北京市东城区2018-2019学年八年级上学期期末教学统一检测数学试题-7d387e644f0a4f0aa0d8bfd7bf9e4df4
- 格式:docx
- 大小:632.03 KB
- 文档页数:26
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,AD 是等边三角形ABC 的中线,AE=AD ,则∠EDC=( )度.A .30B .20C .25D .15【答案】D 【详解】∵△ABC 是等边三角形,∴AB=AC,∠BAC=∠C=60°,∵AD 是△ABC 的中线,∴∠DAC=12∠BAC=30°,AD ⊥BC , ∴∠ADC=90°,∵AE=AD ,∴∠ADE=∠AED=1802BAC ︒∠- =280013︒-︒=75°, ∴∠EDC=∠ADC −∠ADE=90°−75°=15°.故选D.【点睛】此题考查了等边三角形的性质、等腰三角形的性质及三角形的内角和定理的应用.解题的关键是注意三线合一与等边对等角的性质的应用,注意数形结合思想的应用.2.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有1.11 111 1176克,用科学记数法表示是( )A .7.6×118克B .7.6×11-7克C .7.6×11-8克D .7.6×11-9克 【答案】C【解析】试题解析:对于绝对值小于1的数,用科学记数法表示为a×11n 形式,其中1≤a <11,n 是一个负整数,除符号外,数字和原数左边第一个不为1的数前面1的个数相等,根据以上内容得:1.11 111 1176克=7.6×11-8克,故选C .3.如图,AD 是ABC 的角平分线,DE AB ⊥于E ,已知ABC 的面积为28.6AC =,4DE =,则AB 的长为( )A.4 B.6 C.8 D.10【答案】C【分析】作DF⊥AC于F,根据角平分线的性质求出DF,根据三角形的面积公式计算即可.【详解】解:作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DF=DE=4,∴112228 AB DE AC DF即112246428 AB解得,AB=8,故选:C.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.4.下列四组线段中,可以构成直角三角形的是()A.2,3,4 B.3,4,5 C.4,5,6 D.1,2,3【答案】B【分析】根据勾股定理逆定理进行分析.【详解】A. 22+32≠42,不能构成直角三角形;B. 32+42=52 ,可以构成直角三角形;C. 42+52≠62,不能构成直角三角形;D. 122)2≠32,不能构成直角三角形.故选B【点睛】本题考核知识点:勾股定理逆定理.解题关键点:熟记勾股定理逆定理.5.下列代数式,3x,3x,1aa-,35y-+,2xx y-,2nπ-,32x+,x yx+中,分式有()个.A .5B .4C .3D .2【答案】A 【分析】根据分式的定义逐个判断即可.形如(A 、B 是整式,B 中含有字母)的式子叫做分式. 【详解】解:分式有:3x ,1a a -,﹣35y +,2x x y -,x y x+,共5个, 故选:A .【点睛】本题考查的知识点是分式的定义,熟记定义是解此题的关键.6.如图,矩形ABCD 的对角线AC 与BD 相交于点,,O P Q 分别为,AO AD 的中点, 2.5PQ =,则对角线AC 的长等于( )A .2.5B .5C .10D .15【答案】C 【分析】根据中位线的性质可得OD=2PQ=5,再根据矩形对角线互相平分且相等,可得AC=BD=2OD=1.【详解】∵P ,Q 分别为AO ,AD 的中点, ∴PQ 是△AOD 的中位线∴OD=2PQ=5∵四边形ABCD 为矩形∴AC=BD=2OD=1.故选C .【点睛】本题考查了三角形中位线,矩形的性质,熟记三角形的中位线等于第三边的一半,矩形对角线互相平分且相等是解题的关键.7.正比例函数y kx =(0k ≠)的函数值y 随着x 增大而减小,则一次函数2y x k =-的图象大致是( ) A . B .C .D .【答案】B【分析】根据正比例函数的性质得到k<0,然后根据一次函数的性质可得一次函数2y x k =-的图像经过一、三象限,且与y 轴的正半轴相交.【详解】解: 正比例函数y kx =(0k ≠)的函数值y 随着x 增大而减小.∴ k<0.一次函数2y x k =-的一次项系数大于0,常数项大于0.∴一次函数2y x k =-的图像经过一、三象限,且与y 轴的正半轴相交.故选:B .【点睛】本题考查了一次函数的图象和性质,灵活掌握一次函数图象和性质是解题的关键.8.下列选项中,可以用来说明命题“若a b >,则22a b >”属于假命题的反例是( )A .2a =,1b =B .2a =-,1b =-C .1a =-,2b =-D .1a =-,1b = 【答案】C【分析】据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.【详解】∵当a =-1,b =−2时,(−2)2>(−1)2,但是−2<-1,∴1a =-,2b =-是假命题的反例.故选:C .【点睛】此题考查的是命题与定理,要说明数学命题的错误,只需举出一个反例即可这是数学中常用的一种方法. 9.下列多项式中可以用平方差公式进行因式分解的有( )①22a b --;②2214x x y ++-;③224x y -;④22()()m n ---; ⑤22144121a b -+;⑥2122m m -+ A .2个B .3个C .4个D .5个【答案】C【分析】根据平方差公式的结构特点,通过变形,然后得到答案.【详解】解:①2222=()b a b a -+--,不符合平方差公式结构,故①错误; ②222211()42x x y x y ++-=+-,符合平方差公式结构,故②正确; ③22224(2)x y x y -=-,符合平方差公式结构,故③正确;④2222()()m n m n ---=-,符合平方差公式结构,故④正确;⑤2222144121[(12)(11)]a b a b -+=--,符合平方差公式结构,故⑤正确; ⑥22112(4)22m m m m -+=--,不符合平方差公式结构,故⑥错误; ∴可以用平方差公式进行因式分解的有:②③④⑤,共4个;故选:C.【点睛】本题考查了平方差公式因式分解,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.10.等腰三角形的一个外角是100°,则它的顶角的度数为( )A .80°B .80°或50°C .20°D .80°或20°【答案】D【分析】根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质分情况解答.【详解】∵等腰三角形的一个外角是100°,∴与这个外角相邻的内角为180°−100°=80°,当80°为底角时,顶角为180°-160°=20°,∴该等腰三角形的顶角是80°或20°.故答案选:D.【点睛】本题考查了等腰三角形的性质,解题的关键是熟练的掌握等腰三角形的性质.二、填空题11.如图,点A,B,C 在同一直线上,△ABD 和△BCE 都是等边三角形,AE,CD 分别与BD,BE 交于点F,G ,连接FG ,有如下结论:①AE=CD ②∠BFG= 60°;③EF=CG ;④AD ⊥CD ⑤FG ∥AC 其中,正确的结论有__________________. (填序号)【答案】①②③⑤【解析】易证△ABE ≌△DBC ,则有∠BAE =∠BDC ,AE =CD ,从而可证到△ABF ≌△DBG ,则有AF =DG ,BF =BG ,由∠FBG =60°可得△BFG 是等边三角形,证得∠BFG =∠DBA =60°,则有FG ∥AC ,由∠CDB≠30°,可判断AD 与CD 的位置关系.【详解】∵△ABD 和△BCE 都是等边三角形,∴BD =BA =AD ,BE =BC =EC ,∠ABD =∠CBE =60°. ∵点A 、B 、C 在同一直线上,∴∠DBE =180°﹣60°﹣60°=60°,∴∠ABE =∠DBC =120°.在△ABE 和△DBC 中,∵BD BA ABE DBC BE BC ∠∠=⎧⎪=⎨⎪=⎩,∴△ABE ≌△DBC ,∴∠BAE =∠BDC ,∴AE =CD ,∴①正确;在△ABF 和△DBG 中,60BAF BDG AB DB ABF DBG ∠∠∠∠=⎧⎪=⎨⎪==︒⎩,∴△ABF ≌△DBG ,∴AF =DG ,BF =BG .∵∠FBG =180°﹣60°﹣60°=60°,∴△BFG 是等边三角形,∴∠BFG=60°,∴②正确;∵AE =CD ,AF =DG ,∴EF=CG ;∴③正确;∵∠ADB =60°,而∠CDB=∠EAB≠30°,∴AD 与CD 不一定垂直,∴④错误.∵△BFG 是等边三角形,∴∠BFG=60°,∴∠GFB =∠DBA =60°,∴FG ∥AB ,∴⑤正确.故答案为①②③⑤.【点睛】本题考查了等边三角形的判定与性质、全等三角形的判定与性质、三角形外角的性质、平行线的判定和性质,证得△ABE ≌△DBC 是解题的关键.12.命题“在ABC ∆中,如果A B C ∠=∠=∠,那么ABC ∆是等边三角形”的逆命题是_____.【答案】如果ABC ∆是等边三角形,那么A B C ∠=∠=∠.【解析】把原命题的题设与结论进行交换即可.【详解】“在ABC ∆中,如果A B C ∠=∠=∠,那么ABC ∆是等边三角形”的逆命题是“如果ABC ∆是等边三角形,那么A B C ∠=∠=∠”.故答案为:如果ABC ∆是等边三角形,那么A B C ∠=∠=∠.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.13.直角三角形的两边长分别为3和5,则第三条边长是________.【答案】4【分析】由于此题中直角三角形的斜边不能确定,故应分5是直角三角形的斜边和直角边两种情况讨论.【详解】∵直角三角形的两边长分别为3和5,∴①当5是此直角三角形的斜边时,设另一直角边为x ,则;②当5是此直角三角形的直角边时,设另一直角边为x ,则综上所述,第三边的长为4故答案为4本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.注意分类讨论思想的运用.14.如图,在ABC ∆中,点D 是BC 的中点,点E 是AD 上一点,BE AC =.若70C ∠=︒,50DAC ∠=︒ 则EBD ∠的度数为______.【答案】10︒【分析】延长AD 到F 使DF AD =,连接BF ,通过ACD FDB ≅,根据全等三角形的性质得到CAD BFD ∠=∠,AC BF =, 等量代换得BF BE =,由等腰三角形的性质得到F BEF ∠=∠,即可得到BEF CAD ∠=∠,进而利用三角形的内角和解答即可得.【详解】如图,延长AD 到F ,使DF AD =,连接BF :∵D 是BC 的中点∴BD CD =又∵ADC FDB ∠=∠,AD DF =∴ACD FDB ≅∴AC BF =, CAD F ∠=∠,C DBF ∠=∠∵AC BE =, 70C ︒∠=, 50CAD ︒∠=∴BE BF =, 70DBF ︒∠=∴50BEF F ︒∠=∠=∴180180505080EBF F BEF ︒︒︒︒︒∠=-∠-∠=--=∴807010EBD EBF DBF ︒︒︒∠=∠-∠=-=故答案为:10︒本题主要考查的知识点有全等三角形的判定及性质、等腰三角形的性质及三角形的内角和定理,解题的关键在于通过倍长中线法构造全等三角形.15.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为__________.【答案】5.6×10-2【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将0.056用科学记数法表示为5.6×10-2,故答案为:5.6×10-2【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.16.已知4a b +=,3ab =,则代数式(2)(2)a b ++的值是______________.【答案】15【分析】根据整式的乘法将原式展开,代入+a b 和ab 的值即可得解.【详解】(2)(2)2()4a b ab a b ++=+++,将4a b +=,3ab =代入得原式324415=+⨯+=,故答案为:15.【点睛】本题主要考查了整式的乘法,熟练运用多项式乘以多项式的计算公式是解决本题的关键.17.如图,在Rt △ABC 中,∠C=90°,AD 是∠BAC 的平分线,CD=16,则D 到AB 边的距离是 .【答案】1.【分析】作DE ⊥AB ,根据角平分线性质可得:DE=CD=1.【详解】如图,作DE ⊥AB ,因为∠C=90°,AD 是∠BAC 的平分线,CD=1,所以,DE=CD=1.即:D 到AB 边的距离是1.故答案为1【点睛】本题考核知识点:角平分线性质.解题关键点:利用角平分线性质求线段长度.三、解答题18.为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?【答案】(1)A城和B城分别有200吨和300吨肥料;(2)从A城运往D乡200吨,从B城运往C乡肥料240吨,运往D乡60吨时,运费最少,最少运费是10040元;(3)当0<a<4时, A城200吨肥料都运往D乡,B城240吨运往C乡,60吨运往D乡;当a=4时,在0≤x≤200范围内的哪种调运方案费用都一样;当4<a<6时, A城200吨肥料都运往C乡,B城40吨运往C乡,260吨运往D乡.【解析】(1)根据A、B两城共有肥料500吨,其中A城肥料比B城少100吨,列方程或方程组得答案;(2)设从A城运往C乡肥料x吨,用含x的代数式分别表示出从A运往运往D乡的肥料吨数,从B城运往C乡肥料吨数,及从B城运往D乡肥料吨数,根据:运费=运输吨数×运输费用,得一次函数解析式,利用一次函数的性质得结论;(3)列出当A城运往C乡的运费每吨减少a(0<a<6)元时的一次函数解析式,利用一次函数的性质讨论,得结论.【详解】(1)设A城有化肥a吨,B城有化肥b吨,根据题意,得500100 b ab a+=⎧⎨-=⎩,解得200300 ab=⎧⎨=⎩,答:A城和B城分别有200吨和300吨肥料;(2)设从A城运往C乡肥料x吨,则运往D乡(200﹣x)吨,从B城运往C乡肥料(240﹣x)吨,则运往D乡(60+x)吨,设总运费为y元,根据题意,则:y=20x+25(200﹣x)+15(240﹣x)+24(60+x)=4x+10040,∵20002400600xxxx≥⎧⎪-≥⎪⎨-≥⎪⎪+≥⎩,∴0≤x≤200,由于函数是一次函数,k=4>0,所以当x=0时,运费最少,最少运费是10040元;(3)从A城运往C乡肥料x吨,由于A城运往C乡的运费每吨减少a(0<a<6)元,所以y=(20﹣a)x+25(200﹣x)+15(240﹣x)+24(60+x)=(4﹣a)x+10040,当4﹣a>0时,即0<a<4时,y随着x的增大而增大,∴当x=0时,运费最少,A城200吨肥料都运往D乡,B城240吨运往C乡,60吨运往D乡;当4-a=0时,即a=4时,y=10040,在0≤x≤200范围内的哪种调运方案费用都一样;当4﹣a<0时,即4<a<6时,y随着x的增大而减小,∴当x=240时,运费最少,此时A城200吨肥料都运往C乡,B城40吨运往C乡,260吨运往D乡.【点睛】本题考查了二元一次方程组的应用、不等式组的应用、一次函数的应用等,弄清题意、根据题意找准等量关系、不等关系列出方程组,列出一次函数解析式是关键.注意(3)小题需分类讨论.19.如图,在△ABC中,∠ABC=90°,AB=6cm,AD=24cm,BC与CD的长度之和为34cm,其中C是直线l 上的一个动点,请你探究当C离点B有多远时,△ACD是以DC为斜边的直角三角形.【答案】8cm【解析】试题分析: 先根据BC与CD的长度之和为34cm,可设BC=x,则CD=(34-x),根据勾股定理可得:AC2=AB2+BC2=62+x2,△ACD是以DC为斜边的直角三角形,AD=24cm,根据勾股定理可得:AC2=CD2-AD2=(34-x)2-242,∴62+x2=(34-x)2-242,解方程即可求解.试题解析:∵BC与CD的长度之和为34cm,∴设BC=xcm,则CD=(34﹣x)cm.∵在△ABC中,∠ABC=90°,AB=6cm,∴AC2=AB2+BC2=62+x2.∵△ACD是以DC为斜边的直角三角形,AD=24cm,。
