资源紧缺的焦化企业。
基于直接冷却和间接冷却的优缺点,多数焦化企业选择使用直接、间接冷却结合式来完成煤气初冷过程。
焦炉企业煤气净化实践结果证明,煤气初冷后,其中所含萘气体量大大降低。
1.2 焦油脱除与焦油回收煤气初冷过程中,多数焦油也会随着煤气的冷却而冷却,小部分焦油则会进入焦油捕集装置,和氨水混合。
目前多数焦化企业均以氨水焦油分离设备来脱除焦油,此过程还可以有效去除渣尘。
一般而言,焦油脱除效果随着分离时间的延长而逐渐显著,但随着分离时间的延长,分离温度也会下降,使得焦油粘度大大增加,降低分离效果。
因此,焦油脱除过程还需要满足温度和时间两个因素。
1.3 萘脱除工艺粗煤气中含有约10g/m 3萘气体,经煤气初冷后,萘气体含量可降至2g/m 3左右,但冷却后的萘气体则处于过饱和状态。
焦炉煤气经管路输送至下道工序时,可能会在温度过低或流速过慢的制约下出现萘沉积现象,进而堵塞管路。
因此,将焦炉气体中的萘气体除去对焦化企业来说至关重要。
目前,萘脱除工艺主要有水洗工艺和油洗工艺两类。
其中,以油洗工艺来清洗焦炉煤气管路,可将其中萘气体含量降至1g/m 3以下,进而降低管路堵塞概率。
1.4 煤气输送及煤气调节常用的焦炉煤气输送设备主要是鼓风机,根据鼓风机结构的差异可将其分为两种:容积式鼓风机和离心式鼓风机。
其中,离心式鼓风机可进行调节,根据要求可进行循环调节、自动调节以及转速调节。
因此,国内多数焦化企业的煤气输送设备均选用离心式鼓风机。
2 焦炉煤气净化过程中存在的主要问题焦炉煤气在净化过程中存在诸多问题,主要分为以下几个方面。
第一,煤气初冷问题。
横管初冷器在设备运行期间容易出现故障,导致煤气在管路中堵塞。
焦炉煤气干法脱硫工艺引言:焦炉煤气干法脱硫工艺是一种常用的脱硫方法,通过使用适当的吸收剂将焦炉煤气中的硫化氢等硫化物去除,以提高煤气的洁净度和环境友好性。
本文将介绍焦炉煤气干法脱硫工艺的原理、工艺流程和关键技术。
一、原理:焦炉煤气中的硫化氢是一种有毒有害气体,其会对环境和人体健康造成严重危害。
干法脱硫工艺利用吸收剂吸附硫化氢,达到脱硫的目的。
常用的吸收剂有氧化锌、活性炭等。
二、工艺流程:焦炉煤气干法脱硫工艺一般包括吸收剂喷射系统、脱硫吸附系统和再生系统三个部分。
1. 吸收剂喷射系统:焦炉煤气进入脱硫设备前,通过喷嘴将氧化锌或活性炭等吸收剂喷射到煤气中。
吸收剂与硫化氢发生化学反应,形成硫化锌或被吸附在活性炭上,使煤气中的硫化氢被去除。
2. 脱硫吸附系统:脱硫吸附系统是焦炉煤气干法脱硫的核心部分。
在吸附器中,煤气与吸收剂接触,硫化氢被吸附剂吸附,从而减少了煤气中的硫化氢含量。
吸附剂饱和后,需要进行再生。
3. 再生系统:吸附剂饱和后,需要进行再生。
再生系统通过加热吸附剂,使其释放吸附的硫化氢,再生后的吸收剂可以继续用于脱硫过程。
再生后的焦炉煤气中硫化氢含量降低,达到环保要求。
三、关键技术:焦炉煤气干法脱硫工艺中的关键技术主要包括吸收剂的选择、喷射系统的设计和脱硫吸附系统的操作控制。
1. 吸收剂的选择:吸收剂的选择应根据焦炉煤气的特性和脱硫要求来确定。
常用的吸收剂有氧化锌、活性炭等。
氧化锌具有较高的脱硫效率,但易受水分影响;活性炭具有较好的抗水性和吸附性能,但需要定期更换。
2. 喷射系统的设计:喷射系统的设计应考虑煤气流量、压力和温度等参数,以保证吸收剂充分喷洒在煤气中,提高脱硫效果。
喷嘴的选择和布置也是设计中的重要考虑因素。
3. 脱硫吸附系统的操作控制:脱硫吸附系统的操作控制需要根据吸附剂的饱和度和脱硫效果来进行调整。
定期检测吸附剂的饱和度,并根据检测结果进行再生操作,以保证脱硫效果和吸附剂的利用率。
煤化工企业废渣综合利用的改造措施随着煤炭资源的逐渐枯竭和环境保护意识的不断提高,煤化工企业废渣综合利用成为了当前十分重要的问题。
