浪涌保护器进线开关选漏电合理性
- 格式:doc
- 大小:32.00 KB
- 文档页数:2
浪涌保护器对漏电断路器有影响吗?有影响:①采用限压型的防雷器,不宜选用漏电断路器,(压敏漏流在增大的情况下,导致开关跳闸)②漏电保护器的通流能力需要有检测报告,到底所设定通流能力的才可以使用。
没有大的影响,因为浪涌保护器的泄漏电流在微安级。
而漏电的动作电流在15mA 以上。
浪涌保护器的上端宜接125A熔断器,用来保护一旦浪涌失效后所造成的系统短路。
如何选保护浪涌保护器的断路器?二、电源线路SPD的选择要求(一)SPD的选择1、保护系统中安装SPD的数量,依据雷电防护区概念的要求,被保护设备的抗扰能力和雷电防护分级而定。
2、在LPZ0区与LPZ1区交界处应安装Ⅰ级分类实验的SPD或限压型SPD作为第一级保护;在LPZ1区与LPZ2区交界处应安装限压型SPD作为第二级保护;在住宅配电箱输出端应安装限压型SPD作为第三级保护。
3、SPD连接导线应短而直,其长度不宜大于0.5m。
如果电网中有几个浪涌保护器,它们将会互相影响,并联的保护器之间必须达到能量的配合才能确保被保护线路的安全。
配合的效果是:当由雷电形成一个浪涌过电压时,电涌保护器(B级)将可靠地响应,带走高能量的电流,以保护由于过载而损坏其它浪涌保护器(C级或D级)。
当SPD具有能量自动配合功能时,线路长度不受上述规定限制。
为防止SPD老化造成短路,SPD安装线路上应有过电流保护装置,宜选用有劣化显示功能的SPD。
4、在电源总配电柜输出端应安装标称放电电流In≥65KA(10/350μs波形)的开关型浪涌保护器;也可安装标称放电电流In≥80KA(8/20μs波形)的限压型SPD作为一级防护。
5、在分配电柜输出端应安装标称放电电流In≥40KA(8/20μs波形)的限压型SPD作为二级防护。
6、在住宅终端配电箱输出端应安装标称放电电流In≥20KA(8/20μs波形)限压型SPD 作为三级防护。
7、在配电箱输出端也可安装混合型或串联型SPD,其技术指标应满足设备要求。
浅析浪涌保护器的应用及选型浪涌保护器是一种用于保护电气设备免受浪涌电压或浪涌电流影响的装置。
在电力系统中,由于雷电、开关操作、电动机启动等原因,会产生浪涌电压或浪涌电流,如果这些浪涌电压或电流超过了设备所能承受的范围,就会对设备造成损害甚至损坏。
浪涌保护器的应用对于保护电气设备的稳定运行具有非常重要的意义。
浪涌保护器的应用场景非常广泛,不仅包括工业生产中的各种电气设备,还包括信息通信系统、建筑物电气系统、交通信号控制系统等各个领域。
在这些领域中,浪涌保护器起到了保护各种电气设备免受浪涌电压或浪涌电流的作用,保障了设备的安全稳定运行。
在选择浪涌保护器时,首先需要根据具体的应用场景和电气设备的特性来进行选择。
一般来说,可以从以下几个方面来进行选型。
需要考虑被保护设备的额定工作电压和额定工作电流。
这是选择浪涌保护器的基本参数,需要确保浪涌保护器的额定工作电压和额定工作电流能够满足被保护设备的需求。
需要考虑被保护设备的工作环境。
不同的工作环境可能会受到不同程度的雷电影响,因此需要选择适合于不同工作环境的浪涌保护器,例如户外环境需要防水防雷的浪涌保护器。
还需要考虑浪涌保护器的响应时间和耐受能力。
浪涌保护器的响应时间越短越好,能够更快地将浪涌电压或浪涌电流导入地线,减少对设备的影响。
浪涌保护器需要具有一定的耐受能力,能够承受一定程度的浪涌电压或浪涌电流而不损坏。
还需要考虑浪涌保护器的安装方式和接地方式。
不同的安装方式和接地方式对于浪涌保护器的效果有一定的影响,需要根据具体情况来进行选择。