2018--2019学年第⼀学期期末模拟试卷⼋ 年 级 数 学姓名:_______________ 成绩:_________________⼀.选择题(本题共30分,每⼩题3分)下⾯各题均有四个选项,其中只有⼀个是符合题意的.1.长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,⾯积约2 050 000平⽅公⾥,约占全国⾯积的21% .将2 050 000⽤科学记数法表⽰应为( ) A . 205万 B . C . D . 2.下列图形中,是轴对称图形的是( )A .B .C .D .3.化简的结果为( ) A . B . 30 C . D . 304.下列等式成⽴的是( )A . =B . =C . =D . =5.下列计算正确的是( )A .a 5•a 3=a 15 B . a 6÷a 3=a 2 C . (a 3)2=a 9 D . a 3+a 3=2a 36.如图,等边三⾓形ABC 的边长为4,AD 是BC 边上的中线,E 是AD 上的动点, F 是AC 边上⼀点.若AE=2,则EF+ CF 取得最⼩值时,∠ECF 的度数为( ) A . 15° B . 22. 5° C . 30° D . 45°7.⽤直尺和圆规作⼀个⾓等于已知⾓,如图,能得出∠A ′O ′B ′=∠AOB 的依据是( ).A . SASB . AASC . ASAD . SSS 8.下列各式是完全平⽅式的是( )A .B .C .D . 205×104 2.05×106 2.05×10715+161130330330301123a b +5ab 33a b +1a b +2ab ab b −a a b −a a b −+aa b −+x 2+2x −11+x 2x +x y +1x 2−x +19.已知△ABC 中,AB=5,AC=7,则BC 边上的中线a 的取值范围是( ) A .1<a <6 B .5<a <7 C .2<a <12 D .10<a <1410.如图,⽹格中的每个⼩正⽅形的边长为1,A 、B 是格点,以A 、B 、C 为等腰三⾓形顶点的所有格点C 的个数为( ) A . 7个 B . 8个 C . 9个 D . 10个 ⼆、填空题(本题共12分,每⼩题2分).11.在函数中,⾃变量的取值范围是______________.12.点P (2,﹣3)关于x 轴的对称点坐标为___________.13.如图,已知∠ABC=∠ABD ,要使△ABC ≌△ABD ,请添加⼀个条件 . (不添加辅助线,只需写出⼀个条件即可)14.已知⼀个等腰三⾓形的两边长分别为2和4,则该等腰三⾓形的周长是 .(13题) (15题)15.如图,已知B ,C ,E 在⼀条直线上,且△ABC ≌△EFC ,∠EFC =60°,则∠A = ; 16.在△ABC 中,∠C=90°,AD 平分∠BAC ,若DC=7,则D 点到AB 的距离为 . 三、解答题17.(本题3分)计算或化简(1)计算 (2) 化简 18.(本题6分)计算: +(π﹣3)0﹣(﹣)﹣2+|2﹣3|19.(本题4分)分解因式:4x 2+4xy+y 2﹣4x ﹣2y ﹣3.121x y x +=−x ()2132188−−+221a a a a a −⎛⎞−÷⎜⎟⎝⎠185220.(本题4分)先化简,再求值:,其中x=﹣1.21.(本题4分)解⽅程: +3= 22.(本题4分)已知:如图,BD=CD ,∠B=∠C ,求证:AD 平分∠BAC .23.(本题5分)如图,已知OC 平分∠AOB .请按要求画图并解答:(1)在OC 上任取⼀点D ,画点D 到OA 、OB 的垂线段DE 、DF ,垂⾜分别为点E 、F ,求证:OE=OF ; (2)过点D 画OB 的平⾏线交OA 于点G ,求证:△ODG 为等腰三⾓形.24.(本题5分)如图,△ABC 中,∠ABC,∠CAB 的平分线交于点P ,过点P 作DE ∥AB ,分别交BC 、AC 于点)113(4422+−+÷++−x x x x x x 1x −2x −1x −2D、E求证:DE=BD+AE25.(本题5分)早晨,⼩明步⾏到离家900⽶的学校去上学,到学校时发现眼镜忘在家中,于是他⽴即按原路步⾏回家,拿到眼镜后⽴即按原路骑⾃⾏车返回学校.已知⼩明步⾏从学校到家所⽤的时间⽐他骑⾃⾏车从家到学校所⽤的时间多10分钟,⼩明骑⾃⾏车的速度是步⾏速度的3倍.求⼩明步⾏的速度(单位:⽶/分钟)是多少.26.(本题5分)如图,点O为平⾯直⾓坐标系的原点,点A在x轴上,△AOC是边长为2的等边三⾓形.(1)写出△AOC的顶点C的坐标:_____.(2)将△AOC沿x轴向右平移得到△OBD,则平移的距离是_____(3)将△AOC绕原点O顺时针旋转得到△OBD,则旋转⾓可以是_____度(4)连接AD,交OC于点E,求∠AEO的度数.27.(本题6分)如图所⽰,点P是∠AOB内部的⼀点,按要求完成下列各⼩题.(1)分别画出点P关于OA、OB的对称点分别为P1、P2,连接P1P2, 分别交OA、OB于点M、N两点.(2)连接PM,PN,若P1P2=5cm,则△PMN的周长= cm;(3)画射线OP 1与OP 2,若∠AOB=55°,则∠P 1OP 2= °.28.(本题6分)如图,长⽅形的边, 在坐标轴上, (0,2),(4,0).点从点出发,以每秒1个单位长度的速度沿射线⽅向运动,同时点从点出发,以每秒2个单位的速度沿射线⽅向运动.设点运动时间为秒().(1)当时,求△的周长;(2)当为何值时,△是等腰三⾓形;3.点关于的对称点为,当恰好落在直线上时,△的⾯积为__________. (直接写出结果)OABC OA OC A C P A AO Q C CO P t 0t>1t =BPQ tBPQ C BQ C ʹC ʹAQ BPQ()21321322512451925+−+−−=+−=+试题参考答案及评分标准20190111.x ≥-1且x ≠12.(2,3) 13.BC=BD . 14.10. 15.30° 16.7.17.(1)原式= =(2)原式= ==18.原式= 19.解:原式=(4x 2+4xy+y 2)﹣(4x+2y )﹣3=(2x+y )2﹣2(2x+y )﹣3=(2x+y+1)(2x+y ﹣3).20.原式== =. 当x=﹣1时,原式=﹣=﹣3.21.解⽅程: 解:题号12345678910答案CDCCDCDDAB1223332−+5322+2221a a a a a −−÷()()()2111a a a a a a +−×−1a +1)1)(1(3)1()2(2+−+−÷+−x x x x x x )2)(2(1)1()2(2−+−+⋅+−x x x x x x )2(2-+−x x x )21()1(21+−×−−−1x −2+3=x −1x −21+3(x −2)=x −1. 经检验,是原⽅程的增根, 所以,原⽅程⽆解. 22.证明:连接BC , ∵BD=DC , ∴∠3=∠4, 又∵∠1=∠2, ∴∠1+∠3=∠2+∠4, 即∠ABC=∠ACB , ∴△ABC 是等腰三⾓形, ∴AB=AC ,在△ABD 和△ACD 中,∴△ABD ≌△ACD(SAS), ∴∠BAD=∠CAD , ∴AD 平分∠BAC.23.(1)∵OC 平分∠AOB , ∴∠AOC=∠BOC , ∵DE ⊥OA ,DF ⊥OB , ∴∠OED=∠OFD , ∵OD=OD , ∴△ODE ≌△ODF , ∴OE=OF . (2)如图:∵DG ∥OB ,1+3x −6=x −12x =4x=2x =2{BD =CD∠1=∠2AB =AC∴∠GDO=∠DOF , ∵∠GOD=∠DOF , ∴∠GDO=∠GOD , ∴GD=GO ,即△ODG 是等腰三⾓形. 24.略25.解:设⼩明步⾏的速度是x ⽶/分,由题意得:解得:x =60,经检验:x =60是原分式⽅程的解.答:⼩明步⾏的速度是60⽶/分. 26.略27.(1)如图1:(2)如图2,∵点P 与点P 1关于OA 对称,点P 与点P 2关于OB 对称, ∴OA 垂直平分PP 1,OB 垂直平分PP 2,∴P 1M=PM ,P 2N=PN ,∴C △PMN =PM+PN+MN= P 1M+ P 2N+MN=P 1P 2=5(cm ).900900103x x =+(3)如图3,连接OP ,∵点P 与点P 1关于OA 对称,点P 与点P 2关于OB 对称, ∴OA 垂直平分PP 1,OB 垂直平分PP 2, ∴OP 1=OP ,OP 2=OP ,∴∠P 10A=∠AOP ,∠P 2OB=∠BOP , 又∵∠AOP+∠BOP=∠AOB=55°,∴∠P 1OP 2=∠P 10A+∠P 2OB+∠AOB=2∠AOB=110°.27.(1)当=1时, , , , ;∴(2), ,①当PB=PQ 时, ,t 1AP =3PO =6OQ =2CQ =22224117BP AB AP =+=+=2222125PQ OP OQ =+=+=22222222BQ BC CQ =+=+=17522BPQ C BP PQ BQ =++=++2216BP t =+2244BQ t =+()()222242PQ t t =−+−()()22216242t t t +=−+−化简得: ,解得③当BP=BQ 时, ,解得: (舍去),(舍去)②当QB=QP 时, ,化简得: ,解得,综上所述,当或或时,△BPQ 是等腰三⾓形.(3),2510t t −+=12521521,22t t −+==221644t t +=+12t =22t =−()()22224244t t t −+−=+2510t t −+=110221t =+210221t =−52152122t t −+== 10221t =+10221t =−4+234-23。
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列命题:①如果0a b +=,那么0a b ;②有公共顶点的两个角是对顶角;③两直线平行,同旁内角互补;④平行于同一条直线的两条直线平行.其中是真命题的个数有( )A .1B .2C .3D .4【答案】B【分析】利用等式的性质、对顶角的定义、平形线的判定及性质分别判断后即可确定正确的选项.【详解】如果0a b +=,那么a b 、互为相反数或0a b ==,①是假命题;有公共顶点的两个角不一定是对顶角,②是假命题;两直线平行,同旁内角互补,由平行公理的推论知,③是真命题;平行于同一条直线的两条直线平行,由平行线的性质知,④是真命题.综上,真命题有2个,故选:B .【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2.点A (a ,4)、点B (3,b )关于x 轴对称,则(a+b )2010的值为( )A .0B .﹣1C .1D .72010【答案】C【解析】根据关于关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,可得a 、b 的值,进而得到答案.【详解】∵点A (a ,4)、点B (3,b )关于x 轴对称,∴a=3,b=﹣4,∴(a+b )2010=(3-4)2010=1. 故选C .【点睛】本题考查了关于x 轴对称点的坐标特点,关键是掌握关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数. 3.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .3【分析】原式化简后,约分得到最简结果,把已知等式代入计算即可求出值.【详解】解:原式=()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭2()()()()m n m n m n m n m m n m m n ⎡⎤+-=+⋅+-⎢⎥--⎣⎦3()()3()()m m n m n m n m m n =⋅+-=+- 1m n += ∴原式=3,故选D.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.4.如图,AD 是ABC 的角平分线,DE AC ⊥;垂足为,//E BF AC 交ED 的延长线于点F ,若BC 恰好平分ABF ∠.给出下列三个结论:①DE DF =;②DB DC =;③AD BC ⊥.其中正确的结论共有( )个A .0B .1C .2D .3【答案】D 【分析】由BF ∥AC ,AD 是ABC 的角平分线,BC 平分ABF ∠得∠ADB=90︒;利用AD 平分∠CAB 证得△ADC ≌△ADB 即可证得DB=DC ;根据DE AC ⊥证明△CDE ≌△BDF 得到DE DF =.【详解】∵DE AC ⊥,BF ∥AC,∴EF ⊥BF ,∠CAB+∠ABF=180︒,∴∠CED=∠F=90︒,∵AD 是ABC 的角平分线,BC 平分ABF ∠,∴∠DAB+∠DBA=12(∠CAB+∠ABF)=90︒, ∴∠ADB=90︒,即AD BC ⊥,③正确;∴∠ADC=∠ADB=90︒,∵AD 平分∠CAB,∴∠CAD=∠BAD,∴△ADC≌△ADB,∴DB=DC,②正确;又∵∠CDE=∠BDF,∠CED=∠F,∴△CDE≌△BDF,∴DE=DF,①正确;故选:D.【点睛】此题考查平行线的性质,三角形全等的判定及性质,角平分线的定义.5.甲骨文是中国的一种古代文字,又称“契文”、“甲骨卜辞”、“殷墟文字”或“龟甲兽骨文”,是汉字的早期形式,是现存中国王朝时期最古老的一种成熟文字,如图为甲骨文对照表中的部分内容,其中可以抽象为轴对称图形的甲骨文对应的汉字是()A.方B.雷C.罗D.安【答案】C【解析】根据轴对称图形的概念观察图形判断即可.【详解】由图可知,是轴对称图形的只有“罗”.故答案选:C.【点睛】本题考查了轴对称图形的概念,解题的关键是熟练的掌握轴对称图形的概念.6.如图,∠BCD=90°,AB∥DE,则∠α与∠β满足( )A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠αD.∠α+∠β=90°【答案】B【详解】解:过C作CF∥AB,∵AB∥DE,∴AB∥CF∥DE,∴∠1=∠α,∠2=180°﹣∠β,∵∠BCD=90°,∴∠1+∠2=∠α+180°﹣∠β=90°,∴∠β﹣∠α=90°,故选B.7.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°【答案】A【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.【详解】∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB-∠ECB=15°,故选A.【点睛】此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.8.下列运算错误的是A.()()22a b1b a-=-B.a b1a b--=-+C .0.5a b 5a 10b 0.2a 0.3b 2a 3b ++=--D .a b b a a b b a--=++ 【答案】D【解析】试题分析:根据分式的运算法则逐一计算作出判断:A .()()()()2222a b a b 1b a a b --==--,计算正确; B .a b a b 1a b a b--+=-=-++,计算正确; C .()()100.5a b 0.5a b 5a 10b 0.2a 0.3b 100.2a 0.3b 2a 3b+++==---,计算正确; D .()b a a b b a a b b a b a----==-+++,计算错误. 故选D .9.今年校团委举办了“中国梦,我的梦”歌咏比赛,张老师为鼓励同学们,带了50元钱取购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本7元,乙种笔记本每本5元,每种笔记本至少买3本,则张老师购买笔记本的方案共有A .3种B .4种C .5种D .6种【答案】D【分析】设甲种笔记本购买了x 本,乙种笔记本y 本,由题意,得7x+5y≤1.【详解】解:∵x≥3,y≥3,∴当x=3,y=3时,7×3+5×3=36<5;当x=3,y=4时,7×3+5×4=41<1;当x=3,y=5时,7×3+5×5=46<1;当x=3,y=6时,7×3+5×6=51>1舍去;当x=4,y=3时,7×4+5×3=43<1;当x=4,y=4时,7×4+5×4=4<1;当x=4,y=5时,7×4+5×5=53>1舍去;当x=5,y=3时,7×5+5×3=1=1.综上所述,共有6种购买方案.故选D .10.关于直线(:)0,l y kx k k =+≠下列说法正确的是( )A .点()0,k 不在l 上B .直线过定点()1,0-C .y 随x 增大而增大D .y 随x 增大而减小 【答案】B【分析】将点的坐标代入可判断A 、B 选项,利用一-次函数的增减性可判断C 、D 选项.【详解】解:A.当x=0时,可得y=k ,即点(0,k )在直线I 上,故A 不正确;B.当x=-1时,y=-k+k=0,即直线过定点(-1,0),故B 正确;C 、D.由于k 的符号不确定,故C 、D 都不正确;故答案为B .【点睛】本题主要考查了一次函数图象与系数的关系,掌握函数图象上点的坐标与函数解忻式的关系及一次函数的增减性是解答本题的关键.二、填空题11.已知y ax b =+和y kx =的图像交于点()2,1P -,那么关于,x y 的二元一次方程组00ax y b kx y -+=⎧⎨-=⎩的解是____________. 【答案】21x y =⎧⎨=-⎩【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标求解即可.【详解】∵y ax b =+和y kx =的图像交于点()2,1P -,∴关于,x y 的二元一次方程组00ax y b kx y -+=⎧⎨-=⎩的解是21x y =⎧⎨=-⎩. 故答案为21x y =⎧⎨=-⎩. 【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标. 12.如图,在平面直角坐标系中,点A 的坐标为(03),,点B 为x 轴上一动点,以AB 为边在AB 的右侧作等腰Rt ABD △,90ABD ∠=︒,连接OD ,则OD AD +的最小值是 __________.【答案】5【分析】如图,作DH ⊥x 于H ,利用全等三角形的判定与性质证明点D 在直线y=x-3上运动,O 关于直线y=x-3的对称点E′,连接AE′,求出AE′的长即可解决问题.【详解】如图,作DH ⊥x 轴于H .∵∠AOB=∠ABD=∠BHD=90°,∴∠ABO+∠BAO=90°,∠ABO+∠DBH=90°,∴∠BAO=∠DBH,∵AB=DB,∴△ABO≌△BDH(AAS),∴OA=BH=3,OB=DH,∴HD=OH-3,∴点D在直线y=x-3上运动,作O关于直线y=x-3的对称点E′,连接AE′交直线y=x-3于D′,连接OD′,则OD′= D′E′根据“两点之间,线段最短”可知此时OD+AD最小,最小值为AE′,∵O(0,0),O关于直线y=x-3的对称点为E′,∴E′(3,-3),∵A(0,3),∴5∴OD+AD的最小值是5故答案为:5【点睛】本题考查全等三角形的判定和性质,等腰直角三角形的判性质,利用轴对称解决最短路径问题,一次函数等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考选择题中的压轴题.13.如图,小明站在离水面高度为8米的岸上点C处用绳子拉船靠岸,开始时绳子BC的长为17米,小明以1米每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了______米(BD的长)(假设绳子是直的).【答案】1【分析】在Rt △ABC 中,利用勾股定理计算出AB 长,再根据题意可得CD 长,然后再次利用勾股定理计算出AD 长,再利用BD=AB-AD 可得BD 长.【详解】在Rt △ABC 中:∵∠CAB=10°,BC=17米,AC=8米, ∴222217815AB BC AC =-=-=(米), ∵此人以1米每秒的速度收绳,7秒后船移动到点D 的位置,∴171710CD =-⨯=(米),∴22221086AD CD AC =-=-=(米),∴1569BD AB AD =-=-=(米),答:船向岸边移动了1米.故答案为:1.【点睛】本题主要考查了勾股定理的应用,关键是掌握从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.14.如图:点C 在AB 上,DAC ∆、EBC ∆均是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,则下列结论①AE DB = ②CM CN = ③CMN ∆为等边三角形 ④//BC MN 正确的是______(填出所有正确的序号)【答案】①②③④【分析】利用等边三角形的性质得CA =CD ,∠ACD =60°,CE =CB ,∠BCE =60°,所以∠DCE =60°,∠ACE =∠BCD =120°,则利用“SAS”可判定△ACE ≌△DCB ,所以AE =DB ,∠CAE =∠CDB ,则可对①进行判定;再证明△ACM ≌△DCN 得到CM =CN ,则可对②进行判定;然后证明△CMN 为等边三角形得到∠CMN =60°,则可对③④进行判定.【详解】解:∵△DAC 、△EBC 均是等边三角形,∴CA =CD ,∠ACD =60°,CE =CB ,∠BCE =60°,∴∠DCE=60°,∠ACE=∠BCD=120°,在△ACE和△DCB中AC CDACE DCB EC BC⎪∠⎪⎩∠⎧⎨===,∴△ACE≌△DCB(SAS),∴AE=DB,所以①正确;∵△ACE≌△DCB,∴∠MAC=∠NDC,∵∠ACD=∠BCE=60°,∴∠MCA=∠DCN=60°,在△ACM和△DCN中MAC NDC CA CDACM DCN ∠∠∠⎧⎪⎪⎩∠⎨===,∴△ACM≌△DCN(ASA),∴CM=CN,所以②正确;∵CM=CN,∠MCN=60°,∴△CMN为等边三角形,故③正确,∴∠CMN=60°,∴∠CMN=∠MCA,∴MN∥BC,所以④正确,故答案为:①②③④.