煤化工企业废渣主要包括煤焦油、焦化废气、煤焦油渣等,它们的处理和利用直接关系到环境保护和资源节约利用。
煤化工企业须积极进行技术改造和设备升级,以实现废渣的综合利用。
本文将从改造措施、技术路线和成本效益等方面进行讨论。
一、改造措施1. 设备升级:煤化工企业废渣综合利用首先需要进行设备升级。
包括焦化、煤化工、气化等生产设备的更新换代,以保证生产过程的稳定、高效。
需要投资更新环保设备,如污水处理设备、废气处理设备等,以确保排放达到国家标准。
2. 工艺改进:在生产过程中,煤化工企业需要进行工艺改进,通过优化工艺流程,减少废渣的产生。
需要对废渣进行分类和分离,提高废渣的可利用率。
采用先进的生产工艺,可减少废弃物和污染物的排放,实现资源的最大化利用。
3. 资源综合利用:煤化工企业可以将产生的废渣进行再生利用,生产出有价值的产品。
比如利用煤焦油生产石油化工产品,将废气进行回收利用或转化为可利用的能源。
通过资源综合利用,不仅可以降低企业的生产成本,还可以增加企业的经济效益。
二、技术路线1. 煤焦油的综合利用:煤焦油是焦化过程中产生的一种重要的化工原料,可以用于生产苯、酚、萘、沥青等多种化工产品。
通过改进煤焦油的加工技术,提高产品的质量和产率,可以实现废渣的综合利用,减少资源的浪费。
2. 焦化废气的处理利用:焦化废气中含有大量的有毒有害气体和颗粒物,直接排放会对环境造成严重的污染。
煤化工企业可以通过干法除尘、湿法洗涤等技术手段对废气进行处理,再利用或变废为宝。
比如将焦炉煤气中的焦炉煤气净化剂进行资源化利用,可降低企业排放物的排放量,提高资源利用效率。
三、成本效益煤化工企业废渣综合利用的改造措施不仅可以降低企业的生产成本,还可以提高企业的经济效益。
1. 降低生产成本:通过设备升级、工艺改进和资源综合利用,可以减少废渣处理的成本,降低企业的生产成本。
焦炉煤气脱硫制酸技术1、技术原理:焦炉煤气脱硫制酸技术分两部分: 一部分是脱除焦炉煤气中H2S气体, 其关键技术是采取单乙醇胺溶液(MEA)喷洒焦炉煤气, 将焦炉煤气中所含H2S气体脱除出来, 而吸收了H2S气体单乙醇胺溶液再经过加热分解, 将单乙醇胺溶液中H2S气体解析出来, 解析出H2S气体单乙醇胺溶液再去吸收煤气中H2S气体, 循环利用。
另一部分是将脱除出H2S气体转化为98%浓硫酸。
由脱硫来H2S气体经过燃烧后生成SO2, SO2气体经过装有专用催化剂反应器转化为SO3气体, 再与水蒸汽接触, 冷却后生成浓度为98%浓硫酸。
使用该工艺可将焦炉煤气中H2S脱除到50mg/m3以下, 整个过程中产生废液为小于130Kg/h, 而利用制酸技术直接生产出浓硫酸, 抛弃了传统生产硫磺生产工艺, 既降低了环境污染, 又增加了经济效益。
所以脱硫制酸工艺是一套最大发挥经济效益环境保护项目, 在焦炉煤气脱硫工艺中应大力推广。
2、工艺步骤3、 关键设备脱硫部分: 吸收塔、 解析塔、 换热器制酸部分: 燃烧室、 SO 2反应器、 WSA 冷凝器 4、 关键技术经济指标MEA 脱硫技术可将煤气中H2S 含量脱除到小于50 mg/m3,不用再增加深脱硫装置, 就可使焦炉煤气达成冶炼不锈钢要求标准, 可节省工艺配置资金, 制酸工艺直接生成98%H 2SO 4, 不用生产硫磺产生二次污染, 且浓H 2SO 4可在焦化硫铵项目使用。
5、 投资分析本项目为根本环境保护项目, 经济效益不是很大, 但环境保护效益巨大, 项目投资估算以下:脱硫工艺 制酸工艺6、技术应用情况MEA脱硫技术最初是乌克兰国家焦化耐火设计院研究发明, 最早使用在前苏联, 中国最早使用是宝钢二期脱硫工程, 多年使用表明: 该工艺脱硫效率高, 产生二次废液少, 且技术成熟, 环境保护效果好。
