微波遥感_期末复习1-4
- 格式:doc
- 大小:34.50 KB
- 文档页数:4
1.微波遥感分类• 主动微波遥感,被动微波遥感• 微波辐射计,微波散射计,微波高度计,成像雷达• 真实孔径雷达,合成孔径雷达,机载和星载• 干涉SAR,极化SAR2.微波遥感的意义全天候,全天时,植被穿透性,地表穿透性,独特的遥感机理,干涉测量能力,多极化,多波段,高分辨率,与其它遥感手段互补电磁波谱微波波谱微波波段:0.1-100cm短K->X->C->S->L->P 长为什么星载雷达系统不采用K/P波段?答:K波段波长短,虽然有较好精确性,但是此波长可以被水蒸气强烈吸收,使这一波段的雷达不能在雨中和有雾的天气使用。
P波段波长较长,由于微波穿过大气层时会产生法拉第旋转,低频长波旋转程度大,极大限制了空基P波段微波遥感系统的可行性。
且由于波长较长其分辨率低。
目标的散射特性与哪些因素有关?电磁波辐射在非均匀媒质或各向异性媒质中传播时多方位、多角度地改变原来传播方向的现象,即目标对入射电磁波能量的重定向。
瑞利散射:(a < 0.1λ)散射光波长等于入射光波长,散射粒子远小于入射光波长。
米氏散射:(0.1λ < a<10λ)当大气中粒子的直径与辐射的波长相当时发生的散射。
光学(非选择性)散射(10λ < a)散射粒子的粒径比辐射波长大得多时发生的散射,散射系数与波长无关。
目标的散射特性首先取决于目标尺寸和雷达波长间的关系(粗糙度),入射角、介电特性(介电常数增加,反射增加)和极化特性。
如何提高真实孔径雷达分辨率?距离分辨率(地距分辨率)Rg = (tc/2) secβ斜距分辨率Rr=tc/2 (沿波束方向)脉冲宽度越小,俯角越小,距离分辨率越高,俯角太小地形影响严重,当俯角一定时,减小脉冲宽度可提高距离分辨率,所以合成孔径雷达在距离向采用脉冲压缩技术chirp(距离压缩)方位向分辨率Ra = (λ/d) R(又R=H/sinβ=H/cosθ )提高方位分辨率=>加大天线孔径,波长较短电磁波,缩短观测距离合成孔径技术合成孔径雷达分辨率与哪些参数相关?距离向分辨率Rg=(tc/2)/cosβ方位向分辨率Ls=βsR=D/2什么是多视?多视:用平均法减低相干观测系统上特有的乘性随机噪声光斑;把合成孔径长度分为N个区间,每区间内方位压缩后相加平均,N为视数降低了空间分辨率,换取辐射分辨率的提高SAR图像有哪些特点?1.穿透性:大气对电磁波的衰减与电磁波有关,波长越长,衰减越小2.斑点噪声:雷达图像上每个像素的信号是电磁波与各微散射体相互之间加强或减弱作用的集成,在影像中以斑点的形式表现出来。
微波遥感哟不要第一章:微波遥感:利用某种传感器接收地面各种地物发射或反射的微波信号,藉以识别、分析地物,提取所需信息。
红外遥感是利用0.76~1000微米的红外涉嫌与各类地物关系来进行资源与环境调查和检测。
为什么微波遥感这么具有吸引力,它究竟具有什么优越性?一、微波能穿透云雾、雨雪,具有全天候工作能力。
二、微波对地物有一定穿透能力。
三、微波能提供不同于可见光和红外遥感所能提供的某些信息。
四、微波遥感的主动方式,雷达遥感不仅可以记录电磁波振幅信号,而且可以记录电磁波相位信息。
微波遥感分为主动和被动方式。
波长越长,穿透能力越强。
同一种土壤温度越小,穿透越深。
干涉测量:由数次同侧观测得到的数据可以计算出针对地面上每一点的相位差,进而计算出这一点的高程,其精度可以达到几米。
微波主动式传感器获得的图像常成为雷达图像,这是因为成像微波遥感常采用真实孔径雷达和合成孔径雷达,都是由雷达发展而来。
微波遥感也可以采用被动工作方式,这主要是微波辐射计的工作。
微波辐射计目前也成为重要的微波遥感工具。
所谓电磁波,就是以波动形式在空间传播并传递电磁能量的交变电磁场。
电磁波具有波长、传播方向、振幅和偏振面四个基本物理量。
这四个物理量一旦确定,一个平面电磁波就被完全决定了。
一般来说,振幅是指电场振动的幅度,它表示电磁波传递的能量大小,极化面是指电厂振动方向所在的平面。
电磁波的基本特性与微波微波是电磁波的一种形式,因此了解电磁波的一些基本特征也是对微波基本特征的了解。
1.叠加原理2.相干性和非相干性3.衍射4.极化(p7)在一定条件下,任何物体都能向外发射电磁辐射,而这种因热物体都会发射出由这一温度所决定的热辐射,一般只要温度在0 K以上,一切物体都会发射出由这一温度所决定的热辐射。
所有的物体都能吸收电磁辐射,吸收能力越强,其辐射能力也就越强。
大气对微波的衰减作用主要有大气中的水分子和氧分子对微波的吸收,大气微粒对微波的散射。
氧分子的吸收作用较强。
第一章微波遥感基础1、微波遥感的概念及分类微波遥感是利用某种传感器接收地面各种地物反射或散射的微波信号,藉以识别、分析地物,提取所需的信息。
主要分为主动微波遥感和被动微波遥感,被动微波遥感包括微波成像仪和微波探测仪;主动微波遥感包括雷达高度计、雷达散射计和成像雷达。
2、微波遥感的优越性(1)微波能穿透云雾、雨雪,具有全天候、全天时的工作能力,优于可见光和红外波段的探测能力(2)微波对地物有一定的穿透能力,对地物的穿透深度因波长和物质的不同而有很大差异,波长越长,穿透能力越强。
