2019-2020学年第一学期期中八年级数学试卷分析
- 格式:docx
- 大小:38.25 KB
- 文档页数:3
2019-2020学年八年级上学期期中考试数学试卷一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.下列计算结果为x6的是()A.x3•x2B.x2+x4C.(x4)2D.x7÷x3.如图,已知△ADC中,AB=AC,BD=DC,则下列结论错误的是()A.∠BAC=∠B B.∠BAD=∠CAD C.AD⊥BC D.∠B=∠C4.下列计算正确的是()A.(x+y)2=x2+y2B.(2m2)3=6m6C.(x﹣2)2=x2﹣4 D.(x+1)(x﹣1)=x2﹣15.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC6.如图所示,AD=AE,AB=AC,∠BAC=∠DAE,B、D、E在同一直线上,∠1=22°,∠2=30°,求∠3的度数()A.42°B.52°C.62°D.72°7.(x+p)(x+5)=x2+rx﹣10,则p,r的值分别是()A.2,﹣3 B.2,3 C.﹣2,3 D.﹣2,﹣38.如图,AD是△ABC的角平分线,DF⊥AB于点F,且DE=DG,S△ADG=50,S△AED=38,则△DEF的面积为()A.6 B.12 C.4 D.89.如图,两个正方形边长分別为a,b,如果a+b=9,ab=12,则阴影部分的面积为()A.21.5 B.22.5 C.23.5 D.2410.如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN =x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定二.填空题(共6小题)11.2x2y3•(﹣7x3y)=.12.点P(﹣3,4)关于原点对称的点的坐标是.13.如图,OP平分∠AOB,PD⊥OA于点D,点Q是射线OB上一个动点,若PD=2,则PQ的取值范围为.14.如图,在△ABC中,AB=AC,BE=CD,BD=CF,∠EDF=78°,则∠A的度数为.15.等腰三角形的其中两边长分别为(x+2)(2x﹣5),(x﹣1)2,已知这两边不相等,且x >5,则该等腰三角形的周长为(用含x的式子表示)16.计算:40372﹣8072×2019=.三.解答题(共9小题)17.计算:[(x+2y)2﹣(x﹣2y)(x+2y)]÷2y18.已知如图,在△ABC中,AB=AC,O是△ABC内一点,且OB=OC,求证:AO⊥BC.19.如图AB⊥l于点B,CD⊥1于点D,点E,F在直线1上,且BF=DE,AE=CF.求证:AE∥CF.20.如图△ABC,请用尺规作出它的外角∠BAE的平分线AD,若AD∥BC,证明:AB=AC.21.如图在△ABC中,DE是AC的垂直平分线,AE=5,△ABD的周长为14,求△ABC的周长.22.长方形的长和宽分别是a厘米、b厘米,如果长方形的长和宽各减少2厘米.(1)新长方形的面积比原长方形的面积减少了多少平方厘米?(2)如果减少的面积恰好等于原面积的,试确定(a﹣6)(b﹣6)的值.23.我们已经学习过多项式除以单项式,多项式除以多项式一般可用竖式计算,步骤如下:①把被除式、除式按某个字母作降幂接列,井把所块的项用零补齐;②用除式的第一项除以除式第一项,得到商式的第一项;③用商式的一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项;④把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式×商式+余式,若余式为零,说明这个多项式能被另一个多项式整除.例如:计算(6x4﹣7x3﹣x2﹣1)÷(2x+1),可用竖式除法如图:所以6x4﹣7x3﹣x2﹣1除以2x+1,商式为3x3﹣5x2﹣2x﹣1,余式为0.根据阅读材料,请回答下列问题:(1)(x3﹣4x2+7x﹣5)÷(x﹣2)的商是,余式是;(2)x3﹣x2+ax+b能被x2+2x+2整除,求a,b的值.24.等边三角形△ABC,直线1过点C且垂直AC.(1)请在直线1上作出点D,使得△ABD的周长最小.(2)在(1)的条件下,连接AD,BD,求证,AD=2BD.25.已知,△ABC是等腰直角三角形,BC=AB,A点在x负半轴上,直角顶点B在y轴上,点C在x轴上方.(1)如图1所示,若A的坐标是(﹣3,0),点B的坐标是(0,1),点C的坐标为.(2)如图2,若OA平分∠BAC,BC与x轴交于点E,若点C纵坐标为m,求AE的长.(3)如图3,在(2)的条件下,点F在射线DM上,且∠ABF=∠ADF,AH⊥BF于点H,试探究BF、HFDF的数量关系.参考答案与试题解析一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项符合题意;D、是轴对称图形,故此选项不合题意.故选:C.2.下列计算结果为x6的是()A.x3•x2B.x2+x4C.(x4)2D.x7÷x【分析】分别根据同底数幂的乘法法则,合并同类项法则,幂的乘方法则以及同底数幂的除法法则逐一判断即可.【解答】解:A.x3•x2=x5,故本选项不合题意;B.x2与x4不是同类项,所以不能合并,故本选项不合题意;C.(x4)3=x8,故本选项不合题意;D.x7÷x=x6,故本选项符合题意.故选:D.3.如图,已知△ADC中,AB=AC,BD=DC,则下列结论错误的是()A.∠BAC=∠B B.∠BAD=∠CAD C.AD⊥BC D.∠B=∠C 【分析】证明△ADB≌△ADC即可解决问题.【解答】解:∵AB=AC,BD=DC,AD=AD,∴△ADB≌△ADC(SSS),∴∠B=∠C,∠BAD=∠CAD,∠ADB=∠ADC,∵∠ADB+∠ADC=180°,∴∠ADB=∠ADC=90°,∴AD⊥BC,故B,C,D正确,故选:A.4.下列计算正确的是()A.(x+y)2=x2+y2B.(2m2)3=6m6C.(x﹣2)2=x2﹣4 D.(x+1)(x﹣1)=x2﹣1【分析】各项化简得到结果,即可作出判断.【解答】解:A、原式=x2+2xy+y2,不符合题意;B、原式=8m6,不符合题意;C、原式=x2﹣4x+4,不符合题意;D、原式=x2﹣1,符合题意,故选:D.5.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC【分析】根据全等三角形的性质得出对应角相等,对应边相等,推出两三角形面积相等,周长相等,再逐个判断即可.【解答】解:A、∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,故本选项错误;B、∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,故本选项错误;C、∵△ABD≌△CDB,∴∠A=∠C,∠ABD=∠CDB,∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项正确;D、∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD,∴AD∥BC,故本选项错误;故选:C.6.如图所示,AD=AE,AB=AC,∠BAC=∠DAE,B、D、E在同一直线上,∠1=22°,∠2=30°,求∠3的度数()A.42°B.52°C.62°D.72°【分析】由“SAS”可证△ABD≌△ACE,可得∠ABD=∠2=30°,由三角形外角性质可求解.【解答】解:∵∠BAC=∠DAE,∴∠1=∠CAE,且AD=AE,AB=AC,∴△ABD≌△ACE(SAS)∴∠ABD=∠2=30°,∴∠3=∠2+∠ABD=52°,故选:B.7.(x+p)(x+5)=x2+rx﹣10,则p,r的值分别是()A.2,﹣3 B.2,3 C.﹣2,3 D.﹣2,﹣3【分析】已知等式左边利用多项式乘多项式法则计算,利用多项式相等的条件求出p,r【解答】解:∵(x+p)(x+5)=x2+(p+5)x+5p=x2+rx﹣10,∴p+5=r,5p=﹣10,解得:p=﹣2,r=3.故选:C.8.如图,AD是△ABC的角平分线,DF⊥AB于点F,且DE=DG,S△ADG=50,S△AED=38,则△DEF的面积为()A.6 B.12 C.4 D.8【分析】过点D作DH⊥AC于H,根据角平分线上的点到角的两边距离相等可得DF=DH,然后利用“HL”证明Rt△DEF和Rt△DGH全等,根据全等三角形的面积相等可得S△EDF=S△GDH,设面积为S,然后根据S△ADF=S△ADH列出方程求解即可.【解答】解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DH,在Rt△DEF和Rt△DGH中,,∴Rt△DEF≌Rt△DGH(HL),∴S△EDF=S△GDH,设面积为S,同理Rt△ADF≌Rt△ADH,∴S△ADF=S△ADH,即38+S=50﹣S,故选:A.9.如图,两个正方形边长分別为a,b,如果a+b=9,ab=12,则阴影部分的面积为()A.21.5 B.22.5 C.23.5 D.24【分析】根据正方形和三角形的面积的和差即可求解.【解答】解:根据题意,得∵a+b=9,ab=12,∴(a+b)2=92∴a2+2ab+b2=81,∴a2+b2=81﹣24=57,∴阴影部分的面积为:a2﹣b(a﹣b)=(a2﹣ab+b2)=(57﹣12)=22.5.故选:B.10.如图,在等边三角形ABC中,在AC边上取两点M、N,使∠MBN=30°.若AM=m,MN =x,CN=n,则以x,m,n为边长的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.随x,m,n的值而定【分析】将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.想办法证明∠HCN=120°HN=MN=x即可解决问题;【解答】解:将△ABM绕点B顺时针旋转60°得到△CBH.连接HN.∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,∵∠MON=30°,∴∠ABM+∠CBN=30°,∴∠NBH=∠CBH+∠CBN=30°,∴∠NBM=∠NBH,∵BM=BH,BN=BN,∴△NBM≌△NBH,∴MN=NH=x,∵∠BCH=∠A=60°,CH=AM=n,∴∠NCH=120°,∴x,m,n为边长的三角形△NCH是钝角三角形,故选:C.二.填空题(共6小题)11.2x2y3•(﹣7x3y)=﹣14x5y4.【分析】原式利用单项式乘以单项式法则计算即可求出值.【解答】解:原式=﹣14x5y4,故答案为:﹣14x5y412.点P(﹣3,4)关于原点对称的点的坐标是(3,﹣4).【分析】本题比较容易,考查平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.【解答】解:根据中心对称的性质,得点P(﹣3,4)关于原点对称的点的坐标是(3,﹣4).13.如图,OP平分∠AOB,PD⊥OA于点D,点Q是射线OB上一个动点,若PD=2,则PQ的取值范围为PQ≥2 .【分析】根据垂线段最短可得PQ⊥OB时,PQ最短,再根据角平分线上的点到角的两边距离相等可得PQ=PD.【解答】解:由垂线段最短可得PQ⊥OB时,PQ最短,∵OP平分∠AOB,PD⊥OA,∴PQ=PD=2,即线段PQ的最小值是2.∴PQ的取值范围为PQ≥2,故答案为PQ≥2.14.如图,在△ABC中,AB=AC,BE=CD,BD=CF,∠EDF=78°,则∠A的度数为24°.【分析】由等腰三角形的性质可得∠B=∠C,由“SAS”可证△BED≌△CDF,可得∠CDF =∠BED,由三角形外角的性质可得∠EDF=∠B=70°,即可求∠A的度数.【解答】解:∵AB=AC∴∠B=∠C,又∵BE=CD,BD=CF∴△BED≌△CDF(SAS)∴∠CDF=∠BED∵∠EDC=∠B+∠BED=∠CDF+∠EDF∴∠EDF=∠B=78°∴∠C=∠B=78°∴∠A=180°﹣78°﹣78°=24°故答案为:24°.15.等腰三角形的其中两边长分别为(x+2)(2x﹣5),(x﹣1)2,已知这两边不相等,且x >5,则该等腰三角形的周长为5x2﹣4x﹣19 (用含x的式子表示)【分析】分为两种情况:①当三角形的三边是(x+2)(2x﹣5),(x+2)(2x﹣5),(x﹣1)2时,②当三角形的三边是(x+2)(2x﹣5),(x﹣1)2,(x﹣1)2时,看看是否符合三角形的三边关系定理,符合时求出即可.