制酸技术是丹麦托普索企业专利技术, 在欧洲使用较多, 但近几年来中国石化行业相继引进投产使用, 如株州石化、柳州化肥厂、上海焦化厂、南京石化等已投产使用。
山西焦炉煤气综合利用技术现状范文虎,刘翠玲(山西省科技情报研究所,山西太原030001)摘要:介绍了焦炉煤气资源化综合利用的途径、技术进展及发展方向,针对山西省焦炉煤气综合利用的现状及存在问题提出了建议。
关键词:焦炉煤气;燃料;化工;天然气;工艺技术中图分类号:TQ546文献标识码:A 文章编号:1005-8397(2012)05-0046-05收稿日期:2012-05-16作者简介:范文虎(1964—),男,山西静乐人,2002年毕业于炮兵指挥学院军事指挥专业,山西省科学技术情报研究所助理研究员。
山西省是全国最大的炼焦用煤资源基地,炼焦用煤资源探明储量1493亿t ,占全国的60%,占全省煤炭资源探明储量的57.5%。
依托丰富的焦煤资源,山西已成为全国乃至全球焦炭产量最大、输出量最多的生产基地。
焦炉煤气是炼焦过程中产出焦炭和焦油产品的同时得到的可燃气体,是炼焦副产品。
每生产1t 焦炭,约副产400m 3焦炉煤气,除一半用于焦炉自身加热外,还会剩余约200m 3。
2010年山西焦炭产量8476.3万t ,可供综合利用的焦炉煤气产量高达160亿m 3,若不合理利用,既造成巨大的资源浪费,又造成严重的环境污染。
随着我国能源结构的调整及排放法规的日益严格,如何合理、高效、无污染地利用焦炉煤气,已成为目前社会关注的热点之一。
2010年山西省有关领导指出,充分利用山西省丰富的煤层气(瓦斯)、焦炉煤气、煤制天然气和过境天然气等“四气”清洁能源,不仅可以满足人民群众生产生活所需,同时可以大幅降低温室气体排放;2010年山西省委、省政府提出了气化山西、“四气合一”的发展规划;在山西省“十二五”发展规划中焦炉煤气利用也成为煤化工产业的重要组成部分。
充分、合理利用焦炉煤气是发挥资源优势、提高能源利用效率、优化能源消费结构、建设绿色山西和气化山西的现实选择。
1焦炉煤气的组成及利用途径焦炉煤气是混合物,随着炼焦煤配比和操作工艺参数的不同,其组成略有变化。
国内焦炉煤气现状及综合利用情况一、焦炉煤气资源利用现状2010年全国焦炭产能预计3.7亿吨,焦炉煤气产量1500多亿方/年,全国约有焦化企业2000多家,其中1/3为钢铁联合企业,2/3为独立焦化企业;而独立焦化企业主要分布在山西、河南、山东、云南、内蒙等地,其中山西为世界上焦炭最大聚集地。
山西焦炭产能约占全国22%,近期坚持焦化并举,淘汰落后产能,实施总量控制(1.4亿吨),为焦炉气综合利用市场提供良好发展环境;全省焦化投资预计330亿,将继续规范吕梁、临汾两大焦化产业基地,完善30个产焦百万吨的重点企业,孕育良好的焦炉气制甲烷市场契机;2020年,将在介休、孝义等地建设十大焦炉气综合利用园,并在河津、清徐建设两个焦炉气制甲烷示范项目(形成规模10亿m3/a);山西、河南、山东、云南、内蒙等地焦炉气资源丰富但离中心城市距离远,许多焦炉气被直接燃放,利用率低;焦炉气制甲醇和化肥由于市场受限和发电上网困难等因素影响,目前较好的利用途径是焦炉煤气甲烷化制天燃气。
焦炉煤气是指用炼焦用煤在炼焦炉中经高温干馏后,在产出焦炭和焦油产品的同时所得到的可燃气体,是炼焦产品的副产品,未经净化处理的称之为荒煤气,经净化处理的称之为净煤气即本文所指的焦炉煤气。
焦炉煤气的热值约为17580kJ/ m3~18420 kJ/ m3,天然气的热值约为35588 kJ/ m3,焦炉煤气的热值约为天然气热值的一半。
焦炉煤气的密度为0.45 kg/ m3~0.48 kg/ m3。