(3)微波能提供不同于可见光和红外遥感所能提供的某些信息,比如微波高度计和合成孔径雷达具有测量距离的能力,可以用于测定大地水准面,还可以利用微波探测海面风场。
(4)雷达可以进行干涉测量3、微波遥感的不足(1)微波传感器的空间分辨率要比可见光和红外传感器低(2)其特殊的成像方式使得数据处理和藉以相对困难些(3)与可见光和红外传感器数据不能在空间位置上一致4、合成孔径雷达(SAR)特性及优势(1)全天候,不受云雾雪的影响,雨的影响有限(2)全天时,主动遥感系统(3)对地表有一定的穿透能力,与土壤含水量有关,依赖于波长(4)对植被有一定的穿透能力,依赖于波长和入射角(5)高分辨率,分辨率与距离无关(6)独特的辐射和集合特性(7)干涉测量能力(8)多极化观测能力5、极化,指得是电磁波的电场振动方向的变化趋势。
极化方式有线极化、椭圆极化、圆极化。
第二章微波遥感系统1、常见的微波遥感传感器在海洋、陆地、大气微波遥感应用中,常用的有效的传感器有五种:散射计、高度计、无线电地下探测器(以上为非成像系统);微波辐射计、侧视雷达(以上为成像系统)。
2、散射计微波散射计是一种有源微波遥感器,专门用来测量各种地物的散射特性。
它是通过测量地物对微波的散射强度,达到测定地物的后向散射系数的相对值。
散射计按照观测方式可以分为以下四类:侧视观测散射计;前视(后视)观测散射计;斜视观测散射计;笔式光束环形扫描散射计。
第一章概论1、按图像的明暗程度和空间坐标的连续性,可以分为数字图像和模拟图像。
数字图像:可用计算机存储和处理,空间坐标和灰度均不连续。
模拟图像:计算机无法直接处理,空间坐标和明暗程度连续变化。
2遥感数字图像中的像素值称为亮度值(灰度值/DN值),它的高低由传感器所探测到的地物电磁波的辐射强度决定。
2、遥感数字图像处理的主要内容包括以下三个方面:图像增强、图像校正、信息提取。
1)图像增强:用来改善图像的对比度,突出感兴趣的地物信息,提高图像大的目视解译效果,它包括灰度拉伸、平滑、锐化、滤波、变换(K—L/K—T)、彩色合成、代数运算、融合等。
图像显示:为了理解数字图像中的内容,或对处理结果进行对比。
图像拉伸:为了提高图像的对比度(亮度的最大值与最小值的比值),改善图像的显示效果。
2)图像校正(恢复/复原):为了去除和压抑成像过程中由各种因素影响而导致的图像失真。
注意:图像校正包括辐射和几何校正,前者通过辐射定标和大气校正等处理将像素值由灰度级改变为辐照度或反射率,后者利用已有的参照系修改像素坐标,使得图像能够与地图匹配或多景图像之间可以相互匹配。
3)信息提取:从校正后的遥感数据中提取各种有用的地物信息。
包括图像分割、分类等。
图像分割:用于从背景中分割出感兴趣的地物目标。
分割的结果可作为监督分类的训练区。
图像分类:按照特定的分类系统对图像中像素的归属类别进行划分。
3、遥感数字图像处理系统:硬件系统(输入、存储、处理、显示、输出),软件系统。
4、数字图像处理的两种观点:离散方法(空间域)、连续方法(频率域)2.遥感图像的获取和存储1、遥感是遥感信息的获取、传输、处理以及分析判读和应用的过程。
遥感的实施依赖于遥感系统2、遥感系统是一个从地面到空中乃至整个空间,从信息收集、储存、传输、处理到分析、判读、应用的技术体系,主要包括遥感试验、信息获取(传感器、遥感平台)、信息传输、信息处理、信息应用等5个部分。
遥感导论复习整理(期末考试)遥感概论复习整理第⼀章绪论1.遥感概念狭义遥感:应⽤探测仪器,不与探测⽬标相接触,从远处把⽬标的电磁波特性记录下来,通过分析,揭⽰出物体的特征性质及其变化的综合性探测技术2.遥感技术系统组成信息源、信息的获取、信息的记录和传输、信息的处理、信息的应⽤。
3.信息源,传感器概念信息源:任何地物都可以发射、反射和吸收电磁波信号,都是遥感信息源;⽬标物与电磁波发⽣相互作⽤,会形成⽬标物的电磁波特性,这为遥感探测提供了获取信息的依据。
传感器:接收、记录地物电磁波特征的仪器,主要有:扫描仪、雷达、摄影机、光谱辐射计等4.遥感类型(区分不同波段属于那种类型)按遥感平台分类:航天、航空、地⾯遥感按⼯作波段分类:紫外遥感:收集和记录⽬标物在紫外波段辐射能量可见光遥感:收集和记录⽬标物反射的可见光辐射能量,传感器有:摄影机、扫描仪、摄像仪等红外遥感µm):收集与记录⽬标物反射与发射的红外能量,传感器有:摄影机、扫描仪等微波遥感(1mm-1m):收集和记录在微波波段的反射能量,传感器有:扫描仪、微波辐射计、雷达、⾼度计等按传感器⼯作原理分类:被动遥感:传感器不向⽬标发射电磁波,仅被动接收⽬标物的⾃⾝发射和对⾃然辐射源的反射能量主动遥感:传感器主动发射⼀定电磁波能量,并接收⽬标的后向散射信号按资料获取⽅式分类:成像遥感:传感器接收的⽬标电磁辐射信号可转换成(数字或模拟)图像⾮成像遥感:传感器接收的⽬标电磁辐射信号不能形成图像波段宽度与波谱的连续性分类:按应⽤领域分类:⼟地遥感(Domanial)环境遥感(Environmental)⼤⽓遥感(Atmospheric)海洋遥感(Oceanographic)农业遥感(Agricultural)林业遥感(Forestry)⽔利遥感(Hydrographic)地质遥感(Geological )5.