【点睛】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具,在判定三角形全等时,关键是选择恰当的判定条件,也考查了等边三角形的判定与性质.15.在某个电影院里,如果用(2,15)表示2排15号,那么5排9号可以表示为_____.【答案】(5,9).【分析】根据用(2,15)表示2排15号可知第一个数表示排,第二个数表示号,进而可得答案.【详解】解:5排9号可以表示为(5,9),故答案为:(5,9).【点睛】本题考查了用有序数对确定位置,一对有顺序的数叫做有序数对,理解有序数对是两个有顺序的数是解题的关键.16.如图,有一种动画程序,屏幕上正方形ABCD是黑色区域(含正方形边界),其中四个顶点的坐标分别为(1,1)A 、(2,1)B 、(2,2)C 、(1,2)D ,用信号枪沿直线2y x b =+发射信号,当信号遇到黑色区域时,区域便由黑变白,则能使黑色区域变白的b 的取值范围为_________.【答案】-3≤b≤1【分析】求出直线y=2x+b 分别经过B,D 点时,b 的值,即可求出所求的范围.【详解】由题意可知当直线y=2x+b 经过B (2,1)时b 的值最小,即2×2+b=1,b=-3;当直线y=2x+b 过C (1,2)时,b 最大即2=2×1+b ,b=1,∴能够使黑色区域变白的b 的取值范围为-3≤b≤1.【点睛】根据所给一次函数的图像的特点,找到边界点即为解此类题的常用方法.17.在函数()11f x x =+中,那么2f =_______________________. 21 【分析】把2x 【详解】解:当2x =时,2=2121f =+. 21.【点睛】本题考查了已知自变量的值求函数值和分母有理化,属于基础题目,正确代入、准确计算是关键.三、解答题18.在平面直角坐标系中()1在图中描出()A 2,2--,()B 6,3--,()C 3,5--,连接AB 、BC 、AC ,得到ABC ,并将ABC 向右平移5个单位,再向上平移2个单位的得到111A B C ; ()2作出222A B C ,使它与ABC 关于x 轴对称.【答案】 (1)见解析;(2)见解析.【解析】()1根据三个点的坐标描点、连线可得ABC ,再将三个顶点分别平移得到对应点,然后首尾顺次连接即可得;()2分别作出三个顶点关于x 轴的对称点,然后首尾顺次连接即可得.【详解】解:()1如图所示,ABC 和111A B C 即为所求.()2如图所示,222A B C 即为所求.【点睛】 考查作图-轴对称变换和平移变换,解题的关键是熟练掌握轴对称和平移变换的定义和性质,并据此得出变换后的对应点.19.已知:ABC ∆.求作:A B C '''∆,使A B C '''∆≌ABC ∆.(要求:不写做法,但保留作图痕迹)【答案】见解析【分析】作射线A M ',在射线A M '上截取A B AB ''=,然后分别以A '、B '为圆心,以CA 、BC 为半径画弧,两弧交于点C ',连接A C ''、B C '' .则A B C ''' 即为所求.【详解】解:如图,A B C ''' 即为所求.【点睛】本题考查了利用全等三角形的判定进行作图,属于常见题型,熟练掌握全等三角形的的判定和基本的尺规作图方法是解题关键.20.如图,直角坐标系中,点A的坐标为(3,0),以线段OA为边在第四象限内作等边△AOB,点C为x 轴正半轴上一动点(OC>3),连结BC,以线段BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.(1)证明∠ACB=∠ADB;(2)若以A,E,C为顶点的三角形是等腰三角形,求此时C点的坐标;(3)随着点C位置的变化,OAAE的值是否会发生变化?若没有变化,求出这个值;若有变化,说明理由.【答案】(1)见解析;(2)C点的坐标为(9,0);(3)OAAE的值不变,12OAAE=【分析】(1)由△AOB和△CBD是等边三角形得到条件,判断△OBC≌△ABD,即可证得∠ACB=∠ADB;(2)先判断△AEC的腰和底边的位置,利用角的和差关系可证得∠OEA=30,AE和AC是等腰三角形的腰,利用直角三角形中,30所对的边是斜边的一半可求得AE的长度,因此OC=OA+AC,即可求得点C的坐标;(3)利用角的和差关系可求出∠OEA=30,再根据直角三角形中,30所对的边是斜边的一半即可证明.【详解】解:(1)∵△AOB和△CBD是等边三角形∴OB=AB,BC=BD,∠OBA=∠CBD=60︒,∴∠OBA+∠ABC=∠CBD+∠ABC,即∠OBC=∠ABD∴在△OBC与△ABD中,OB=AB,∠OBC=∠ABD,BC=BD∴△OBC≌△ABD(SAS)∴∠OCB=∠ADB即∠ACB=∠ADB(2)∵△OBC ≌△ABD∴∠BOC=∠BAD=60︒又∵∠OAB=60︒∴∠OAE=1806060︒-︒-︒=60︒,∴∠EAC =120︒,∠OEA=30,∴在以A ,E ,C 为顶点的等腰三角形中AE 和AC 是腰.∵ 在Rt △AOE 中,OA=3,∠OEA=30∴AE=6∴AC=AE=6∴OC=3+6=9∴以A ,E ,C 为顶点的三角形是等腰三角形时,C 点的坐标为(9,0)(3)OA AE的值不变. 理由: 由(2)得∠OAE=180︒-∠OAB-∠BAD=60︒∴∠OEA=30∴ 在Rt △AOE 中,EA=2OA ∴OA AE =12. 【点睛】本题主要考查了全等三角形的性质以及判定定理,平面直角坐标系,含30角直角三角形的性质,等腰三角形的性质,等边三角形的性质,灵活运用全等三角形的判定定理寻求全等三角形的判定条件证明三角形全等是解题的关键.21.阅读材料,并回答问题:在一个含有多个字母的式子中,若任意交换两个字母的位置,式子的值不变,则这样的式子叫做对称式.例如: ,a b abc +等都是对称式.(1)在下列式子中,属于对称式的序号是_______;①22a b + ②-a b ③11a b+ ④2a bc +. (2)若()()2x a x b x mx n ++=++,用,a b 表示,m n ,并判断,m n 的表达式是否为对称式;当4,3m n =-=时,求对称式b a a b+的值. 【答案】(1)①③;(2)10 3ba ab += 【分析】(1)根据对称式的定义进行判断;(2)由()22x a b x ab x mx n +++=++可知,m a b n ab =+=,再根据对称式的定义判断即可;当4,3m n =-=时, 4,3a b ab +=-=,代入求解即可.【详解】(1)①③;(2)∵()()()22x a x b x a b x ab x mx n ++=+++=++∴,m a b n ab =+=,∴,m n 的表达式都是对称式;当4,3m n =-=时, 4,3a b ab +=-=,∴()()2222242310a b a b ab +=+-=--⨯=, ∴2210 3b a a b a b ab ++==. 【点睛】本题考查分式的化简求值,以对称式的方式考查,有一定的难度,需要准确理解对称式的定义. 22.大石桥市政府为了落实“暖冬惠民工程”,计划对城区内某小区的部分老旧房屋及供暖管道和部分路段的人行地砖、绿化带等公共设施进行全面更新改造.该工程乙队单独完成所需天数是甲队单独完成所需天数的1.5倍 , 若甲队先做10天,剩下两队合作30天完成.(1)甲乙两个队单独完成此项工程各需多少天?(2)已知甲队每天的施工费用为8.4万元,乙对每天的施工费用为5.6万元,工程施工的预算费用为500万元,为了缩短工期并高效完成工程,拟预算的费用是否够用?若不够用,需追加预算多少万元?请说明理由.【答案】(1)甲队单独完成此项工程需要1天,乙队单独完成此项工程需要2天;(2)工程预算的施工费用不够用,需追加预算4万元.【解析】(1)设甲单独完成这项工程所需天数,表示出乙单独完成这项工程所需天数及各自的工作效率.根据工作量=工作效率×工作时间列方程求解;(2)根据题意,甲乙合作工期最短,所以须求合作的时间,然后计算费用,作出判断.【详解】(1)设此工程甲队单独完成需x 天,则乙队单独完成这项工程需1.5x 天.由题意:10303011.5x x++= 解得:x=1.经检验,x=1是原方程的解,且适合题意.1.5x=1.5×1=2.答:甲队单独完成此项工程需要1天,乙队单独完成此项工程需要2天.(2)因为需要缩短工期并高效完成工程,所以需两队合作完成,设两队合作这项工程需y 天,根据题意得:16090y y += 解得:y=3.所以需要施工费用3×(8.4+5.6)=504(万元).因为504>500,所以工程预算的施工费用不够用,需追加预算4万元.【点睛】本题考查了分式方程的应用,涉及方案决策问题,综合性较强.23.探究活动:(1)如图①,可以求出阴影部分的面积是__________.(写成两数平方差的形式)(2)如图②,若将阴影部分裁剪下来,重新拼成一个长方形,面积是__________.(写成多项式乘法的形式)(3)比较图①、图②阴影部分的面积,可以得到公式__________.知识应用,运用你所得到的公式解决以下问题:(1)计算:(2)(2)a b c a b c +-++.(2)若224910x y -=,466x y +=,求23x y -的值.【答案】(1)22a b -;(2)()()a b a b +-;(3)22()()a b a b a b +-=-;应用(1)a 2+2ab+b 2-4c 2;(2)103. 【详解】解:(1)阴影部分的面积是:a 2-b 2,故答案是:a 2-b 2;(2)长方形的面积是(a+b )(a-b ),故答案是:(a+b )(a-b );(3)可以得到公式:a 2-b 2=(a+b )(a-b ),故答案是:a 2-b 2=(a+b )(a-b );应用:(1)原式=(a+b)2−4c 2=a 2+2ab+b 2-4c 2;(2)4x 2-9y 2=(2x+3y )(2x-3y )=10,由4x+6y=6得2x+3y=3,则3(2x-3y )=10,解得:2x-3y=103. 24.用简便方法计算:(1)221002009999-⨯+ (2)2201820202019⨯-【答案】(1)1;(2)-1【分析】(1)把原式变成符合完全平方公式的形式后,利用完全平方公式计算即可得到结果;(2)把原式的前两项用平方差公式变形后及时可得到结果.【详解】解:(1)原式=2210021009999-⨯⨯+=(100−99)2=1(2)原式=(2019-1)×(2019+1)−20192=20192−12−20192=−1;【点睛】本题考查了运用平方差公式和完全平方公式进行简便计算,熟练掌握公式是解本题的关键.25.运动会结束后八(1)班班主任准备购买一批明信片奖励积极参与运动会各个比赛项目的学生,计划用班费180元购买A 、B 两种明信片共20盒,已知A 种明信片每盒12元,B 种明信片每盒8元.(1)根据题意,甲同学列出了尚不完整的方程组如下: a b 128a b +=⎧⎪⎨+=⎪⎩()();请在括号内填上具体的数字并说出a ,b 分别表示的含义,甲:a 表示__________,b 表示_______________;(2)乙同学设了未知数但不会列方程,请你帮他把方程补充完整并求出该方程组的解;乙:x 表示购买了A 种明信片的盒数,y 表示购买了B 种明信片的盒数.【答案】(1)180a b 20128a b +=⎧⎪⎨+=⎪⎩()(),a 表示A 种明信片的总价,b 表示B 种明信片的总价; (2)见解析.【分析】(1)从题意可得12、8分别两种明信片的单价,依等量关系式总价÷单价=数量可知a 、b 分别表示A 、B 两种明信片的总价,根据题意即可补充方程组;(2)设x 表示购买了A 种明信片的盒数,y 表示购买了B 种明信片的盒数.列出方程组20128180x y x y +=⎧⎨+=⎩,解方程组,作答即可.【详解】解:(1)从等量关系式入手分析,由“a12”、“b8”可知,12、8分别两种明信片的单价,而依等量关系式可知:总价÷单价=数量,便知a表示A种明信片的总价,b表示B种明信片的总价,则方程组补充为:180 {a b20 128a b+=+=(2)设x表示购买了A种明信片的盒数,y表示购买了B种明信片的盒数.列方程组得20 128180x yx y+=⎧⎨+=⎩,解得155xy=⎧⎨=⎩,答:购买了A种明信片15盒,B种明信片5盒.【点睛】本题考查了列二元一次方程组解应用题,理解好题意,明确题目中数量关系是解题关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图所示:已知两个正方形的面积,则字母A所代表的正方形的面积为()A.4 B.8 C.64 D.16【答案】C【解析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR 的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.【详解】∵正方形PQED的面积等于1,∴PQ2=1.∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣1=2,则正方形QMNR的面积为2.故选C.【点睛】本题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是解答本题的关键.2.直线y=ax+b经过第一、二、四象限,则直线y=bx﹣a的图象只能是图中的()A.B.C.D.【答案】B【解析】试题分析:已知直线y=ax+b经过第一、二、四象限,所以a<0,b>0,即可得直线y=bx﹣a的图象经过第一、二、三象限,故答案选B.考点:一次函数图象与系数的关系.3.下列各数是无理数的是()A.227-B.0.1010010001....(两个1之间的0依次多1个)C.4D.3.14【答案】B【分析】根据无理数是无限不循环小数对四个选项进行逐一分析即可.【详解】A.227-是分数,是有理数,故该选项不符合题意,B.0.1010010001....(两个1之间的0依次多1个)是无限不循环小数,是无理数,故该选项符合题意,C.4=2,是整数,是有理数,故该选项不符合题意,D.3.14是有限小数,是有理数,故该选项不符合题意,故选:B.【点睛】本题主要考查了无理数的定义,无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及0.1010010001…,等有这样规律的数.4.如图是金堂县赵镇某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8C︒B.中位数是24C︒C.平均数是22C︒D.众数是24C︒【答案】D【分析】根据折线统计图中的数据及极差、中位数、平均数、众数的概念逐项判断数据是否正确即可.【详解】由图可得,极差:26-16=10℃,故选项A错误;这组数据从小到大排列是:16、18、20、22、24、24、26,故中位数是22℃,故选项B错误;平均数:1618202224242615077++++++=(℃),故选项C错误;众数:24℃,故选项D正确.故选:D.【点睛】本题考查折线统计图及极差、中位数、平均数、众数,明确概念及计算公式是解题关键.5.下列大学校徽主体图案中,是轴对称图形的是( )A .B .C .D .【答案】C【解析】根据轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,逐一判断即可.【详解】A 选项不是轴对称图形,故本选项不符合题意;B 选项不是轴对称图形,故本选项不符合题意;C 选项是轴对称图形,故本选项符合题意;D 选项不是轴对称图形,故本选项不符合题意.故选C .【点睛】此题考查的是轴对称图形的识别,掌握轴对称图形的定义是解决此题的关键.6.数据5,7,8,8,9的众数是( )A .5B .7C .8D .9、【答案】C【详解】解:根据众数是一组数据中出现次数最多的数,数据5、7、1、1、9中1出现了2次,且次数最多,所以众数是1.故选C .【点睛】本题考查众数. 7.定义运算“⊙”:()()a a b a b a b b a b b a⎧>⎪⎪-=⎨⎪<⎪-⎩,若52x =,则x 的值为( ) A .52 B .52或10 C .10 D .52或152 【答案】B【分析】已知等式利用题中的新定义分类讨论,计算即可求出x 的值.【详解】当5x <时,5b x b a =-,即:25x x =- 解得:10x =; 经检验10x =是分式方程的解;当5x >时,5a x a b =-,即525x =-, 解得:52x =; 经检验52x =是分式方程的解; 故答案为:52或10 故选:B【点睛】本题考查了解分式方程,熟练掌握运算法则是解本题的关键,注意检验.8.下列各式中,无论x 取何值分式都有意义的是( )A .224x x x ++ B .2221x x + C .21x x + D .12x【答案】A 【分析】分式有意义的条件分母不为0,当分式的分母不为0时,无论x 取何值分式都有意义.【详解】A 、分母2224=(1)3x x x ++++,不论x 取什么值,分母都大于0,分式有意义;B 、当1=2-x 时,分母21=0x +,分式无意义; C 、当x=0时,分母x 2=0,分式无意义;D 、当x=0时,分母2x=0,分式无意义.故选A .【点睛】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.9.如果340x y -=,那么代数式23()x y y x y-⋅+的值为( ) A .1B .2C .3D .4【答案】A【解析】先计算括号内分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将3x=4y 代入即可得. 【详解】解:∵原式=223x y y x y-•+=()()3x y x y y x y +-•+ =33x y y- ∵3x-4y=0,∴3x=4y原式=43y y y-=1 故选:A .【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.10.下列各式中正确的是( )A 2=-B 1=C =±4D =3【答案】B【分析】根据算术平方根定义、性质及立方根的定义逐一判断即可得.【详解】解:A =2,故选项错误;B =1,故选项正确;C =4,故选项错误;D =3,故选项错误.故选:B .【点睛】本题主要考查立方根与算术平方根,解题的关键是掌握算术平方根定义、性质及立方根的定义.二、填空题11.若关于x 、y 的二元一次方程组213211x y x y +=⎧⎨-=⎩,则x y -的算术平方根为_________. 【答案】2【分析】首先利用消元法解二元一次方程组,然后即可得出x y -的算术平方根.【详解】213211x y x y ①②+=⎧⎨-=⎩ ①+②,得3x =代入①,得1y =-∴()314x y -=--=∴其算术平方根为2,故答案为2.【点睛】此题主要考查二元一次方程组以及算术平方根的求解,熟练掌握,即可解题.12.