着火温度为600℃~650℃,具有燃烧速度快、着火快、火焰短的特点,理论燃烧温度为1800℃~2000℃。
每炼1吨焦炭,会产生430m3左右的焦炉煤气。
这些焦炉煤气中的一半用于企业自身回炉助燃,另外约200m3必须使用专门的装置进行回收净化处理,否则只能直接排入大气,或者燃烧排放(俗称“点天灯”)。
全国外供焦炉煤气预计就有700多亿立方米,有很多非钢焦化企业所产的焦炉煤气无法利用被“点天灯”而浪费了(这些企业一般远离城市中心),有约300亿立方米被白白排放掉。
焦炉上升管余热回收利用系统的应用及运行效果焦炉上升管余热回收利用系统是一种有效的能源利用技术,它可以将焦炉产生的高温废热转化为电能或蒸汽,用于生产过程中的加热或发电,从而提高能源利用效率,减少能源消耗和环境污染。
近年来,随着环保和节能政策的不断加强,焦炉上升管余热回收利用系统在钢铁行业得到了广泛应用,并取得了显著的经济和环保效果。
焦炉上升管是焦炉的一个重要组成部分,其主要作用是输送高温煤气和焦炉煤气,供给焦炉顶喷嘴进行煤气加热和焦炭干馏。
在这个过程中,焦炉上升管会产生大量的高温废热,如果这部分废热得不到有效利用,不仅会造成能源的浪费,还会对环境造成一定的影响。
1. 提高能源利用效率2. 减少环境污染焦炉上升管余热回收利用系统不仅可以减少能源的消耗,还可以减少对环境的污染。
通过有效的能源回收利用,系统可以减少焦炉废气的排放,降低大气污染物的排放量,减少了对大气环境的影响,有利于改善环境质量,保护生态环境。
3. 经济效益显著焦炉上升管余热回收利用系统的建设和运行成本相对较低,而且能够实现能源的再生,大大节省了生产成本。
通过发电和蒸汽的产生,系统还可以实现能源的自给自足,为企业创造了可观的经济效益。
三、焦炉上升管余热回收利用系统的发展前景未来,随着焦炉上升管余热回收利用技术的不断进步和成熟,系统的运行效率将进一步提高,应用范围将进一步扩大,将成为工业企业进行节能减排的重要手段之一。
政府和行业协会应加大对焦炉上升管余热回收利用技术的推广力度,加强政策引导和资金扶持,推动相关企业不断提高技术创新,提高系统的运行效率,促进清洁生产和可持续发展。
焦炉上升管余热回收利用系统是一种具有良好应用前景和广泛推广价值的能源利用技术,它可以为工业企业提供可观的经济效益,减少环境污染,有利于提高资源利用效率和环境保护水平。
希望通过各方的共同努力,焦炉上升管余热回收利用技术在我国得到进一步推广和应用,为工业企业的可持续发展和社会经济的可持续发展做出更大的贡献。
焦炉煤气甲烷化制LNG(或CNG)技术LNG(Liquefied Natural Gas),即液化天然气的英文缩写。
天然气是在气田中自然开采出来的可燃气体,主要成分由甲烷组成。
LNG是通过在常压下气态的天然气冷却至-162℃,使之凝结成液体。
天然气液化后可以大大节约储运空间和成本,而且具有热值大、性能高等特点。
天然气作为清洁能源越来越受到青睐,很多国家都将LNG列为首选燃料,天然气在能源供应中的比例迅速增加。
液化天然气正以每年约12%的高速增长,成为全球增长最迅猛的能源行业之一。
近年来全球LNG的生产和贸易日趋活跃,LNG已成为稀缺清洁资源,正在成为世界油气工业新的热点。
利用剩余焦炉煤气生产LNG,既有效解决了焦炉尾气的排放问题,又具有十分可观的经济效益和社会效益。
工艺流程简述来自焦化厂经过预净化处理的焦炉气,仍然含有微量焦油、苯、萘、氨、氰化氢、Cl-、H2S、不饱和烯烃、噻吩、硫醚、硫醇、COS和CS2等有机硫。
原料气首先加压预热后脱氯后,之后经过两段加氢转化,将有机硫转化无机硫,并经过两段脱硫净化后,进入甲烷化工序。
在此将大部分CO、CO2与氢气经过甲烷化反应生成甲烷。
甲烷化反应是强放热反应,通过副产中压蒸汽的方式移出反应热并回收。