遥感特点(⼀帧遥感图像代表地⾯多⼤位置)宏观性动态性技术⼿段多,信息海量应⽤领域⼴泛,经济效益⾼100nmile x 100nmile(185km x 185km)=34225km26.⽓象卫星有哪些1957年10⽉4⽇,前苏联成功发射了⼈类第⼀颗⼈造地球卫星1960年,美国发射了TIROS-1和NOAA-1太阳同步卫星1972年,美国发射ERTS-1(后改名为Landsat-1),装有MSS传感器,分辨率79⽶1982年,Landsat-4发射,装有TM传感器,分辨率提⾼到30⽶1986年,法国发射SPOT-1,装有PAN和XS传感器,分辨率提⾼到10⽶1988年9⽉7⽇,中国发射第⼀颗“风云1号”⽓象卫星1999年,美国发射IKNOS,空间分辨率提⾼到1⽶1999年,美国发射QUICKBIRD-2,空间分辨率提⾼到0.6⽶7.遥感发展历史⽆记录的地⾯遥感阶段(1608-1838)有记录的地⾯遥感阶段(1838-1857)空中摄影遥感阶段(1858-1956)航天遥感阶段(1957-)8.对遥感进⾏处理的软件PCI ERDAS ENVI ER-MAPPER9.SAR是什么是合成孔径雷达Synthetic Aperture Radar 的缩写10.遥感发展现状⾼分遥感发展迅速,多种传感器并存遥感从定性到定量分析遥感信息提取逐步⾃动化遥感商业化第⼆章电磁辐射与地物光谱特征1什么是电磁波谱(应⽤较多的波段)按照电磁波在真空中传播的波长或频率,递增或递减排列,形成的⼀个连续谱带。
遥感导论期末考试知识点总结第⼀章1、遥感的概念:是从远处探测感知物体,也就是不直接接触物体,从远处通过探测仪器接收来⾃⽬标地物的电磁波信息,经过对信息的处理,判别出⽬标地物的属性的综合性技术。
2、遥感系统包括:被测⽬标的信息特征、信息的获取、信息的传输与记录、信息的处理、信息的应⽤3、遥感的分类⽅法(1)按遥感平台分:地⾯遥感:传感器设置在地⾯平台上航空遥感:传感器设置在航空器上航天遥感:传感器设置在环地球的航空器上航宇遥感:传感器设置在星际飞船上(2)按传感器的探测波段分:紫外遥感:探测波段在0.05-0.38可见光遥感:探测波段在0.38-0.76红外遥感:探测波段在0.76-1000(近红外&远红外)微波遥感:探测波段在1mm-1m之间多波段遥感:探测波段在可见光波段和红外波段范围内,分成若⼲窄波段来探测⽬标。
(3)按⼯作⽅式分:主动遥感:不依靠太阳,由探测器主动发射⼀定电磁波能量并接受⽬标的后向散射信号被动遥感:传感器不向⽬标发射电磁波,仅被动接收⽬标物的⾃⾝发射和对⾃然辐射源的反射能量。
成像遥感:传感器接收的⽬标电磁辐射信号可转换成(数字或模拟)图像⾮成像遥感:传感器接收的⽬标电磁辐射信号不能形成图像(4)按遥感应⽤的⽬的分:环境遥感、农业遥感、林业遥感、地质遥感4、遥感的特点(若为简答)(1)遥感范围⼤,可实施⼤⾯积的同步观测遥感观测为地⾯探测提供了最佳获取信息的⽅式,并且不受地物阻隔的影响。
遥感平台的范围越⼤,视⾓越⼤,可以同步观测的地⾯信息就越多。
(2)时效性,获取信息快,更新周期短,具有动态监测的特点对于天⽓预报、⽕灾和⽔灾等灾情监测,以及军事⾏动等具有重要作⽤。
(3)数据的综合性和可⽐性,具有⼿段多、技术先进的特点能够反映许多⾃然⼈⽂信息,能较⼤程度排除⼈为⼲扰。
(4)经济性。
经济效益⾼,⽤途⼗分⼴泛(5)局限性:遥感技术所利⽤的电磁波还很有限,仅是其中的⼏个波段范围,已被利⽤的遥感波谱段,对许多地物某些特征不能准确反映。
第一章1. 微波遥感的微波波段:频率范围:300MHz – 40GHz ;波长范围:1m – 0.75cm.。
太阳辐射微波小于地球辐射 微波。
地球辐射微波:100MHz – 10GHz :3 nWm-2,100MHz – 1GHZ :29 pWm-2。
有鉴于 此,微波遥感多为主动遥感。
2.微波遥感的特点:由于微波的波长较长,能穿透云、雾而不受天气影响,所以能进行全天时全天候的遥感探测。
微波对某些物质具有一定的穿透能力,能直接透过植被、冰雪、土壤等表层覆盖物。
因此广覆盖。
全天候、全气候、广覆盖。
3.微博遥感中较多应用相同相位、微小频率差的干涉。
第二章1.成像几何的一些概念斜距方向:微波束传播方向。
地距方向:地面上与飞行器飞行方向垂直的方向。
方位方向:飞行器飞行方向。
天线覆盖区:天线波束射到地面的覆盖区。
幅宽 :在地距方向上,微波束’照亮’地球表面的宽度。
天线覆盖区在地距方向的 宽度。
近地距线 :幅宽最接近地面轨迹的边。
远地距线:幅宽最远离地面轨迹的边。
视角:天线到地面的垂线与斜距方向的夹角。
(技术参数)入射角:入射线与地面点的法线 的夹角。
入射角越小地面起伏越大,反射越强图像上越亮 星下点:飞行器在地面的垂直投影点。
卫星高度:飞行器离开地面的高度 H 。
天线尺度:方位长度 la 和垂直长度 lv 。
方位长度平行与飞行方向,垂直长度垂直与飞行方向。