浪涌保护器的应用及选型需要综合考虑被保护设备的特性、工作环境以及浪涌保护器本身的性能参数,选择适合的浪涌保护器才能更好地保护电气设备免受浪涌电压或浪涌电流的影响。
只有在正确选择并合理应用浪涌保护器的情况下,才能有效地保障电气设备的安全稳定运行。
浪涌保护器的选型及使用由于电气类和电子元件的高损耗,浪涌保护(浪涌保护器或SPD)在风能行业中过电压保护过程中越来越普遍。
风机停机的代价是非常高的,只有在不得不停机的情况下,才能停机。
随着风机型号的增大而当其电力系统崩溃带来的损失也不断增大,因此为了免受过电压造成损失而实施保护措施的需求也随之增高。
业主对浪涌保护器的需求越来越普遍。
这意味着开发商和风机制造商必须确保系统符合现行法律规定及现代风力发电机组可靠性的要求。
为了推动这项工作,国际电工委员会出版了低压用电分配系统浪涌保护设备选择和使用的标准。
(IEC61643 低电压保护设备:第十二章是关于低压用电分配系统的浪涌保护器的选择和应用原理)该标准是一个应用及配置指南,对评估浪涌保护重要性非常有用,该标准同时也给风机浪涌保护设备的安装和尺寸测量提供指导规X。
应用指南该标准可作为设计手册,并阐述了很多选型和设计时要考虑的相关问题。
该标准也说明了选择过电压保护设备的各种问题。
标准的第一部分详述了浪涌保护的基本原理和选择浪涌保护器时的各种相关参数(第3、4和5节)。
简述之后就是应用指南,一步步介绍在选型前怎样评估应用程序(第6.1节)。
下图是评估中最重要问题的概览:选择安装浪涌保护器时,首先要考虑电网的设计(例如:TN-S系统,TT系统,IT系统等)。
浪涌保护器的安装位置也要考虑,它的放置位置与被保护设备间的距离要合适。
如果浪涌保护器放置得离被保护设备太远了,那就不能确保被保护设备得到有效保护;如果太近了,设备和浪涌保护器之间会产生振荡波,而这样,即使设备被认为是被保护的,会在被保护设备上产生巨大的过电压。
仅因为正确安装浪涌保护器是个简单问题,导致许多浪涌保护器安装位置设计不合理。
安装浪涌保护器时,首先确保它被放置在被保护设备的入口处;第二要正确安装浪涌保护器的接地线;第三连接浪涌保护器的电缆要尽可能的短。
根据此标准(一般来说),连接电缆的电感一般是1μH/m左右。
电涌保护器工作原理电涌保护器〔SPD〕工作原理及构造电涌保护器(Surge protection Device)是电子设备雷电防护中不可缺少的一种装置,过去常称为“避雷器〞或“过电压保护器〞英文简写为SPD。
电涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。
电涌保护器的类型和构造按不同的用途有所不同,但它至少应包含一个非线性电压限制元件。
用于电涌保护器的根本元器件有:放电间隙、充气放电管、压敏电阻、抑制二极管和扼流线圈等。
一、SPD的分类:1、按工作原理分:1.开关型:其工作原理是当没有瞬时过电压时呈现为高阻抗,但一旦响应雷电瞬时过电压时,其阻抗就突变为低值,允许雷电流通过。
用作此类装置时器件有:放电间隙、气体放电管、闸流晶体管等。
2.限压型:其工作原理是当没有瞬时过电压时为高阻扰,但随电涌电流和电压的增加其阻抗会不断减小,其电流电压特性为强烈非线性。
用作此类装置的器件有:氧化锌、压敏电阻、抑制二极管、雪崩二极管等。
3.分流型或扼流型分流型:与被保护的设备并联,对雷电脉冲呈现为低阻抗,而对正常工作频率呈现为高阻抗。
扼流型:与被保护的设备串联,对雷电脉冲呈现为高阻抗,而对正常的工作频率呈现为低阻抗。
用作此类装置的器件有:扼流线圈、高通滤波器、低通滤波器、1/4波长短路器等。
按用途分:(1)电源保护器:交流电源保护器、直流电源保护器、开关电源保护器等。