由于焦炉煤气中氢含量较高,甲烷化反应后还有较多剩余氢气,可补加适量CO或CO2,以增加LNG产量;也可分离出H2,作为副产品销售或建加氢项目。
最终甲烷化后的混合产品气体,经除水脱碳等净化后进入低温液化工序,制取产品LNG。
焦炉煤气制LNG流程框图经济效益和社会效益根据焦炉煤气成份的差异,生产1吨LNG(CH4含量~96%)消耗焦炉气约3800~4500Nm3,如有其它CO、CO2资源补充,则焦炉气消耗量大幅下降;若无补充气,则可副产H2出售。
以无补充气计,每生产1吨LNG的生产成本约3000元左右,按LNG售价4000元/吨计,经济效益相当可观。
利用焦炉煤气生产LNG(或CNG),将为焦炉尾气的综合治理和利用作出示范,变废为宝,使环境、经济和社会效益得以协调和统一,实现循环经济,使我国的焦炭业能够持续和高效的发展。
内燃机利用焦炉煤气发电技术1 焦炉煤气利用现状在炼焦生产过程中,转变为焦炉煤气的煤炭约占初始总量的15%。
目前炼焦行业逐步向精细化方向发展,对焦炉煤气的合理利用将是焦化企业提高综合效益的一条有利途径。
国内行业对焦炉煤气的利用情况是:(1)大中型焦化厂主要是向附近城镇提供民用燃气,其特点是:投资规模较大;中间环节由煤气公司控制,不能实现最大效益;冬季用量大,夏季用量小,因季节变换能源不能充分利用。
(2)小型焦化厂的焦炉煤气除部分用于烧锅炉外,大部分点燃放空处理,除造成资源浪费外,对环境也造成很大的污染。
随着我国“西气东输”工程的实施,对天然气的应用将不可避免地取代很大一部分煤气的市场。
这体现在两方面:一是天然气的价格将低于煤气。
目前西气输到东部的天然气门站价格为1.0~1.3元/m3,用户零售价格为1.1~1.8元/m3,单位热值售价约为0.22元/m3,而人工煤气未计财政补贴的单位热值售价约为0.34~0.41元/m3。
通过对比可以看出,天然气在价格方面对煤气已经构成了很大的威胁;二是在覆盖地域方面,虽然目前天然气的供气范围相对煤气还较小,但是随着“西气东输”、“俄气南供”、“近海气登陆”等国家重点工程的实施,天然气管网将覆盖东北、华北、华南等地区,城市燃气中天然气的比重将会有较大提高。
上述事实表明:大中型焦化企业需要寻找新的焦炉煤气利用方式,以便应对将来民用煤气需求量的降低;小型焦化厂同样需要寻找合理的焦炉煤气利用方式,以便变废为宝,提高企业效益,并满足国家及地方政府对环保的要求。
2 焦化尾气发电应用前景我国焦化厂数目众多,焦化厂的副产品——焦化尾气(煤气)资源十分丰富。
采用内燃机发电,一次性投资小,建站周期短,功率范围可根据焦化尾气产量的大小确定,并且搬迁十分方便,这非常适合于中小型焦化厂。
数台焦化尾气发电机组并车构成电站,可自成一个小电网,也可并入大电网,同样能够满足大型焦化厂使用要求。
正常情况下使用焦化尾气发电驱动作业机械,当气源出现问题或焦化尾气发电机组需要检修时,可以使用原配套电网,使生产、生活不受影响,降低生产成本,提高经济效益。
焦化过程节能减排先进技术
1. 干熄焦技术:将炽热的焦炭在干熄炉中与惰性气体直接换热冷却,避免了传统湿法熄焦的水蒸汽排放和热能浪费。
2. 炼焦炉煤气回收利用技术:回收炼焦炉煤气,用于发电、供热或生产化工产品,减少能源浪费和温室气体排放。
3. 焦化废水处理与回用技术:采用先进的生物处理和膜分离技术,对焦化废水进行处理和回用,降低水资源消耗。
4. 焦炉烟气脱硫脱硝技术:采用脱硫脱硝装置,减少二氧化硫和氮氧化物的排放,改善环境质量。
5. 能源管理系统:通过实时监测和优化能源消耗,提高能源利用效率,降低能源成本。
这些技术的应用可以有效降低焦化过程的能源消耗和污染排放,实现节能减排的目标。