【解答】解:分为两种情况:①当等腰三角形的腰为(x+2)(2x﹣5)时,三角形的三边是(x+2)(2x﹣5),(x+2)(2x﹣5),(x﹣1)2,此时符合三角形的三边关系定理,此时三角形的周长是:(x+2)(2x﹣5)+(x+2)(2x﹣5)+(x﹣1)2=2x2﹣x﹣10+2x2﹣x﹣10+x2﹣2x+1=5x2﹣4x﹣19;②当等腰三角形的腰为(x﹣1)2时,三角形的三边是(x+2)(2x﹣5),(x﹣1)2,(x﹣1)2时,∵(x﹣1)2+(x﹣1)2=2x2﹣4x+2,(x+2)(2x﹣5)=2x2﹣x﹣10,x>5,∴(x﹣1)2+(x﹣1)2﹣(x+2)(2x﹣5)=(2x2﹣4x+2)﹣(2x2﹣x﹣10)=﹣3x+12<0,∴(x﹣1)2+(x﹣1)2<(x+2)(2x﹣5),∴此时不符合三角形的三边关系定理,此时不存在三角形.故答案为:5x2﹣4x﹣19.16.计算:40372﹣8072×2019= 1 .【分析】把8072×2019变为4038×4036,再套用平方差公式计算得结果.【解答】解:原式=40372﹣2×4036×2019=40372﹣4036×4038=40372﹣(4037﹣1)(4037+1)=40372﹣(40372﹣1)=1故答案为:1三.解答题(共9小题)17.计算:[(x+2y)2﹣(x﹣2y)(x+2y)]÷2y【分析】直接利用乘法公式进而化简,再利用整式的除法运算法则计算得出答案.【解答】解:原式=[x2+4y2+4xy﹣(x2﹣4y2)]÷2y=(8y2+4xy)÷2y=4y+2x.18.已知如图,在△ABC中,AB=AC,O是△ABC内一点,且OB=OC,求证:AO⊥BC.【分析】延长AO交BC于点D,先证出△ABO≌△ACO,得出∠BAO=∠CAO,再根据三线合一的性质得出AO⊥BC即可.【解答】证明:延长AO交BC于点D,在△ABO和△ACO中,,∴△ABO≌△ACO(SSS),∴∠BAO=∠CAO,∵AB=AC,∴AO⊥BC.19.如图AB⊥l于点B,CD⊥1于点D,点E,F在直线1上,且BF=DE,AE=CF.求证:AE∥CF.【分析】证明△ABE≌△CDF(HL),推出∠AEB=∠CFD可得结论.【解答】证明:∵AB⊥l于点B,CD⊥1于点D,∴∠ABE=∠CDF=90°,∵BF=DE,∴DF=BE,∵AE=CF,∴Rt△ABE≌Rt△CDF(HL),∴∠AEB=∠CFD,∴AE∥CF.20.如图△ABC,请用尺规作出它的外角∠BAE的平分线AD,若AD∥BC,证明:AB=AC.【分析】用尺规作外角∠BAE的平分线AD,再进行证明即可.【解答】解:如图所示:AD即为所求作的图形.证明:∵AD∥BC,∴∠DAE=∠C,∠DAB=∠B,∵AD平分∠BAE,∴∠DAE=∠DAB,∴∠B=∠C,∴AB=AC.21.如图在△ABC中,DE是AC的垂直平分线,AE=5,△ABD的周长为14,求△ABC的周长.【分析】根据线段的垂直平分线的性质得到DA=DC,AE=CE=5,而AB+BDAD=14,从而得到△ABC的周长.【解答】解:∵DE是AC的垂直平分线,∴DA=DC,AE=CE=5,而△ABD的周长是14,即AB+BD+AD=14,∴AB+BC+AC=AB+BD+CD+AC=14+10=24,即△ABC的周长是24.22.长方形的长和宽分别是a厘米、b厘米,如果长方形的长和宽各减少2厘米.(1)新长方形的面积比原长方形的面积减少了多少平方厘米?(2)如果减少的面积恰好等于原面积的,试确定(a﹣6)(b﹣6)的值.【分析】(1)根据题意表示出原来长方形与新长方形的面积,相减即可得到结果;(2)根据题意列出等式,化简即可求出.【解答】解:(1)ab﹣(a﹣2)(b﹣2)=ab﹣(ab﹣2a﹣2b+4)=ab﹣ab+2a+2b﹣4=2a+2b﹣4,∴新长方形的面积比原长方形的面积减少了(2a+2b﹣4)平方厘米;(2)由题意知2a+2b﹣4=ab,∴ab=6a+6b﹣12,(a﹣6)(b﹣6)=ab﹣6a﹣6b+36=6a+6b﹣12﹣6a﹣6b+36=24.23.我们已经学习过多项式除以单项式,多项式除以多项式一般可用竖式计算,步骤如下:①把被除式、除式按某个字母作降幂接列,井把所块的项用零补齐;②用除式的第一项除以除式第一项,得到商式的第一项;③用商式的一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项;④把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止,被除式=除式×商式+余式,若余式为零,说明这个多项式能被另一个多项式整除.例如:计算(6x4﹣7x3﹣x2﹣1)÷(2x+1),可用竖式除法如图:所以6x4﹣7x3﹣x2﹣1除以2x+1,商式为3x3﹣5x2﹣2x﹣1,余式为0.根据阅读材料,请回答下列问题:(1)(x3﹣4x2+7x﹣5)÷(x﹣2)的商是x2﹣2x+3 ,余式是 1 ;(2)x3﹣x2+ax+b能被x2+2x+2整除,求a,b的值.【分析】(1)根据整式除法的竖式计算方法,这个进行进行计算即可;(2)根据整式除法的竖式计算方法,要使x3﹣x2+ax+b能被x2+2x+2整除,即余式为0,可以得到a、b的值.【解答】解:(1)(x3﹣4x2+7x﹣5)÷(x﹣2)=x2﹣2x+3 (1)故答案为:x2﹣2x+3,1.(2)由题意得:∵x3﹣x2+ax+b能被x2+2x+2整除,∴a﹣2=﹣6,b=﹣6,即:a=﹣4,b=﹣6.24.等边三角形△ABC,直线1过点C且垂直AC.(1)请在直线1上作出点D,使得△ABD的周长最小.(2)在(1)的条件下,连接AD,BD,求证,AD=2BD.【分析】(1)作点A关于直线l的对称点A′,连接AA′交直线1于点D,此时使得△ABD的周长最小.(2)在(1)的条件下,连接AD,BD,根据对称性和30度角所对直角边等于斜边的一半即可证明AD=2BD.【解答】解:(1)如图所示:作点A关于直线l的对称点A′,连接AA′,与直线l交于点D,则点D即为所求作的点.(2)根据对称性可知:AC=A′C,AD=A′D,∵△ABC为等边三角形,∴AC=BC=AB,∠ACB=60°=∠BAC,∴A′C=BC,∴∠A′=∠A′BC=30°,∠A′=∠DAA′=30°,∴∠ABD=90°,∴AD=2BD.25.已知,△ABC是等腰直角三角形,BC=AB,A点在x负半轴上,直角顶点B在y轴上,点C在x轴上方.(1)如图1所示,若A的坐标是(﹣3,0),点B的坐标是(0,1),点C的坐标为(﹣1,4).(2)如图2,若OA平分∠BAC,BC与x轴交于点E,若点C纵坐标为m,求AE的长.(3)如图3,在(2)的条件下,点F在射线DM上,且∠ABF=∠ADF,AH⊥BF于点H,试探究BF、HFDF的数量关系.【分析】(1)作CH⊥y轴于H,如图1,易得OA=3,OB=1根据等腰直角三角形的性质得BA=BC,∠ABC=90°,再利用等角的余角相等得到∠CBH=∠BAO,则可根据“AAS”证明△ABO≌△BCH,得到OB=CH=1,OA=BH=3,所以C(﹣1,4);(2)如图2,过点C作CF⊥AO,交AB的延长线于H,由“ASA”可证△AFC≌△AFH,可得CF=FH=m,由“AAS”可证△ABE≌△CBH,可得AE=CH=2m;(3)如图3,过点A作AN⊥DF于点N,由“AAS”可证△ABH≌△ADN,可得AN=AH,BH =DN,由“HL”可证Rt△ANF≌Rt△AHF,可得NF=FH,即可得结论.【解答】解:(1)作CH⊥y轴于H,如图1,∵点A的坐标是(﹣3,0),点B的坐标是(0,1),∴OA=3,OB=1,∵△ABC是等腰直角三角形,∴BA=BC,∠ABC=90°,∴∠ABO+∠CBH=90°,∵∠ABO+∠BAO=90°,∴∠CBH=∠BAO,在△ABO和△BCH中,∴△ABO≌△BCH(AAS),∴OB=CH=1,OA=BH=3,∴OH=OB+BH=1+3=4,∴C(﹣1,4),故答案为:(﹣1,4);(2)如图2,过点C作CF⊥AO,交AB的延长线于H,∴∠CBH=90°,∵CF⊥AO,∴∠BCH+∠H=90°,而∠HAF+∠H=90°,∴∠BCH=∠HAF,且∠ABC=∠CBH=90°,AB=CB,∴△ABE≌△CBH(AAS),∴AE=CH,∵AO平分∠BAC,∴∠CAF=∠HAF,且AF=AF,∠AFH=∠AFC,∴△AFC≌△AFH(ASA)∴CF=FH=m,∴AE=CH=2m;(3)BF=2FH+DF,理由如下:如图3,过点A作AN⊥DF于点N,∵∠CAE=∠BAE,∠AOB=∠AOD,∴∠ADB=∠ABD,∴AD=AB,且∠ADF=∠ABF,∠AHB=∠AND=90°,∴△ABH≌△ADN(AAS)∴AN=AH,BH=DN,∵在Rt△ANF和Rt△AHF中,AN=AH,AF=AF,∴Rt△ANF≌Rt△AHF(HL)∴NF=FH,∵BF=BH+FH=DN+FH∴BF=DF+NF+FH=2FH+DF.。
2019-2020学年第一学期八年级阶段性测评数学试卷分析一、整卷分析本次考试试题一共分为三大题型,如下表所示:二、逐题分析15勾股定理的应用难216二次根式的运算中1217坐标变换易518勾股定理及逆定理的应用易619一次函数图象上点坐标的特征易520勾股定理的应用中521一次函数的实际应用中522二次根式的化简中923一次函数的综合应用难13三、知识点分析期中考试涉及的知识点思维导图呈现如下:期中考试涉及的各知识点分值分析如下:二次根式的化简11二次根式的运算17第三章位置与坐标5坐标的变换5第四章一次函数34一次函数的表示方法3一次函数图像与性质8一次函数的简单应用10一次函数综合应用13四、重难点及易错点分析本次试卷整体难度适中,易:中:难=6:3:1,重点考查勾股定理的应用,实数的运算和一次函数的应用,其中易错题和难题主要有以下几题:1.选择题10题,考查勾股定理的应用,需要找到一条最短路径,为易错题,学生不易于找到最短路径;2.填空题15题,考查勾股定理的应用的两条线段和的最短问题,并结合了轴对称,学生不易找到对称点,难以作答为难题;3.解答题22题阅读材料题,考查二次根式的化简,材料较长,学生提取信息能力比较薄弱,规定时间内缺乏耐心去分析题目;4.解答题23题点第(1)问坐标的求法中需要用到全等三角形的判定,学生不易想到这一点,第(2)问涉及全等三角形的分类讨论,学生对于全等模型不熟悉,考虑不全面,为难题.五、考后教学建议1.对试卷整体分析,常规试题体现“基础性”,所以建议大家一定要掌握基础知识,训练基本技能,领悟数学基本思想,积累基本活动经验;2.对知识点的考查体现了“综合性”,所以建议学生一定要多角度思考问题,加强数学材料阅读题的训练,培养学生的推理能力;3.对实际应用问题体现了“应用性”,应鼓励学生运用所学知识解决实际问题,要做到学以致用,培养学生的应用意识、创新意识和实践能力;4.总的指导思想“狠抓基础,注重过程,渗透思想,突出能力,强调应用,着重创新”.2019-2020学年第一学期八年级阶段性测试数学试卷解析一、选择题(本题共10个小题,每小题3分,共30分)1.下列实数中的无理数是()A .8B .9C .21-D .327【答案】A【考点】无理数的概念【解析】A .228=,是个无理数B .39=,是有理数C .21-是分数,也是有理数D .3273=,是有理数【难度星级】★2.有理数4的平方根是()A .2B .2±C .2D .2±【答案】D【考点】平方根的概念【解析】∵()422=±∴4的平方根是2±【难度星级】★3.下列各组数中,能作为直角三角形三边长的是()A .2,3,5B .6,8,10C .8,15,17D .1,2,3【答案】C【考点】勾股定理逆定理【解析】∵22217158=+∴8,15,17能作为直角三角形三边长【难度星级】★4.下列计算结果正确的是()A .32-23=B .2312=÷C .()6322=D .()-22-2=【答案】B【考点】二次根式运算【解析】A .222-23=B .2312=÷C .()12322=D .()22-2=∴B 正确【难度星级】★5.已知一次函数b kx y +=(k ,b 为常数)的图象经过平面直角坐标系的第一、二、三象限,则下列结论一定正确的是()A .0>kb B .0<kb C .0->b k D .0<b k +【答案】A【考点】一次函数的图象与性质【解析】∵一次函数的图象经过平面直角坐标系的第一、三象限∴0>k 又∵函数图像经过第二象限∴0>b ∴0>kb 【难度星级】★6.在平面直角坐标系中,已知一次函数5-+=x y 的图象经过()1,3y A -,()22y B ,两点,则1y ,2y 的大小关小关系为()A .21y y <B .21y y >C .21y y =D .无法确定【答案】B【考点】一次函数的图象与性质【解析】∵一次函数表达式中01-<=k ,∴y 随x 的增大而减小∵-3<2,∴21y y >故选B【难度星级】★7.