2. 距分辨率:雷达系统在距方向上分辨两个相邻目标点的能力,即返回脉冲在时间上没有重叠3.斜距分辨率: r r =2τc 地距分辨率: g r =θτsin 2c关于距分辨率:当 = 0,地距分辨率 rg 无穷大 采用侧视 雷达的原因;地距和斜距分辨率均与搭载平台的飞行高度 H 无关;地距分辨率与入射角 有关。
近地距 处的分辨率低于远地距处的分辨率。
4. 脉冲压缩技术(关键技术,提高地距分辨率) 知道过程发射调频宽脉冲,其频率随时间线性变化,称为线性调频脉冲;返回的线性调频脉冲与发射线性调频脉冲的副本经相关器压缩成窄脉冲。
地形起伏较小区域的儿何校正卺掩畸变、地形起伏移位畸变可以忽略;主要的儿何畸变类型乜括:近地距压缩畸变,III飞行器飞行高度、航线、飞行姿态变化引起的畸变,地球曲率变化引起的畸变;校正方法:利用有关入射角、入射角在地距方h'd上的变化等相关知识,选择合适的地面控制点,构造映射多项式进行图像校正;校正难点:由于斑点(speckle)效应,使得定位自然的地面控制点比较闲难。
解决方案:利用人工地面控制点。
成像前在地面上布置反射器件。
飞行器经过这些地面点时记录器件的反射。
川GPS / GNSS可以精确定位地面控制点位置。
常用反則器件存:被动、主动校正器(passive and active calibrators)o在剧烈起伏地区地距位移引起的罔像几何畸变尤为强烈。
基于数字地形罔(DTM = Digital Terrain Map)的几何校iEDTM 找到与像素点匹配的地面点及与之相应的高程像素高程分布计算与像素点相应的展部入射角(local incident angle) r = h cos 秉新定位像素位置辐射畸变指遥感传感器在接收來自地物的电磁波辐射能时,电磁波在大气层中传输和传感器测量中受到遥感传感器本身特性、地物光照条件(地形影响和太阳高度角影响)以及人气作川等影响, 而导致的遥感传感器测撒位与地物实际的光谱辐射率的不一致。
雷达图像的辐射畸变主要来自斑点‘噪声’。
在大多数情况下,像素覆盖很多散射特性各异的散射单元,像素强度为这些散射单元返回信号的组合。
每个散射元返回信号的相位各异,总体来看,组合后的像素强度具有随机性。
W 此,雷达图像呈现斑点,称为斑点效应(现象、噪声)多视技术(multi-look):将接收线性调频调制信号的频谱分割荇干段,每一部分称为一个视(look)。
对每个视单独进行相关性操作,得到与其相应的压缩脉冲并生成了图像。
将所奋的子图像T均得到最终的SAR图像,称为多视SAR图像。
遥感的基本概念(P1):Remote Sensing 遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。
遥感系统的组成(P1):被测目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用五大部分。
电磁波的概念(P15):按电磁波在真空中传播的波长或频率,递增或递减排列,构成了电磁波谱。
大气窗口的概念(P31):把电磁波通过大气层时较少被反射、吸收或散射的,透过率较高的波段称为大气窗口。
大气窗口的光谱段(P31):0.3-1.3μm:即紫外、可见光、近红外波段。
这一波段是摄影成像的最佳波段,也是许多卫星传感器扫描成像的常用波段。
比如,Landsat 卫星的TM的1-4波段,SPOT卫星的HRV(高分辨率可见)波段等。
1.5-1.8μm,2.0-3.5μm:即近、短波、中红外波段,在白天日照条件好的时候扫描成像常用这些波段,比如TM的5、7波段等用以探测植物含水量以及云、雪或用于地质制图等。
3.5-5.5μm:即中红外波段,物体的热辐射较强。
这一区间除了地面物体反射光谱反射太阳辐射外,地面物体也有自身的发射能量。
如NOAA卫星的AVHRR传感器用3.55-3.93μm探测海面温度,获得昼夜云图。
8-14μm:即远红外波段。
主要来自物体热辐射的能量,适于夜间成像,测量探测目标的地物温度。
0.8-2.5cm至更长:即微波波段,由于微波穿云透雾的能力,这一区间可以全天候工作。
而且工作方式为主动遥感。
其常用的波段为0.8cm,3cm,5cm, 10cm等等, 有时也可将该窗口扩展为0.05cm至300cm 波段。
植被的反射光谱曲线(P38):可见光波段(0.4-0.76μm)有一个小的反射峰,位置在0.55μm(绿)处,两侧0.45μm(蓝)和0.67μm(红)则有两个吸收带。
陆地卫星(Landsat)(P51):每16至18天覆盖地球一次(重复覆盖周期),图像的覆盖范围为185×185km²(Landsat-7为185×170km²)。
一、概论1.微波遥感:利用微波传感器接收地面各种地物发射和反射的微波信号,藉以识别、分析地物,提取所需的信息。
2.极化:电磁波的电场振动方向的变化趋势3.后向散射:散射波的方向和入射方向相反,这个方向上的散射就称作后向散射4.微波与物质相互作用的形式:反射、散射、吸收、透射5.大气对微波的衰减作用主要是大气中水分子和氧分子对微波的吸收,大气微粒对微波的散射。
大气微粒可分为三类,水滴、冰粒和尘埃。
水粒组成的云粒子,瑞利散射;降水云层中的粒子,米氏散射。
