8.1 固体的磁性
- 格式:ppt
- 大小:704.50 KB
- 文档页数:42
第八章固体的磁性1 固体中存在哪几种抗磁性?铁磁性和反铁磁性是怎样形成的?铁磁和反铁磁材料在低温和高温下的磁化有什么特点?饱和电子结构的抗磁性和朗道抗磁性。
根据磁矩相互作用的交换能理论,当交换能是正值时,磁矩将倾向于采取平行的排列(铁磁性),当交换能是负值时,磁矩将倾向于采取反平行的排列(亚铁磁性)反铁磁性:低温时,磁化率是随温度增加的,这是由于磁矩的反平行排列作用起着抵制磁化的作用,随着温度的升高,反平行排列的作用逐步减弱,因而磁化率不断增加,在奈尔温度一双,磁化率随温度升高而下降,磁化率在高温遵循居里-外斯定律χ=C/(T+θ),注意分母中常数θ>0,符号和铁磁体高温顺磁性正好相反,显然反映了反平行排列作用的影响。
铁磁性材料:在居里温度一下具有铁磁性,在很弱的磁场下它就可以达到接近饱和的磁化强度,在居里温度以上,铁磁材料转变为顺磁性的,磁化率遵循居里外斯定律,χ=C/(T - θ)p2简述大块磁体为什么会分成许多畴,为什么磁畴的分割不会无限进行下去?促使铁磁体的自发磁化分割成为磁畴的根本原因是自发磁化所产生的静磁能,磁场的范围随着磁畴的分割而不断减小,从而使静磁能不断降低。
所以,从静磁能来看,自发磁化将趋向于分割成为磁化方向不同的磁畴,以降低静磁能,而且,分割越细,静磁能越低。
但是由于磁畴之间的界壁破坏了两边磁矩的平行排列,使交换能增加,所以畴壁本身具有一定的能量,磁畴的分割意味着在铁磁体中引入更多的畴壁,使畴壁能增加。
由于这个缘故,磁畴的分割不会无限的进行下去,而是进行到再分割所增加的畴壁能将超过静磁能的减少。
3简单阐述物质顺磁性的来源原子的固有磁矩不为零,磁矩取向愈接近B,能量愈低,正是由于磁矩在磁场中的取向作用,产生了顺磁性现象。
4画出铁磁性、反铁磁性和亚铁磁性的磁矩排列示意图铁磁性:箭头等长平行饭铁磁性:箭头等长反平行亚铁磁性:箭头向上与箭头向下的不等长5简述铁磁体中磁畴是如何产生的,磁化强度的变化是通过磁畴的哪两种运动实现的?促使铁磁体的自发磁化分割成为磁畴的根本原因是自发磁化所产生的静磁能,磁场的范围随着磁畴的分割而不断减小,从而使静磁能不断降低。
固体材料的磁性研究近年来,固体材料的磁性研究在科学界引起了极大的关注。
磁性材料不仅在磁存储、磁传感器和电磁设备等领域有着广泛的应用,而且对于深入了解物质的性质和相互作用也起着关键的作用。
本文将就固体材料的磁性研究进行探讨。
首先,固体材料的磁性是由其中所含的磁性原子或离子所决定的。
磁性原子或离子具有自旋磁矩,其自旋在外加磁场的作用下产生磁矩的定向,从而呈现出磁性行为。
根据材料的磁性表现,可将固体材料分为顺磁性、抗磁性和铁磁性。
顺磁性材料中的磁矩与外加磁场平行或反平行,导致磁性的增强或削减。
顺磁性物质在外加磁场的作用下会产生磁化强度增加的现象,这种材料常见的例子有铁、铝和锶等元素。
抗磁性材料中的磁矩与外加磁场方向始终垂直,使材料在外加磁场作用下呈现出磁矩的减小。
抗磁性材料的一个例子是铜。
最重要的是铁磁性材料,铁磁性材料中的磁矩与外加磁场平行或反平行,可以自发地在无外加磁场时形成磁畴结构。
铁磁性材料的晶体结构中,磁矩呈现出有序排列的状态,即形成各向同性的磁畴。
在铁磁性材料中,磁畴之间存在磁畴壁,通过改变外加磁场的方向,可以通过壁移动或磁畴翻转的方式实现磁化翻转。
铁磁性材料常见的例子有铁、镍和钴等元素。
在固体材料的磁性研究中,单晶材料和多晶材料的磁性行为往往有所差异。
单晶材料中,由于晶体的各向异性,磁性行为往往更加复杂。
而多晶材料中,不同晶粒间的晶界会对磁性行为产生影响。
此外,对于一些非晶态或纳米晶材料,其磁性行为也具有独特的特点。
除了材料本身的特性外,外部条件对于固体材料的磁性研究也具有重要作用。
温度是一个重要的因素,温度的变化会导致材料的磁性行为发生改变。
低温下,材料往往呈现出强磁性,而高温下,材料可能失去磁性或呈现出顺磁性。
此外,压力和磁场等外部条件也会对材料的磁性行为产生明显的影响。