在直角坐标系中,直线y=x+1与y 轴交于点A ,按如图方式作正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2…,A 1、A 2、A 3…在直线y=x+1上,点C 1、C 2、C 3…在x 轴上,图中阴影部分三角形的面积从左到右依次记为S 1、S 2、S 3、…S n ,则S n 的值为__(用含n 的代数式表示,n 为正整数).【答案】232n -.【解析】试题分析:∵直线1y x =+,当x=0时,y=1,当y=0时,x=﹣1,∴OA 1=1,OD=1,∴∠ODA 1=45°,∴∠A 2A 1B 1=45°,∴A 2B 1=A 1B 1=1,∴1S =111122⨯⨯=, ∵A 2B 1=A 1B 1=1,∴A 2C 1=2=12,∴2S =1211(2)22⨯=, 同理得:A 3C 2=4=22,…,3S =2231(2)22⨯=, ∴n S =12231(2)22n n --⨯=, 故答案为232n -.考点:1.一次函数图象上点的坐标特征;2.正方形的性质;3.规律型.13.如图,点A 、B 、C 都是数轴上的点,点B 、C 关于点A 对称,若点A 、B 表示的数分别是2,19,则点C 表示的数为____________.【答案】19【分析】先求出线段AB 的长度,根据对称点的关系得到AC=AB ,即可利用点A 得到点C 所表示的数.【详解】∵点A 、B 表示的数分别是219∴19,∵点B 、C 关于点A 对称,∴19,∴点C 所表示的数是:2-19)19故答案为:4-19.【点睛】此题考查数轴上两点间的距离公式,对称点的关系,点的平移规律,利用点的对称关系得到AC的长度是解题的关键.14.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH 都是正方形,如果AB=10,EF=2,那么AH等于【答案】6【解析】试题分析:由全等可知:AH=DE,AE=AH+HE,由直角三角形可得:222+=,代AE DE AB入可得.考点:全等三角形的对应边相等,直角三角形的勾股定理,正方形的边长相等15.如图:已知AB⊥BC,AE⊥DE,且AB=AE,∠ACD=∠ADC=50°,∠BAD=100°,则∠BAE= _________.【答案】120°【分析】先由题意求得∠CAD,再证明△ABC与△AED全等即可求解.【详解】解:∵∠ACD=∠ADC=50°,∴∠CAD=180°-50°-50°=80°,AC=AD,又AB⊥BC,AE⊥DE,∴∠B=∠E=90°,∵AB=AE,∴Rt△ABC≅Rt△AED,∴∠BAC=∠EAD,∴∠BAE=∠BAC+∠CAD+∠EAD=2∠BAC+∠CAD,∵∠BAD=100°,∴∠BAC=∠BAD-∠CAD=20°,∴∠BAE=120°;故答案为:120°.【点睛】此题考查三角形全等及等腰三角形的性质,难度一般.16.若4a =2,4b =3,则42a+b 的值为_____.【答案】1【分析】根据幂的乘方以及同底数幂的乘法法则计算即可.【详解】解:∵4a =2,4b =3,∴42a+b=(4a )2•4b=22×3=4×3=1.故答案为:1.【点睛】本题主要考查了幂的乘方与积的乘方以及同底数幂的乘法,熟记幂的运算法则是解答本题的关键. 17.已知点(32,1)P a a +-在x 轴上,则点P 的坐标为______.【答案】(5,0)【解析】根据x 轴上点的纵坐标为0列方程求出a 的值,再求解即可.【详解】解:∵点P(3a+2,1−a)在x 轴上,∴1−a=0,解得a=1,∴3a+2=3×1+2=5,∴点P 的坐标为(5,0);故答案为:(5,0).【点睛】本题主要考查了点的坐标,掌握点的坐标是解题的关键.三、解答题18.已知x y ==x 3y+xy 3的值. 【答案】1【分析】先由x y ==xy 和x 2+y 2的值,把x 3y+xy 3分解因式后代入计算即可.。
2018北京市东城区初二(上)期末数 学2018.1一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的 1.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司。
将0.056用科学记数法表示为A. -15.610⨯B. -25.610⨯C. -35.610⨯ D .-10.5610⨯2.江永女书诞生于宋朝,是世界上唯一一种女性文字,主要书写在精制布面、扇面、布帕等物品上,是一种独特而神奇的文化现象.下列四个文字依次为某女书传人书写的“女书文化”四个字,其中基本是轴对称图形的是3.下列式子为最简二次根式的是4.若分式23x x -+的值为0,则x 的值等于 A .0 B .2 C .3 D .-35.下列运算正确的是A. 532b b b ÷=B.527()b b = C. 248b b b = D .2-22aa b a ab =+()6.如图,在△ABC 中,∠B =∠C =60,点D 为AB 边的中点,DE ⊥BC 于E , 若BE=1,则AC 的长为A .2B .4 D .7.如图,小敏做了一个角平分仪ABCD ,其中AB=AD ,BC=DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线。
此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠QAE=∠PAE. 则说明这两个三角形全等的依据是 A. SAS B. ASA C. AAS D. SSS8.如图,根据计算长方形ABCD 的面积,可以说明下列哪个等式成立 A. 2222)(b ab a b a ++=+ B. 2222)(b ab a b a +-=-C. 22))((b a b a b a -=-+ D. 2()a a b a ab +=+9.如图,已知等腰三角形ABC AB AC =,,若以点B 为圆心,BC 长为半径画弧,交腰AC于点E ,则下列结论一定..正确的是A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE10.如图,点P 是∠AOB 内任意一点,且∠AOB =40°,点M 和点N 分别是射线OA 和射线OB 上的动点,当△PMN 周长取最小值时,则∠MPN 的度数为( )A .140° B.100° C.50° D. 40°二、填空题:(本题共16分,每小题2分)11x 的取值范围是 .12.在平面直角坐标系xOy 中,点P (2,1)关于y 轴对称的点的坐标是 .13.如图,点B ,F ,C ,E 在一条直线上,已知BF =CE ,AC //DF ,请你添加一个适当的条件使得△ABC ≌△DEF .14.等腰三角形一边等于5,另一边等于8,则其周长是 .15.如图,D 在BC 边上,△ABC ≌△ADE ,∠EAC =40°,则∠B 的度数为_______.16.如图,在△ABC 中,∠ACB =90°,AD 平分∠ABC ,BC =10cm ,BD :DC =3:2,则点D 到AB的距离为_________ cm .17.如果实数,a b 满足226,8,a b ab a b +==+=那么 ;18.阅读下面材料:在数学课上,老师提出如下问题:小俊的作法如下:老师说:“小俊的作法正确.”请回答:小俊的作图依据是_________________________.三、解答题(本题共9个小题,共54分,解答应写出文字说明,证明过程或演算步骤)19.(5分)计算:1016()1)2-+-的垂直平分线.20.(5分)因式分解:(1)24x - (2) 2244ax axy ay -+21.(5分)如图,点E ,F 在线段AB 上,且AD =BC ,∠A =∠B ,AE =BF .求证:DF =CE .22.(5分)已知2+2x x =,求()()()()22311x x x x x +-+++-的值23.(5分)解分式方程:11+2-22-xx x+=.24.(5分)先化简,再求值:259123x x x -⎛⎫-÷⎪++⎝⎭,其中2x =-.25.(6分)列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2017 年地铁每小时客运量是2002年地铁每小时客运量的4倍,2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时,求2017年地铁每小时的客运量?26.(6分)如图,在△ABC 中,AB =AC ,AD ⊥于点D ,AM 是△ABC 的外角∠CAE 的平分线. (1)求证:AM ∥BC ;(2)若DN 平分∠ADC 交AM 于点N ,判断△ADN 的形状并说明理由.27.(6分) 定义:任意两个数,a b ,按规则c ab a b =++扩充得到一个新数c ,称所得的新数c 为“如意数”.(1) 若1,a b ==直接写出,a b 的“如意数”c ;(2) 如果4,a m b m =-=-,求,a b 的“如意数”c ,并证明“如意数” 0c ≤(3)已知2=1(0)a x x -≠,且,a b 的“如意数”3231,c x x =+-,则b =(用含x 的式子表示)28. (6分)如图,在等边三角形ABC 的外侧作直线AP ,点C 关于直线AP 的对称点为点D ,连接AD ,BD ,其中BD 交直线AP 于点E. (1)依题意补全图形;(2)若∠PAC =20°,求∠AEB 的度数;(3)连结CE ,写出AE , BE , CE 之间的数量关系,并证明你的结论.数学试题答案三、解答题(本题共54分)10119.261245())-+-分分 220.14=2)(2)2x x x --+()(分22222244=(44)1(2)3ax axy ay a x xy y a x y -+-+=-()分分21. 如图,点E ,F 在AB 上,AD =BC ,∠A =∠B ,AE =BF .求证:△ADF ≌△BCE .证明:∵点E ,F 在线段AB 上,AE =BF ., ∴AE +E F =BF +EF ,即:AF =BE .………1分 在△ADF 与△BCE 中,,,,AD BC A B AF BE =⎧⎪∠=∠⎨⎪=⎩………3分 ∴△ADF ≌△BCE (SAS ) ………4分∴ DF=CE (全等三角形对应边相等)………5分2222222.=4431342=55x x x x x x x x x ++--+-=+++=解:原式分当时,原式分23.解方程:11+2-22-xx x+=解:方程两边同乘(x -2), 得1+2(x -2)=-1-x 2分解得:2.33x =L L 分 220.323x x 4x 5=-?=L L L L 检验:当时,分所以,原分式方程的解为分24. 先化简,再求值:259123x x x -⎛⎫-÷⎪++⎝⎭,其中2x =-. ()()()()333223333233142x x x x x x x x x x x -+-=÷++-+=⋅++-=+解:原式分分分当2x =-时,原式===.…5分 25.解:设2002年地铁每小时客运量x 万人,则2017年地铁每小时客运量4x 万人……1分由题意得240240-304x x= ……………3分 解得x =6 …………… 4分 经检验x =6是分式方程的解 ……………5分4x 24=……………6分答:2017年每小时客运量24万人26.(1)∵AB =AC ,AD ⊥BC ,∴∠BAD =∠CAD =12BAC ∠.…………… 1分 ∵AM 平分∠EAC ,∴∠EAM =∠MAC=12EAC ∠.…………… 2分 ∴∠MAD =∠MAC +∠DAC =1122EAC BAC ∠+∠=1180902⨯︒=︒。
东城区2018-2019学年度第一学期期末教学统一检测 初二数学 2019.1一、 选择题(本题共10小题,每小题3分,共30分)1.生物学家发现了一种病毒,其长度约为0.00000032mm ,数据0.00000032用科学记数法表示正确的是( )A .73.210⨯ B .83.210⨯ C .73.210-⨯ D .83.210-⨯ 2.若分式11a -有意义,则a 的取值范围是 A .1a ≠B .0a ≠C .1a ≠且0a ≠D .一切实数3.下列运算中,正确的是( ) A .235325x x x +=B .C .D . 33()ab a b =4. 2017年12月15日,北京2022年冬奥会会徽“冬梦”正式发布. 以下是参选的会徽设计的一部分图形,其中是轴对称图形的是( )A B C D 5. 3月14日是国际数学日,当天淇淇和嘉嘉想玩个数学游戏,他们的 对话内容如图所示,下列选项错误..的是( ) A .4446+-= B .004446++=C .34446++=D .14446-÷+=6.下列二次根式中,是最简二次根式的是 ( ) A.23B. 32C.34 D.33x7.已知2,3m n a a ==,则32m n a +的值是( ) A .6B .24C .36D .728.如图,已知∠1=∠2,AC =AD ,要使△ABC ≌△AED ,还需添加一 个条件,那么在①AB =AE , ②BC =ED , ③∠C =∠D , ④∠B =∠E ,这四个关系中可以选择的是A .①②③B .①②④C .①③④D .②③④9. 如图,在△ABC 中,∠BAC =90°,∠C =30°,AD ⊥BC 于D ,BE 是∠ABC 的平分线,且交AD 于P ,如果AP =2,则AC 的长为( )A .2B .4C .6D .810. 定义运算“※”:,,aa b a bb b a b b aa ⎧>⎪⎪-=⎨⎪<⎪-⎩※ .若2x =5※,则x 的值为( )A .52 B .52或10 C .10 D .52或152二、 填空题(本题共6小题,11-15小题每小题2分,16小题4分,共14分)11. 分解因式:228ax a -= . 12. 多项式(mx +8)(2-3x )展开后不含x 项,则m = .13.当x 的值为 时,分式242x x --的值为0.14. 课本上有这样一道例题:请你思考只要CD 垂直平分AB ,那么△ABC 就是等腰三角形的依据是____________. 15. 如图,在△ABC 中,点D 是AB 边的中点,过点D 作边AB 的垂线l ,E 是l 上任意一点,且AC =5,BC =8,则△AEC 的周长最小值为__________. 16. 已知在△ABC 中,AB =AC .(1)若∠A =36º,在△ABC 中画一条线段,能得到2个等腰三角形(不.包括..△ABC ),这2个等腰三角形的顶角的度数分别是 ___________; (2)若∠A ≠36º, 当∠A =___________时,在等腰△ABC 中画一条线段,能得到2个等腰三角形(不包括...△ABC ).(写出两个答案即可) 三、解答题(本题共12小题,共56分)17.(本小题4分)计算:()-219+2-π-2⎛⎫ ⎪⎝⎭.18. (本小题6分)计算:(1) -; (2) )3)(3()2(2-+--x x x .19. (本小题3分)在三个整式xy x 22+,xy y 22+,2x 中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.20. (本小题4分) 解分式方程:271326x x x +=++21. (本小题4分)先化简22169(1)24a a a a -+-÷--,然后a 在﹣2,0, 1,2,3中选择一个合适的数代入并求值.yx22. (本小题4分)如图,在平面直角坐标系xOy 中,△ABC 的三个顶点的坐标分别是A (2,3), B (1,0), C (1,2). (1)在图中作出△ABC 关于y 轴对称的△111A B C ;(2)如果要使以B 、C 、D 为顶点的三角形与△ABC 全等,写出所有符合条件的点D 坐标.23. (本小题5分)如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得 AB =DE ,AB ∥DE ,∠A =∠D . (1)求证:△ABC ≌△DEF ;(2)若BE =10m ,BF =3m ,求FC 的长度.24.(本小题5分)列方程解应用题:B ACDEFlACB港珠澳大桥是世界上最长的跨海大桥,是被誉为“现代世界七大奇迹”的超级工程,它是我国从桥梁大国走向桥梁强国的里程碑之作. 开通后从香港到珠海的车程由原来的180千米缩短到50千米,港珠澳大桥的设计时速比按原来路程行驶的平均时速多40千米,若开通后按设计时速行驶,行驶完全程时间仅为原来路程行驶完全程时间的1/6,求港珠澳大桥的设计时速是多少.25. (本小题5分)如图,AE是△ACD的角平分线,B在DA延长线上,AE∥BC,F为BC中点,判断AE与AF的位置关系并证明.26. (本小题4分)阅读下列材料,然后回答问题:观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:121212)12)(12()12(1121-=--=-+-⨯=+. 232323)23)(23()23(1231-=--=-+-⨯=+.(一)错误!未找到引用源。
北京市东城区2018-2019学年上学期初中八年级期末考试数学试卷本试卷共100分,考试时长100分钟。
一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的。
1. 下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是2. 下列计算正确的是A. x+x 2=x 3B. x 2·x 3=x 6C. (x 3)2=x 6D. x 9÷x 3=x 33. 下列式子为最简二次根式的是A.3B.4C.8D.214. 如果2-x 有意义,那么x 的取值范围是A. x>2B. x≥2C. x≤2D. x<25. 如图在△ABC 中,∠ACB=90°,BE 平分∠ABC ,DE ⊥AB 于点D ,如果AC=3cm ,那么AE+DE 等于A. 2cmB. 3cmC. 4cmD. 5cm6. 如图,所示的图形面积由以下哪个公式表示 A. a 2-b 2=a (a-b )+b (a-b )B. (a-b )2=a 2-2ab+b 2C. (a+b )2=a 2+2ab+b 2D. a 2-b 2=(a-b )(a+b )7. 若分式112--x x 的值为0,则x 的值为A. x=1B. x=-1C. x=±1D. x≠18. 若x-x 1=1,则x 2+21x的值是 A. 3B. 2C. 1D. 49. 如图,△ABC 中,AB=AC ,D 是BC 的中点,AC 的垂直平分线分别交AC ,AD ,AB 于点E ,O ,F ,连接OC ,OB ,则图中全等的三角形有A. 1对B. 2对C. 3对D. 4对10. 如图,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD+PE 最小,则这个最小值为A. 3B. 23C. 26D.6二、填空题(本题共14分,11-15题每小题2分,16题4分)11. 中国女药学家屠呦呦获2019年诺贝尔医学奖,她的突出贡献是创制新型抗疟药青蒿素和双氢青蒿素,这是中国医学界迄今为止获得的最高奖项.已知显微镜下的某种疟原虫平均长度为0.0000015米,该长度用科学记数法表示为____米.12. 如图,AB=AC ,点E ,点D 分别在AC ,AB 上,要使△ABE ≌△ACD ,应添加的条件是______.(添加一个条件即可)13. 若x 2+2(m-3)x+16是一个完全平方式,那么m 应为_______.14. 如图,Rt △ABC 的斜边AB 的中垂线MN 与AC 交于点M ,∠A=15°,BM=2,则△AMB 的面积为______.15. 在平面直角坐标系xOy 中,已知点A (2,3),在坐标轴上找一点P ,使得△AOP 是等腰三角形,则这样的点P 共有_______个. 16. 观察下列关于自然数的等式: 32-4×12=5 ①52-4×22=9 ② 72-4×32=13 ③根据上述规律解决下列问题:(1)完成第四个等式:_________________;(2)写出你猜想的第n 个等式(用含n 的式子表示)______________________.三、解答题(本题共56分)解答题应写出文字说明,验算步骤或证明过程。
