实验五:解线性方程组的迭代法
- 格式:doc
- 大小:308.50 KB
- 文档页数:10
解线性方程组的迭代法数值计算上机实习报告一.综述:考虑用迭代法求解线性方程组,取真解为,初始向量取为零,以范数为度量工具,取误差指标为.其中。
分别完成下面各小题:第六题:编制程序实现Jacobi迭代方法和Gauss-Seidel 方法。
对应不同的停机标准(例如残量,相邻误差,后验误差停机标准),比较迭代次数以及算法停止时的真实误差。
其中残量准则:、相邻误差准则:后验误差停机准则:解:为了结果的可靠性,这里我分别对矩阵阶数为400、2500、10000进行试验,得到对应不同的方法、取不同的停机标准,迭代次数和真实误差的数据如下:分析上面数据可知,对应不同的停机标准,GS方法的迭代次数都近似为J方法的一半,这与理论分析一致。
而且从迭代次数可以看出,在这个例子中,作为停机标准,最强的依次为后验误差,再到残量,再到相邻误差。
第七题:编写程序实现SOR 迭代方法。
以真实误差作为停机标准,数值观测SOR 迭代方法中松弛因子对迭代次数的影响,找到最佳迭代因子的取值。
解:本题中考虑n=50,即对2500阶的矩阵A。
由于我们已经知道要使SOR方法收敛,松弛因子需要位于。
下面来求SOR方法中对应的最佳松弛因子。
应用筛选法的思想,第一次我们取松弛因子,间距为0.05,得到的对应的图像如下,从图中可以看出迭代次数随着的增大,先减小后变大,这与理论相符。
同时可以看出最佳松弛因子.第二次将区间细分为10份,即取,可得下面第二幅图像,从图像中可以看出最佳松弛因子第八题:对于J 方法,GS方法和(带有最佳松弛因子的)SOR 方法,分别绘制误差下降曲线以及残量的下降曲线(采用对数坐标系),绘制(按真实误差)迭代次数与矩阵阶数倒数的关系;解:对于J方法,考虑n=50时,采用相邻误差为迭代的终止条件,误差下降曲线及残量的下降曲线如下:对于GS方法,考虑n=50的时候,采用相邻误差作为迭代的终止条件,所得到的残量和误差的下降曲线如下图:从中可以看出,当相邻误差满足误差指标时,真实误差却并不小于误差指标,而为2.6281e-04。
《计算方法》实验报告学院:信息学院专业:计算机科学与技术指导教师:郭卫斌班级学号:10101438 计102姓名:闻翰计算机科学与工程系实验五 线性方程组的迭代法实验一. 实验目的(1)深入理解线性方程组的迭代法的设计思想,学会利用系数矩阵的性质以保证迭代过程的收敛性,以及解决某些实际的线性方程组求解问题。
(2)熟悉Matlab 编程环境,利用Matlab 解决具体的方程求根问题。
二. 实验要求建立Jacobi 迭代公式、Gauss-Seidel 迭代公式和超松弛迭代公式,用Matlab 软件实现线性方程组求解的Jacobi 迭代法、Gauss-Seidel 迭代法和超松弛迭代法,并用实例在计算机上计算。
三. 实验内容1. 实验题目(1)分别利用Jacobi 迭代和Gauss-Seidel 迭代求解下列线性方程组,取()T 0,0,0,0,0,0=x ,要求精度510-=ε:⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---------------626050411141010014001100410010141001014654321x x x x x x(2)分别取1=ω、1.05、1.1、1.25和1.8,用超松弛法求解上面的方程组,要求精度为510-=ε。
2. 设计思想 1.Jacobi 迭代:Jacobi 迭代的设计思想是将所给线性方程组逐步对角化,将一般形式的线性方程组的求解归结为对角方程组求解过程的重复。
2.Gauss-Seidel 迭代:Gauss-Seidel 迭代的设计思想是将一般形式的线性方程组的求解过程归结为下三角方程组求解过程的重复。
3.超松弛迭代:基于Gauss-Seidel 迭代,对i=1,2,…反复执行计算迭代公式,即为超松弛迭代。