如图,在ABC Rt ∆中,︒=∠90BAC ,以ABC Rt ∆的三边为边分别向外作等边三角形BC A 'Δ,C AB '∆,'ABC ∆,若BC A 'Δ,'ABC ∆的面积分别是10和4,则'ABC ∆的面积是()A .4B .6C .8D .9【答案】B【考点】勾股定理【解析】根据勾股定理可得64-10-'Δ'Δ'===ΔC AB BC A ABC S S S 故选B【难度星级】★8.对于一次函数b kx y +=(k ,b 为常数),下表中给出5组自变量及其对应的函数值,其中只有1个函数值计算有误,则这个错误..的函数值是()x…-10123…y…-214810…A .1B .4C .8D .10【答案】C【考点】一次函数的表示方法【解析】∵由表格中的数据可得,x 每增加1,y 就增加3,∴x 由1增加到2时,y 应该由4增加到7.故C 错误【难度星级】★9.为比较613+与613+的大小,小亮进行了如下分析:作一个直角三角形,使其两直角边的长分别为13与6,则由勾股定理可求得其斜边长为.根据“三角形三边关系”,可得613613++>.小亮的这一做法体现的数学思想是()A .分类讨论思想B .方程思想C .类比思想D .数形结合思想【答案】D【考点】数学思想【解析】∵将二次根式比较大小转化成了“三角形三边关系”∴数形结合思想【难度星级】★10.棱长分别为8cm ,6cm 的两个正方体如图放置,点A ,B ,E 在同一直线上,顶点G 在棱BC 上,点P 是棱11F E 的中点.一只蚂蚁要沿着正方体的表面从点A 爬到点P ,它爬行的最短距离是()A .()cm 1053+B .cm 135C .cm277D .()cm3582+【答案】C【考点】勾股定理的应用【解析】将两个正方体展开,由图可知,沿着左面和上面展开时,路线太长.所以下面只讨论沿着前面和上面、前面和右面两种展开图的路线.①沿着前面和右面展开,得到如下展开图:则展开图中,m EP BE AB AP c 71368''=++=++=,cm PP 6'=,在'ΔAPP Rt 中由勾股定理得:cm PP AP AP 135325617''2222==+=+=.②沿着前面和上面展开,得到如下展开图:则展开图中,m BE AB AE c 4168=+=+=,cm P E EE EP 93611=+=+=,在APE Rt Δ中由勾股定理得:cmPE AE AP 2779142222=+=+=∵cm cm 277135>∴最短距离是cm277【难度星级】★★二、填空题(本大题含5个小题,每小题2分,共10分)把答案写在题中横线上.11.把45化成最简二次根式为.【答案】35【考点】二次根式的化简【解析】45=59=95=35⨯⨯.【难度星级】★12.已知点()6,P m 在一次函数153y x =-+的图象上,则点P 的坐标为.【答案】()6,3【考点】一次函数的图象与性质【解析】因为点P 在一次函数图象上,所以将6x =代入153y x =-+中,解得16533y =-⨯+=,则3m =,P 点的坐标为()6,3.【难度星级】★13.在平整的路面上,某型号汽车紧急刹车后仍将滑行s m,一般地有经验公式2300v s =,其中v 表示刹车前汽车的速度(单位:h km /).一次行驶中汽车紧急刹车后滑行的距离12s m =,则这辆汽车刹车前的速度v =h km /.【答案】60【考点】算术平方根的应用【解析】由题可知,刹车后滑行的距离12s m =,将12s =代入方程2300v s =中可求得60v =±,由于0v ≥,所以60v =,则刹车前的速度60v =h km /.【难度星级】★14.《算法统宗》中有一道“荡秋千”的问题,其译文为:“有一架秋千,当它静止时,踏板上一点A 离地1尺,将它往前推送10尺(水平距离)时,点A 对应的点B 就和某人一样高.若此人的身高为5尺,秋千的绳索始终拉得很直,试问绳索有多长?”根据上述条件,秋千绳索长为_______尺.【答案】292(或14.5)【考点】勾股定理的应用【解析】由题意可得右图所示图形,过点B 作BE OC ⊥于点E由题意可得:OB OA =,10BE =,5BD =,1AC =∴4AE =设OB OA x ==∴4OE x =-在RT OBE ∆中,由勾股定理可得222OB OE BE =+即222(4)10x x -+=化简得:8116x =292x =∴秋千绳索长为292(或14.5)尺.【难度星级】★★15.如图,在ABC ∆中,8AB AC ==,4BC =,AD BC ⊥于点D ,点P 是线段AD 上一个动点,过点P 作PE AB ⊥于点E ,连接PB ,则PB PE +的最小值为___________.【答案】15【考点】等腰三角形的性质,勾股定理及轴对称最值问题【解析】∵AB AC=∴ABC ∆为等腰三角形∵AD BC⊥∴点,B C 关于直线AD 对称∴PB PE PC PE +=+又∵PE AB⊥∴当,P,C E 三点共线且CE AB ⊥时PB PE +最小过点C 作CF AB ⊥于点F ∵AB AC =,AD BC ⊥∴1==22BD DC BC =在Rt ABD ∆中,由勾股定理可得222AD AB BD =-∴215AD =∴1122ABC S AD BC AB ∆=⨯=⨯∴CF =【难度星级】★★★16.计算:(本题含4个小题,每小题3分,共12分)(1)2775-;(2)()2323-;(3)57535÷⎪⎪⎭⎫⎝⎛-;(4)18329871225-+.【考点】二次根式的运算【难度星级】★★【解析】(1)解:2775-=3335-=32(2)解:()2323-=()()223323223+⨯⨯-=36618+-=6621-(3)解:57535÷⎪⎪⎭⎫⎝⎛-=5735535÷-÷=777-=776(4)解:183********—+=222225-+=22317.(本题5分)如图,在平面直角坐标系中,ABC ∆的三个顶点的坐标分别为A (3,-1),B (4,2),C (2,4).(1)请在如图的坐标系中画出ABC ∆;(2)在如图的坐标系中,画出ABC ∆关于y 轴对称的C B A '''∆,并直接写出C B A '''∆三个顶点的坐标.【考点】点坐标的变换【难度星级】★★【解析】(1)如图所示,ABC ∆即为所求.............................................................2分(2)如图所示,C B A '''∆即为所求..........................................................4分C B A '''∆三个顶点坐标:A '(-3,-1),B '(-4,2),C '(-2,4)...........................................................................................................................5分18.(本题6分)在一次综合实践活动中,老师让同学们测量公园里凉亭A ,B 之间的距离(A ,B 之间有水池,无法直接测量),智慧小组的同学们在公园里选了凉亭C ,D ,测得m CD AD 10==,︒=∠90D ,40BC=m ,135BCD=∠︒.请你根据上述数据求出A ,B 之间的距离.【考点】勾股定理的实际应用【难度星级】★【解析】解:连接AC在ACD Rt ∆中,由勾股定理得:m CD AD AC 21022=+=.......................................2分∵︒=∠90D ,CDAD =∴︒=∠=∠45DAC DCA ∵︒=∠+∠=∠135ACB DCA BCD ∴︒=∠-∠=∠90DCA DCB ACB .................................................................................2分在ACB Rt ∆中由勾股定理得:m C AC AB 230B 22=+=..............................................................2分19.(本题5分)如图,已知一次函数321-=x y 的图像与x 轴,y 轴分别交于A ,B 两点,点C (-4,n )在该函数的图像上,连接OC .求点A ,B 的坐标和OAC ∆的面积.【考点】一次函数图像的性质【难度星级】★【解析】解:当0=x 时,3-=y ∴点B 的坐标为(0,-3)............................................................................................2分当0=y 时,0321=-x 解得:6=x ∴点A 的坐标为(6,0)...............................................................................................4分当4-=x 时,()53421-=--⨯=y ∴5-=n∴155621=-⨯⨯=∆OAC S ..........................................................................................5分20.(本题5分)如图,在ABC ∆中,6AC =,8BC =,10AB =.点C 在y 轴的正半轴上,边AB 在x 轴上(点A 在点B 的左侧).(1)求点C 的坐标;(2)点D 是BC 边上一点,点E 是AB 边上一点,且点E 和点C 关于AD 所在直线对称.直接写出点D 的坐标.【考点】勾股定理的应用【难度星级】★★★【解析】(1)在ABC ∆中,∵6AC =,8BC =,10AB =,∴2222226810AC BC AC+=+==∴ACB ∆为直角三角形,且︒=∠90ACB .....................................2分由题意得︒=∠90BOC ∴BC AC OC AB ABC S ⋅=⋅=∆2121∴86211021⨯⨯=⨯⨯OC ∴245OC =又∵点C 在y 轴的正半轴上∴C (0,245).............................................................3分(2)∵点E 和点C 关于AD 所在直线对称,∴6AC AE ==,CD DE=又∵AD AD =∴AED ACD ∆∆≌∴︒=∠=∠90ACD AED ∴︒=∠90BED ,4BE =,设DE CD x ==则8DB x=-在BED Rt ∆中∵222DE BE BD+=∴()22248x x +=-∴3x =在AOC Rt ∆中∵222AO OC AC +=∴518524622=⎪⎭⎫ ⎝⎛-=AO ∴125OE =D (3,512).................................................................5分21.(本题5分)2019年10月1日是中华人民共和国成立70周年纪念日,红色旅游成为旅游热点.小王要和朋友们去某红色景点旅游,其门票为零售价为80元/张.国庆节期间,景点推出优惠活动,方案1:门票一律九折优惠;方案2:对10人以内(含10人)购门票不优惠,超过10人超出部分八折优惠.设小王一行参加旅游的人数为x (人),购买门票费用为y (元).(1)小王分别写出方案1和方案2购买门票的费用y (元)与旅游人数x (人)之间的函数表达式如下,请你将空缺部分补充完整:=1y (x >0);⎩⎨⎧≤=)>()<(10100802x x x y (2)小王一行共有40人一起去该景点旅游,通过计算,请判断选择哪种方案更省钱?【考点】一次函数的应用【难度星级】★★【解析】(1)由题意得:方案1:90801⨯=y %x x 72=(x >0)..................1分方案2:808010802⨯+⨯=y %(10-x )64160x =+(x >10)................2分(2)当40=x 时,288040721=⨯=y (元)..................................3分272016040642=+⨯=y (元)............................................4分∵2880>2720,∴12>y y ,∴方案2更省钱....................................5分22.(本题9分)阅读材料:材料一:两个含有二次根式的非零代数式相乘,如果它们的积不含二次根式,那么这两个代数式互为有理化因式.例如:333=⨯,426)26)(26(=-=+-,我们称3的一个有理化因式是3,26-的一个有理化因式是26+.材料二:如果一个代数式的分母中含有二次根式,通常可将分子、分母同乘分母的有理化因式,使分母中不含根号,这种变形叫做分母有理化.