焦炉煤⽓制天然⽓之甲烷化技术现状焦炉煤⽓制天然⽓之甲烷化技术现状刘⾦刚刘振峰杜霞茹娄肖杰吴迪镛(⼤连凯特利催化⼯程技术有限公司⼤连辽宁116085)摘要:焦炉煤⽓制天然⽓项⽬在技术性和经济性⽅⾯具有较强的竞争⼒,已成为焦炉煤⽓综合利⽤的热点技术之⼀。
甲烷化技术是焦炉煤⽓制天然⽓项⽬中的关键技术之⼀,迄今仍未有成熟可靠的商业化应⽤实例。
甲烷化技术主要有绝热多段固定床⼯艺和等温列管⽔冷反应器⼯艺,这些焦炉煤⽓甲烷化⼯艺仍处于试验阶段,其中甲烷化催化剂是⼯艺关键,其稳定性和可靠性等均需进⼀步验证。
关键词:焦炉煤⽓天然⽓甲烷化催化剂1 前⾔中国的独⽴焦化企业每年副产焦炉煤⽓约900亿m3,除了回炉加热⾃⽤,⼯业⽤燃料、发电及放散等之外,⽬前对焦炉煤⽓的综合利⽤主要是制作⼯业原料甲醇。
但国内甲醇产能过剩,⽽且焦炉煤⽓制甲醇技术复杂,投资较⼤。
近些年焦炉煤⽓制天然⽓(管输天然⽓、压缩天然⽓CNG、液化天然⽓LNG)备受关注,该技术能量利⽤效率⾼,⼯艺流程简单,市场前景看好,正逐渐成为焦炉煤⽓综合利⽤的具有较强竞争⼒的新领域之⼀。
国内⾸套焦炉煤⽓制天然⽓项⽬是太⼯天成2007年在⼭西河津实施的焦炉⽓综合利⽤新⼯艺⽰范⼯程,该项⽬中没有甲烷化⼯艺,采⽤前端组成净化、膜分离、低温液化等技术⽣产LNG和H2,项⽬于2009年建成,但由于各种各样原因,该⼯程⼀直未正常开⼯。
另据相关报道,2010年年底,内蒙乌海华清能源科技有限公司15万m3/d 焦炉煤⽓甲烷化制CNG⽰范装置成功开车,该项⽬中主要含焦炉煤⽓深度净化、绝热多段甲烷化、变压吸附、压缩等⼯艺,但由于新近开车,该⼯程还需经受“安稳长满”运⾏的考验。
另据报道,国内已有乌海、曲靖、菏泽、鄂尔多斯、攀枝花、孝义等地焦炉煤⽓制天然⽓项⽬正在规划、拟建或在建,这些项⽬中均含有甲烷化⼯艺,主要由国内和国外技术商提供⼯艺技术和催化剂。
2 甲烷化技术简介在焦炉煤⽓制天然⽓项⽬中,甲烷化⼯艺并不是必须的。
焦炉煤气的综合利用技术
摘要:我国的焦化企业每年会生产一千多亿立方米的焦炉煤气,其中20%左右的焦炉煤气直接放散燃烧。
为了充分、合理利用焦炉煤气这种资源,文章列举了焦炉煤气发电、制取氢气、生产甲醇及直接还原铁四种应用技术进行分析,指出焦炉煤气的综合利用是发展的必然趋势。
关键词:焦炉煤气;综合利用;能源
中图分类号:TQ 542 文献标识码:A 文章编号:
The Comprehensive Utilization Technology of Coke Oven
Gas
Abstract:Our country's coked enterprise will produce more than 1000 hundred million cubic meters coke gas every year, 20% about coke gas will diffuse the combustion directly. For full, reasonable use coke gas this resources, the article enumerated the coke gas electricity generation, the system to take the hydrogen, the production methyl alcohol and the direct reduced iron four kind of applied technology carries on the analysis, pointed out that the coke gas the comprehensive utilization was the development inevitable trend.