6.氧气分子的吸收中心波长位于和处;水气吸收谱线随电磁波频率增高而增强,在23GHZ处有一个突变。
7.雷达卫星所采用的波段(一般是C(4~8GHz)、L(1~2GHz)波段)C波段:ERS,RADASAT,ENVISAT,XSAR/SRTM;L波段:SEASAT,SIR,JERS,?S波段:ALMAZ8.微波遥感的优点微波能穿透云雾、雨雪,具有全天候工作能力。
全天时工作能力。
微波对地物具有一定穿透性。
微波能提供不同于可见光和红外遥感所能提供的信息。
微波遥感的主动方式不仅记录电磁波振幅信号,而且可以记录电磁波相位信息。
行星际探测的主要手段。
缺点雷达图像分辨率较低—雷达成像处理困难数据源较少二、微波遥感系统9.相干与非相干性从远处两个靠得较近的物体反射回来的波是高度相干的。
因而用这类电磁波的遥感器进行成像时,获取的图像上有的地方可能没有接收到任何功率,有的地方从这两个物体接收到的反射功率则可能是其中一个物体的平均反射功率的四倍。
正因为波的相干性,微波雷达图像的像片上会出现颗粒状或斑点状的特征,这是一般非相干的可见光像片所没有的,也是对解译很有意义的信息。
10.微波主动遥感:微波散射计,雷达高度计,侧视雷达(固定孔径雷达,合成孔径雷达)微波被动遥感:微波辐射计11.微波散射计作用:测量地物表面的散射或反射特性,主要用于测量目标的散射特性随雷达波束入射角变化的规律,也可用于研究极化和波长对目标散射的影响。
微波遥感复习重点说明:黄色为一班勾画二班未勾画重点,蓝色为二班勾画一班未勾画重点多项选择题6题18分1. 主被动微波传感器(给选项哪个是主动,哪个是被动?)主动:成像雷达、雷达散射计、雷达高度计、气象雷达等被动:微波辐射计等2. 给出几个传感器,要知道哪些是成像的,哪些是不成像的?非成像微波传感器:微波散射计、雷达高度计、无线电地下探测器成像微波传感器:微波辐射计、侧视雷达、合成孔径侧视雷达3. 考察微波波段电磁波性质叠加原理、相干性和非相干性、衍射、极化4. 微波对土壤有一定的穿透性,那么穿透深度受哪些因素控制?土壤湿度、土壤类型、微波频率。
5. 雷达图像的几何特点?给出几个特点(光学和雷达),要知道哪个是雷达图像的特点?斜距显示的近距离压缩、透视收缩和叠掩、雷达阴影6. 雷达图像上,图像距离跟哪些因素有关系?(目标在地面上的距离和在雷达图像上的距离的比例尺跟哪些因素是有关系,斜距和地距跟哪些因素有关系?)斜距显示时比例尺f ’不是常数,它与俯角成反比,俯角越大,f 越小。
地距显示的图像比例尺为常数,在距离向没有形变。
7. 引起侧视雷达几何变形的原因?斜距投影变形、外方位元素变化的影响、地形起伏的影响、地球曲率的影响、大气折射的影响、地球自转的影响名词解释5题25分1. *视在温度:也称表观温度,它是利用天线进行辐射能量量测时用到的一个物理量,表示入射到天线上的能量。
它不仅包括地面物体的辐射能量,还有大气的辐射能量,以及被地面物体反射或散射的大气辐射能量。
2. 亮温(亮度温度):和被测物体具有相同辐射强度的黑体所具有的温度。
3. *透视收缩:雷达波束先到达坡底,最后才到达坡顶,于是坡底先成像坡顶后成像。
这种图像变形称为透视收缩。
4. 雷达阴影:在山的后坡雷达波束不能到达,因而也就不可能有回波信号,在图像上形成暗区,没有信息,从而形成雷达阴影。
5. 天线增益:天线增益是指在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。
遥感概论期末复习知识点一遥感的定义遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的科学及综合性探测技术。
二遥感的基本原理自然界的任何物体本身都具有发射、吸收、反射以及折射电磁波的能力,遥感是利用传感器主动或被动地接受地面目标反射或发射的电磁波,通过电磁波所传递的信息来识别目标,从而达到探测目标物的目的。
三遥感的物理基础(一)电磁波电磁波是遥感技术的重要物理理论基础。
1、电磁波的性质:具有波的性质和粒子的性质(波粒二相性)2、波长越短(频率越高),能量越高。
3、电磁波谱电磁波几个主要的分段:宇宙射线、伽玛射线、X射线、紫外、可见光、红外(近、中、远)、微波、无线电波。
遥感常用的电磁波段主要是近紫外、可见光、红外、微波紫外:紫外线是电磁波谱中波长从0.01~0.38um辐射的总称,主要源于太阳辐射。
由于太阳辐射通过大气层时被吸收,只有0.3~0.38um波长的光能穿过大气层到达地面,且散射严重。
由于大气层中臭氧对紫外线的强烈吸收与散射作用,紫外遥感通常在2000m 高度以下的范围进行。
可见光:是电磁波谱中人眼可以感知的部分,遥感常用的可见光是蓝波段(0.45um附近)、绿波段(0.55um附近)和红波段(0.65um附近)红外,红外线是波长介乎微波与可见光之间的电磁波,波长在0.7um至1mm之间,遥感常用的在0.7um-100mm微波,波长在0.1毫米~1米之间的电磁波。
微波波段具有一些特殊的特性:①受大气层中云、雾的散射影响小,穿透性好,不受光照等条件限制,白天、晚上均可进行地物微波成像,因此能全天候的遥感。