北京市东城区2019届数学八上期末考试试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.当x=2时,下列各式的值为0的是( )A .2232x x x --+B .12x -C .249x x --D .21x x +- 2.下列语句:①每一个外角都等于的多边形是六边形;②“反证法”就是举反例说明一个命题是假命题;③“等腰三角形两底角相等”的逆命题是真命题;④分式值为零的条件是分子为零且分母不为零,其中正确的个数为( )A.1B.2C.3D.4 3.下列等式由左边到右边的变形中,属于因式分解的是( ) A .623ab a b =B .243(2)(2)3x x x x x -+=+-+C .29(3)(3)x x x -=+-D .2(2)(2)4x x x +-=-4.下列计算结果等于4a 6的是( ) A .2a 3+2a 3 B .2a 2•2a 3C .(2a 3)2D .8a 6÷2a 6 5.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划每天生产x 台机器,则可列方程为( )A .600x =45050x + B .600x =45050x - C .60050x +=450xD .60050x -=450x 6.下列各式中计算正确的是( ) A .t 10÷t 9=t B .(xy 2)3=xy 6 C .(a 3)2=a 5 D .x 3x 3=2x 67.下列交通标志中,是轴对称图形的是( )A .B .C .D .8.如图,是的高,,则度数是( )A. B. C. D.9.如图,BD ,CE 分别是△ABC 的高线和角平分线,且相交于点O .若AB =AC ,∠A =40°,则∠BOE 的度数是( )A.60°B.55°C.50°D.40°10.如图,在ABC 中,BAC 120∠=,AB AC =,点M 、N 在边BC 上,且MAN 60∠=,若BM 2=,CN 3=,则MN 的长为( )AB .C .D 11.如图,在△ABC 中,AC =BC ,∠C =90°,AD 平分∠BAC ,交BC 于点D ,已CD =1,则AC 的长度等于( )A B .+1 C .2 D +112.下列说法正确的是( )A .有一边对应相等的两个等边三角形全等B .角平分线上任意一点到角的两边的线段长相等C .三角形的三条高线交于一点D .相等的两个角是对顶角13.一个正n 边形的每一个外角都是45°,则n =( )A .7B .8C .9D .10 14.一个多边形的内角和是7200,则这个多边形的边数是( )A .2B .4C .6D .8 15.三条高的交点一定在三角形内部的是( )A .任意三角形B .锐角三角形C .直角三角形D .纯角三角形二、填空题16.我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”.这个三角形给出了()()1,2,3,4n a b n +=⋅⋅⋅的展开式的系数规律(按a 的次数由大到小的顺序):请依据上述规律,写出20192x x ⎛⎫+ ⎪⎝⎭展开式中含2017x 项的系数是_____.17.计算:-y 2·(-y)3·(-y)4=________________.18.已知:如图,在长方形ABCD 中,2AB =,3AD =.延长BC 到点E ,使1CE =,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA --向终点A 运动,设点P 的运动时间为t 秒,当t 的值为___________时,ABP △和DCE 全等.19.如图,在中,、分别为边,的中点,若,则图中阴影部分的面积是________.20.如图,在边长为1的等边△ABC 的边AB 取一点D ,过点D 作DE ⊥AC 于点E ,在BC 延长线取一点F ,使CF=AD ,连接DF 交AC 于点G ,则EG 的长为________三、解答题21.“玉树地震,情牵国人”,某厂计划加工1500顶帐篷支援灾区人民,在加工了300顶帐篷后,由于救灾需要,工作效率提高到原来的1.5倍,结果比原计划提前4天完成了任务.求原计划每天加工多少顶帐篷?22.计算:(1)32(1)201920172021---+-⨯ ; (2)22223(3)xy x y x y xy xy ---+g ;(3)2(2)(2)(3)a b b a a b -+--23.如图,△ABC ≌△DBE,点D 在边AC 上,BC 与DE 交于点P .已知,,,. (1)求∠CBE 的度数.(2)求△CDP 与△BEP 的周长和.。
东城区2019——2018学年度第一学期期末教学目的检测初二数学2018.1一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的1.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司。
将0.056用科学记数法表示为A. -15.610⨯B. -25.610⨯C.-35.610⨯ D .-10.5610⨯ 2.江永女书诞生于宋朝,是世界上唯一一种女性文字,主要书写在精制布面、扇面、布帕等物品上,是一种独特而奇妙的文化现象.下列四个文字依次为某女书传人书写的“女书文化”四个字,其中根本是轴对称图形的是 3.下列式子为最简二次根式的是 A.2()+a bB. 12aC. 2D.124.若分式23x x -+的值为0,则x 的值等于A .0B .2C .3D .-3 5.下列运算正确的是A. 532b b b ÷=B.527()b b =C.248b b b = D .2-22a a b a ab =+()6.如图,在△ABC 中,∠B =∠C =60︒,点D 为AB 边的中点,DE ⊥BC 于E , 若BE=1,则AC 的长为A .2B .3C .4D .237.如图,小敏做了一个角平分仪ABCD ,其中AB=AD ,BC=DC ,将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线。
此角平分仪的画图原理是:根据仪器构造,可得△ABC ≌△ADC ,这样就有∠QAE=∠PAE. 则说明这两个三角形全等的根据是A. SASB. ASAC. AASD. SSS8.如图,根据计算长方形ABCD 的面积,可以说明下列哪个等式成立a bb aa a aD CBAA. 2222)(b ab a b a ++=+B. 2222)(b ab a b a +-=-C. 22))((b a b a b a -=-+ D. 2()a a b a ab +=+9.如图,已知等腰三角形ABC AB AC =,,若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论肯定..正确的是A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE10.如图,点P 是∠AOB 内随意一点,且∠AOB =40°,点M 和点N 分别是射线OA 和射线OB 上的动点,当△PMN 周长取最小值时,则∠MPN 的度数为( )A .140° B.100° C.50° D. 40° 二、填空题:(本题共16分,每小题2分)11x 的取值范围是 .12.在平面直角坐标系xOy 中,点P (2,1)关于y 轴对称的点的坐标是 .13.如图,点B ,F ,C ,E 在一条直线上,已知BF =CE ,AC //DF ,请你添加一个适当的条件 使得△ABC ≌△DEF . 14.等腰三角形一边等于5,另一边等于8,则其周长是 .15.如图,D 在BC 边上,△ABC ≌△ADE ,∠EAC =40°,则∠B 的度数为_______.第15题 图 第16题 图16.如图,在△ABC 中,∠ACB =90°,AD 平分∠ABC ,BC =10cm ,BD :DC =3:2,则点D 到AB 的间隔 为_____ cm .17.假如实数,a b 满意226,8,a b ab a b +==+=那么 ; 18.阅读下面材料:在数学课上,教师提出如下问题:小俊的作法如下:教师说:“小俊的作法正确.”请答复:小俊的作图根据是_________________________.三、解答题(本题共9个小题,共54分,解容许写出文字说明,证明过程或演算步骤)19.(5分)计算:101326()(21)2--++--20.(5分)因式分解:(1)24x - (2) 2244ax axy ay -+21.(5分)如图,点E ,F 在线段AB 上,且AD =BC ,∠A =∠B ,AE =BF .求证:DF =CE .22.(5分)已知2+2x x =,求()()()()22311x x x x x +-+++-的值23.(5分)解分式方程:11+2-22-xx x+=. 24.(5分)先化简,再求值:259123x x x -⎛⎫-÷⎪++⎝⎭,其中32x =-. 25.(6分)列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2019年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2019 年地铁每小时客运量是2019年地铁每小时客运量的4倍,2019年客运240万人所用的时间比2019年客运240万人所用的时间少30小时,求2019年地铁每小时的客运量?如图,①分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于点C ; ②再分别以点A 和点B 为圆心,大于12AB 的长为半径(不同于①中的半径)作弧,两弧相交于点D ,使点D 与点C 在直线AB 的同侧;③作直线CD . 尺规作图:作一条线段的垂直平分线.已知:线段AB .26.(6分)如图,在△ABC 中,AB =AC ,AD ⊥于点D ,AM 是△ABC 的外角∠CAE 的平分线.(1)求证:AM ∥BC ;(2)若DN 平分∠ADC 交AM 于点N ,推断△ADN 的形态并说明理由. 27.(6分)定义:随意两个数,a b ,按规则c ab a b =++扩大得到一个新数c ,称所得的新数c 为“如意数”.(1) 若1,a b ==干脆写出,a b 的“如意数”c ;(2)假如4,a m b m =-=-,求,a b 的“如意数”c ,并证明“如意数” 0c ≤(3)已知2=1(0)a x x -≠,且,a b 的“如意数”3231,c x x =+-,则b = (用含x 的式子表示)28. (6分)如图,在等边三角形ABC 的外侧作直线AP ,点C 关于直线AP 的对称点为点D ,连接AD ,BD ,其中BD 交直线AP 于点E. (1)依题意补全图形;(2)若∠PAC =20°,求∠AEB 的度数;(3)连结CE ,写出AE , BE , CE 之间的数量关系,并证明你的结论.东城区2019——2018学年度第一学期期末教学目的检测初二数学评分标准及参考答案一、选择题(本题共30分,每小题3分)三、解答题(本题共54分)21. 如图,点E,F在AB上,AD=BC,∠A=∠B,AE=BF.求证:△ADF≌△BCE.证明:∵点E,F在线段AB上,AE=BF.,∴AE +E F =BF +EF , 即:AF =BE .………1分 在△ADF 与△BCE 中,,,,AD BC A B AF BE =⎧⎪∠=∠⎨⎪=⎩………3分∴△ADF ≌△BCE (SAS ) ………4分∴ DF=CE (全等三角形对应边相等)………5分 23.解方程:11+2-22-xx x+=解:方程两边同乘(x -2),得1+2(x -2)=-1-x 2分 解得:2.33x分24. 先化简,再求值:259123x x x -⎛⎫-÷⎪++⎝⎭,其中2x =.当2x =-时,原式===.…5分25.解:设2019年地铁每小时客运量x 万人,则2019年地铁每小时客运量4x 万人……1分由题意得240240-304x x= ……………3分解得x =6 …………… 4分经检验x =6是分式方程的解 ……………5分4x 24=……………6分答:2019年每小时客运量24万人 26.(1)∵AB =AC ,AD ⊥BC ,∴∠BAD =∠CAD =12BAC ∠.…………… 1分∵AM 平分∠EAC ,∴∠EAM =∠MAC=12EAC ∠.…………… 2分∴∠MAD =∠MAC +∠DAC =1122EAC BAC ∠+∠=1180902⨯︒=︒。
八年级(上)期末数学试卷一、选择题(共12题,每小题3分,共36分)1.每年的12月2日为我国的交通安全日,下列交通图标是轴对称图形的共有()A.4个B.3个C.2个D.1个2.计算:2x2•5x3的结果为()A.7x6B.10x6C.7x6D.10x53.等腰三角形的顶角是80°,它的底角是()A.80° B.50° C.100°D.40°4.以下列各组线段为边,能组成三角形的是()A.3cm,4cm,7cm B.3cm,4cm,5cm C.5cm,8cm,2cm D.4cm,1cm,6cm 5.已知a+b=3,a﹣b=2,则代数式(a2﹣b2)的值为()A.12 B.﹣12 C.10 D.66.下面是李明同学在一次测验中的计算摘录,其中正确的是()A.b3•b3=2b3B.6a3b÷(﹣2a2b)=﹣3aC.(a3)3=a6D.(﹣a)3÷(﹣a)=﹣a27.在分式中,若将x、y都扩大为原来的2倍,则所得分式的值()A.不变 B.是原来的2倍 C.是原来的4倍 D.无法确定8.如果多项式(x+a)与(x+5)的乘积中不含x的一次项,则a的值为()A.0 B.5 C.﹣5 D.19.已知一个多边形的每一个外角都等于36°,下列说法错误的是()A.这个多边形是十边形B.这个多边形的内角和是1800°C.这个多边形的每个内角都是144°D.这个多边形的外角和是360°10.已知等腰三角形的两边长分别为4和8,则它的周长等于()A.16 B.16或20 C.20 D.20或2211.已知:如图所示,BC=ED,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.AB=CD12.如图,在Rt△ABC中,∠ACB=90°,AB=2BC,在直线BC或AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有()A.4个B.5个C.6个D.7个二、填空题(本大题共6小题,每小题3分,共18分)13.使分式有意义的x的取值范围是.14.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是.15.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为.16.三角形周长是奇数,其中两边的长是2和5,则第三边长是.17.如图:点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=22,则△PMN的周长为.18.观察下列图形:n为正整数,第n个图形共有星星个.三、解答题(本大题共8小题,满分66分)19.(1)计算:(﹣1)2015+(π﹣4)0+3﹣2(2)因式分解:3a2﹣12.20.解方程: =.21.如图:画出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各点的坐标.22.先化简(1﹣)÷,然后从﹣1,0,1这三个数中选取一个合适的数作为x的值代入求值.23.如图,点B、E、F、C在同一条直线上,且AB=DE,BE=CF.(1)请你添加一个条件,使△ABF≌△DEC,你添加的条件是.(2)添加条件后,请证明△ABF≌△DEC.24.如图,在△ABC中,AB=AE,点E在AC的垂直平分线上.(1)如果∠BAE=40°,那么∠B= °,∠C= °;(2)已知△ABC的周长为20cm,AC=7cm,请你求出△ABE的周长.25.如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:(1)CF=EB.(2)AB=AF+2EB.26.列方程解应用题某商店用2000元购进一批小学生书包,出售后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了2元,结果购买第二批书包用了6600元.(1)请求出第一批每只书包的进价;(2)该商店第一批和第二批分别购进了多少只书包;(3)若商店销售这两批书包时,每个售价都是30元,全部售出后,商店共盈利多少元?八年级(上)期末数学试卷参考答案与试题解析一、选择题(共12题,每小题3分,共36分)1.每年的12月2日为我国的交通安全日,下列交通图标是轴对称图形的共有()A.4个B.3个C.2个D.1个【考点】轴对称图形.【分析】直接利用轴对称图形的定义分别分析得出答案.【解答】解:如图所示:第①、④个图形是轴对称图形,故选:C.【点评】此题主要考查了轴对称图形,正确把握轴对称图形的定义是解题关键.2.计算:2x2•5x3的结果为()A.7x6B.10x6C.7x6D.10x5【考点】单项式乘单项式.【分析】直接利用单项式乘以单项式运算法则求出答案.【解答】解:2x2•5x3=10x5.故选:D.【点评】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.3.等腰三角形的顶角是80°,它的底角是()A.80° B.50° C.100°D.40°【考点】等腰三角形的性质.【分析】根据等腰三角形的性质,等腰三角形的两个底角相等及三角形的内角和定理,即可求出它的底角的度数.【解答】解:(180°﹣80°)÷2,=100°÷2,=50°;故选B.【点评】本题考查的知识点有:三角的内角和定理、等腰三角形的意义和性质等.4.以下列各组线段为边,能组成三角形的是()A.3cm,4cm,7cm B.3cm,4cm,5cm C.5cm,8cm,2cm D.4cm,1cm,6cm【考点】三角形三边关系.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:A、3+4=7,不能组成三角形;B、3+4>5,能够组成三角形;C、2+5=7<8,不能组成三角形;D、1+4=5<6,不能组成三角形.