例如:33333131=⨯⨯=,22624)26(8)26)(26()26(8268+=+=+-+=-.请你仿照材料中的方法探索并解决下列问题:(1)13的有理化因式为____________,57+的有理化因式为_____________;(均写出一个即可)(2)将下列各式分母有理化:①153;②35211-;(要求:写出变形过程)(3)请从下列A,B 两题中任选一题作答,我选择________题.A.计算:201920181...431321211++++++++的结果为______________________.B.计算:20192017201720192...7557253352332+++++++的结果为_________________________.【答案】(1)13,57-...................................................................................2分(2)①515151531515153153==⨯⨯=...................................................................4分②35211)352(11)352)(352()352(1135211+=+=+-+=-....................................6分(3)A.12019- B.201920191-...........................................9分【考点】二次根式化简【难度星级】★★★【解析】(1)∵131313=⨯,∴13的有理化因式为13.∵257)57)(57(=-=-+,∴57+的有理化因式为57-.(2)①515151531515153153==⨯⨯=②35211)352(11)352)(352()352(1135211+=+=+-+=-(3)A.201920181...431321211++++++++...)43)(43(43)32)(32(32)21)(21(21+-+-+-+-+-+-=)20192018)(20192018(20192018-+-+120192018...143132121--++--+--+--=120192018...433221--++-+-+-=120191--=12019-=B.20192017201720192...7557253352332+++++++...)7557)(7557()7557(2)5335)(5335()5335(2)33)(33()33(2+-+-+-+-+-+-=)2019201720172019)(2019201720172019(2019201720172019(2-+-+201920172019201720172019357557155335333⨯-+-+-+-=2019201920172017...77555533331-+-+-+-=201920191-=23.(本题13分)如图1,已知直线33+=x y 与y 轴,x 轴分别交于A ,B 两点,过点B 在第二象限内作AB BC ⊥且AB BC =,连接AC .(1)求点C 的坐标;(2)如图2,过点C 作直线x CD ∥轴交AB 于D ,交y 轴于点E .请从下列A ,B 两题中任选一题作答,我选择_____题.A.①求线段CD 的长;②在坐标平面内,是否存在点M (除点B 外),使得以点M ,C ,D 为顶点的三角形与BCD ∆全等?若存在,请直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.B.①如图3,在图2的基础上,过点D 作AC DF ⊥于点F ,求线段DF 的长;②在坐标平面内,是否存在点M (除点F 外),使得以点M ,C ,D 为顶点的三角形与FCD ∆全等?若存在,请直接写出所有符合条件的点M 的坐标;若不存在,请说明理由.【答案】(1))1,4(-C(2)A.①310=CD ②存在,)2,1(1-M 或)2,311(2-M 或)0,311(3-M B.①352=DF ②存在,)37,310(1-M 或,(313102--M 或,(31343--M 【考点】一次函数的综合应用.【难度星级】★★★★★【解析】解:(1)过点C 作轴x CP ⊥,交x 轴于点P ........................................................................1分∵轴x CP ⊥,ABBC ⊥∴90=∠CPB , 90=∠ABC ∴ 90=∠+∠BCP CBP , 90=∠+∠ABO CBP ∴ABO BCP ∠=∠.....................................................................2分由题可知90=∠AOB ∴AOBCPB ∠=∠在BCP ∆与ABO ∆中,⎪⎩⎪⎨⎧=∠=∠∠=∠AB BC AOB BPC ABO BCP ∴BCP ∆≌()AAS ABO ∆.........................................................................................................3分∴AO BP =,OBCP =当0=x 时,3303=+⨯=y ∴A (0,3)...............................................................................................................................4分当0=y 时,033=+x 解得1-=x ∴B (-1,0)...................................................................................................5分∴3=AO ,1=BO ∴1=CP ,3=BP ∴4=+=OB BP OP ∴)1,4(-C ...................................................................................................................................6分(2)A. ∵x CD //轴∴点C ,点D 的纵坐标相同∴当1=y 时,133=+x 解得32-=x (7)分∴)1,32(-D ∵)1,4(-C ∴310)4(32=---=CD .........................................................................................................9分②存在........................................................................................................................................10分∵点B 与1M 关于CD 对称,)0,1(-B ,点C ,点D 的纵坐标为1∴)2,1(1-M 作CD 的中垂线与x 轴交于点G∵点B 与3M 关于CD 的中垂线372324-=⎪⎭⎫ ⎝⎛-+-=x 对称∴343713=+-==BG G M ∴311373433=+=+=OG G M O M ∴)0,311(3-M ∵3M 与2M 关于CD 对称∴)2,311(2-M ∴)2,1(1-M 或)2,311(2-M 或)0,311(3-M ......................................................................13分B.①∵()()⎪⎭⎫ ⎝⎛--1,32,1,4,3,0D C A ∴2=AE ,4=CE ,310=CD 在ACE Rt ∆中,由勾股定理得52422222=+=+=CE AE AC ...............................................................................7分在ACD ∆中,由DF AC AE CD ⋅=⋅2121得DF ⨯⨯=⨯⨯5221231021∴352=DF ...................................................9分②存在....................................................10分过点F 作CD FQ ⊥交CD 于点Q∵AC AB =,BCAB ⊥∴ 45=∠CAB ∵ACDF ⊥∴352==DF AF ∴35435252=-=FC 在CDF ∆中,由FD CF FQ CD ⋅=⋅⋅2121得352354310⨯=⨯FQ ∴34=FQ 在FDQ Rt ∆中,由勾股定理得:32343522222=-=-=)()(FQ DF DQ ∴343232=+=QE ∴,(3734-F ∵点F 与1M 关于CD 的中垂线372324-=⎪⎭⎫ ⎝⎛-+-=x 对称∴37,310(1-M ∵1M 与2M ,点F 与3M 关于CD 对称∴),(313102--M 、),(31343--M ∴符合条件的M 点的坐标为)37,310(1-M 或),(313102--M 或),(31343--M ............13分。
2019-2020学年八年级上学期期中考试数学试卷一.选择题(共10小题)1.计算:=()A.2 B.﹣2 C.D.2.下列分式是最简分式的是()A.B.C.D.3.下列长度的各组线段中可组成三角形的是()A.1,2,3 B.2,5,8 C.6,2,2 D.3,5,34.把分式中的x和y都扩大2倍,则分式的值()A.扩大4倍B.扩大2倍C.缩小2倍D.不变5.方程=1的解是()A.无解B.x=﹣1 C.x=0 D.x=16.化简a÷b•的结果是()A.B.a C.ab2D.ab7.如图,已知△ABC是等边三角形,点B、C,D、E在同一直线上,且CG=CD,DF=DE,则∠E=()A.30°B.20°C.15°D.100°8.下列命题的逆命题是真命题的是()A.对顶角相等B.同一三角形内等角对等边C.同角的余角相等D.全等三角形对应角相等9.某公司承担了制作600套校服的任务,原计划每天制作x套,实际上平均每天比原计划多制作了5套,因此提前6天完成任务.根据题意,下列方程正确的是()A.B.C.D.10.如图,在△ABC中,BD平分∠ABC,BC的垂直平分线交BC于点E,交BD于点F,连结CF和DE,若∠A=70°,∠DCF=50°,BC=8.则AB长为()A.4 B.2C.8 D.4二.填空题(共5小题)11.H7N9病毒的直径为30纳米(1纳米10﹣9米),30纳米用科学记数法可表示为米.12.计算(﹣)3的结果是.13.如图,已知AE=BE,DE是AB的垂直平分线,BF=12,CF=3,则AC=.14.已知x﹣=6,求x2+的值为.15.如图,△ABC中,AB=BD,点D,E分别是AC,BD上的点,且∠ABD=∠DCE,若∠BEC =105°,则∠A的度数是.三.解答题(共8小题)16.计算:(2m2n﹣3)2•3m﹣3n4.17.计算:+﹣118.解方程:.19.如图,△ABC中,BD=EC,AB=AC,∠B=∠C,求证:△ABE≌△ACD20.如图,点E在△ABC的外部,点D在BC上,DE交AC于点F,∠1=∠2=∠3,AB=AD.求证:△ABC≌△ADE.21.节能环保的油电混合动力汽车,既可用油做动力行驶,也可用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求汽车行驶中每千米用电费用是多少元?(2)甲、乙两地的距离是多少千米?22.如图,在△ABC中,∠C=90°,PD=PA,(1)尺规作图:作BD的垂直平分线交BC于点E,交BD于点F(不写作法,保留作图痕迹);(2)在(1)所作的图中,连接DE,求证:DE⊥DP.23.如图,在等边△ABC的顶点B、C处各有一只蜗牛,它们同时出发,分别都以每分钟1个单位的速度由C向A和由B向C爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D、P处,请问:(1)在爬行过程中,BD和AP始终相等吗?(2)在爬行过程中BD与AP所成的∠DQA有变化吗?若无变化是多少度?参考答案与试题解析一.选择题(共10小题)1.计算:=()A.2 B.﹣2 C.D.【分析】根据负整数指数幂解答即可.【解答】解:=2,故选:A.2.下列分式是最简分式的是()A.B.C.D.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:A、该分式的分子、分母中含有公因数a,则它不是最简分式.