②微波遥感可以对云层、地表植被、松散沙层和干燥冰雪具有一定的穿透能力。
微波越长,穿透能力越强。
4、黑体辐射定律辐射出射度:在单位时间内从物体表面单位面积上发出的各种波长的电磁波能量的总和。
黑体:如果一个物体对于任何波长的电磁辐射都全部吸收,又能全部发射,则该物体是绝对黑体。
微波遥感哟不要第一章:微波遥感:利用某种传感器接收地面各种地物发射或反射的微波信号,藉以识别、分析地物,提取所需信息。
红外遥感是利用0.76~1000微米的红外涉嫌与各类地物关系来进行资源与环境调查和检测。
为什么微波遥感这么具有吸引力,它究竟具有什么优越性?一、微波能穿透云雾、雨雪,具有全天候工作能力。
二、微波对地物有一定穿透能力。
三、微波能提供不同于可见光和红外遥感所能提供的某些信息。
四、微波遥感的主动方式,雷达遥感不仅可以记录电磁波振幅信号,而且可以记录电磁波相位信息。
微波遥感分为主动和被动方式。
波长越长,穿透能力越强。
同一种土壤温度越小,穿透越深。
干涉测量:由数次同侧观测得到的数据可以计算出针对地面上每一点的相位差,进而计算出这一点的高程,其精度可以达到几米。
微波主动式传感器获得的图像常成为雷达图像,这是因为成像微波遥感常采用真实孔径雷达和合成孔径雷达,都是由雷达发展而来。
微波遥感也可以采用被动工作方式,这主要是微波辐射计的工作。
微波辐射计目前也成为重要的微波遥感工具。
所谓电磁波,就是以波动形式在空间传播并传递电磁能量的交变电磁场。
电磁波具有波长、传播方向、振幅和偏振面四个基本物理量。
这四个物理量一旦确定,一个平面电磁波就被完全决定了。
一般来说,振幅是指电场振动的幅度,它表示电磁波传递的能量大小,极化面是指电厂振动方向所在的平面。
电磁波的基本特性与微波微波是电磁波的一种形式,因此了解电磁波的一些基本特征也是对微波基本特征的了解。
1.叠加原理2.相干性和非相干性3.衍射4.极化(p7)在一定条件下,任何物体都能向外发射电磁辐射,而这种因热物体都会发射出由这一温度所决定的热辐射,一般只要温度在0 K以上,一切物体都会发射出由这一温度所决定的热辐射。
所有的物体都能吸收电磁辐射,吸收能力越强,其辐射能力也就越强。
大气对微波的衰减作用主要有大气中的水分子和氧分子对微波的吸收,大气微粒对微波的散射。
氧分子的吸收作用较强。
秀版地形起伏较小区域的几何校正叠掩畸变、地形起伏移位畸变可以忽略;主要的几何畸变类型包括:近地距压缩畸变,由飞行器飞行高度、航线、飞行姿态变化引起的畸变,地球曲率变化引起的畸变;校正方法:利用有关入射角、入射角在地距方向上的变化等相关知识,选择合适的地面控制点,构造映射多项式进行图像校正;校正难点:由于斑点(speckle)效应,使得定位自然的地面控制点比较困难。
解决方案:利用人工地面控制点。
成像前在地面上布置反射器件。
飞行器经过这些地面点时记录器件的反射。
用GPS / GNSS可以精确定位地面控制点位置。
常用反射器件有:被动、主动校正器(passive and active calibrators)。
在剧烈起伏地区地距位移引起的图像几何畸变尤为强烈。
基于数字地形图(DTM = Digital Terrain Map)的几何校正DTM 找到与像素点匹配的地面点及与之相应的高程像素高程分布计算与像素点相应的局部入射角(local incident angle)r = h cos重新定位像素位置辐射畸变指遥感传感器在接收来自地物的电磁波辐射能时,电磁波在大气层中传输和传感器测量中受到遥感传感器本身特性、地物光照条件(地形影响和太阳高度角影响)以及大气作用等影响,而导致的遥感传感器测量值与地物实际的光谱辐射率的不一致。
雷达图像的辐射畸变主要来自斑点‘噪声’。
在大多数情况下,像素覆盖很多散射特性各异的散射单元,像素强度为这些散射单元返回信号的组合。
每个散射元返回信号的相位各异,总体来看,组合后的像素强度具有随机性。
因此,雷达图像呈现斑点,称为斑点效应(现象、噪声)多视技术(multi-look): 将接收线性调频调制信号的频谱分割若干段,每一部分称为一个视(look)。
对每个视单独进行相关性操作,得到与其相应的压缩脉冲并生成子图像。
将所有的子图像平均得到最终的SAR图像,称为多视SAR图像。
多视图像的获得是以牺牲方位分辨率(azimuth)为代价。
微波遥感复习要点武汉大学测绘学院X X第一章微波遥感基础1、微波遥感:指利用波长1mm-1m电磁波(微波波段)进行遥感的统称。
利用微波传感器接受地面各种地物发射和反射的微波信号,藉以识别、分析地物、提取所需的信息。
对云层、地表植被、松散沙层和干燥冰雪具有一定的穿透能力,又能夜以继日地全天候工作。
2、微波遥感传感器:主动式:侧视雷达(成像)、微波高度计(不成像)、微波散射计(不成像)被动式:微波辐射计(成像)。
3、微波遥感的优势:全天时:主动被动微波遥感都不依赖;全天候;一定的穿透能力:波长越长、、湿度越小湿度越小,,穿透越深穿透;提供特殊信息:海面形状, 海面风速, 土壤;提供相位信息:高程信息, 地形形变信息(雷达遥感不仅可以记录电磁波振幅信息,还可以记录电磁波相位信息,用于获取高精度的DEM)4、缺点:空间分辨率;影像几何变形大, 处理困难;不易解译;与可见光红外影像在几何上很难一致。