故选B.【点评】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.5.已知a+b=3,a﹣b=2,则代数式(a2﹣b2)的值为()A.12 B.﹣12 C.10 D.6【考点】平方差公式.【分析】原式利用平方差公式化简,将已知等式代入计算即可求出值.【解答】解:∵a+b=3,a﹣b=2,∴原式=(a+b)(a﹣b)=6.故选:D.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.6.下面是李明同学在一次测验中的计算摘录,其中正确的是()A.b3•b3=2b3B.6a3b÷(﹣2a2b)=﹣3aC.(a3)3=a6D.(﹣a)3÷(﹣a)=﹣a2【考点】整式的混合运算.【专题】计算题;整式.【分析】原式各项计算得到结果,即可作出判断.【解答】解:A、原式=b6,错误;B、原式=﹣3a,正确;C、原式=a9,错误;D、原式=(﹣a)2=a2,错误,故选B【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.7.在分式中,若将x、y都扩大为原来的2倍,则所得分式的值()A.不变 B.是原来的2倍 C.是原来的4倍 D.无法确定【考点】分式的基本性质.【分析】根据分式的分子分母同时乘以或除以同一个不为零的整式,结果不变,可得答案.【解答】解:分式中,若将x、y都扩大为原来的2倍,则所得分式的值不变.故选:A.【点评】本题考查了分式的基本性质,分式的分子分母同时乘以或除以同一个不为零的整式,结果不变.8.如果多项式(x+a)与(x+5)的乘积中不含x的一次项,则a的值为()A.0 B.5 C.﹣5 D.1【考点】多项式乘多项式.【分析】把多项式的乘积展开,找到所有x项的所有系数,令其和为0,可求出a的值.【解答】解:(x+a)(x+5)=x2+(5+a)x+5a,∵结果不含x的一次项,∴5+a=0,∴a=﹣5.故选C.【点评】本题考查了多项式乘多项式,解答本题的关键在于将多项式的乘积展开,找到所有x项的所有系数并令其和为0.9.已知一个多边形的每一个外角都等于36°,下列说法错误的是()A.这个多边形是十边形B.这个多边形的内角和是1800°C.这个多边形的每个内角都是144°D.这个多边形的外角和是360°【考点】多边形内角与外角.【分析】用360°除以每一个外角的度数求出边数,再根据多边形的内角与相邻的外角互为补角和多边形的内角和公式与外角和定理对各选项分析判断即可得解.【解答】解:多边形的边数为:360°÷36°=10,所以,多边形的内角和为:(10﹣2)•180°=1440°,每一个内角为:180°﹣36°=144°,多边形的外角和为:360°,所以,说法错误的是B选项.故选B.【点评】本题考查了多边形内角与外角,主要利用了多边形的内角和公式与外角和定理,根据外角和求出边数是解题的关键.10.已知等腰三角形的两边长分别为4和8,则它的周长等于()A.16 B.16或20 C.20 D.20或22【考点】等腰三角形的性质;三角形三边关系.【分析】根据等腰三角形的性质,本题要分情况讨论.当腰长为4cm或是腰长为8cm两种情况.【解答】解:等腰三角形的两边长分别为4cm和8cm,当腰长是4cm时,则三角形的三边是4cm,4cm,8cm,4cm+4cm=8cm不满足三角形的三边关系;当腰长是8cm时,三角形的三边是8cm,8cm,4cm,三角形的周长是20cm.故选:C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,进行分类讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.11.已知:如图所示,BC=ED,∠B=∠E=90°,AC⊥CD,则不正确的结论是()A.∠A与∠D互为余角B.∠A=∠2C.△ABC≌△CED D.AB=CD【考点】全等三角形的判定与性质.【分析】利用同角的余角相等求出∠A=∠2,再利用“角角边”证明△ABC和△CDE全等,根据全等三角形对应边相等,对应角相等,即可解答.【解答】解:∵∠B=∠E=90°,∴∠A+∠1=90°,∠D+∠2=90°,∵AC⊥CD,∴∠1+∠2=90°,∴∠A=∠2,故B正确;∴∠A+∠D=90°,故A正确;在△ABC和△CED中,,∴△ABC≌△CED(AAS),故C正确;∴AB=CE,故D错误.故选:D【点评】本题考查了全等三角形的判定与性质,等角的余角相等的性质,熟练掌握三角形全等的判定方法并确定出全等的条件∠A=∠2是解题的关键.12.如图,在Rt △ABC 中,∠ACB=90°,AB=2BC ,在直线BC 或AC 上取一点P ,使得△PAB 为等腰三角形,则符合条件的点P 共有( )A .4个B .5个C .6个D .7个【考点】等腰三角形的判定.【分析】根据等腰三角形的判定,“在同一三角形中,有两条边相等的三角形是等腰三角形(简称:在同一三角形中,等边对等角)”分三种情况解答即可.【解答】解:如图,①AB 的垂直平分线交AC 一点P 1(PA=PB ),交直线BC 于点P 2;②以A 为圆心,AB 为半径画圆,交AC 有二点P 3,P 4,交BC 有一点P 2,(此时AB=AP );③以B为圆心,BA为半径画圆,交BC有二点P5,P2,交AC有一点P6(此时BP=BA).2+(3﹣1)+(3﹣1)=6,∴符合条件的点有六个.故选C.【点评】本题考查了等腰三角形的判定;构造等腰三角形时本着截取相同的线段就能作出等腰三角形来,思考要全面,做到不重不漏.二、填空题(本大题共6小题,每小题3分,共18分)13.使分式有意义的x的取值范围是x≠3 .【考点】分式有意义的条件.【分析】根据分式有意义,分母不为零列式进行计算即可得解.【解答】解:分式有意义,则x﹣3≠0,解得x≠3.故答案为:x≠3.【点评】本题考查的知识点为:分式有意义,分母不为0.14.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是利用三角形的稳定性.【考点】三角形的稳定性.【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【解答】解:这样做的道理是利用三角形的稳定性.【点评】本题考查三角形稳定性的实际应用,三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.15.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为7×10﹣7.【考点】科学记数法—表示较小的数.【专题】常规题型.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.本题0.000 000 7<1时,n为负数.【解答】解:0.000 000 7=7×10﹣7.故答案为:7×10﹣7.【点评】本题考查了用科学记数法表示一个较小的数,为a×10n的形式,注:n为负整数.16.三角形周长是奇数,其中两边的长是2和5,则第三边长是4或6 .【考点】三角形三边关系.【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围;又知道周长为奇数,就可以知道第三边的长度,从而得出答案.【解答】解:设第三边的长为x,根据三角形的三边关系,得5﹣2<x<5+2,即3<x<7.又∵周长是奇数,∴周长只能为:3+2+5<a<7+2+5,∴10<a<14,∴a=11,13.∴第三边长为:4或6.故答案为:4或6.【点评】此题主要考查了三角形三边关系,此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可17.如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=22,则△PMN 的周长为 22 .【考点】轴对称的性质.【分析】根据轴对称的性质可得出PM=P 1M 、PN=P 2N ,再利用三角形的周长公式结合线段P 1P 2的长度即可得出结论.【解答】解:∵点P 1、P 2分别为P 点关于OA 、OB 的对称点,∴PM=P 1M ,PN=P 2N ,∴C △PMN =PM+MN+PN=P 1M+MN+P 2N=P 1P 2=22.故答案为:22.【点评】本题考查了轴对称的性质,根据轴对称的性质找出C △PMN =P 1P 2是解题的关键.18.观察下列图形:n为正整数,第n个图形共有星星3n+1 个.【考点】规律型:图形的变化类.【分析】首先根据图形中星星的个数得出数字变化规律,得出数字个数变化进而求出即可.【解答】解:∵第一个图形有3+1=4个星星,第二个图形有2×3+1=7个星星,第三个图形有3×3+1=10个星星,第四个图形有3×4+1=13个星星,∴第n个图形的星星的个数是:3n+1.故答案为:3n+1.【点评】此题主要考查了图形的变化类,利用图形中数字变化规律得出数的变与不变是解题关键.三、解答题(本大题共8小题,满分66分)19.(1)计算:(﹣1)2015+(π﹣4)0+3﹣2(2)因式分解:3a2﹣12.【考点】提公因式法与公式法的综合运用;零指数幂;负整数指数幂.【分析】(1)(﹣1)2015=﹣1,(π﹣4)0=1,3﹣2==,代入计算;(2)先提公因式3,再利用平方差公式进行计算.【解答】解:(1)计算:(﹣1)2015+(π﹣4)0+3﹣2,=﹣1+1+,=;(2)3a2﹣12=3(a+2)(a﹣2).【点评】本题考查了整数指数幂的计算和因式分解,比较简单,熟练掌握以下几个知识点是关键:①﹣1的偶数次幂是正数1,﹣1的奇数次幂是﹣1;②a0=1(a≠0);③负整数指数幂:a﹣p==(a≠0,p为正整数);④平方差公式:a2﹣b2=(a+b)(a﹣b).20.解方程: =.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣2=x+3,解得:x=5,经检验x=5是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.21.如图:画出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各点的坐标.【考点】作图-轴对称变换.【分析】利用关于y轴对称点的性质进而得出各点坐标,进而画出图形即可.【解答】解:如图所示:△A1B1C1各点的坐标分别为:A1(3,2),B1(4,﹣3),C1(1,﹣1).【点评】此题主要考查了轴对称变换,得出对应点位置是解题关键.22.先化简(1﹣)÷,然后从﹣1,0,1这三个数中选取一个合适的数作为x的值代入求值.【考点】分式的化简求值.【分析】首先对括号内内的式子通分相减,把除法转化为乘法,计算乘法即可化简,然后根据分式有意义的条件确定x的值,然后代入求值即可.【解答】解:原式=•=.若分式有意义,则x只能取0.则当x=0时,原式=﹣.【点评】本题考查了分式的化简求值,正确对分式的分子和分母正确进行分解因式是关键.23.如图,点B、E、F、C在同一条直线上,且AB=DE,BE=CF.(1)请你添加一个条件,使△ABF≌△DEC,你添加的条件是∠B=∠DEC,或AF=DC .(2)添加条件后,请证明△ABF≌△DEC.【考点】全等三角形的判定.【分析】判定两个三角形全等的一般方法有:ASA、SSS、SAS、AAS、HL,所以可添加条件为∠B=∠DEC,或AF=DC【解答】解:(1)添加的条件是∠B=∠DEC,或AF=DC;故答案为:∠B=∠DEC,或AF=DC.(2)∵BE=CF,∴BE+EF=CF+EF,即BF=EC.∵在△ABF和△DEC中,,∴△ABF≌△DEC(SAS)【点评】本题考查三角形全等的性质和判定方法,判定两个三角形全等的一般方法有:ASA、SSS、SAS、AAS、HL(在直角三角形中).判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.24.如图,在△ABC中,AB=AE,点E在AC的垂直平分线上.(1)如果∠BAE=40°,那么∠B= 70 °,∠C= 35 °;(2)已知△ABC的周长为20cm,AC=7cm,请你求出△ABE的周长.【考点】线段垂直平分线的性质.【分析】(1)根据等边对等角可得∠B=∠AEB,再利用三角形内角和定理可得∠B=∠AEB==70°,根据线段垂直平分线的性质可得AE=EC,再利用三角形外角的性质可得∠C的度数.(2)根据题意可得AB+BC=13cm,利用等量代换可得AE+BE=BC,进而可得△ABE的周长.【解答】解:(1)∵AB=AE,∴∠B=∠AEB,∵∠BAE=40°,∴∠B=∠AEB==70°,∵点E在AC的垂直平分线上,∴AE=EC,∴∠C=∠EAC,∴∠C=70°×=35°,故答案为:70;35.(2)∵△ABC的周长为20cm,AC=7cm,∴AB+BC=20﹣7=13(cm),∵AE=EC,∴AE+BE=BC,∴△ABE的周长为:AB+BE+AE=AB+BC=13cm.【点评】此题主要考查了线段垂直平分线的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.25.如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;说明:(1)CF=EB.(2)AB=AF+2EB.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,可得点D到AB 的距离=点D到AC的距离即CD=DE.再根据Rt△CDF≌Rt△EDB,得CF=EB;(2)利用角平分线性质证明∴△ADC≌△ADE,AC=AE,再将线段AB进行转化.【解答】证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,在Rt△CDF和Rt△EDB中,,∴Rt△CDF≌Rt△EDB(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在△ADC与△ADE中,,∴△ADC≌△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.【点评】本题主要考查平分线的性质,由已知能够注意到点D到AB的距离=点D到AC的距离,即CD=DE,是解答本题的关键.26.列方程解应用题某商店用2000元购进一批小学生书包,出售后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了2元,结果购买第二批书包用了6600元.(1)请求出第一批每只书包的进价;(2)该商店第一批和第二批分别购进了多少只书包;(3)若商店销售这两批书包时,每个售价都是30元,全部售出后,商店共盈利多少元?【考点】分式方程的应用.【分析】(1)设第一批书包的单价为x元,然后可得到第二批书包的单价,最后依据第二所购书包的数量是第一批购进数量的3倍列方程求解即可;(2)依据书包的数量=总价÷单价求解即可;(3)先求得全部卖出后的总售价,然后用总售价﹣总进价可求得获得的利润.【解答】解:(1)设第一批书包的单价为x元.根据题意得:,解得:x=20.经检验:x=20是分式方程的解.答:第一批每只书包的进价是20元.(2)第一批进货的数量=2000÷20=100个;第二批的进货的数量=3×100=300个.(3)30×(100+300)﹣2000﹣6600=3400元.【点评】本题主要考查的是分式方程的应用,根据第二所购书包的数量是第一批购进数量的3倍列出关于x的方程是解题的关键.。
八年级(上)期末数学试卷一、选择题(以下每题只有一个正确的选项,每小题3分,共30分)1.(3分)下列图标是节水、节能、低碳和绿色食品的标志,其中是轴对称图形的是()A.B.C.D.2.(3分)下列二次根式中,最简二次根式的是()A.B.C.D.3.(3分)点M(﹣2,1)关于y轴的对称点N的坐标是()A.(2,1) B.(1,﹣2)C.(﹣2,﹣1)D.(2,﹣1)4.(3分)下列运算中正确的是()A.b3•b3=2b3B.2•3=6C.(a5)2=a7D.a5÷a2=a35.(3分)下列各式中,从左到右的变形是因式分解的是()A.3+3y﹣5=3(+y)﹣5 B.(+1)(﹣1)=2﹣1C.42+4=4(+1)D.67=32•256.(3分)分式方程+=1的解是()A.1 B.2 C.3 D.47.(3分)等腰三角形的周长为13cm,其中一边长为5cm,则该等腰三角形的底边为()A.5cm B.4cm C.5cm或3cm D.8cm8.(3分)若m+=5,则m2+的结果是()A.23 B.8 C.3 D.79.(3分)如图,三角形纸片ABC中,∠A=75°,∠B=60°,将纸片的角折叠,使点C落在△ABC内,若∠α=35°,则∠β等于()A.48°B.55°C.65°D.以上都不对10.(3分)2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是100,小正方形的面积为20,那么每个直角三角形的周长为()A.10+6 B.10+10C.10+4D.24二、填空题(每小题3分,共24分)11.(3分)若分式的值为零,则的值等于.12.(3分)已知a+b=2,则a2﹣b2+4b的值为.13.(3分)若+|3﹣y|=0,则y=.14.(3分)2++9是完全平方式,则=.15.(3分)如图,△ABC中,AB=AC,AB的垂直平分线交AC 于P点,若AB=6cm,BC=4cm,△PBC 的周长等于cm.16.(3分)如图,正方形网格中的△ABC,若小方格边长都为1,则△ABC是:三角形.17.(3分)如图,从点A(0,2)发出一束光,经轴反射,过点B(4,3),则这束光从点A 到点B所经过的路径的长为.18.(3分)下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是.三、解答题(第19、20题每小题3分,第21-28题每小题3分,共46分)19.(3分)因式分解:3ab2+6ab+3a.20.(3分)计算:(a+b)(a﹣b)﹣(a﹣b)2.21.(5分)计算: +|﹣|+()﹣3+(π﹣3.14)0.22.(5分)解方程: +=.23.(5分)先化简,再求值:(+)÷,其中=12.24.(5分)如图,在△ABC中,∠B=60°,AC=15,AB=6,求BC的长.25.(5分)北京时间2015年7月31日,国际奥委会主席巴赫宣布:中国北京获得2022年第24届冬季奥林匹克运动会举办权.北京也创造历史,成为第一个既举办过夏奥会又举办冬奥会的城市,张家口也成为本届冬奥会的协办城市.近期,新建北京至张家口铁路可行性研究报告已经获得国家发改委批复,同意新建北京至张家口铁路,铁路全长约180千米.按照设计,京张高铁列车的平均行驶速度是普通快车的1.5倍,用时比普通快车用时少了20分钟,求高铁列车的平均行驶速度.26.(5分)已知:如图,在△ABC中,∠C=90°,AE是△ABC的角平分线;ED平分∠AEB,交AB于点D;∠CAE=∠B.(1)求∠B的度数.(2)如果AC=3cm,求AB的长度.(3)猜想:ED与AB的位置关系,并证明你的猜想.27.(5分)阅读下列材料,并回答问题.事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方,这个结论就是著名的勾股定理.