(2)信号保护器:低频信号保护器、高频信号保护器、天馈保护器等。
二、SPD的根本元器件及其工作原理1.放电间隙(又称保护间隙):它一般由暴露在空气中的两根相隔一定间隙的金属棒组成(如图15a),其中一根金属棒与所需保护设备的电源相线L1或零线〔N〕相连,另一根金属棒与接地线(PE)相连接,当瞬时过电压袭来时,间隙被击穿,把一部分过电压的电荷引入大地,防止了被保护设备上的电压升高。
浪涌保护器选型标准
浪涌保护器是一种用于保护电子设备免受电力系统中的浪涌干
扰的重要装置。
在选择合适的浪涌保护器时,需要考虑多种因素,
以确保设备能够有效地抵御浪涌干扰。
以下是浪涌保护器选型标准
的一些重要考虑因素。
首先,需要考虑的是设备的额定电压和电流。
浪涌保护器的额
定电压和电流应与被保护设备的额定电压和电流相匹配,以确保在
浪涌干扰发生时能够有效地保护设备。
其次,需要考虑浪涌保护器的响应时间。
浪涌保护器应能够在
浪涌干扰发生时迅速响应并启动保护措施,以最大程度地减少对设
备的损害。
另外,还需要考虑浪涌保护器的耐受能力。
浪涌保护器应能够
在长期、高强度的浪涌干扰下保持稳定可靠的工作,以确保设备长
时间内不受干扰。
此外,浪涌保护器的安装位置也是一个重要的考虑因素。
浪涌
保护器应尽可能靠近被保护设备,以最大程度地减少连接线路长度,
从而减小浪涌干扰的影响。
最后,还需要考虑浪涌保护器的可维护性和可靠性。
浪涌保护器应易于维护和检修,并且具有较高的可靠性,以确保长期稳定地保护设备。
综上所述,选择合适的浪涌保护器需要考虑设备的额定电压和电流、响应时间、耐受能力、安装位置、可维护性和可靠性等多个因素。
只有综合考虑这些因素,才能选择到最适合的浪涌保护器,从而有效地保护设备免受浪涌干扰的影响。
浅析浪涌保护器的应用及选型一、浪涌保护器的应用随着现代电子设备和通信设备的普及,对电源系统的稳定和可靠性要求也越来越高。
而电力系统中浪涌是电子设备和通信设备最常见的故障源之一,因此浪涌保护器的应用就显得尤为重要。
1. 在电源系统上的应用浪涌保护器在电源系统中主要用于保护设备免受雷击和其它高能量干扰的影响。
在电源系统中,浪涌保护器通常设置在进线处,将受到的雷击和突波干扰引到地线,从而保护整个电源系统的正常运行。
浪涌保护器在通信系统中的应用同样重要。
通信设备通常会受到来自外部的雷击和浪涌干扰,因此设置浪涌保护器就显得尤为重要。
浪涌保护器可以将受到的干扰引到地线,保护通信设备免受这些干扰的影响,确保通信系统的稳定性和可靠性。
在选择浪涌保护器时,需要考虑以下几个方面。
1. 工作电压浪涌保护器的工作电压需要符合电源系统或通信系统的电压要求,通常需要根据实际情况选用合适的工作电压范围。
2. 额定放电电流浪涌保护器的额定放电电流需要满足系统的保护要求。
一般情况下,额定放电电流需要大于电源系统或通信系统可能受到的浪涌电流,以确保能够有效地保护系统。
3. 响应时间浪涌保护器的响应时间也是选型时需要考虑的重要因素。
响应时间越短,保护效果越好。
一般情况下,响应时间需要在纳秒级别,以确保能够有效地抵御突发的浪涌干扰。
4. 耐压能力浪涌保护器需要具有良好的耐压能力,能够在受到高能量的浪涌干扰时保持稳定的性能,不产生击穿或损坏。
5. 安装方式浪涌保护器的安装方式也需要考虑。
根据实际情况,可以选择直接安装在设备上,也可以选择安装在配电箱或控制箱内部。
浪涌保护器作为保护电子设备和通信设备的重要装置,在电源系统、通信系统和工业控制系统中都具有重要的应用价值。
在选型时,需要考虑工作电压、额定放电电流、响应时间、耐压能力和安装方式等因素,以确保选择到合适的浪涌保护器,保护系统的稳定性和可靠性。