5、成像模式:宽扫描模式:天线(雷达波束)在成像时沿距离向扫描,使观察范围加宽,同时会降低方位向分辨率。
聚束模式:对传统的SAR成像模式而言,其发射波束一般正交于卫飞行方向。
而对聚束模式而言,雷达波束可以前后“斜视”,偏离正方向。
采用这种方式,雷达波束对目标的照射时间将比传统成像模要长,从而提高分辨率。
通过聚束模式,将卫星分辨率提高到lm。
条带模式。
6、微波:1mm-1m(0.3GHz-300GHz),L波段(1-2GHz:15cm-30cm)7、电磁波的基本物理量:频率、传播方向、振幅、极化。
传播过程遵循:反射、折射、衍射、干涉、吸收、散射等规律。
8、干涉的定义:由两个(或两个以上)频率、振动方向相同,相位相同或相位差恒定的电磁波在空间叠加时,合成波振幅为各个波的振幅矢量和。
因此,会出现交叠区某些地方振动加强,某些地方振动减弱或完全抵消的现象。
这种现象称为干涉。
产生干涉现象的电磁波称为相干波。
波的相干性导致微波雷达图像的像片上会出现颗粒状或斑点状的特征。
《遥感原理与应用》复习题一、填空题1、年,我国第一颗地球资源遥感卫星(中巴地球资源卫星)在太原卫星发射中心发射成功。
2、陆地卫星的轨道是轨道,其图像覆盖范围约为。
SPOT 卫星较之陆地卫星,其最大优势是最高空间分辨率达到。
3、热红外影像上的阴影是目标地物与背景之间辐射差异造成的,可分为和两种。
4、TM影像为专题制图仪获取的图像。
其在、、方面都比MSS图像有较大改进。
5、遥感图像解译专家系统由三大部分组成,即、、。
6、全球定位系统在3S技术中的作用突出地表现在两个方面,即和。
7、固体自扫描是用固定的探测元件,通过遥感平台的运动对目标地物进行扫描的一种成像方式。
目前常用的探测元件是,它是一种用电荷量表示信号大小,用耦合方式传输信号的探测元件。
8、按照传感器的工作波段分类,遥感可以分为、、、、。
9、散射现象的实质是电磁波在传输总遇到大气微粒而产生的一种衍射现象。
这种现象只有当大气中的分子或其他威力的直径小于或相当于辐射波长时才会发生。
大气散射的三种情况是、、。
10、Landsat的轨道是同步轨道,SPOT卫星较之陆地卫星,其最大优势是最高空间分辨率达到。
二、名词解释1、多波段遥感2、维恩位移定律3、瑞利散射与米氏散射4、大气窗口5、多源信息复合6、空间分辨率与波谱分辨率7、辐射畸变与辐射校正8、平滑与锐化9、多光谱变换10、监督分类11、遥感与遥感技术系统12、动遥感与被动遥感13、磁波与电磁波谱14、直摄影与倾斜摄影15、光机扫描成像与固体自扫描成像16、空间分辨率与波谱分辨率17、辐射畸变与辐射校正18、平滑与锐化19、影像变形与几何校正20、监督分类与非监督分类三、简答题1、微波遥感的特点有哪些?2、遥感影像变形的主要原因是什么?3、遥感影像地图的主要特点是什么?4、遥感图像计算机分类中存在的主要问题是什么?5、简要回答计算机辅助遥感制图的基本过程6、遥感识别地物的原理7、感根据传感器的工作波段可分为哪几类?8、太阳辐射的光谱特性有哪些?9、美国陆地卫星MSS 的工作原理。
微波遥感
第一章:
微波遥感:利用某种传感器接收地面各种地物发射或反射的微波信号,藉以识别、分析地物,提取所需信息。
红外遥感是利用0.76~1000微米的红外射线与各类地物关系来进行资源与环境调查和检测。
为什么微波遥感这么具有吸引力,它究竟具有什么优越性?
一、微波能穿透云雾、雨雪,具有全天候工作能力。
二、微波对地物有一定穿透能力。
三、微波能提供不同于可见光和红外遥感所能提供的某些信息。
四、微波遥感的主动方式,雷达遥感不仅可以记录电磁波振幅信号,而且可以记录电磁波
相位信息。
微波遥感分为主动和被动方式。
波长越长,穿透能力越强。
同一种土壤温度越小,穿透越深。
干涉测量:由数次同侧观测得到的数据可以计算出针对地面上每一点的相位差,进而计算出这一点的高程,其精度可以达到几米。
微波主动式传感器获得的图像常成为雷达图像,这是因为成像微波遥感常采用真实孔径雷达和合成孔径雷达,都是由雷达发展而来。
微波遥感也可以采用被动工作方式,这主要是微波辐射计的工作。
微波辐射计目前也成为重要的微波遥感工具。
所谓电磁波,就是以波动形式在空间传播并传递电磁能量的交变电磁场。
电磁波具有波长、传播方向、振幅和偏振面四个基本物理量。
这四个物理量一旦确定,一个平面电磁波就被完全决定了。
一般来说,振幅是指电场振动的幅度,它表示电磁波传递的能量大小,极化面是指电厂振动方向所在的平面。
电磁波的基本特性与微波
微波是电磁波的一种形式,因此了解电磁波的一些基本特征也是对微波基本特征的了解。
1.叠加原理
2.相干性和非相干性
3.衍射
4.极化(p7)
在一定条件下,任何物体都能向外发射电磁辐射,而这种因热物体都会发射出由这一温度所决定的热辐射,一般只要温度在0 K以上,一切物体都会发射出由这一温度所决定的热辐射。
所有的物体都能吸收电磁辐射,吸收能力越强,其辐射能力也就越强。
大气对微波的衰减作用主要有大气中的水分子和氧分子对微波的吸收,大气微粒对微波的散射。