3. 对应程序 1.Jacobi 迭代:function [x,k]=Jacobimethod(A,b,x0,N,emg)%A 是线性方程组的左端矩阵,b 是右端向量,x0是迭代初始值% N表示迭代次数上限,emg表示控制精度,k表示迭代次数,x是解n=length(A);x1=zeros(n,1);x2=zeros(n,1);x1=x0;k=0;r=max(abs(b-A*x1));while r>emgfor i=1:nsum=0;for j=1:nif i~=jsum=sum+A(i,j)*x1(j);endendx2(i)=(b(i)-sum)/A(i,i);endr=max(abs(x2-x1));x1=x2;k=k+1;if k>Ndisp('迭代失败,返回');return;endendx=x1;2.Gauss-Seidel迭代:function [x,k]=Gaussmethod(A,b,x0,N,emg)%A是线性方程组的左端矩阵,b是右端向量,x0是迭代初始值% N表示迭代次数上限,emg表示控制精度,k表示迭代次数,x是解n=length(A);x1=zeros(n,1);x2=zeros(n,1);x1=x0;r=max(abs(b-A*x1));k=0;while r>emgfor i=1:nsum=0;for j=1:nif j>isum=sum+A(i,j)*x1(j);elseif j<isum=sum+A(i,j)*x2(j);endendx2(i)=(b(i)-sum)/A(i,i);endr=max(abs(x2-x1));x1=x2;k=k+1;if k>Ndisp('迭代失败,返回');return;endendx=x1;3.超松弛(SOR)迭代:function [x,k]=SORmethod(A,b,x0,N,emg,w)%A是线性方程组的左端矩阵,b是右端向量,x0是迭代初始值% N表示迭代次数上限,emg表示控制精度,k表示迭代次数,x是解%w表示松弛因子n=length(A);x1=zeros(n,1);x2=zeros(n,1);x1=x0;r=max(abs(b-A*x1));k=0;while r>emgfor i=1:nsum=0;for j=1:nif j>=isum=sum+A(i,j)*x1(j);elseif j<isum=sum+A(i,j)*x2(j);endendx2(i)=x1(i)+w*(b(i)-sum)/A(i,i);endr=max(abs(x2-x1));x1=x2;k=k+1;if k>Ndisp('迭代失败,返回');return;endendx=x1;4. 实验结果1.Jacobi迭代:2.Gauss-Seidel迭代:3.超松弛(SOR)迭代:w=1:w=1.05:w=1.1:w=1.25:w=1.8:四.实验体会在同等精度下,Gauss-Seidel迭代法比Jacobi迭代法收敛速度快。
线性方程组的迭代式求解方法迭代法解方程的基本原理1.概述把 Ax=b 改写成 x=Bx+f ,如果这一迭代格式收敛,对这个式子不断迭代计算就可以得到方程组的解。
道理很简单:对 x^{(k+1)}=bx^{(k)}+f 两边取极限,显然如果收敛,则最终得到的解满足 \lim_{k\rightarrow\infty } x^{(k)}=x^*=Bx^*+f ,从而必然满足原方程 Ax^*=b 。
迭代方法的本质在于这一次的输出可以当作下一次的输入,从而能够实现循环往复的求解,方法收敛时,计算次数越多越接近真实值。
2.收敛条件充要条件:迭代格式 x=Bx+f 收敛的充要条件是 \rho (B)<1充分条件: \Vert B\Vert <1即 \Vert B\Vert <1 \Rightarrow \rho(B)<1\Leftrightarrow 迭代收敛一、Jacobi迭代法怎样改写Ax=b ,从而进行迭代求解呢?一种最简单的迭代方法就是把第i行的 x_i 分离出来(假定 a_{ii} \ne 0 ):\sum_{j=1}^{n}a_{ij}x_j=b_i\Rightarrow x_i=\frac{b_i-\sum_{j=1,j\ne i}^{n}a_{ij}x_j}{a_{ii}}\quad \\这就是Jacobi(雅可比)迭代法。
迭代格式给定x^{(0)}=\left[x_1^{(0)},x_2^{(0)},\cdots,x_n^{(0)}\rig ht]^T ,则Jacobi法的迭代格式(也称分量形式)为x_i^{(k+1)}=\frac{1}{a_{ii}}\left ( {b_i-\sum_{j=1,j\ne i}^{n}a_{ij}x_j^{(k)}}\right),\quadi=1,2,\cdots,n\\矩阵形式设 A=D-L-U。