故本选项错误;B、该分式的分子、分母中含有公因数3,则它不是最简分式.故本选项错误;C、该分式符合最简分式的定义.故本选项正确.D、分母为(x+1)(x﹣1),所以该分式的分子、分母中含有公因式(x+1),则它不是最简分式.故本选项错误;故选:C.3.下列长度的各组线段中可组成三角形的是()A.1,2,3 B.2,5,8 C.6,2,2 D.3,5,3【分析】根据三角形的三边满足两边之和大于第三边来进行判断.【解答】解:A、2+1=3,不能构成三角形,故不符合题意;B、2+5=7<8,不能构成三角形,故不符合题意;C、2+2=4<6,不能构成三角形,故不符合题意;D、3+3>5,可以构成三角形,故符合题意;故选:D.4.把分式中的x和y都扩大2倍,则分式的值()A.扩大4倍B.扩大2倍C.缩小2倍D.不变【分析】先根据题意列出算式,再根据分式的性质进行化简,即可得出选项.【解答】解:=,即分式的值不变,故选:D.5.方程=1的解是()A.无解B.x=﹣1 C.x=0 D.x=1【分析】移项可得﹣1==0,可得x=0;【解答】解:=1,∴移项可得﹣1==0,∴x=0,经检验x=0是方程的根,∴方程的根是x=0;故选:C.6.化简a÷b•的结果是()A.B.a C.ab2D.ab【分析】分式的乘法法则:分式乘分式,用分子的积作积的分子,分母的积作积的分母.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.【解答】解:a÷b•=a••=,故选:A.7.如图,已知△ABC是等边三角形,点B、C,D、E在同一直线上,且CG=CD,DF=DE,则∠E=()A.30°B.20°C.15°D.100°【分析】由于△ABC是等边三角形,那么∠B=∠1=60°,而CD=CG,那么∠CGD=∠2,而∠1是△CDG的外角,可得∠1=2∠2,同理有∠2=2∠E,等量代换有4∠E=60°,解即可求∠E.【解答】解:如右图所示,∵△ABC是等边三角形,∴∠B=∠1=60°,∵CD=CG,∴∠CGD=∠2,∴∠1=2∠2,同理有∠2=2∠E,∴4∠E=60°,∴∠E=15°.故选:C.8.下列命题的逆命题是真命题的是()A.对顶角相等B.同一三角形内等角对等边C.同角的余角相等D.全等三角形对应角相等【分析】先交换原命题的题设与结论得到四个逆命题,然后判断它们的真假.【解答】解:A、对顶角相等的逆命题是相等的角是对顶角,是假命题;B、同一三角形内等角对等边的逆命题是同一三角形内等边对等角,是真命题;C、同角的余角相等的逆命题是余角相等的角是同角,也可以是等角,是假命题;D、全等三角形对应角相等的逆命题是对应角相等的三角形是全等三角形,是假命题;故选:B.9.某公司承担了制作600套校服的任务,原计划每天制作x套,实际上平均每天比原计划多制作了5套,因此提前6天完成任务.根据题意,下列方程正确的是()A.B.C.D.【分析】设原计划每天制作x套,实际平均每天制作(x+5)套,根据实际提前6天完成任务,列方程即可.【解答】解:设原计划每天制作x套,实际平均每天制作(x+5)套,由题意得,﹣=6.故选:C.10.如图,在△ABC中,BD平分∠ABC,BC的垂直平分线交BC于点E,交BD于点F,连结CF和DE,若∠A=70°,∠DCF=50°,BC=8.则AB长为()A.4 B.2C.8 D.4【分析】根据角平分线的定义得到∠ABD=∠CBD,根据线段垂直平分线的性质得到FB=FC,得到∠FCB=∠CBD,根据三角形内角和定理得到∠BCA=∠A,根据等腰三角形的判定定理解答.【解答】解:∵BD平分∠ABC,∴∠ABD=∠CBD,∵EF是BC的垂直平分线,∴FB=FC,∴∠FCB=∠CBD,∴∠ABD=∠CBD=∠FCB,∠ABD+∠CBD+∠FCB+∠A+∠DCF=180°,解得,∠FCB=20°,∴∠BCA=70°,∴∠BCA=∠A,∴AB=BC=8,故选:C.二.填空题(共5小题)11.H7N9病毒的直径为30纳米(1纳米10﹣9米),30纳米用科学记数法可表示为3×10﹣8米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:30纳米=30×10﹣9米=3×10﹣8米.故答案为:3×10﹣8.12.计算(﹣)3的结果是﹣.【分析】根据分式的乘方法则计算,得到答案.【解答】解:(﹣)3=﹣=﹣,故答案为:﹣.13.如图,已知AE=BE,DE是AB的垂直平分线,BF=12,CF=3,则AC=15 .【分析】利用垂直平分线的性质得出AF=BF,从而求出AC的长.【解答】解:∵DE是AB的垂直平分线,∴AF=BF∴AC=AF+CF=BF+CF=12+3=15.14.已知x﹣=6,求x2+的值为38 .【分析】把x﹣=6两边平方后化简整理解答即可.【解答】解:将x﹣=6两边平方,可得:,解得:,故答案为:38.15.如图,△ABC中,AB=BD,点D,E分别是AC,BD上的点,且∠ABD=∠DCE,若∠BEC =105°,则∠A的度数是85°.【分析】设∠A=∠BDA=x,∠ABD=∠ECD=y,构建方程组即可解决问题.【解答】解:∵BA=BD,∴∠A=∠BDA,设∠A=∠BDA=x,∠ABD=∠ECD=y,则有,解得x=85°,故答案为85°.三.解答题(共8小题)16.计算:(2m2n﹣3)2•3m﹣3n4.【分析】先算乘方,再根据单项式乘单项式的运算法则进行计算即可得出答案.【解答】解:(2m2n﹣3)2•3m﹣3n4=(4m4n﹣6)(3m﹣3n4)=12mn﹣2=.17.计算:+﹣1【分析】先把要求的式子进行变形,再根据分式的加减法则进行计算即可得出答案.【解答】解:+﹣1=﹣﹣1=1﹣1=0.18.解方程:.【分析】去分母,将分式方程转化为整式方程,即可解决问题.【解答】解:∵,∴1440﹣1260=6x,即180=6x,解得:x=30.经检验:x=30是原方程的解.19.如图,△ABC中,BD=EC,AB=AC,∠B=∠C,求证:△ABE≌△ACD【分析】利用SAS证明△ABE和△ACD全等即可.【解答】证明:∵BD=CE,∴BE=CD,在△ABE和△ACD中,∵,∴△ABE≌△ACD(SAS).20.如图,点E在△ABC的外部,点D在BC上,DE交AC于点F,∠1=∠2=∠3,AB=AD.求证:△ABC≌△ADE.【分析】根据角的和差和三角形的内角和得到∠BAC=∠DAE,∠C=∠E,然后根据全等三角形的判定定理即可得到结论.【解答】证明:∵∠1=∠2=∠3,∠AFE=∠CFD,∴∠1+∠DAF=∠2+∠DAF,∠C=180°﹣∠3﹣∠DFC,∠E=180°﹣∠2﹣∠AFE,∴∠BAC=∠DAE,∠C=∠E,在△ABC与△ADE中,,∴△ABC≌△ADE(AAS).21.节能环保的油电混合动力汽车,既可用油做动力行驶,也可用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求汽车行驶中每千米用电费用是多少元?(2)甲、乙两地的距离是多少千米?【分析】(1)直接利用行驶的路程不变得出方程进而得出答案;(2)利用(1)中所求即可得出答案.【解答】解:(1)设汽车行驶中每千米用电费用是x元,则每千米用油费用为(x+0.5)元,根据题意可得:=,解得:x=0.3,经检验得:x=0.3是原方程的解,答:汽车行驶中每千米用电费用是0.3元;(2)甲、乙两地的距离是:30÷0.3=100(千米).22.如图,在△ABC中,∠C=90°,PD=PA,(1)尺规作图:作BD的垂直平分线交BC于点E,交BD于点F(不写作法,保留作图痕迹);(2)在(1)所作的图中,连接DE,求证:DE⊥DP.【分析】(1)利用基本作图作BD的垂直平分线EF;(2)先由PA=PD得到∠A=∠PDA,再根据线段垂直平分线的性质得到EB=ED,则∠B =∠EDB,从而得到∠PDA+∠EDB=90°,从而可判断PD⊥DE.【解答】(1)解:如图,EF为所作;(2)证明:∵PA=PD,∴∠A=∠PDA,∵EF垂直平分BD,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠PDA+∠EDB=90°,∴∠PDE=180°﹣∠PDA﹣∠EDB=90°,∴PD⊥DE.23.如图,在等边△ABC的顶点B、C处各有一只蜗牛,它们同时出发,分别都以每分钟1个单位的速度由C向A和由B向C爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D、P处,请问:(1)在爬行过程中,BD和AP始终相等吗?(2)在爬行过程中BD与AP所成的∠DQA有变化吗?若无变化是多少度?【分析】(1)根据等边三角形性质得出∠CAB=∠C=∠ABP=60°,AB=BC,根据SAS 推出△BDC≌△APB即可.(2)根据△BDC≌△APB得出∠CBD=∠BAP,根据三角形外角性质求出∠DQA=∠ABC,即可求出答案.【解答】解:(1)在爬行过程中,BD和AP始终相等,理由是:∵△ABC是等边三角形,∴∠CAB=∠C=∠ABP=60°,AB=BC,在△BDC和△APB中,,∴△BDC≌△APB(SAS),∴BD=AP.(2)蜗牛在爬行过程中BD与AP所成的∠DQA大小无变化,理由:∵△BDC≌△APB,∴∠CBD=∠BAP,∴∠DQA=∠DBA+∠BAP=∠DBA+∠CBD=∠ABC=60°,即蜗牛在爬行过程中BD与AP所成的∠DQA大小无变化,始终是60°.。
株洲市炎陵县2019-2020学年八年级上期中数学试卷含答案解析一、选择题(本题共8小题,每小题3分,共24分)1.下列分式不是最简分式的是()A.B.C.D.2.有下列命题:①两点之间,线段最短;②相等的角是对顶角;③当a>0时,|a|=a;④内错角互补,两直线平行.其中真命题的有()A.1个B.2个C.3个D.4个3.下列运算正确的是()A.x﹣2•x4=x8B.3x+2y=6xy C.(x﹣3)﹣2=x6D.y3÷y3=y4.为了判断命题“每个月都有31天”是假命题,可举的反例是()A.3月B.5月C.7月D.9月5.化简的结果是()A.a2﹣b2B.a+b C.a﹣b D.16.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm7.如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°,则∠EDF=()度.A.58°B.68°C.78° D.32°8.八年级两班的学生参加植树造林活动,已知甲班每天比乙班每天多植15棵树,甲班植90棵树所用天数与乙班植60棵树所用天数相等.若设甲班每天植树x棵,则()A. = B. = C. = D. =二、填空题(本题共8小题,每小题3分,共24分)9.计算:(﹣2)0=,(﹣)﹣4=,(3﹣2)2=.10.当x时,分式的值为0.11.已知等腰三角形两边长分别为9cm、4cm.则它的周长是cm.12.化简: =.13.已知D、E分别是△ABC的边BC和AC的中点,若△ABC的面积=24cm2,则△DEC的面积为.14.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点.如果∠D=70°,∠CAB=50°,那么∠DAB=.15.已知,∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF,若以“AAS”为依据,还要添加的条件为.16.小亮和小青从同一地点出发跑800m,小亮的速度是小青的1.25倍,小亮比小青提前40s到达终点.问:小亮和小青的速度各是多少?设小青的速度为xm/s,依题意列方程.三、解答题(本大题共8小题,共52分)17.计算:(1)()﹣1﹣2+(π﹣3.14)0(2)÷.18.解下列分式方程:(1)=(2)+1=.19.先化简,再求值:•(﹣1),其中x=2.20.如图:河岸线的同侧有两个村庄A,B,现要在河岸上修一个自来水厂,使厂到A,B两地的距离相等,请在图中作出厂的位置(用P点表示),并说明你这样做会使厂到时A,B两地距离相等的理由(尺规作图,不要求写出做法,只保留作图痕迹)21.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE交CE于F,求∠CDF的度数.22.去年入秋以来,发生了百年一遇的旱灾,连续8个多月无有效降水,为抗旱救灾,某部队计划为驻地村民新修水渠3600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?23.如图:已知AD、BC相交于O,且AB=CD,AD=CB.求证:∠B=∠D.24.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:;结论:.