电涌保护器的性能要求和使用原则引言SPD (Surge Protective Device )是国际电工委员会(IEC )标准中对电涌保护器的英文缩写。
过去国内大多数生产厂商使用避雷器、低压避雷器、电子防雷器等名称均不够准确,使用避雷器一词易与使用于高压供电系统的避雷器相混淆,特别是国家标准已颁布了避雷器的内容和设有专门的检测单位,它们主要应用于高压系统。
行业标准GA173把SPD 定名为防雷保安器是与国家制定电器安全标准的规定相矛盾的,该标准对使用“安全”一词有特定规定,不允许把“安全”及类似含意的词与某元件联用,而且SPD 除具备有防雷的功能外,还有抑制投切过电压的作用。
在IEC61312、IEC61643和IEC60364等相关标准中对SPD 性能和安装使用提出了一系列要求,简要归纳出要点,以供讨论。
一、SPD 的定义:在GB50057-94《建筑物防雷设计规范》中,SPD 定名是过电压保护器:“用以限制存在于某两物体之间的冲击过电压的一种设备,如放电间隙,避雷器或半导体器具”。
近日标准起草人林维勇先生在为中国气象局组织起草的某标准草案讨论稿上郑重的将“过电压保护器”易名为“电涌保护器”,并以近期颁布的国际标准和美国标准做了更名的文字说明。
SPD 的定义应是,电涌保护器(SPD ):用以限制瞬态过电压和引导电涌电流的一种器具,它至少应包括一种非线性元件。
这一观点将在林维勇先生执笔对GB50057-94局部修订条文征求意见稿中做为强制性国家标准出现。
二、SPD 的分类:SPD 可按几种不同方法进行分类:1.按使用非线性元件的特性分类:(设计电路拓朴)电压开关型SPD :当没有浪涌出现时,SPD呈高阻状态;当冲击电压达到一定值时(即达到火花放电电压),SPD 的电阻突然下降变为低值。
常用的非线性元件有放电间隙,气体放电管等。
开关型SPD 具有大通流容量(标称通流电流和最大通流电流)的特点,特别适用于易遭受直接雷击部位的雷电过电压保护。
浪涌保护器的选型要求摘要:本文通过介绍浪涌保护器的分类,从设计角度分析了浪涌保护器及其保护元件的选型要点和布置原则,给出浪涌保护器的正确使用方法。
关键词:浪涌保护器;选型;要求浪涌保护器作为一种新兴的防雷电保护器件,是弱电设备防雷的主要手段,也是内部防雷保护的主要措施,正在被越来越广泛的应用。
一、浪涌保护器的分类通常按工作原理,浪涌保护器分为电压开关型、限压型和混合型浪涌保护器。
1.1电压开关型浪涌保护器无电涌出现时为高阻抗,当突然出现电压电涌时变为低阻抗。
通常采用放电间隙、充气放电管、硅可控整流器或三段双向可控硅元件,做电压开关型电涌保护器的组件。
可疏导0.03μs的雷冲击电流,由于它的雷电泄放能量大,所以通常装在建筑物入口处。
但是其缺点是残压较高,一般可达2~4kV。
1.2限压型浪涌保护器无电涌出现时为高阻抗,随着电涌电流和电压的增加,阻抗连续变小。
通常采用压敏电阻、抑制二极管作限压型电涌保护器的组件。
可以用于疏导0.4μs的雷电冲击电流,虽然其雷电泄放能量小,但是过电压抑制能力好,用来限制因前级雷电流泄放后,在后级产生的过高电压。
1.3混合型将开关型和限压型原件组合在一起的一种SPD,随着施加的冲击电压特性不同,SPD有时会呈现开关型SPD特性,有时呈现限压型SPD特性,有时同时呈现两种特性。
电压开关型浪涌保护器为间隙放电型器件,其雷电能量泻放能力大,在线路上使用的主要作用是泻放雷电能量;限压型浪涌保护器为压敏电阻器件,其雷电能量泻放能力小,但其过电压抑制能力好,在线路上使用的主要作用是限制过电压。
因为,一般在建筑物入口处选用电压开关型浪涌保护器来泄放雷电能量,然后,在后级电路使用限压型浪涌保护器来限制因前级雷电能量泻放后,在后级线路产生的高过电压。