Jacobi法的矩阵形式(也称向量形式)为x^{(k+1)}=B_Jx^{(k)}+D^{-1}b\\其中迭代矩阵 B_J=D^{-1}(L+U)收敛条件\begin{eqnarray} \left. \begin{array}{lll} \VertB_J\Vert <1 \\ A 严格对角占优\\ A, 2D-A对称正定\end{array} \right \} \end{eqnarray} \Rightarrow \rho (B_J)<1\Leftrightarrow 迭代收敛特别地,若 A 对称正定且为三对角,则 \rho^2(B_J)=\rho (B_G)<1 。
实验五 解线性方程组的迭代法一、问题提出对实验四所列目的和意义的线性方程组,试分别选用Jacobi 迭代法,Gauss-Seidel 迭代法和SOR 方法计算其解。
二、要求1、体会迭代法求解线性方程组,并能与消去法做以比较;2、分别对不同精度要求,如34510,10,10ε---=由迭代次数体会该迭代法的收敛快慢;3、对方程组2,3使用SOR 方法时,选取松弛因子ω=0.8,0.9,1,1.1,1.2等,试看对算法收敛性的影响,并能找出你所选用的松弛因子的最佳者;4、给出各种算法的设计程序和计算结果。
三、目的和意义1、通过上机计算体会迭代法求解线性方程组的特点,并能和消去法比较;2、运用所学的迭代法算法,解决各类线性方程组,编出算法程序;3、体会上机计算时,终止步骤(1)k k xx ε+∞-<或k>(给予的迭代次数),对迭代法敛散性的意义;4、 体会初始解0x ,松弛因子的选取,对计算结果的影响。
四、实验学时:2学时五、实验步骤:1.进入C 或matlab 开发环境;2.根据实验内容和要求编写程序;3.调试程序;4.运行程序;5.撰写报告,讨论分析实验结果.解:J迭代算法:程序设计流程图:源程序代码:#include<stdlib.h>#include<stdio.h>#include<math.h>void main(){float a[50][51],x1[50],x2[50],temp=0,fnum=0;int i,j,m,n,e,bk=0;printf("使用Jacobi迭代法求解方程组:\n");printf("输入方程组的元:\nn=");scanf("%d",&n);for(i=1;i<n+1;i++)x1[i]=0;printf("输入方程组的系数矩阵:\n");for(i=1;i<n+1;i++){j=1;while(j<n+1){scanf("%f",&a[i][j]);j++;}}printf("输入方程组的常数项:\n");for(i=1;i<n+1;i++){scanf("%f",&a[i][n+1]);}printf("\n");printf("请输入迭代次数:\n");scanf("%d",&m);printf("请输入迭代精度:\n");scanf("%d",&e);while(m!=0){for(i=1;i<n+1;i++){for(j=1;j<n+1;j++){if (j!=i)temp=a[i][j]*x1[j]+temp;}x2[i]=(a[i][n+1]-temp)/a[i][i];temp=0;}for(i=1;i<n+1;i++){fnum=float(fabs(x1[i]-x2[i]));if(fnum>temp) temp=fnum;}if(temp<=pow(10,-4)) bk=1;for(i=1;i<n+1;i++)x1[i]=x2[i];m--;}printf("原方程组的解为:\n");for(i=1;i<n+1;i++){if((x1[i]-x2[i])<=e||(x2[i]-x1[i])<=e){printf("x%d=%7.4f ",i,x1[i]);}}}运行结果:GS迭代算法:#include<iostream.h>#include<math.h>#include<stdio.h>const int m=11;void main(){int choice=1;while(choice==1){double