请利用这个结论,完成下面活动:(1)一个直角三角形的两条直角边分别为6、8,那么这个直角三角形斜边长为.(2)如图1,AD⊥BC 于D,AD=BD,AC=BE,AC=3,DC=1,求BD的长度.(3)如图2,点A在数轴上表示的数是,请用类似的方法在图2数轴上画出表示数的B点(保留作图痕迹).28.(5分)如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,BD=CD=AB.于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.请根据从上面材料中所得到的信息解答下列问题:(1)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长=.(2)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那么BE:EA=.(3)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且AE=DC,AD、BE交于点P,作BQ⊥AD于Q,若BP=2,求BQ的长.八年级(上)期末数学试卷参考答案与试题解析一、选择题(以下每题只有一个正确的选项,每小题3分,共30分)1.(3分)下列图标是节水、节能、低碳和绿色食品的标志,其中是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.2.(3分)下列二次根式中,最简二次根式的是()A.B.C.D.【解答】解:A、中被开方数是分数,故不是最简二次根式;B、中被开方数是分数,故不是最简二次根式;C、中被开方数不含分母,不含能开得尽方的因数,故是最简二次根式;D、中含能开得尽方的因数,故不是最简二次根式;故选:C.3.(3分)点M(﹣2,1)关于y轴的对称点N的坐标是()A.(2,1) B.(1,﹣2)C.(﹣2,﹣1)D.(2,﹣1)【解答】解:点M(﹣2,1)关于y轴的对称点N的坐标是(2,1).故选:A.4.(3分)下列运算中正确的是()A.b3•b3=2b3B.2•3=6C.(a5)2=a7D.a5÷a2=a3【解答】解:A、b3•b3=b6,故A不符合题意;B、2•3=5,故B不符合题意;C、(a5)2=a10,故C不符合题意;D、a5÷a3=a2,故D符合题意;故选:D.5.(3分)下列各式中,从左到右的变形是因式分解的是()A.3+3y﹣5=3(+y)﹣5 B.(+1)(﹣1)=2﹣1C.42+4=4(+1)D.67=32•25【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、是整式的乘法,不是因式分解,故本选项错误;C、42+4=4(+1),是因式分解,故本选项正确;D、67=32•25,不是因式分解,故本选项错误.故选:C.6.(3分)分式方程+=1的解是()A.1 B.2 C.3 D.4【解答】解:去分母得:2+2+6﹣12=2﹣4,移项合并得:8=8,解得:=1,经检验=1是分式方程的解,故选:A.7.(3分)等腰三角形的周长为13cm,其中一边长为5cm,则该等腰三角形的底边为()A.5cm B.4cm C.5cm或3cm D.8cm【解答】解:当5cm是等腰三角形的底边时,则其腰长是(13﹣5)÷2=4(cm),能够组成三角形;当5cm是等腰三角形的腰时,则其底边是13﹣5×2=3(cm),能够组成三角形.所以该等腰三角形的底边为5cm或3cm,故选:C.8.(3分)若m+=5,则m2+的结果是()A.23 B.8 C.3 D.7【解答】解:∵m+=5,∴m2+=(m+)2﹣2=25﹣2=23,故选:A.9.(3分)如图,三角形纸片ABC中,∠A=75°,∠B=60°,将纸片的角折叠,使点C落在△ABC内,若∠α=35°,则∠β等于()A.48°B.55°C.65°D.以上都不对【解答】解:∠α+∠β+(180°﹣∠C)+∠A+∠B=360°,整理可得∠β=55°.故选:B.10.(3分)2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是100,小正方形的面积为20,那么每个直角三角形的周长为()A.10+6 B.10+10C.10+4D.24【解答】解:根据题意得:c2=a2+b2=100,4×ab=100﹣20=80,即2ab=80,则(a+b)2=a2+2ab+b2=100+80=180,∴每个直角三角形的周长为10+=10+故选:A.二、填空题(每小题3分,共24分)11.(3分)若分式的值为零,则的值等于2.【解答】解:根据题意得:﹣2=0,解得:=2.此时2+1=5,符合题意,故答案是:2.12.(3分)已知a+b=2,则a2﹣b2+4b的值为4.【解答】解:∵a+b=2,∴a2﹣b2+4b,=(a+b)(a﹣b)+4b,=2(a﹣b)+4b,=2a+2b,=2(a+b),=2×2,=4.故答案为:4.13.(3分)若+|3﹣y|=0,则y=6.【解答】解:由题意得,﹣2=0,3﹣y=0,解得=2,y=3,所以,y=2×3=6.故答案为:6.14.(3分)2++9是完全平方式,则=±6.【解答】解:中间一项为加上或减去和3的积的2倍,故=±6.15.(3分)如图,△ABC中,AB=AC,AB的垂直平分线交AC 于P点,若AB=6cm,BC=4cm,△PBC 的周长等于10cm.【解答】解:∵△ABC中,AB=AC,AB=6cm,∴AC=6cm,∵AB的垂直平分线交AC于P点,∴BP+PC=AC,∴△PBC的周长=(BP+PC)+BC=AC+BC=6+4=10cm.故答案为:10.16.(3分)如图,正方形网格中的△ABC,若小方格边长都为1,则△ABC是:直角三角形.【解答】解:∵AC2=22+32=13,AB2=62+42=52,BC2=82+12=65,∴AC2+AB2=BC2,∴△ABC是直角三角形.17.(3分)如图,从点A(0,2)发出一束光,经轴反射,过点B(4,3),则这束光从点A 到点B所经过的路径的长为.【解答】解:如图,过点B作BD⊥轴于D,∵A(0,2),B(4,3),∴OA=2,BD=3,OD=4,根据题意得:∠ACO=∠BCD,∵∠AOC=∠BDC=90°,∴△AOC∽△BDC,∴OA:BD=OC:DC=AC:BC=2:3,∴OC=OD=×4=,∴AC==,∴BC=,∴AC+BC=.即这束光从点A到点B所经过的路径的长为:.故答案为:.18.(3分)下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上).【解答】解:到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上),理由:如图,∵PA=AQ,PB=QB,∴点A、点B在线段PQ的垂直平分线上,∴直线AB垂直平分线段PQ,∴PQ⊥AB.三、解答题(第19、20题每小题3分,第21-28题每小题3分,共46分)19.(3分)因式分解:3ab2+6ab+3a.【解答】解:3ab2+6ab+3a=3a(b2+2b+1)=3a(b+1)2.20.(3分)计算:(a+b)(a﹣b)﹣(a﹣b)2.【解答】解:原式=a2﹣b2﹣a2+2ab﹣b2=2ab﹣2b2.21.(5分)计算: +|﹣|+()﹣3+(π﹣3.14)0.【解答】解:原式=2++8+1=3+9.22.(5分)解方程: +=.【解答】解:两边都乘(+3)(﹣3),得+3(﹣3)=+3,解得=4,经检验:=4是原分式方程的根.23.(5分)先化简,再求值:(+)÷,其中=12.【解答】解:(+)÷,=[+]•,=,=,=,当=12时,原式==.24.(5分)如图,在△ABC中,∠B=60°,AC=15,AB=6,求BC的长.【解答】解:作AD⊥BC于D,∵∠B=60°,∴∠BAD=30°,∴BD=AB=3,在Rt△ABD中,AD==9,在Rt△ADC中,CD==12,∴BC=BD+CD=3+12.25.(5分)北京时间2015年7月31日,国际奥委会主席巴赫宣布:中国北京获得2022年第24届冬季奥林匹克运动会举办权.北京也创造历史,成为第一个既举办过夏奥会又举办冬奥会的城市,张家口也成为本届冬奥会的协办城市.近期,新建北京至张家口铁路可行性研究报告已经获得国家发改委批复,同意新建北京至张家口铁路,铁路全长约180千米.按照设计,京张高铁列车的平均行驶速度是普通快车的1.5倍,用时比普通快车用时少了20分钟,求高铁列车的平均行驶速度.【解答】解:设普通快车的平均行驶速度为千米/时,则高铁列车的平均行驶速度为1.5千米/时.根据题意得:﹣=,解得:=180,经检验,=80是所列分式方程的解,且符合题意.则1.5=1.5×180=270.答:高铁列车的平均行驶速度为270千米/时.26.(5分)已知:如图,在△ABC中,∠C=90°,AE是△ABC的角平分线;ED平分∠AEB,交AB于点D;∠CAE=∠B.(1)求∠B的度数.(2)如果AC=3cm,求AB的长度.(3)猜想:ED与AB的位置关系,并证明你的猜想.【解答】解:(1)∵AE是△ABC的角平分线,∴∠CAE=∠EAB,∵∠CAE=∠B,∴∠CAE=∠EAB=∠B.∵在△ABC中,∠C=90°,∴∠CAE+∠EAB+∠B=3∠B=90°,∴∠B=30°;(2)∵在△ABC中,∠C=90°,∠B=30°,AC=3cm,∴AB=2AC=6cm;(3)猜想:ED⊥AB.理由如下:∵∠EAB=∠B,∴EB=EA,∵ED平分∠AEB,∴ED⊥AB.27.(5分)阅读下列材料,并回答问题.事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方,这个结论就是著名的勾股定理.请利用这个结论,完成下面活动:(1)一个直角三角形的两条直角边分别为6、8,那么这个直角三角形斜边长为10.(2)如图1,AD⊥BC 于D,AD=BD,AC=BE,AC=3,DC=1,求BD的长度.(3)如图2,点A在数轴上表示的数是﹣,请用类似的方法在图2数轴上画出表示数的B点(保留作图痕迹).【解答】解:(1)直角三角形的两条直角边分别为6、8,则这个直角三角形斜边长==10,故答案为:10;(2)在Rt△ADC中,AD==2,∴BD=AD=2;(3)点A在数轴上表示的数是:﹣=﹣,由勾股定理得,OC=,以O为圆心、OC为半径作弧交轴于B,则点B即为所求,故答案为:﹣.28.(5分)如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,BD=CD=AB.于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.请根据从上面材料中所得到的信息解答下列问题:(1)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长=15cm.(2)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那么BE:EA=3:1.(3)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且AE=DC,AD、BE交于点P,作BQ⊥AD于Q,若BP=2,求BQ的长.【解答】解:(1)∵DE是线段BC的垂直平分线,∠ACB=90°,∴CD=BD,AD=BD.又∵在△ABC中,∠ACB=90°,∠B=30°,∴AC=AB,∴△ACD的周长=AC+AB=3BD=15cm.故答案为:15cm;(2)连接AD,如图所示.∵在△ABC中,AB=AC,∠A=120°,D是BC的中点,∴∠BAD=60°.又∵DE⊥AB,∴∠B=∠ADE=30°,∴BE=BD,EA=AD,∴BE:EA=BD:AD,又∵BD=AD,∴BE:AE=3:1.故答案为:3:1.(3)∵△ABC为等边三角形.∴AB=AC,∠BAC=∠ACB=60°,在△BAE和△ACD中,,∴△BAE≌△ACD(SAS),∴∠ABE=∠CAD.∵∠BPQ为△ABP外角,∴∠BPQ=∠ABE+∠BAD.∴∠BPQ=∠CAD+∠BAD=∠BAC=60°∵BQ⊥AD,∴∠PBQ=30°,∴BP=2PQ=2,∴PQ=1,∴BQ===.。
…………○学…………○绝密★启用前 北京市东城区 2018-2019 学年八年级上学期期末教学统一检测数学试题 试卷副标题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、单选题 1.生物学家发现了一种病毒,其长度约为0.00000032mm ,数据0.00000032用科学记数法表示正确的是( ) A .3.2×107 B .3.2×108 C .3.2×10﹣7 D .3.2×10﹣8 2.若分式11a -有意义,则a 的取值范围是( ) A .a≠1 B .a≠0 C .a≠1且a ≠0 D .一切实数 3.下列运算中,正确的是( ) A .235325x x x += B .a.a 2=a 3 C .3a 6÷a 3=3a 2 D .33()ab a b = 4.2017年12月15日,北京2022年冬奥会会徽“冬梦”正式发布. 以下是参选的会徽设计的一部分图形,其中是轴对称图形的是( ) A . B . C . D . 5..(2017河北)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是( )…………○…装……………………线…………○……※※※要※※在※※装…………○…装……………………线…………○……A.B.C.D.6.下列二次根式中,是最简二次根式的是()A B C D7.已知a m=2,a n=3,则a3m+2n的值是()A.6B.24C.36D.728.如图,已知∠1=∠2,AC=AD,要使△ABC≌△AED,还需添加一个条件,那么在①AB=AE,②BC=ED,③∠C=∠D,④∠B=∠E,这四个关系中可以选择的是( )A.①②③B.①②④C.①③④D.②③④9.如图,在△ABC中,∠A=90°,∠C=30°,AD⊥BC于D,BE是∠ABC的平分线,且交AD于P,如果AP=2,则AC的长为()A.2 B.4 C.6 D.810.定义运算“※”:aa ba ba bba bb a⎧>⎪⎪-=⎨⎪<⎪-⎩,※.若5※x=2,则x的值为()…外…………○…○…………订…___班级:___________考号…内…………○…○…………订…A .52B .52或10C .10D .52或152 第II 卷(非选择题) 请点击修改第II 卷的文字说明 二、填空题 11.分解因式:228ax a -=_______.12.多项式(mx+8)(2﹣3x )展开后不含x 项,则m =_____. 13.当x 的值为_____时,分式242x x --的值为0. 14.课本上有这样一道例题: 例 已知等腰三角形底边长为a, 底边上的高的长为h ,求作这个等腰三角. 作法:(1)作线段AB=a, (2)作线段AB 的垂直平分线MN ,与AB 相交于点D , (3)在MN 上取一点C ,使DC=h, (4)连接AC ,BC ,则△ABC 就是所求作的等腰三角形. 请你思考只要CD 垂直平分AB ,那么△ABC 就是等腰三角形的依据是_____. 15.如图,在△ABC 中,点D 是AB 边的中点,过点D 作边AB 的垂线l ,E 是l 上任意一点,且AC =5,BC =8,则△AEC 的周长最小值为_____. 16.已知在△ABC 中,AB=AC . (1)若∠A=36º,在△ABC 中画一条线段,能得到2个等腰三角形(不包括...△ABC),这2个等腰三角形的顶角的度数分别是_____;(2)若∠A ≠36º, 当∠A=_____时,在等腰△ABC 中画一条线段,能得到2个等腰三角形(不.包括..△ABC).(写出两个答案即可)…………外…………○…………装…※※请※※不※※要…………内…………○…………装…三、解答题 17.计算:()2012π2-⎛⎫-- ⎪⎝⎭ 18.计算: (1) -; (2) 2(2)(3)(3)x x x --+-. 19.在三个整式x 2+2xy ,y 2+2xy ,x 2中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.20.解分式方程:271326+=++xx x .21.先化简22169(1)24a a a a -+-÷--,然后a 在﹣2,0, 1,2,3中选择一个合适的数代入并求值.22.如图,在平面直角坐标系xOy 中,△ABC 的三个顶点的坐标分别是A (2,3),B (1,0),C (1,2).(1)在图中作出△ABC 关于y 轴对称的△111A B C ;(2)如果要使以B 、C 、D 为顶点的三角形与△ABC 全等,写出所有符合条件的点D 坐标.23.如图,点B 、F 、C 、E 在直线l 上(F 、C 之间不能直接测量),点A 、D 在l 异侧,…装…………○…………线…………__姓名:___________班级:_…装…………○…………线…………(1)求证:△ABC ≌△DEF ; (2)若BE =10m ,BF =3m ,求FC 的长度. 24.列方程解应用题:港珠澳大桥是世界上最长的跨海大桥,是被誉为“现代世界七大奇迹”的超级工程,它是我国从桥梁大国走向桥梁强国的里程碑之作.开通后从香港到珠海的车程由原来的180千米缩短到50千米,港珠澳大桥的设计时速比按原来路程行驶的平均时速多40千米,若开通后按设计时速行驶,行驶完全程时间仅为原来路程行驶完全程时间的16,求港珠澳大桥的设计时速是多少. 25.如图,AE 是△ACD 的角平分线,B 在DA 延长线上,AE∥BC,F 为BC 中点,判断AE 与AF 的位置关系并证明. 26.阅读下列材料,然后回答问题: 观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式: =1121=--. 32==--(一) 22--二)……外………………内…………(1. 的值; 的值; (2)从计算结果中找出规律,并利用这一规律选择..下面两个问题中的一个..加以解决: ①求.......1)+的值;….27.(1)老师在课上给出了这样一道题目:如图(1),等边△ABC 边长为2,过AB 边上一点P 作PE⊥AC 于E ,Q 为BC 延长线上一点,且AP=CQ ,连接PQ 交AC 于D ,求DE 的长.小明同学经过认真思考后认为,可以通过过点P 作平行线构造等边三角形的方法来解决这个问题.请根据小明同学的思路直接写出DE 的长.(2)(类比探究)老师引导同学继续研究:①等边△ABC 边长为2,当P 为BA 的延长线上一点时,作PE⊥CA 的延长线于点E ,Q 为边BC 上一点,且AP=CQ ,连接PQ 交AC 于D .请你在图(2)中补全图形并求DE 的长. ②已知等边△ABC,当P 为AB 的延长线上一点时,作PE⊥射线AC 于点E , Q 为哪一个(①BC 边上;②BC 的延长线上;③CB 的延长线上)一点,且AP=CQ ,连接PQ 交直线AC 于点D ,能使得DE 的长度保持不变.( 直接写出答案的编号)28.在平面直角坐标系xOy 中,△ABO 为等边三角形,O 为坐标原点,点A 关于y 轴的对称点为D ,连接AD ,BD ,OD ,其中AD ,BD 分别交y 轴于点E ,P.