通过改变外部条件,可以实现对固体材料磁性的控制和调控。
固体材料的磁性研究不仅涉及到实验和观测,还需要理论模型的构建和计算模拟的开展。
固体物理中的磁性磁性是固体物理中一个非常重要且有趣的现象。
它是指物质在存在外部磁场的作用下,产生磁化强度并展示出相应的磁特性。
在本文中,我们将探讨固体物理中的磁性现象,并介绍其中的一些关键概念和应用。
一、磁矩的概念与分类磁矩是固体物体表现出磁性的根本性质。
磁矩可以分为两类:原子磁矩和宏观磁矩。
1. 原子磁矩原子磁矩是由原子中带电粒子(如电子)所产生的微小磁矢量。
它的大小与原子的电子结构有关。
根据原子磁矩的大小和方向,物质可以分为顺磁性、抗磁性和铁磁性。
- 顺磁性:顺磁性物质中的原子磁矩与外磁场方向相同,被外磁场激发后会增强磁化强度,如氧气和铜等。
- 抗磁性:抗磁性物质中的原子磁矩与外磁场方向相反,被外磁场激发后会减弱磁化强度,如银和铝等。
- 铁磁性:铁磁性物质中的原子磁矩与外磁场方向相同,但铁磁性物质在外磁场的作用下会呈现出一定的剩余磁化强度,如铁和镍等。
2. 宏观磁矩宏观磁矩是由大量原子磁矩的矢量和所构成的磁化强度。
物质的宏观磁矩可以进一步分为顺磁性、抗磁性和铁磁性。
- 顺磁性:顺磁性物质在外磁场的作用下会呈现出强磁化特性。
这种磁性主要源于物质内部原子磁矩的耦合和分布,如铁矿石及其合金等。
- 抗磁性:抗磁性物质在外磁场的作用下会呈现出阻止磁化的特性。
这种磁性主要源于物质内部原子磁矩的耦合和分布,如铜和铅等。
- 铁磁性:铁磁性物质在外磁场的作用下呈现出显著的剩余磁化强度,其磁矩可以保持,并在去除外磁场后不会消失,如铁和钴等。
二、固体磁性的产生机制固体物质的磁性是由其原子磁矩的相互作用和排列所决定的。
根据不同的磁性机制,固体材料可以进一步分为顺磁体、抗磁体和铁磁体。
1. 顺磁体顺磁体的磁性主要是由物质内部原子磁矩的排列和分布造成的,其磁矩在外磁场的作用下与外磁场方向一致,从而增强磁化强度。
顺磁体的磁矩大小与外磁场强度呈线性关系,磁化过程是连续的。
2. 抗磁体抗磁体的磁性也是由物质内部原子磁矩的排列和分布所决定的,其磁矩在外磁场的作用下与外磁场方向相反,从而减弱磁化强度。
96第6章 固体的磁性和磁性材料§6.1 固体的磁性质及磁学基本概念6.1.1 固体的磁性质某些无机固体并不像其他所有物质那样表现出抗磁性(Diamaganetism ),而是呈现出磁效应。
这些无机固体往往是以存在不成对电子为特征的,这些不成对电子又常常是处在金属阳离子中。
因此,磁行为主要限制在过渡金属和镧系金属元素的化合物上。
它们中许多金属原子具有不成对的d 和f 电子,就可能具有某些磁效应。
我们知道,电子有自旋,形成自旋磁矩。
在不同的原子中,不成对电子可以随机取向,此时材料就是顺磁的(Paramagnetic );如果不成对的电子平行地排成一列,材料就有净的磁矩,这是材料是铁磁性的(iferromagnetic );相反,不成对电子反平行排列,总磁矩为零,材料就呈现反铁磁性为(Antiferromagnetic );如果自旋子虽是反平行排列,但两种取向的数量不同,会产生净的磁矩,材料就具有亚铁磁性(Ferrimagnetic )。
图6.1就说明这些情形。
(b)(d)(c)图6.1 成单电子自旋取向和材料的磁性a 抗磁性b 铁磁性c 反铁磁性d 亚铁磁性磁性材料广泛地应用在电器、电声、磁记录和信息存储各方面,可以说,现代社会离不开磁性材料。
6.1.2 磁学基本概念1.物质在磁场中的行为97首先,我们讨论不同材料在磁场中的行为。
如果磁场强度为H ,样品单位体积的磁矩为I ,那么样品的磁力线密度,即所谓磁通量 (Magnetic induction )B 为:B = H + 4πI 6.1.1导磁率(Permeability )P 和磁化率(Susceptinity )K 定义为: P = HB = 1 + 4πK 6.1.2 K = HI 6.1.3 摩尔磁化率χ为χ= dM κ 6.1.4 式中M 是分子量,d 式样品密度。