(均填写序号)证明:-学年炎八年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题3分,共24分)1.下列分式不是最简分式的是()A.B.C.D.【考点】分式的值.【分析】根据分式的分子分母不含公因式的分式是最简分式,可得答案.【解答】解:A、分式的分子分母不含公因式,故A是最简分式;B、分式的分子分母不含公因式,故B是最简分式;C、分式的分子分母不含公因式,故C是最简分式;D、分式的分子分母含公因式2,故D不是最简分式;故选:D.2.有下列命题:①两点之间,线段最短;②相等的角是对顶角;③当a>0时,|a|=a;④内错角互补,两直线平行.其中真命题的有()A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】根据线段公理对①进行判断;根据对顶角的定义对②进行判断;根据绝对值的意义对③进行判断;根据平行线的判定方法对④进行判断.【解答】解:两点之间,线段最短,所以①正确;相等的角不一定是对顶角,所以②错误;当a>0时,|a|=a,所以③正确;内错角相等,两直线平行,所以④错误.3.下列运算正确的是()A.x﹣2•x4=x8B.3x+2y=6xy C.(x﹣3)﹣2=x6D.y3÷y3=y【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方;负整数指数幂.【分析】根据同底数幂的乘除法法则、幂的乘方法则、合并同类项法则计算即可.【解答】解:x﹣2•x4=x﹣2+4=x2,A错误;3x与2y不是同类项,不能合并,B错误;(x﹣3)﹣2=x﹣3×(﹣2)=x6,C正确;y3÷y3=1,D错误,故选:C.4.为了判断命题“每个月都有31天”是假命题,可举的反例是()A.3月B.5月C.7月D.9月【考点】命题与定理.【分析】根据题意只要举出是月份不是31天的例子即可.【解答】解:∵9月是30天,∴命题“每个月都有31天”是假命题,故选D.5.化简的结果是()A.a2﹣b2B.a+b C.a﹣b D.1【考点】分式的加减法.【分析】几个分式相加减,根据分式加减法则进行运算;【解答】解:原式==a+b.6.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm【考点】三角形三边关系.【分析】此题首先根据三角形的三边关系,求得第三边的取值范围,再进一步找到符合条件的数值.【解答】解:根据三角形的三边关系,得:第三边应大于两边之差,且小于两边之和,即9﹣4=5,9+4=13.∴第三边取值范围应该为:5<第三边长度<13,故只有B选项符合条件.故选:B.7.如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°,则∠EDF=()度.A.58°B.68°C.78° D.32°【考点】三角形的外角性质;三角形内角和定理.【分析】利用三角形外角的性质及三角形的内角和定理计算.【解答】解:∵FD⊥BC,∠AFD=158°,∴∠CFD=180°﹣∠AFD=180°﹣158°=22°,则∠C=180°﹣∠FDC﹣∠CFD=180°﹣90°﹣22°=68°.∵∠B=∠C,DE⊥AB,∴∠EDB=180°﹣∠B﹣∠DEB=180°﹣68°﹣90°=22°,则∠EDC=∠B+∠DEB=∠B+90°.∵∠EDC=∠EDF+90°,∴∠EDF=∠B=68°.故选B.8.八年级两班的学生参加植树造林活动,已知甲班每天比乙班每天多植15棵树,甲班植90棵树所用天数与乙班植60棵树所用天数相等.若设甲班每天植树x棵,则()A. = B. = C. = D. =【考点】由实际问题抽象出分式方程.【分析】本题等量关系为:甲班植90棵树所用的天数=乙班植60棵树所用的天数,根据等量关系列式.【解答】解:设甲班每天植树x棵,根据题意得:,故选D.二、填空题(本题共8小题,每小题3分,共24分)9.计算:(﹣2)0=1,(﹣)﹣4=16,(3﹣2)2=.【考点】幂的乘方与积的乘方;零指数幂;负整数指数幂.【分析】根据零指数幂、负整数指数幂、幂的乘方进行计算即可.【解答】解:(﹣2)0=1,(﹣)﹣4=16,(3﹣2)2=3﹣4=,故答案为1,16,.10.当x=1时,分式的值为0.【考点】分式的值为零的条件.【分析】根据分式的值为0的条件列出关于x的不等式组是解答此题的关键.【解答】解:∵分式的值为0,∴,解得x=1.故答案为:=1.11.已知等腰三角形两边长分别为9cm、4cm.则它的周长是22cm.【考点】等腰三角形的性质;三角形三边关系.【分析】先根据已知条件和三角形三边关系定理可知,等腰三角形的腰长不可能为4cm,只能为9cm,再根据周长公式即可求得等腰三角形的周长.【解答】解:∵等腰三角形的两条边长分别为9cm、4cm,∴由三角形三边关系可知:等腰三角形的腰长不可能为4cm,只能为9cm,∴等腰三角形的周长=9+9+4=22(cm).故答案为:22.12.化简: =.【考点】约分.【分析】先利用完全平方公式进行因式分解,再约分求解即可.【解答】解: ==.故答案为:.13.已知D、E分别是△ABC的边BC和AC的中点,若△ABC的面积=24cm2,则△DEC的面积为6cm2.【考点】三角形的面积.【分析】根据三角形的面积公式以及中点的概念即可分析出各部分的面积关系.【解答】解:∵D、E分别是△ABC的边BC和AC的中点,=2S△ADC∴S△ABC=24cm2,又∵D是△ABC的边BC的中点,S△ABC=S△ABC=6cm2.∴S△DEC故答案为:6cm2.14.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点.如果∠D=70°,∠CAB=50°,那么∠DAB=60°.【考点】全等三角形的性质.【分析】根据全等三角形的对应角相等,即可求得∠DBA的度数,然后根据三角形的内角和定理即可求出∠DAB的度数.【解答】解:∵△ABC≌△BAD,点A和点B、点C和点D是对应点,∴∠CAB的对应角是∠DBA,∴∠CAB=∠DBA=50°.∵∠D+∠DBA+∠DAB=180°,∠D=70°,∴∠DAB=180°﹣70°﹣50°=60°.故答案为:60°.15.已知,∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF,若以“AAS”为依据,还要添加的条件为∠ACB=∠F.【考点】全等三角形的判定.【分析】根据两角及其中一个角的对边对应相等的两个三角形全等可添加∠ACB=∠F.【解答】解:添加∠ACB=∠F,∵在△ABC和△DEF中,∴△ABC≌△DEF(AAS),故答案为:∠ACB=∠F.16.小亮和小青从同一地点出发跑800m,小亮的速度是小青的1.25倍,小亮比小青提前40s到达终点.问:小亮和小青的速度各是多少?设小青的速度为xm/s,依题意列方程﹣=40.【考点】由实际问题抽象出分式方程.【分析】首先设小青的速度是x米/秒,则小亮的速度是1.25x米/秒,根据关键语句“小亮比小青提前40s到达终点”可得等量关系:小亮跑800米的时间﹣小青跑800米的时间=40秒,根据等量关系列出方程.【解答】解:设小青的速度是x米/秒,则小亮的速度是1.25x米/秒,由题意得:﹣=40,故答案为:﹣=40.三、解答题(本大题共8小题,共52分)17.计算:(1)()﹣1﹣2+(π﹣3.14)0(2)÷.【考点】分式的乘除法;实数的运算;零指数幂;负整数指数幂.【分析】(1)根据实数的运算,可得答案;(2)根据分式的除法运算,可得答案.【解答】解:(1)原式=2﹣2+1=1;(2)原式=•=.18.解下列分式方程:(1)=(2)+1=.【考点】解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x+2=4,解得:x=2,经检验x=2是增根,分式方程无解;(2)去分母得:x﹣3+x﹣2=﹣3,解得:x=1,经检验x=1是分式方程的解.19.先化简,再求值:•(﹣1),其中x=2.【考点】分式的化简求值.【分析】先通分,再约分,把x的值代入计算即可.【解答】解:原式=•(﹣),=•=﹣,当x=2时,原式=﹣=﹣1.20.如图:河岸线的同侧有两个村庄A,B,现要在河岸上修一个自来水厂,使厂到A,B两地的距离相等,请在图中作出厂的位置(用P点表示),并说明你这样做会使厂到时A,B两地距离相等的理由到线段两个端点距离相等的点在线段的垂直平分线上(尺规作图,不要求写出做法,只保留作图痕迹)【考点】作图—应用与设计作图.【分析】连接AB,作AB的垂直平分线交河岸于P点,P点为所求,再根据垂直平分线的性质填空即可.【解答】解:如图所示:理由为:到线段两个端点距离相等的点在线段的垂直平分线上,故答案为:到线段两个端点距离相等的点在线段的垂直平分线上.21.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE交CE于F,求∠CDF的度数.【考点】三角形的外角性质;角平分线的定义;三角形内角和定理.【分析】首先根据三角形的内角和定理求得∠ACB的度数,再根据CE平分∠ACB求得∠ACE的度数,则根据三角形的外角的性质就可求得∠CED=∠A+∠ACE,再结合CD⊥AB,DF⊥CE就可求解.【解答】解:∵∠A=40°,∠B=72°,∴∠ACB=180°﹣40°﹣72°=68°,∵CE平分∠ACB,∴∠ACE=∠BCE=34°,∴∠CED=∠A+∠ACE=74°,∴∠CDE=90°,DF⊥CE,∴∠CDF+∠ECD=∠ECD+∠CED=90°,∴∠CDF=74°.22.去年入秋以来,发生了百年一遇的旱灾,连续8个多月无有效降水,为抗旱救灾,某部队计划为驻地村民新修水渠3600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?【考点】分式方程的应用.【分析】设原计划每天修水渠x米.根据原计划工作用的时间﹣实际工作用的时间=20等量关系列出方程.【解答】解:设原计划每天修水渠x米.根据题意得:,解得:x=80.经检验:x=80是原分式方程的解.答:原计划每天修水渠80米.23.如图:已知AD、BC相交于O,且AB=CD,AD=CB.求证:∠B=∠D.【考点】全等三角形的判定与性质.【分析】连接AC,利用“边边边”证明△ABD和△CDB全等,根据全等三角形对应角相等证明即可【解答】证明:连接AC,在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠B=∠D.24.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:可以为①②③;结论:④.(均填写序号)证明:【考点】全等三角形的判定与性质;命题与定理.【分析】此题可以分成三种情况:情况一:题设:①②③;结论:④,可以利用SAS定理证明△ABC≌△DEF;情况二:题设:①③④;结论:②,可以利用AAS证明△ABC≌△DEF;情况三:题设:②③④;结论:①,可以利用ASA证明△ABC≌△DEF,再根据全等三角形的性质可推出结论.【解答】情况一:题设:①②③;结论:④.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠1=∠2;情况二:题设:①③④;结论:②.证明:在△ABC和△DEF中,∵,∴△ABC≌△DEF(AAS),∴BC=EF,∴BC﹣FC=EF﹣FC,即BF=EC;情况三:题设:②③④;结论:①.证明:∵BF=EC,∴BF+CF=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.年5月4日。