a[m][m],b[m],e,x[m],y[m],w,se,max; int n,i,j,N,k;cout<<"Gauss-Seidol迭代法"<<endl;cout<<"请输入方程的个数:";cin>>n;for(i=1;i<=n;i++){cout<<"请输入第"<<i<<"个方程的各项系数:"; for(j=1;j<=n;j++)cin>>a[i][j];}cout<<"请输入各个方程等号右边的常数项:\n"; for(i=1;i<=n;i++){cin>>b[i];}cout<<"请输入最大迭代次数:";cin>>N;cout<<"请输入最大偏差:";cin>>e;for(i=1;i<=n;i++){x[i]=0;y[i]=x[i];}k=0;while(k!=N){k++;for(i=1;i<=n;i++){w=0;for(j=1;j<=n;j++){if(j!=i)w=w+a[i][j]*y[j];}y[i]=(b[i]-w)/double(a[i][i]);}max=fabs(x[1]-y[1]);for(i=1;i<=n;i++){se=fabs(x[i]-y[i]);if(se>max)max=se;}if(max<e){cout<<endl;for(i=1;i<=n;i++)cout<<"x"<<i<<"="<<y[i]<<endl; break;}for(i=1;i<=n;i++){x[i]=y[i];}}if(k==N)cout<<"迭代失败!!"<<endl;choice=0;}}SOR方法:# include <stdio.h># include <math.h>#include<stdlib.h>/**********定义全局变量**********/float **a; /*存放A矩阵*/float *b; /*存放b矩阵*/float *x; /*存放x矩阵*/float p; /*精确度*/float w; /*松弛因子*/int n; /*未知数个数*/int c; /*最大迭代次数*/int k=1; /*实际迭代次数*//**********SOR迭代法**********/void SOR(float xk[]){int i,j;float t=0.0;float tt=0.0;float *xl;xl=(float *)malloc(sizeof(float)*(n+1)); for(i=1;i<n+1;i++){t=0.0;tt=0.0;for(j=1;j<i;j++)t=t+a[i][j]*xl[j];for(j=i;j<n+1;j++)tt=tt+a[i][j]*xk[j];xl[i]=xk[i]+w*(b[i]-t-tt)/a[i][i];}t=0.0;for(i=1;i<n+1;i++){tt=fabs(xl[i]-xk[i]);tt=tt*tt;t+=tt;}t=sqrt(t);for(i=1;i<n+1;i++)xk[i]=xl[i];if(k+1>c){if(t<=p)printf("\nReach the given precision!\n"); elseprintf("\nover the maximal count!\n");printf("\nCount number is %d\n",k);}elseif(t>p){k++;SOR(xk);}else{printf("\nReach the given precision!\n"); printf("\nCount number is %d\n",k);}}/**********程序*****开始**********/void main(){int i,j;printf("SOR方法\n");printf("请输入方程个数:\n");scanf("%d",&n);a=(float **)malloc(sizeof(float)*(n+1)); for(i=0;i<n+1;i++)a[i]=(float*)malloc(sizeof(float)*(n+1));printf("请输入三对角矩阵:\n");for(i=1;i<n+1;i++)for(j=1;j<n+1;j++)scanf("%f",&a[i][j]);for(i=1;i<n+1;i++)for(j=1;j<n;j++)b=(float *)malloc(sizeof(float)*(n+1)); printf("请输入等号右边的值:\n");for(i=1;i<n+1;i++)scanf("%f",&b[i]);x=(float *)malloc(sizeof(float)*(n+1)); printf("请输入初始的x:");for(i=1;i<n+1;i++)scanf("%f",&x[i]);printf("请输入精确度:");scanf("%f",&p);printf("请输入迭代次数:");scanf("%d",&c);printf("请输入w(0<w<2):\n");scanf("%f",&w);SOR(x);printf("方程的结果为:\n");for(i=1;i<n+1;i++)printf("x[%d]=%f\n",i,x[i]);}程序运行结果讨论和分析:①迭代法具有需要计算机的存贮单元较少,程序设计简单,原始系数矩阵在计算过程中始终不变等优点.②迭代法在收敛性及收敛速度等方面存在问题.[注:A必须满足一定的条件下才能运用以下三种迭代法之一.在Jacobi中不用产生的新数据信息,每次都要计算一次矩阵与向量的乘法,而在Gauss利用新产生的信息数据来计算矩阵与向量的乘法.在SOR中必须选择一个最佳的松弛因子,才能使收敛加速.]经过计算可知Gauss-Seidel方法比Jacobi方法剩点计算量,也是Jacobi方法的改进.可是精确度底,计算量高,费时间,需要改进.SOR是进一步改进Gauss-Seidel 而得到的比Jacobi,Gauss-Seidel方法收敛速度快,综合性强.改变松弛因子的取值范围来可以得到Jacobi,Gauss-Seidel方法.③选择一个适当的松弛因子是关键.结论:线性方程组1和2对于Jacobi 迭代法,Gauss-Seidol迭代法和SOR方法均不收敛,线性方程组3收敛。
解线性方程组的迭代法Haha送给需要的学弟学妹摘要:因为理论的分析表明,求解病态的线性方程组是困难的,但是实际情况是否如此,需要我们来具体检验。
系数矩阵H 为Hilbert 矩阵,是著名的病态问题。
因而决定求解Hx b =此线性方程组来验证上述问题。
详细过程是通过用Gauss 消去法、J 迭代法、GS 迭代法和SOR 迭代法四种方法求解Hx b =线性方程组。
关键词:病态方程组、Gauss 消去法、J 迭代法、GS 迭代法、SOR 迭代法目录:一、问题背景介绍二、建立正确额数学模型 三、求解模型的数学原理1、Gauss 消去法求解原理2、Jacobi 迭代法求解原理3、G-S 迭代法求解原理4、SOR 迭代法求解原理5、Jacobi 和G-S 两种迭代法收敛的充要条件 四、计算过程(一)Hilbert 矩阵维数n=6时1、Gauss 消去法求解2、Jacobi 迭代法求解3、G-S 迭代法求解4、SOR 迭代法求解(二)Hilbert 矩阵维数n=20、50和100时1、G-S 迭代法求解图形2、SOR 迭代法求解图形 五、编写计算程序 六、解释计算结果1、Gauss 消去法误差分析2、G-S 迭代法误差分析3、SOR 迭代法误差分析G-S 迭代法与SOR 迭代法的误差比较 七、心得体会正文:一、问题背景介绍。
理论的分析表明,求解病态的线性方程组是困难的。
实际情况是否如此,会出现怎样的现象呢?二、建立正确的数学模型。
考虑方程组Hx b =的求解,其中系数矩阵H 为Hilbert 矩阵,,,1(), , ,1,2,,1i j n n i j H h h i j n i j ⨯===+-这是一个著名的病态问题。
通过首先给定解(为方便计算,笔者取x 的各个分量等于1),再计算出右端,b Hx =这样Hx b =的解就明确了,再用Gauss 消去法、J 迭代法、GS 迭代法和SOR 迭代法四种方法分别求解,Hx b =将求解结果与给定解比较,而后求出上述四种方法的误差,得出哪种方法比较好。
线性方程组迭代法
线性方程组迭代法,又称坐标下降法,是一种用于解线性方程组的迭代求解方法,常用于线性规划以及单纯形法等技术。
早在上世纪50年代,此方法就在解决
线性规划问题中得到了广泛应用,到目前为止,这种技术仍然广泛使用。
线性方程组迭代法是一种基于不断迭代调整变量,使目标函数达到最优结果的
迭代求解法。
其基本步骤是:
(1) 初始化目标函数变量:首先,初始化线性方程组的目标函数的变量;