氧分子的吸收作用较强。
大气微粒可分为三大类,水滴、冰粒和尘埃,它们散射因微粒大小和电磁波长的相对关系不同而异。
米氏散射:当微粒直径大于波长时,散射作用对波长的敏感就不如瑞利散射,其散射截面积与波长的n次方成反比。
入射电磁波与地表面各类地物发生相互作用的过程中,在地物表面产生镜面反射或漫反射。
一般来说,若地物表面是光滑的,入射电磁波将产生反射,波束垂直地物表面,反射就按逆入射方向返回。
而当地物表面是粗糙面时,入射电磁波将会产生散射,向各方面漫反射,顺着入射方向的散射分量称为前向散射,逆入射方向的散射分量称为后向散射。
具有任意极化的电磁波都可以分解为TE波和TM波两个分量。
TE波是电场矢量垂直于入射平面的极化波。
TM波则是电场矢量平行于入射平面的极化波。
皮克在对电磁波与地物表面的相互作用做出了深入详细的研究之后,提出了微分散射系数和表面极化发射率等概念
粗糙表面的发射率在所有方向都相同,这种粗糙表面称为朗伯表面。
第四节,无线电谱与微波谱
国际上通行将0.3GHz到300GHz作为微波频段,它是无线电的一部分,为无线电中的特高频、超高频和极高频。
(p21)
第二章微波遥感系统
本章介绍用于微波遥感的传感器和主要的航天微波遥感平台。
在海洋,陆地和大气微波遥感应用中,常用的有效的传感器包括下列五种:
1.散射计
2.高度计3。
无线电地下探测器 4.微波辐射计 5.侧视雷达
一般微波散射计的组成部分包括:1、微波发射器2、天线3、微波接收机4、检波器和数据积分器。
微波散射计的功能是测量地物表面的散射或反射特性。
无线电地下探测器,是测量地下层及其分界的一种装置,其工作原理包括以下几方面:
1、对于某些地物,低频率波束可以穿透其表面。
2、探测器接收到的反射功率可以检测出来。
3、能实现足够的距离分辨力。
微波辐射计可用于记录目标的亮度温度。
天线扫描有两种方式,一种是机械方式(天线摆动),另一种是电控方式。
辐射计表面上仅仅是一种接收机,但它与雷达或通信中的接收机不同,一、物体发射是相位非相干的自然辐射,它可以扩展到整个电磁波谱,而雷达接收机所接收的输入信号则可能是相位想干,并近于单色。
辐射计是一种高灵敏度的接收机
侧视雷达:
1、一般结构,在地面可以分辨的两目标最短距离就是侧视雷达图像的距离分辨力。
距离分辨力与俯角关系很大,说明了雷达成像必须侧视的原因。
在航向上所能分辨出的两个目标的最小距离成为方位分辨力:
Rw = WR
式中,w为波瓣角,R为斜距
Rw=λ/d * R
可见,要提高方位分辨力,必须加大天线孔径,采用波长较短的电磁波,缩短观测距离
合成孔径天线是再不同位置接收同一地物的回波信号,真实孔径天线则在一个位置上接收目标的回波。
天线在各方向上辐射的能量是不均匀的。
天线周围还分布着一些能量很小的辐射,一般成为旁瓣。
(p 35~39各种破公式)
加拿大发射的RADARSAT(p 42)
了解:所谓灰体是指实际的物体,它不可以吸收所有入射到它表面的能量,讨论灰体辐射,必须与相应的黑体一道进行。
物体的发射率:它的辐射亮度与等效黑体辐射亮度之比。
视在温度,也称为表观温度,它是利用天线进行辐射能量测试用到的一个物理量,它表示入射到天线的能量。
天线温度,(p45)
第三章
侧视雷达图像的参数包括系统的工作参数和图像的质量参数。
雷达系统的工作参数是成像基本条件。
图像的质量参数涉及地物信息的可解译程度。
雷达波束对地物的不同照射方向,会产生不同的回波效果。
雷达图像有两种距离显示形式,地距显示和斜距显示。
图像分辨率包括空间分辨率,灰度分辨率和体分辨率。
空间分辨率是指雷达图像上可区分的两个地物目标的最小距离,它包括方位分辨率和距离分辨率。
(P 52 ~ 55)侧视雷达图像的几何特点
地物目标对雷达波束的几种不同反应
一般来说,地物目标在被雷达波束照射后,可能有以下几种情况:反射、散射、穿透和吸收。
地物本身的结构,表面的粗糙度与介电性能不同,则会对电磁波的穿透、反射和吸收带来不同程度的效应。
一般来说,地物目标可分为分布型目标、点目标和所谓的硬目标。
影响雷达的图像色调的因素
1、表面粗糙度的影响
2、复介电常数
3、波长
4、入射角
5、极化方式
6、亚表面粗糙度和体散射
7、角反射器效应
指向角就是两面角轴线与雷达波束所在平面的夹角。
一般来说,当指向角为90度时,回波最强,偏离90度时,回波就弱,但三面叫没有这种指向角的明显效应,无论雷达波束方向如何,其回波总是比较强的。
第四节典型地物的散射特性(P 73)
第五节典型地物的亮度温度(P 79)
第四章
内部校准:通过标定的发射功率来测试发射接收系统的传输函数。
绝对校准,通过获得已知散射截面的地面目标信号来进行的。
雷达图像的定标是确定图像的灰度与标准雷达散射截面的关系。
定标是定量分析的前提,定标后,即可由雷达图像的灰度计算出地物目标回波的绝对值。
雷达图像的定标工作是再雷达系统进行校准后进行的。
雷达定标的一般原理
雷达系统的输入是地物目标回波功率,其输出则是图像灰度,
输出量与输入量之间的关系成为传递函数,只有确定了这一传递函数才能利用雷达图像进行定量分析。
(P 98雷达图像模拟)。