上海市青浦区实验中学2019-2020学年八年级上学期期中考试数学试卷一、选择题(共18分,每题3分)1.下列方程是一元二次方程的是()A.1x-=0x+1 B.2x-2x C.23x-2x+1=0 D.2ax+bx+c=0【答案】C【解析】【分析】根据一元二次方程的定义进行判断即可.【详解】A.该方程属于分式方程,故本选项错误;B.根号内含有未知数,是无理方程,故本选项错误;C.该方程符合一元二次方程的定义,故本选项正确;D.当a=0时,它不是一元二次方程,故本选项错误.故选C.【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).2.二次三项式2x2-8x+5在实数范围内因式分解为()A.4+64-6(x+)(x+)22 B.4+66(x-)(x-)22C.4+64-62(x+)(x-)22 D.4+64-62(x-)(x-)22【答案】D【解析】【分析】令二次三项式等于0,求出x的值,即可得到分解因式的结果.【详解】令2x 2-8x +5=0,解得:x 1=426,x 2=426,则2x 2-8x +5=46462()()22x x +---.故选D .【点睛】本题考查了实数范围内分解因式-求根公式法.当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号.注意当无法用十字相乘法的方法时用求根公式法可分解因式.3.对圆的周长公式2C r π=的说法正确的是()A.π,r 是变量,2是常量B.C ,r 是变量,π,2是常量C.r 是变量,2,π,C 是常量D.C 是变量,2,π,r 是常量【答案】B 【解析】在变化过程中,某量若保持不变,则称之为常量;反之,则称之为变量.π是常数,约等于3.14,和2一样是不变的常数,所以它们是常量;C 和r 是变化的量,故是变量,故选B.4.在下列函数中,当x 增大时,y 的值减小的函数是()A.y=2xB.y=5xC.3y=-xD.x y=-4【答案】D 【解析】【分析】根据一次函数的性质,当k >0时,y 随x 的增大而增大,当k <0时,y 随x 的增大而减小,反比例函数的增减性必须是在每个象限内或在双曲线的每一支上,否则,不能讨论它的增减性.【详解】A .是反比例函数,其增减性必须强调在双曲线的每一支上,故本选项错误;B .k =5>0,所以y 随x 的增大而增大,故本选项错误;C .是反比例函数,其增减性必须强调在双曲线的每一支上,故本选项错误.D .是一次函数k =14-<0,所以y 随x 的增大而减小,正确.故选D .【点睛】本题考查了一次函数与反比例函数的性质,反比例函数的增减性必须强调在每个象限内或在双曲线的每一支上,这也是同学们经常出错的地方.5.函数1y=k x 和2k y=x(k 1>0,且k 1k 2<0)的图像大致是()A. B.C.D.【答案】C 【解析】【分析】首先根据k 1>0且k 1k 2<0,可得k 2<0,再根据正比例函数的性质可得y =k 1x 的图象在第一三象限,根据反比例函数的性质可得2k y x=的图象在第二四象限,进而可选出答案.【详解】∵k 1>0且k 1k 2<0,∴k 2<0,∴y =k 1x 的图象在第一三象限,2k y x=的图象在第二四象限.故选C .【点睛】本题考查了正比例函数与反比例函数的图象与性质,关键是熟练掌握两个函数的性质.6.同学聚会,每两人都握手一次,共握手45次,设x 人参加聚会,列方程为()A.x(x-1)=45 B.x(x-1)=452C.12x(x-1)=45 D.x(x+1)=45【答案】C 【解析】【分析】本题利用一元二次方程应用中的基本数量关系:x 人参加聚会,两人只握一次手,握手总次数为12x (x ﹣1),列方程即可.【详解】由题意列方程得:12x (x ﹣1)=45.故选C .【点睛】本题考查了一元二次方程的应用.找准相等关系是解答本题的关键.二、填空题(共36分,每题3分)7.如果x=12是一元二次方程x2+bx+2=0的一个根,则b的值为____________.【答案】9-2【解析】【分析】把方程的解x=12代入方程得到关于b的等式,可以求出字母系数b的值.【详解】把x=12代入方程有:112042b++=,解得:b=92-.故答案为:9 2-.【点睛】本题考查了一元二次方程的解,把方程的解代入方程可以求出字母系数的值.8.方程x2=8x的根是______.【答案】x1=0,x2=8【解析】【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:x2=8x,x2-8x=0,x(x-8)=0,x=0,x-8=0,x1=0,x2=8,故答案为:x1=0,x2=8.【点睛】考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.9.将方程x2-4x-3=0用配方法化成(x+a)2=b的形式,所得方程是____________________.【答案】(x-2)2=7【解析】【分析】根据配方法的步骤把常数项移到等号的右边,再在等式两边同时加上一次项系数一半的平方,然后进行配方即可求出答案.【详解】x2﹣4x﹣3=0,x2﹣4x=3,x2﹣4x+4=3+4,(x﹣2)2=7.故答案为:(x﹣2)2=7.【点睛】本题考查了配方法解一元二次方程,掌握配方法的步骤是解答本题的关键.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.10.方程x2-2x-3=0的根的判别式的值为________________.【答案】16【解析】【分析】先找出一元二次方程x2﹣2x﹣3=0中a、b、c的值,再代入判别式△=b2﹣4ac计算即可.【详解】∵a=1,b=﹣2,c=﹣3,∴△=b2﹣4ac=(﹣2)2﹣4×1×(﹣3)=4+12=16.故答案为:16.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式,牢记根的判别式为△=b2﹣4ac是解题的关键.11.函数y=x-2x-3的定义域是____________________.【答案】x≥2且x≠3【解析】【分析】当表达式的分母中含有自变量时,自变量取值要使分母不为零.当函数的表达式是二次根式时,自变量的取值范围必须使被开方数不小于零.【详解】∵函数y=23xx--,∴x-2≥0且x-3≠0,解得:x≥2且x≠3,∴函数y=23xx--的定义域为x≥2且x≠3.故答案为:x≥2且x≠3.【点睛】本题考查了函数自变量的取值范围,对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.12.已知函数y=32x-1-2x,则f(1)=_________________.【答案】1【解析】【分析】把x =1代入函数解析式,计算即可.【详解】f (1)=3221--=3-2=1.故答案为:1.【点睛】本题考查了函数值.掌握函数值的求法是解答本题的关键.13.已知直角三角形的一个锐角为36°,则另一个锐角的大小为________________.【答案】54°【解析】【分析】根据直角三角形两锐角互余列式计算即可得解.【详解】90°﹣36°=54°.故答案为:54°.【点睛】本题考查了直角三角形两锐角互余的性质,是基础题.14.已知,RtΔABC 中,∠C =90°,∠ABC =30°,BC =3,那么AC =________________.3【解析】【分析】设AC =x .由30°角所对直角边等于斜边的一半,得到AB =2AC =2x .由Rt △ABC 中,利用勾股定理,即可求出AC 的长.【详解】设AC =x .∵∠C =90°,∠ABC =30°,∴AB =2AC =2x .又∵BC 2222(2)3AB AC x x x -=-=3,∴x 3,∴AC 33.【点睛】本题考查了含30度角的直角三角形的性质以及勾股定理,知道30度角所对的直角边等于斜边的一半是解答本题的关键.15.在实数范围内因式分解:2x2-x-2=__________________.【答案】117117 2()44x x+--【解析】【分析】当要求在实数范围内进行因式分解时,分解的式子的结果一般要分到出现无理数为止.2x2-x-2不是完全平方式,所以只能用求根公式法分解因式.【详解】2x2-x-2=0的解是x1=1174,x2=﹣1174,所以2x2-x-2=1171172(44x x+---.【点睛】本题考查了实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.求根公式法分解因式:ax2+bx+c=a(x﹣x1)(x﹣x2),其中x1,x2是方程ax2+bx+c=0的两个根.16.一次函数y=112x-+图像与坐标轴围成的三角形的面积是______________.【答案】1【解析】【分析】求得函数与坐标轴的交点,然后根据三角形的面积公式即可求得三角形的面积.【详解】一次函数的关系式是y=112x-+,当x=0时,y=1;当y=0时,x=2,它的图象与坐标轴围成的三角形面积是:12×1×2=1.故答案为:1.【点睛】本题考查了一次函数图象上点的坐标特征.求线段的长的问题一般是转化为求点的坐标的问题解决.17.某药品原来售价为20元,经过连续两次降价后的售价为12.8元,则平均每次的降价率为____________________.【答案】20%【解析】【分析】设平均每次降价率为x,可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣x)=12.8,把相应数值代入即可求解.【详解】设平均每次降价率为x,则第一次降价后的价格为20×(1﹣x),两次连续降价后售价后的价格为:20×(1﹣x)×(1﹣x),则列出的方程是20×(1﹣x)2=12.8,解得:x1=0.2=20%,x2=1.8(舍去).即平均每次的降价率为20%.故答案为:20%.【点睛】本题考查了一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.18.若A、B两点关于y轴对称,点A在双曲线y=2x上,点B在直线y=-x上,则点B的坐标是___________________________.【答案】2,2)或(22)【解析】【分析】首先根据A、B两点关于y轴对称,设B的坐标是B(a,b),则A(﹣a,b).根据点B在直线y=﹣x上,得到a,b之间的关系,再根据反比例函数图象上点的坐标特征求出a、b的值,进而得到B的坐标.【详解】∵A、B两点关于y轴对称,∴设B点坐标是(a,b),则A(﹣a,b).∵点B在直线y=﹣x上,∴﹣a=b,∴B坐标变为:(a,﹣a),A点坐标变为(﹣a,﹣a).∵点A在双曲线y=2x上,∴a2=2,∴a=2.当a=2时,b=2;当a=2时,b2,∴B点2,2)或(2-2).故答案为:2,2-)或(2,2).【点睛】本题考查了关于y轴对称的点的坐标特征,反比例函数图象上点的特征,以及正比例函数图象上点的特征,关键是要准确掌握各函数图象上的点的特征,才能正确解决问题.三、解答题(共46分,19-22题每题5分,23-24每题8分,25题10分)19.已知关于x的一元二次方程(m-1)x2-2x+3=0有两个不相等的实数根,求m的取值范围.【答案】m<43且m≠1.【解析】【分析】根据判别式的意义得到△=22﹣4(m﹣1)×3>0,且m﹣1≠0,然后解不等式即可.【详解】根据题意得:△=22﹣4(m﹣1)×3>0且m﹣1≠0,解得:m<43且m≠1.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.20.建一个面积为1152平方米的长方形仓库,仓库的一面靠墙,墙长100米,另三面用长度为120米的铁栅栏围起来,求仓库两条邻边的长度各是多少米?【答案】长为48米,宽为24米或长为96米,宽为12米【解析】【分析】设垂直于墙的一边是x米.根据面积为1152平方米的长方形列方程求解.【详解】设垂直于墙的一边是x米.根据题意,得:x(120﹣2x)=1152整理得:x2﹣60x+576=0.解得:x=48或x=12.当x=48时,120-2x=24;当x=12时,则120﹣2x=96.答:仓库两条邻边的长各是48米、24米或96米、12米.【点睛】本题考查了一元二次方程的应用,找准等量关系列方程是解答本题的关键.21.已知正比例函数y=1x2和反比例函数的图像都经过A,点A的纵坐标是-3,求这个反比例函数的解析式.【答案】18 yx【解析】【分析】根据题意将y =-3代入正比例函数解析式,求出点A 的坐标,再将点A 代入反比例函数(0)ky k x=≠求出解析式即可.【详解】∵点A 在正比例函数y =12x 的图象上,∴-3=12x ,解得:x =-6,∴A (-6,-3).又∵A 在反比例函数k y x=的图象上,∴63k -=-,解得:k =18,∴反比例函数的解析式为18y x =.【点睛】本题考查了反比例函数和一次函数的交点问题,注意交点同时满足两个函数的解析式.22.已知:BE⊥CD,BE=DE,BC=DA.求证:FD⊥BC.【答案】证明见解析【解析】【分析】根据已知利用HL 即可判定△BEC ≌△DEA ,利用全等三角形的对应角相等可得到∠B=∠D ,从而不难求得DF ⊥BC .【详解】∵BE ⊥CD ,∴∠CEB=∠AED=90°,在Rt △BEC 和Rt △DEA 中,{BE DE BC DA==∴Rt △BEC ≌Rt △DEA (HL ),∴∠CBE=∠ADC ,∵∠CBE+∠C=90°,∴∠ADC+∠C=90°,∴DF ⊥BC.【点睛】此题主要考查学生对全等三角形的判定及性质的理解及运用,做题时要注意思考,认真寻找全等三角形全等的条件是解决本题的关键.23.小强骑车从家到学校要经过一段先上坡后下坡的路,在这段路上小强骑车的距离s(千米)与骑车的时间t(分钟)之间的函数关系如图所示,请根据图中信息回答下列问题:(1)小强去学校时下坡路长千米;(2)小强下坡的速度为千米/分钟;(3)若小强回家时按原路返回,且上坡的速度不变,下坡的速度也不变,那么回家骑车走这段路的时间是分钟.