Key words:Coke gas; Comprehensive utilization; Energy
我国是世界钢铁大国之一,焦炭的产量也位居世界前列,且一直呈增长趋势,2000 年的焦炭产量为1.22 亿t,2006 年焦炭产量为2.33 亿t,到2009 年增长到了3.53 亿t。
在生产焦炭的同时会产生大量焦炉煤气,如果按照生产1 t 焦炭产生430 m3 焦炉煤气计算, 2009 年我国全年焦炉煤气发生量可达1517.9亿m3,其中70%左右的焦炉煤气用于企业自用、商用及城市居民用气,剩余的焦炉煤气则直接燃烧放散到大气中,不仅造成了能源浪费,而且污染了周边环境。
据专家计算,我国每年燃烧放散到大气中的焦炉煤气量,相当于国家“西气东输”设计年输气量的两倍以上【1】。
因此,焦炉煤气的回收利用对实现我国资源的循环利用和经济的可持续发展具有重要意义。
1 焦炉煤气的组成
烟煤隔绝空气加热到950~1050℃,经过干燥、热解、熔融、黏结、固化、收缩等过程最终制得焦炭,这一过程叫高温炼焦。
炼焦除了可以得到固体产品---焦炭外,还可以得到液体产品---焦油,气体产品---荒煤气(也称粗煤气)。
荒煤气经过电捕焦油器脱除焦油、湿法脱硫、酸洗脱氨、洗油脱苯后成为净焦炉煤气。
净煤气的组成如表1-1所示【2】。
表1 净焦炉煤气的组成
名称组成/%
ϕ(H2)ϕ(CH4)ϕ(CO)ϕ(N2)ϕ(CO2)ϕ(C n H m)ϕ(O2)干煤气54~59 24~28 5.5~7 3~5 1~3 2~3 0.3~0.7
2 焦炉煤气的利用
2.1发电
焦炉煤气属于中热值煤气,其低发热值为17~19MJ/m3。
常见的焦炉煤气发电方式有蒸汽轮机发电、燃气轮机发电和内燃机发电三种【3】。
蒸汽轮机发电是锅炉直接燃烧焦炉煤气生产蒸汽,利用蒸汽轮机驱动发电机发电。
蒸汽轮机发电是一种传统的煤气发电技术,效率较低,但单机功率较大,适合建立大规模的燃气电站。
燃气轮机发电是通过压气机涡轮将空气压缩,高压的空气在燃烧室与焦炉煤气混合燃烧,使空气急剧膨胀做功,从而推动动力涡轮旋转做功来驱动发电机发电。
燃气轮机发电,设备在性能及可靠性方面较差,发电效率不超过30%,采用燃气和蒸气联合循环发电时,发电效率高达45%,这是今后焦炉煤气发电的发展趋势。
内燃机发电是用煤气直接燃烧驱动燃气轮机进行发电。
其工作原理与汽车发动机相似,需要火花塞点火,由于内燃机气缸内的核心区域工作温度可以达到1 400℃,使其效率大大超过了蒸汽轮机和燃气轮机。
燃气内燃机的发电效率为30%~40%,一般可以达到35%。
国内焦炉煤气内燃发电机组单机功率一般在500~2000 kW,该种发电方式单机功率相对小,建站灵活,为目前国内焦炉煤气发电采用的主要方式。
2.2生产甲醇
当今,甲醇已成为十分重要的有机化工原料之一,甲醇的深加工产品已达120余种。
随着能源结构的改变,甲醇又可以作为清洁能源或汽油的添加剂等,需用量十分巨大。
甲醇合成已成为我国重要的产业之一。
焦炉煤气组分本身含有甲烷24%~28%,简单的转化就可以满足甲醇合成气的比例要求。
数据表明,2000-2200m3焦炉煤气可生产1t甲醇。
通过对我国特定地区相同规模的焦炉煤气、天然气、煤为原料制甲醇的消耗成本投资比较可以发现,焦炉煤气制甲醇具有明显优势。
以年产20万吨甲醇为例,三种原料的比较如表1-2所示。