根据、K 、χ及其与温度和磁场的依赖关系可以区分不同种类的磁行为,这总结在表6.1中。
固体的磁性 基础知识1. 磁性的一种分类方式根据磁化率χ的大小符号以及与温度、磁场的关系,可以把物质的磁性分成五类:(1)抗磁性,磁化强度与磁场方向相反,χ < 0,其值约为10-7~10-6;(2)顺磁性,磁化强度与磁场方向相同,χ > 0,其值约为10-6~10-5;(3)反铁磁性,χ > 0,其值约为10-4;(4)亚铁磁性,χ > 0,其值约为10-1~104;(5)铁磁性,χ > 0,其值约为10-1~106抗磁性的χ几乎与温度无关,其余均与温度有关;亚铁磁性和铁磁性为强磁性,其余为弱磁性。
2. 原子磁矩构成固体物质的原子中,电子磁矩比原子核的磁矩大三个数量级,所以电子磁矩对固体的磁性起主要作用。
2.1 独立原子的磁矩原子中电子的磁矩由轨道磁矩和自旋磁矩两部分组成。
电子的轨道磁矩为L 是电子的轨道角动量,µL 的绝对值为其中l 是电子轨道角动量量子数,µB 是波尔磁子,其大小为电子的自旋磁矩为 = -2L e mμL =(1)L Bl l 2B e m S e mμSS 是电子的自旋角动量,µS 的绝对值及其在z 方向的投影分别为如果原子中只有一个电子,则原子磁矩为J 是电子的总角动量。
如果原子中有多个电子,原子的总角动量有LS 耦合和JJ 耦合两种耦合方式,分别适用于原子序数比较小和原子序数比较大(Z > 80)的耦合方式。
常见的3d 族和4f 族元素,电子之间的轨道-轨道与自旋-自旋偶合较强,适合使用LS 耦合。
2.2 晶场效应原子结合成晶体后,原子的电子状态发生变化,价电子参与各种类型的键合,而处在格点位置的离子也不同于孤立离子,其电子状态因受周围离子所产生的静电场的作用而发生变化,这种静电场称为晶体电场,它所造成的影响称为晶场效应。
晶场效应有两种:一是离子中简并的电子态发生劈裂,二是电子的轨道角动量的贡献部分或者全部被冻结。
固体物理学中的磁性和自旋电子学效应磁性是固体物理学中一个非常有趣的现象,它能够解释物质在磁场下的行为,并且在现代科技中有着广泛的应用。
除了磁性,自旋电子学效应也是固体物理学研究的一个重要领域,它研究电子的自旋在固体中产生的效应和应用。
本文将分别介绍磁性和自旋电子学效应在固体材料中的重要性和研究进展。
首先我们来看磁性。
磁性是物质中原子或离子的微观自旋(spins)相互作用导致的一种物理现象。
在常温下,大部分物质的自旋是无序排列的,因此不具备宏观磁性。
但是当物质受到外磁场的影响时,物质中微观自旋的排列会发生变化,从而导致物质具备了宏观磁性。
这种现象被称为顺磁性。
与顺磁性相对的是铁磁性,铁磁性是指物质自身的微观自旋在无外磁场的情况下即可有序排列的一种性质。
铁磁性材料可以产生强磁场,并且在科技领域中有着广泛的应用,如硬磁材料和磁存储器件等。
另外还有一类材料具备反磁性,反磁性材料的磁矩方向与外磁场相反,造成了物质无磁性的表现。
除了磁性,自旋电子学效应也是固体物理学研究的重要领域之一。
自旋电子学效应研究了电子自旋在固体中的产生的效应和应用。
电子除了具备电荷,还具备自旋。
自旋电子学效应将电子自旋引入电子学中,扩展了电子学的研究领域。
其中最著名的自旋电子学效应之一是自旋霍尔效应。
自旋霍尔效应是指在有磁场和电场下,电子具备自旋的外加力会使得电子在材料内形成一条只传输自旋相同的电流而抵制相反自旋电流的现象。
这一效应对于新型材料的发现和自旋电子器件的研究有着重要的意义。
自旋电子学效应的研究不仅有助于我们深入理解电子自旋的行为,也为新型电子器件的研发提供了理论基础和方向。
随着固体物理学的不断发展,磁性和自旋电子学效应已经在许多领域得到了广泛应用。
在信息存储方面,磁盘和磁带等磁存储器件利用了磁性材料的性质来存储和读取数据。
而在新型电子器件方面,自旋电子学效应为自旋晶体管、自旋电子器件、自旋计算机等提供了重要的理论基础。
此外,磁共振成像技术也广泛应用于医学诊断和科学研究中,它利用磁性材料对外磁场的响应来获取物体内部的信息。