(2) 评估梯度:选择合适的算法计算目标函数的梯度;
(3) 根据该梯度更新变量:更新目标函数变量的值,使得在此次更新之后的值
更加有利于满足线性方程组的要求;
(4) 重复上述步骤,直到目标函数足够接近最优值为止;
线性方程组迭代法能够快速地求解出线性规划问题的最优解,因此,它在计算
机上经常被用来优化问题,进而提高系统运行效率。
随着网络技术的发展,线性方程组迭代法在互联网领域得到了广泛应用,这在大大缩短了计算机程序的运行时间,提高了互联网的效率。
同时,线性方程组迭代法也有助于提高系统的性能,改善用户的体验,提升企业的品牌形象。
实验五 解线性方程组的迭代法5.1实验目的① 掌握解线性方程组的雅可比迭代和高斯-塞德尔迭代算法;② 培养编程与上机调试能力.5.2算法步骤5.2.1迭代法的基本思想根据方程组Ax b =设计出一个迭代公式,然后将任意选取的一初始向量(0)x代入迭代公式,求出(1)x,再以(1)x 代入同一迭代公式,求出(2)x ,如此反复进行,得到向量序列(){}k x .当(){}k x 收敛时,其极限即为原方程组的解.5.2.2雅可比(Jacobi )迭代法解方程组设方程组Ax b =的系数矩阵对角线元素0(1,2,...,)ii a i n ≠=,M 为最大迭代次数,ε为容许误差. 雅可比(Jacobi )迭代法解方程组算法步骤如下:① 取初始向量(0)(0)(0)12(,,...,)T n x x x x =,令0k =.② 对1,2,...,i n =,计算(1)()11()n k k i i ij j j ii j ix b a x a +=≠=-∑. ③ 如果(1)()1n k k i i i xx ε+=-<∑,则输出(1)k x +,结束;否则执行④④ 如果k M ≥,则不收敛,终止程序;否则1k k ←+,转②5.2.3高斯-塞德尔(Gauss-Seidel)迭代法在雅可比(Jacobi )迭代法中,如果当新的分量求出后,马上用它来代替旧的分量,则可能会更快地接近方程组的准确解.基于这种设想构造的迭代公式称为高斯-塞德尔(Gauss-Seidel)迭代法. 算法可相应地从雅可比(Jacobi )迭代法改造得到.5.3实验内容应用雅可比迭代和高斯-塞德尔算法分别求解线性方程组1231231238322041133631236x x x x x x x x x -+=⎧⎪+-=⎨⎪++=⎩要求:选择不同的迭代次数,观察输出结果;5.4 实验程序:雅可比迭代:function [xk,k]=f5_Jacobi(x0,A,b,m)e=10.^(-4);[r,n]=size(x0);n=max(r,n);x0=reshape(x0,1,n);k=0;while k<mk=k+1;for i=1:nxk(i)=(b(i)-sum(A(i,:).*x0)+A(i,i)*x0(i))./A(i,i);endif sum(abs(xk-x0))<ebreak;endx0=xk;end高斯-塞德尔算法function [xk,k]=f5_Gs(x0,A,b,m)e=10.^(-5);[r,n]=size(x0);n=max(r,n);x0=reshape(x0,1,n);xk=[];k=0;while k<mk=k+1;for i=1:nxk(i)=(b(i)-sum(A(i,1:i-1).*xk(1:i-1))-sum(A(i,i+1:n).*x0(i+1:n)))./A( i,i);endif sum(abs(xk-x0))<ebreak;endx0=xk;end5.5 实验求解:在command window窗口输入如下命令求解方程组>> A=[8,-3,2;4,11,-1;6,3,12];>> b=[20;33;36];>> [xk,k]=f5_Jacobi(x0,A,b,20)xk =3.0000 2.0000 1.0000k =12>> [xk,k]=f5_Jacobi(x0,A,b,5)xk =3.0003 1.9840 1.0010k =5>> [xk,k]=f5_Gs(x0,A,b,20)xk =3.0000 2.0000 1.0000 k =8>> [xk,k]=f5_Gs(x0,A,b,5)xk =2.9998 2.0001 1.0001 k =5。