(1)如图1,若点B 在x 轴的负半轴上时,直接写出BDO ∠的度数;……○…………线……_______……○…………线……夹角为α,60︒<α<90︒,依题意补全图形,并求出BDO ∠的度数;(用含α的式子表示) (3)在第(2)问的条件下,用等式表示线段BP ,PE ,PO 之间的数量关系.(直接写出结果)参考答案1.C【解析】0.00000032=3.2×10-7.故选C.点睛:本题考查了负指数幂的科学计数法,在负指数科学计数法10n a -±⨯ 中,其中110a ≤< ,n 等于第一个非0数字前所有0的个数(包括下数点前面的0).2.A【解析】分析:根据分母不为零,可得答案详解:由题意,得10a -≠,解得 1.a ≠故选A.点睛:本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键. 3.B【解析】【分析】根据合并同类项法则、同底数幂乘法、整式除法、积的乘方法则分别进行计算,然后选择正确选项.【详解】A .不是同类项项,不能合并,故本选项错误;B .a •a 2=a 3,计算正确,故本选项正确;C .3a 6÷a 3=3a 3,计算错误,故本选项错误;D .(ab )3=a 3b 3,计算错误,故本选项错误.故选B .【点睛】本题考查了合并同类项法则、同底数幂乘法、整式除法、积的乘方等运算,掌握运算法则是解答本题的关键.4.B【解析】【分析】根据轴对称图形的概念求解即可.【详解】A.不是轴对称图形,本选项错误;B.是轴对称图形,本选项正确;C.不是轴对称图形,本选项错误;D.不是轴对称图形,本选项错误.故选B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.D【解析】∵,∴选项A不符合题意;∵4+40+40=6,∴选项B不符合题意;∵,∴选项C不符合题意;∵=,∴选项D符合题意,故选D.6.A【解析】【分析】直接利用最简二次根式的定义分析得出答案.【详解】A,故此选项正确;=,故此选项错误;BC=故此选项错误;D=故此选项错误.【点睛】本题考查了最简二次根式,正确把握最简二次根式的定义是解题的关键.7.D【解析】【分析】直接利用同底数幂的乘法运算法则结合幂的乘方运算法则计算得出答案.【详解】∵a m=2,a n=3,∴a3m+2n=(a m)3×(a n)2=23×32=72.故选D.【点睛】本题考查了同底数幂的乘法运算以及幂的乘方运算,正确将原式变形是解题的关键.8.C【解析】【分析】由∠1=∠2结合等式的性质可得∠CAB=∠DAE,再利用全等三角形的判定定理分别进行分析即可.【详解】∵∠1=∠2,∴∠1+∠EAB=∠2+∠EAB,即∠CAB=∠DAE.①加上条件AB=AE可利用SAS定理证明△ABC≌△AED;②加上BC=ED不能证明△ABC≌△AED;③加上∠C=∠D可利用ASA证明△ABC≌△AED;④加上∠B=∠E可利用AAS证明△ABC≌△AED.故选C.本题考查了三角形全等的判定方法,解题时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.C【解析】【分析】易得△AEP的等边三角形,则AE=AP=2,在直角△AEB中,利用含30度角的直角三角形的性质来求EB的长度,然后在等腰△BEC中得到CE的长度,则易求AC的长度.【详解】解:∵△ABC中,∠BAC=90°,∠C=30°,∴∠ABC=60°.又∵BE是∠ABC的平分线,∴∠EBC=30°,∴∠AEB=∠C+∠EBC=60°,∠C=∠EBC,∴∠AEP=60°,BE=EC.又AD⊥BC,∴∠CAD=∠EAP=60°,则∠AEP=∠EAP=60°,∴△AEP的等边三角形,则AE=AP=2,在直角△AEB中,∠ABE=30°,则EB=2AE=4,∴BE=EC=4,∴AC=CE+AE=6.故选:C.【点睛】本题考查了含30°角的直角三角形的性质、角平分线的性质以及等边三角形的判定与性质.利用三角形外角性质得到∠AEB =60°是解题的关键.10.B【解析】【分析】首先认真分析找出规律,根据5与x 的取值范围,分别得出分式方程,可得对应x 的值.【详解】当x <5时,55x =-2,解得:x 52=,经检验,x 52=是原分式方程的解; 当x >5时,5x x =-2,解得:x =10,经检验,x =10是原分式方程的解; 综上所述:x 52=或10. 故选B .【点睛】本题考查了分式方程的应用以及新定义题型,是近几年的考试热点之一.新定义题型需要依据给出的运算法则进行计算,这和解答实数或有理数的混合运算相同,其关键仍然是正确的理解与运用运算的法则.11.2(2)(2)a x x +-【解析】【分析】首先提公因式2a ,再利用平方差公式分解即可.【详解】原式=2a (x 2﹣4)=2a (x +2)(x ﹣2).故答案为:2a (x +2)(x ﹣2).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.12.12【解析】【分析】乘积含x 项包括两部分,①mx ×2,②8×(﹣3x ),再由展开后不含x 的一次项可得出关于m的方程,解出即可.【详解】解:(mx+8)(2﹣3x)=2mx﹣3mx2+16﹣24x=﹣3mx2+(2m﹣24)x+16,∵多项式(mx+8)(2﹣3x)展开后不含x项,∴2m﹣24=0,解得:m=12,故答案为:12.【点睛】此题考查了多项式乘多项式的知识,属于基础题,注意观察哪些项相乘所得的结果含一次项,难度一般.13.-2【解析】【分析】分式的值为0的条件是:分子为0,分母不为0,两个条件需同时具备,缺一不可.据此可以解答本题.【详解】根据题意得:24020xx⎧-=⎨-≠⎩,解得:x=﹣2.故答案为:﹣2.【点睛】本题考查了分式的值为0的条件和分式无意义的条件,基础题,比较简单.14.线段垂直平分线上的点与这条线段两端点距离相等,等腰三角形定义.【解析】【分析】按照作法作图,根据线段垂直平分线的性质即可判断AC=BC,再由等腰三角形的定义即可得出结论.【详解】作图如下:只要CD垂直平分AB,那么△ABC就是等腰三角形的依据是线段垂直平分线上的点与这条线段两端点距离相等,等腰三角形定义.故答案为:线段垂直平分线上的点与这条线段两端点距离相等,等腰三角形定义.【点睛】本题考查了线段垂直平分线的性质及复杂作图,关键是掌握垂线的画法,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.15.13【解析】【分析】连接BE,依据l是AB的垂直平分线,可得AE=BE,进而得到AE+CE=BE+CE,依据BE+CE≥BC,可知当B,E,C在同一直线上时,BE+CE的最小值等于BC的长,而AC长不变,故△AEC的周长最小值等于AC+BC.【详解】如图,连接BE.∵点D是AB边的中点,l⊥AB,∴l是AB的垂直平分线,∴AE=BE,∴AE+CE=BE+CE.∵BE+CE≥BC,∴当B,E,C在同一直线上时,BE+CE的最小值等于BC的长,而AC长不变,∴△AEC的周长最小值等于AC+BC=5+8=13.故答案为:13.【点睛】本题考查了最短距离问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.16.(1)36°,108°;(2)1807,90°,108°.【解析】【分析】(1)利用等腰三角形的性质以及∠A的度数,进而得出这2个等腰三角形的顶角度数;(2)利用(1)种思路进而得出符合题意的图形即可.【详解】(1)如图1所示:∵AB=AC,∠A=36°,∴当AE=BE,则∠A=∠ABE=36°,则∠AEB=108°,则∠EBC=36°,∴这2个等腰三角形的顶角度数分别是36°和108°.故答案为:36°,108°;(2)如图1.∵AB=AC,∴∠ABC=∠C.∵AD=BD,∴∠ABD=∠A,∴∠BDC=2∠A.∵BC=DC,∴∠DBC=∠CDB=2∠A,∴∠C=∠ABC=3∠A.∵∠A+∠ABC+∠C=180°,∴∠A+3∠A+3∠A=180°,∴7∠A=180°∴∠A=1807.如图2,AB=AC,△ABD和△ADC都是等腰三角形,∠BAC=45°+45°=90°;如图3,AB=AC,△ABD和△ADC都是等腰三角形,∠BAC=36°+72°=108°.故答案为:1807或90°或108°. 【点睛】 本题考查了等腰三角形的性质,正确得出分割图形是解题的关键.17.0【解析】试题分析:第一项表示9的算术平方根,第二项非零数的零次幂等于1,第三项负整数指数幂等于这个数的正整数指数幂分之一.解: 原式 = 31-4+ =0.18.(1)-2(2)413x -+. 【解析】【分析】(1)先把二次根式化简为最简二次根式,然后去括号,合并同类二次根式即可; (2)先用完全平方公式和平方差公式计算,然后去括号,合并同类项即可.【详解】(1)原式- (2)原式=2222449449x x x x x x ()-+--=-+-+=413x -+.【点睛】本题考查了整式的混合运算以及二次根式的运算.注意结合算式的特点,选择简便的方法进行计算.19.(x+y)(x -y)【解析】解:222(2)222();x xy x x xy x x y ++=+=+或222(2)();y xy x x y ++=+或2222(2)(2)()();x xy y xy x y x y x y +-+=-=+-或2222(2)(2)()().y xy x xy y x y x y x +-+=-=+-20.16x = 【解析】试题分析:方程两边同时乘以()23x +,化为整式方程,解整式方程后进行检验即可得. 试题解析:方程两边同时乘以()23x +,得()4237x x ++= ,整理得:6=1x , 得:1=6x , 经检验:1=6x 是原方程的解 , ∴ 原方程的解为1=6x . 21.化简得:原式=23a a +-;当0a =时,原式=23﹣. 【解析】【分析】原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把a =0代入计算即可求出值.【详解】原式=()()()23322+2a a a a a --÷-- =()()()22+2323a a a a a --⨯-- =+23a a -.当a 取﹣2,2,3,分式无意义.当0a =时,+23a a -=23﹣. 【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解答本题的关键.22.(1)如图见解析;(2)(0,3),( 0,-1),(2,-1).【解析】【分析】(1)首先确定A 、B 、C 三点关于y 轴的对称点位置,然后再连接即可;(2)作出符合条件的D 点,根据坐标系写出点的坐标即可.【详解】(1)如图所示:(2)如图,D 的坐标为(0,3),(0,﹣1),(2,﹣1).【点睛】本题考查了轴对称变换以及全等变换.找准对应点是作图的关键.23.(1)证明见解析(2)4cm【解析】试题分析:(1)由平行线的性质得到∠ABC=∠DEF,再根据ASA证明△ABC≌△DEF即可;(2)由全等三角形的性质得到BC=EF,从而有BF= EC,即可得到结论.试题解析:(1)证明:∵AB∥DE,∴∠ABC=∠DEF.在△ABC和△DEF中,∵∠ABC=∠DEF,AB=DE,∠A=∠D,∴△ABC≌△DEF.(2)解:∵△ABC≌△DEF,∴BC=EF,∴BF+FC=EC+FC,∴BF= EC.∵BE=10cm,BF=3cm,∴FC=10-3-3=4cm.点睛:本题考查全等三角形的判定和性质、平行线的判定等知识,解题的关键是正确寻找全等三角形的条件,记住平行线的判定方法.24.港珠澳大桥的设计时速是每小时100千米.【解析】【分析】设港珠澳大桥的设计时速是x千米/时,按原来路程行驶的平均时速是(x﹣40)米/时.根据“从香港到珠海的车程由原来的180千米缩短到50千米,若开通后按设计时速行驶,行驶完全程时间仅为原来路程行驶完全程时间的16”列方程,求解即可. 【详解】 设港珠澳大桥的设计时速是x 千米/时,按原来路程行驶的平均时速是(x ﹣40)米/时.依题意得:501180·640x x =- 解得:100x =.经检验:100x =是原方程的解,且符合题意.答:港珠澳大桥的设计时速是每小时100千米.【点睛】本题考查了分式方程的应用.解题的关键是找出相等关系,根据相等关系列方程. 25.AE 与AF 的位置关系是垂直. 证明见解析.【解析】【分析】由角平分线的性质和平行线的性质得到∠B =∠ACB ,由等角对等边,得到AB =AC ,再由等腰三角形三线合一的性质及角平分线的性质即可得到结论.【详解】AE 与AF 的位置关系是垂直.理由如下:∵AE 是△ACD 的角平分线,∴∠DAE =∠CAE =12∠DAC . ∵AE ∥BC ,∴∠DAE =∠B ,∠EAC =∠ACB ,∴∠B =∠ACB ,∴AB =AC .又∵F 为BC 中点,∴∠BAF = ∠CAF = 12∠CAB . ∵∠CAB +∠CAD =180°,∴∠CAF +∠CAE =90°,∴AE ⊥AF .【点睛】本题考查了等腰三角形的判定与性质.熟练掌握等腰三角形的判定与性质是解题的关键.26.(1(2)①2018; . 【解析】【分析】(1)根据(一)(二)化简即可得到结论;(2)①先把括号内的每一个二次根式分母有理化,合并后计算即可;②把每一个二次根式分母有理化,然后合并即可.【详解】(1.22.(2) 原式=)1...1++=)11 =2019-1=2018;②原式=1 (2222)++++. 【点睛】本题考查了分母有理化的应用,解答此题的关键是根据题目的结果找出规律,题目比较好,有一定的难度.27.(1)DE=1;(2) ①正确补全图形见解析,② ②.【解析】【分析】(1)过P 作PF ∥BC 交AC 于F ,得出等边三角形APF ,推出AP =PF =QC ,根据等腰三角形性质求出EF =AE ,证△PFD ≌△QCD ,推出FD =CD ,推出DE 12=AC 即可; (2)①过点P 作PF ∥BC 交CA 的延长线与点F ,由平行线的性质得出∠PF A =∠C . 再证明△APF 为等边三角形,得到AP =PF .进一步得到AE =FE =12AF .由SAS 证明△FDP ≌△CDQ ,得到FD =CD =12CF ,根据线段的和差即可得到结论. ②如图,过P 作直线PF ∥BC 交直线AC 于F ,通过证明△APF 是等边三角形,得到AP =PF .进而得到EF =AE =12AF .再由线段的和差即可得出结论. 【详解】 (1)过P 作PF ∥BC 交AC 于F .∵PF ∥BC ,△ABC 是等边三角形,∴∠PFD =∠QCD ,△APF 是等边三角形,∴AP =PF =AF .∵PE ⊥AC ,∴AE =EF .∵AP =PF ,AP =CQ ,∴PF =CQ .在△PFD 和△QCD 中,∵PFD QCD PDF QDC PF CQ ∠∠∠∠=⎧⎪=⎨⎪=⎩,∴△PFD ≌△QCD (AAS ),∴FD =CD .∵AE =EF ,∴EF +FD =AE +CD ,∴AE +CD =DE 12=AC . ∵AC =2,∴DE =1.(2)①正确补全图形.过点P 作PF ∥BC 交CA 的延长线与点F ,∴∠PF A =∠C .∵△ABC 是等边三角形,∴∠BAC =∠C =60°,∴∠PF A =∠P AF =60°,∴△APF 为等边三角形,∴AP =PF .又∵PE ⊥CA 的延长线于点E ,∴AE =FE =12AF . ∵AP =CQ ,∴PF =QC .∵∠FDP =∠CDQ ,∴△FDP ≌△CDQ ,∴FD =CD =12CF ,∴DE =DF ﹣EF =1111222CF AF AC -==. ② 答案为②.理由如下:如图,过P 作直线PF ∥BC 交直线AC 于F ,∴∠APF =∠ABC =60°.∵∠A =60°,∴△APF 是等边三角形,∴AP =PF .∵AP =CQ ,∴PF =QC .∵PF ∥BC ,∴∠F =∠DCQ ,∠FPD =∠Q .在△DPF 和△DQC 中,∵∠F =∠DCQ ,PF =QC ,∠FPD =∠Q ,∴△DPF ≌△DQC ,∴CD =DF =12CF . ∵△APF 是等边三角形,PE ⊥AF ,∴EF =AE =12AF . ∵ED =EF ﹣DF ,∴ED =12AF ﹣12CF =12(AF ﹣CF )=12AC . ∵AC 的长度不变,∴DE 的长度保持不变.【点睛】本题考查了全等三角形的性质和判定,等边三角形的性质和判定,等腰三角形的性质,平行线的性质等知识点的应用,能综合运用性质进行推理是解答此题的关键,通过做此题培养了学生分析问题和解决问题的能力,题型较好,难度适中.28.(1)30°;(2)作图见解析,∠BDO =α-60°;(3)2PE =BP +PO .【解析】【分析】(1)根据轴对称的性质和等边三角形的性质即可得出结论;(2)由轴对称的性质和等边三角形的性质得出∠BOD =300°﹣2α.在△BOD 中根据等腰三角形的性质和三角形内角和定理即可得出结论;(3)过A作AQ∥EP交DB的延长线于Q,连接AP.由(2)得:∠OBD=∠BDO=α﹣60°.通过证明△AOP≌△ABQ,得到AP=AQ,OP=QB,∠OAP=∠BAQ,BP+OP=BP+QB=QP.通过证明△AQP是等边三角形,得出AQ=PQ=AP=BP+OP,∠QAP=60°,即可得到∠P AE=30°,由30°角所对直角边等于斜边的一半即可得到AP=2EP,从而得到结论.【详解】(1)30°.理由如下:∵A与D关于y轴对称,∴y轴是线段AD的垂直平分线,∴AO=DO,∠AOE=∠DOE.∵△ABO是等边三角形,∴AB=BO=AO,∠AOB=60°,∴∠AOE=30°,∴∠DOE=30°,∴∠BOD=60°+30°+30°=120°.∵BO=AO=DO,∴∠BDO=∠OBD=12(180°﹣∠BOD)=30°.(2)正确画出图形.∵∠AOE=∠DOE=α,∠AOB=60°,∴∠BOD=360°﹣2α﹣60°=300°﹣2α.∵BO=BD,∴∠OBD=∠ODB,∴∠BDO=12(180°﹣∠BOD)=α﹣60°.(3)2PE=BP+PO.理由如下:过A作AQ∥EP交DB的延长线于Q,连接AP.由(2)得:∠OBD=∠BDO=α﹣60°.∵△ABO是等边三角形,∴AB=BO=AO,∠ABO=∠AOB=∠BAO=60°,∴∠ABQ=180°﹣60°﹣∠OBD=120°﹣(α﹣60°)=180°﹣α.∵∠AOE=α,∴∠AOP=180°﹣α,∴∠AOP=∠ABQ.∵AQ∥EP,∴∠Q=∠EPD.∵∠APE=∠DPE,∴∠APO=∠Q.在△AOP和△ABQ中,∵∠AOP=∠ABQ,∠APO=∠Q,AO=AB,∴△AOP≌△ABQ,∴AP=AQ,OP=QB,∠OAP=∠BAQ,∴BP+OP=BP+QB=QP.∵∠BAO=∠BAP+∠OAP=60°,∴∠BAP+∠BAQ=∠P AQ=60°.∵AQ=AP,∴△AQP是等边三角形,∴AQ=PQ=AP=BP+OP.∵AQ∥EP,∴∠APE=∠QAP=60°.∵∠AEP=90°,∴∠P AE=30°,∴AP=2EP,∴2EP=BP+OP.【点睛】本题考查了轴对称的性质、等边三角形的判定与性质及30°角所对直角边等于斜边的一半.证明△AQP是等边三角形是解题的关键.第(3)问难度比较大.。