两种浪涌保护器需配合使用,方能保证配电线路中设备的安全。
二、浪涌保护器的选型安装浪涌保护器的安装位置如图1所示。
在任何两雷电防护区的交界处应装设浪涌保护器。
浪涌保护器选型标准浪涌保护器是电气系统中非常重要的一部分,它可以有效地保护电气设备免受电压浪涌的影响。
在选择浪涌保护器时,需要考虑一系列的标准和因素,以确保所选的浪涌保护器能够满足系统的需求并且具有良好的性能。
以下是浪涌保护器选型的一些标准和建议。
首先,需要考虑的是浪涌保护器的额定电压。
在选择浪涌保护器时,需要确保其额定电压能够覆盖整个系统的工作电压范围,以保护系统免受电压浪涌的影响。
此外,还需要考虑系统中可能出现的过电压情况,以确定浪涌保护器的最大工作电压。
其次,浪涌保护器的额定电流也是一个重要的考虑因素。
在选择浪涌保护器时,需要确保其额定电流能够满足系统中可能出现的电流浪涌情况,以保护系统中的电气设备免受电流过载的影响。
此外,还需要考虑系统中可能出现的短路电流情况,以确定浪涌保护器的最大工作电流。
另外,浪涌保护器的响应时间也是一个需要考虑的因素。
在选择浪涌保护器时,需要确保其响应时间足够快,以在电压浪涌出现时能够及时地引导电流流向地,保护系统中的电气设备免受损坏。
通常情况下,浪涌保护器的响应时间应该在纳秒级别。
此外,浪涌保护器的容量和耐受能力也需要考虑。
在选择浪涌保护器时,需要确保其具有足够的容量和耐受能力,以应对系统中可能出现的大功率电压浪涌情况,保护系统中的电气设备免受损坏。
最后,还需要考虑浪涌保护器的安装和维护便利性。
在选择浪涌保护器时,需要确保其安装和维护便利,以降低系统的维护成本和提高系统的可靠性。
综上所述,浪涌保护器选型的标准包括额定电压、额定电流、响应时间、容量和耐受能力、安装和维护便利性等因素。
在选择浪涌保护器时,需要综合考虑这些因素,以确保所选的浪涌保护器能够满足系统的需求并且具有良好的性能。
浪涌保护器选型标准
浪涌保护器作为电气设备中的重要部件,其选型标准对于保护电气设备和系统具有重要的意义。
在进行浪涌保护器选型时,需要考虑多个方面的因素,以确保所选浪涌保护器能够有效地保护设备免受浪涌电压的影响。
本文将介绍浪涌保护器选型的标准和注意事项,帮助工程师们更好地进行浪涌保护器的选型工作。
首先,选型时需要考虑的因素之一是设备的额定工作电压。
浪涌保护器的额定工作电压应该与被保护设备的额定工作电压相匹配,以确保在正常工作状态下不会发生误动作,同时在浪涌电压作用下能够有效地保护设备。
其次,需要考虑的因素是设备的额定工作电流。
浪涌保护器的额定放电电流应该大于或等于被保护设备的额定工作电流,以确保在浪涌电流作用下能够及时启动放电,保护设备不受损坏。
另外,还需要考虑设备的接入方式和接入位置。
根据被保护设备的不同接入方式和接入位置,选择合适的浪涌保护器,确保其能够有效地接地并保护设备。
此外,还需要考虑设备的环境条件。
在恶劣的环境条件下,如高温、高湿度、腐蚀性气体环境等,需要选择具有相应防护等级的浪涌保护器,以确保其能够在恶劣环境下正常工作。
最后,还需要考虑设备的使用寿命和可靠性要求。
根据设备的使用寿命和可靠性要求,选择具有相应寿命和可靠性指标的浪涌保护器,以确保其能够满足设备的使用要求。
综上所述,浪涌保护器选型需要考虑设备的额定工作电压、额定工作电流、接入方式和位置、环境条件、使用寿命和可靠性要求等多个因素。
只有综合考虑这些因素,才能选择到合适的浪涌保护器,确保设备得到有效的保护。
希望本文能够帮助工程师们更好地进行浪涌保护器的选型工作。
浪涌保护器对漏电断路器有影响吗?