表2 不同原料合成甲醇的比较
原料类别煤天然气焦炉煤气
消耗 1.5 t/t 1000m3/t 2040m3/t
单价360元/t 0.7元/tm30.12元/tm3原料成本540元/t 700元/t 244.8元/t
完全成本1100元/t 1000元/t 800元/t 投资 6.0亿元 4.0亿元 4.5亿元
观察表1可以发现,焦炉煤气中除含有一定量的H2、CO、CO2外,还含有近30%的烃类气体(主要是CH4),而这些烃类气体只有通过转化才能用于合成甲醇。
目前,焦炉煤气甲烷转化工艺主要有催化氧化转化法、非催化转化法、蒸汽转化法三种。
由于催化氧化转化法流程短,投资低,目前国内常用,焦炉煤气制甲醇的工艺流程如图1所示【4】。
图1 焦炉煤气纯氧催化转化法制甲醇工艺流程图
2.3生产氢
由表1可知,焦炉煤气组分本身含有氢气54%~59%,简单的分离就可以获得氢气。
采用变压吸附技术(PSA)可从焦炉煤气中提取高纯度(99.9%左右)的氢气。
中国武钢硅钢厂、宝钢冷轧厂、石家庄焦化厂、邯钢相继建成了焦炉煤气变压吸附制氢装置,制氢成本仅相当于电解水成本的1/3~1/4【5】。
也可以将焦炉煤气重整转化为合成一氧化碳和氢气,再通过水煤气变换反应将焦炉煤气转化成为氢气。
氢气既可以作为能源,广泛应用于航天、汽车制造等行业,又可以作为化工原料,用于石油化工加氢裂解、生产双氧水、合成氨等化工生产过程。
目前,国内石家庄焦化厂就有10万t/a的过氧化氢生产线。
2.4直接还原铁
直接还原铁(DRI-Direct Reduced Iron)又叫海绵铁,是精铁粉或氧化铁在炉内经低温还原形成的低碳多孔状物质,其化学成分稳定,杂质含量少,主要用作电炉炼钢的原料,也可作为转炉炼钢的冷却剂,如果经二次还原还可供粉末冶金用。
直接还原铁的生产工艺有煤基和气基两大类,目前工业上大多采用的是气基法。
气基法使用的还原剂主要是天然气。
天然气经重整后,主要成分CH4 分解为(CO+H2),用来直接还原铁。
但受地域限制及不断上涨的天然气价格的影响,其生产成本不断升高,而焦炉煤气中H2和CH4的体积分数分别为54%~59%和24%~28% ,热裂解后即可得到廉价的还原性气体(φ(H2 + CO) >90% )。
用焦炉煤气替代天然气生产DR I,既解决了气源问题,又使焦炉煤气得到了高效利用,因此该项目已经成为当前科研工作者们的研究焦点。
3 结语
焦炉煤气的综合利用前景十分广阔,从焦炉煤气中提炼出的数百种化工产品,不但延长了炼焦综合利用的产业链,还将焦炉煤气转化为高附加值的产品。
但是,焦炉煤气的深度净化以及化工产品的提取、回收、利用等都涉及到了资金的投入,直接关系到企业的经济效益。
因此新建工程必须先进行经济分析,采用的有效工艺流程,得到理想的经济收益。
参考文献
[1]姚维学,付再华,刘同飞等.焦炉煤气的综合利用[J].河北化工,2009,32(12):34-36.
[2]何建平主编.炼焦化学产品回收与加工[M].化学工业出版社,2005.
[3]张建隽.剩余焦炉煤气利用途径[J].河北化工,2009,32(6):25-27.
[4]李克兵,陈健.焦炉煤气和转炉煤气综合利用新技术[J].化工进展,2010,29:325-327.
[5]王瑾辉.变压吸附制氢技术在邯钢冷轧工程中的应用[J].冶金动力,2006,(1):53-56.。