有影响:
①采用限压型的防雷器,不宜选用漏电断路器,(压敏漏流在增大的情况下,导致开关跳闸)
②漏电保护器的通流能力需要有检测报告,到底所设定通流能力的才可以使用。
没有大的影响,因为浪涌保护器的泄漏电流在微安级。
而漏电的动作电流在15mA 以上。
浪涌保护器的上端宜接125A熔断器,用来保护一旦浪涌失效后所造成的系统短路。
如何选保护浪涌保护器的断路器?
二、电源线路SPD的选择要求
(一)SPD的选择
1、保护系统中安装SPD的数量,依据雷电防护区概念的要求,被保护设备的抗扰能力和雷电防护分级而定。
2、在LPZ0区与LPZ1区交界处应安装Ⅰ级分类实验的SPD或限压型SPD作为第一级保护;在LPZ1区与LPZ2区交界处应安装限压型SPD作为第二级保护;在住宅配电箱输出端应安装限压型SPD作为第三级保护。
3、SPD连接导线应短而直,其长度不宜大于0.5m。
如果电网中有几个浪涌保护器,它们将会互相影响,并联的保护器之间必须达到能量的配合才能确保被保护线路的安全。
配合的效果是:当由雷电形成一个浪涌过电压时,电涌保护器(B级)将可靠地响应,带走高能量的电流,以保护由于过载而损坏其它浪涌保护器(C级或D级)。
当SPD具有能量自动配合功能时,线路长度不受上述规定限制。
为防止SPD老化造成短路,SPD安装线路上应有过电流保护装置,宜选用有劣化显示功能的SPD。
4、在电源总配电柜输出端应安装标称放电电流In≥65KA(10/350μs波形)的开关型浪涌保护器;也可安装标称放电电流In≥80KA(8/20μs波形)的限压型SPD作为一级防护。
5、在分配电柜输出端应安装标称放电电流In≥40KA(8/20μs波形)的限压型SPD作为二级防护。
6、在住宅终端配电箱输出端应安装标称放电电流In≥20KA(8/20μs波形)限压型SPD 作为三级防护。
7、在配电箱输出端也可安装混合型或串联型SPD,其技术指标应满足设备要求。
(二)SPD后备保护元件的选择。
基于电气安全原因,并联安装在市电电源的SPD,为防止其失效后造成故障短路,必需在SDP前安装短路保护器件。
SPD的后备保护有熔断器、断路器和漏电断路器三种。
在国内外公司SPD的样本中,对SPD后备保护的推荐方案比较乱,没有统一的标准可遵循。
国内某公司使用手册中推荐的熔断器规格如下:
第一级SPD为开关型65kA,10/350,断路器为63A;
第二级SPD为限压型40kA,8/20,断路器为32A;
第三级SPD为限压型10kA,8/20,断路器为16A。
断路器选择C脱扣曲线
请问第2楼lsc136:第一级SPD为开关型65kA,10/350,断路器为63A;
第二级SPD为限压型40kA,8/20,断路器为32A;
第三级SPD为限压型10kA,8/20,断路器为16A。
断路器选择C脱扣曲线
此断路器是塑壳断路器还是小型断路器?分断能力选多少KA?
我替他问答:根据安装位置的短路电流选择分断力,简单地说就是在主电源进线处选择塑壳开关,分柜处如果有相应分断能力的选择微断。
我想问一下.他后面写的10/350 8/20 是什么意思.
我的是浪涌是OVR3N-100-440SP的.选了个125A的.断路器.3P的.是否可行.
1、雷电波形
a)10/350uS是时间与电流的曲线,是典型雷电击穿大地的雷电流曲线,是雷电直接袭击电力线和避雷针的雷电流曲线。
我们一般称直击雷波形。
b)8/20uS是时间与电流的曲线,是典型雷电击穿大地(避雷针或临近接闪物)引起的电磁脉冲感应过电压,这个感应过电压击穿、烧毁设备时的电流曲线。
我们一般称感应雷波形。