【答案】(1)2(2)0.5(3)14【解析】【分析】(1)根据题意和函数图象可以得到下坡路的长度;(2)根据函数图象中的数据可以求的小强下坡的速度;(3)根据题意可以求得小强上坡的速度,进而求得小强返回时需要的时间.【详解】(1)由题意和图象可得:小强去学校时下坡路为:3﹣1=2(千米).故答案为:2;(2)小强下坡的速度为:2÷(10﹣6)=0.5千米/分钟.故答案为:0.5;(3)小强上坡时的速度为:1÷6=16千米/分钟,故小强回家骑车走这段路的时间是:2110.56=14(分钟).故答案为:14.【点睛】本题考查了函数图象,解题的关键是明确题意,找出所求问题需要的条件.24.如图,在平面直角坐标系中,直线y=2x经过点A(m,6),点B坐标为(4,0).(1)求点A的坐标;(2)若P为射线OA上的一点,当ΔPOB是直角三角形时,求P点的坐标.【答案】(1)(3,6);(2)(4,8)或(0.8,1.6).【解析】【分析】(1)根据直线y=2x经过点A(m,6),可得6=2m,易求m=3,即可得A点坐标;(2)考虑有两种情况:①当∠OBP=90°时,点P的横坐标与点B的横坐标相同,均为4,把x=4代入y=2x,易求y=8,从而可得P点坐标;当∠OPB=90°时,可先设P点坐标是(n,2n),根据勾股定理易得n2+(2n)2+(n﹣4)2+(2n)2=42,解方程即可得到结论.【详解】(1)∵直线y=2x经过点A(m,6),∴6=2m,解得:m=3,∴点A的坐标为(3,6);(2)分两种情况讨论:①当∠OBP=90°时,点P的横坐标与点B的横坐标相同,均为4,将x=4代入y=2x,得y=8,∴点P的坐标为(4,8);②当∠OPB=90°时,PO2+PB2=OB2,设P点坐标为(n,2n),n2+(2n)2+(n﹣4)2+(2n)2=42,解得:n1=0.8,n2=0(舍去),∴点P的坐标为(0.8,1.6).综上所述:当△POB是直角三角形时,点P的坐标为(4,8)或(0.8,1.6).【点睛】本题考查了一次函数综合题、勾股定理.解题的关键是根据题意画出图,要根据P点的不同位置进行分类讨论.25.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C顺时针方向旋转60°,到△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由.(3)探索:当α为多少度时,△AOD是等腰三角形.【答案】(1)见解析;(2)见解析;(3)110°或125°或140°.【解析】【分析】(1)根据△BOC绕点C按顺时针方向旋转60°得△ADC,得CO=CD,∠OCD=60°故△COD是等边三角形;(2)求得∠ADO=∠ADC-∠CDO=90°即可知△AOD是直角三角形;(3)分别求出∠ADO=α-60°,∠AOD=360°-60°-110°-α=190°-α,再根据等腰三角形的底角相同分3中情况讨论.【详解】解:(1)∵△BOC绕点C按顺时针方向旋转60°得△ADC,∴CO=CD,∠OCD=60°,∴△COD是等边三角形;(2)∵△BOC绕点C按顺时针方向旋转60°得△ADC,∴∠ADC=∠BOC=α=150°,∵△COD是等边三角形,∴∠CDO=60°,∴∠ADO=∠ADC-∠CDO=90°,∴△AOD是直角三角形;(3)∵△COD是等边三角形,∴∠CDO=∠COD=60°,∴∠ADO=α-60°,∠AOD=360°-60°-110°-α=190°-α,当∠AOD=∠ADO时,△AOD是等腰三角形,即190°-α=α-60°,解得α=125°;当∠AOD=∠DAO时,△AOD是等腰三角形,即2(190°-α)+α-60°=180°,解得α=140°;当∠ADO=∠DAO时,△AOD是等腰三角形,即190°-α+2(α-60°)=180°,解得α=110°,综上所述,∠BOC的度数为110°或125°或140°时,△AOD是等腰三角形.【点睛】此题主要考察旋转的性质与应用.。
2019-2020学年山东省德州市禹城市八年级(上)期中数学试卷一、选择题(本大题共12个小题得小题4分,共18分.在每小题余出的四个选理中,以有一项是符合题目要求的)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个2.下面各组线段中,能组成三角形的是()A.5,11,6B.8,8,16C.10,5,4D.6,9,143.如图,是三个等边三角形随意摆放的图形,则∠1+∠2+∠3等于()A.90°B.120°C.150°D.180°4.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC5.已知∠AOB=30°,点P在∠AOB内部,P1与P关于OA对称,P2与P于OB对称,则△P1OP2的形状一定是()A.直角三角形B.等边三角形C.底边和腰不相等的等腰三角形D.钝角三角形6.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD =8,则点P到BC的距离是()A.8B.6C.4D.27.如图,在△ABC中,AB=AC,∠ABC=75°,E为BC延长线上一点,∠ABC与∠ACE 的平分线相交于点D.则∠D的度数为()A.15°B.17.5°C.20°D.22.5°8.△ABC中,∠ABC与∠ACB的平分线相交于I,且∠BIC=130°,则∠A的度数是()A.40°B.50°C.65°D.80°9.如图,直线a、b、c、d互不平行,对它们截出的一些角的数量关系描述错误的是()A.∠1+∠6=∠2B.∠4+∠5=∠2C.∠1+∠3+∠6=180°D.∠1+∠5+∠4=180°10.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()A.30°B.40°C.50°D.60°11.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°12.如图,从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CB′=∠ACB,④AB =A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题(每小题4分,共24分)13.如图,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是.14.点A(3,﹣2)关于x轴对称的点的坐标是.15.等腰三角形的一个角为50°,那么它的一个底角为.16.一个多边形的内角和是外角和的2倍,则这个多边形的边数为.17.如图所示,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,若DE=2,则EC =.18.如图,在Rt△ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QP A全等,则AP =.三、解答题(共78分)19.(9分)如图,在直角坐标系中,先描出点A(1,3),点B(4,1).(1)描出点A关于x轴的对称点A1的位置,写出A1的坐标;(2)用尺规在x轴上找一点C,使AC+BC的值最小(保留作图痕迹);(3)用尺规在x轴上找一点P,使P A=PB(保留作图痕迹).20.(9分)如图,△ABC是等腰三角形,AB=AC,∠A=36°.(1)尺规作图:作∠B的角平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)判断△DBC是否为等腰三角形,并说明理由.21.如图,CA=CD,∠BCE=∠ACD,BC=EC,求证:∠A=∠D.22.已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.23.如图,在等边△ABC中,点E为边AB上任意一点,点D在边CB的延长线上,且ED =EC.(1)当点E为AB的中点时(如图1),则有AE DB(填“>”“<”或“=”);(2)猜想AE与DB的数量关系,并证明你的猜想.24.(1)阅读理解:如图1,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中.利用三角形三边的关系即可判断中线AD的取值范围是;(2)问题解决:如图2,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF.25.如图①,已知等腰直角△ABC中,BD为斜边上的中线,E为DC上的一点,且AG⊥BE于G,AG交BD于F.(1)求证:AF=BE;(2)如图②,若点E在DC的延长线上,其它条件不变,①的结论还能成立吗?若不能,请说明理由;若能,请予以证明.2019-2020学年山东省德州市禹城市八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12个小题得小题4分,共18分.在每小题余出的四个选理中,以有一项是符合题目要求的)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选:C.2.下面各组线段中,能组成三角形的是()A.5,11,6B.8,8,16C.10,5,4D.6,9,14【解答】解:A、∵5+6=11,∴不能组成三角形,故A选项错误;B、∵8+8=16,∴不能组成三角形,故B选项错误;C、∵5+4<10,∴不能组成三角形,故C选项错误;D、∵6+9>14,∴能组成三角形,故D选项正确.故选:D.3.如图,是三个等边三角形随意摆放的图形,则∠1+∠2+∠3等于()A.90°B.120°C.150°D.180°【解答】解:∵图中是三个等边三角形,∴∠1=180°﹣60°﹣∠ABC=120°﹣∠ABC,∠2=180°﹣60°﹣∠ACB=120°﹣∠ACB,∠3=180°﹣60°﹣∠BAC=120°﹣∠BAC,∵∠ABC+∠ACB+∠BAC=180°,∴∠1+∠2+∠3=360°﹣180°=180°,故选:D.4.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC【解答】解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;故选:C.5.已知∠AOB=30°,点P在∠AOB内部,P1与P关于OA对称,P2与P于OB对称,则△P1OP2的形状一定是()A.直角三角形B.等边三角形C.底边和腰不相等的等腰三角形D.钝角三角形【解答】解:∵P为∠AOB内部一点,点P关于OA、OB的对称点分别为P1、P2,∴OP=OP1=OP2且∠P1OP2=2∠AOB=60°,∴△OP1P2是等边三角形.故选:B.6.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD =8,则点P到BC的距离是()A.8B.6C.4D.2【解答】解:过点P作PE⊥BC于E,∵AB∥CD,P A⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴P A=PE,PD=PE,∴PE=P A=PD,∵P A+PD=AD=8,∴P A=PD=4,∴PE=4.故选:C.7.如图,在△ABC中,AB=AC,∠ABC=75°,E为BC延长线上一点,∠ABC与∠ACE 的平分线相交于点D.则∠D的度数为()A.15°B.17.5°C.20°D.22.5°【解答】解:∵AB=AC,∴∠ACB=∠ABC=75°,∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4=37.5°,∵∠ACE=180°﹣∠ACB=105°,∴∠2=52.5°,∴∠BCD=75°+52.5°=127.5°,∴∠D=180°﹣∠3﹣∠BCD=15°.故选:A.8.△ABC中,∠ABC与∠ACB的平分线相交于I,且∠BIC=130°,则∠A的度数是()A.40°B.50°C.65°D.80°【解答】解:∵∠BIC=130°,∴∠EBC+∠FCB=180°﹣∠BIC=180°﹣130°=50°,∵BE、CF是△ABC的角平分线,∴∠ABC+∠ACB=2(∠EBC+∠FCB)=2×50°=100°,∴∠A=180°﹣100°=80°.故选:D.9.如图,直线a、b、c、d互不平行,对它们截出的一些角的数量关系描述错误的是()A.∠1+∠6=∠2B.∠4+∠5=∠2C.∠1+∠3+∠6=180°D.∠1+∠5+∠4=180°【解答】解:A、∠1+∠6与∠2没有关系,结论不成立,故本选项正确;B、由三角形的外角性质,∠4+∠5=∠2成立,故本选项错误;C、由三角形的内角和定理与对顶角相等,∠1+∠3+∠6=180°成立,故本选项错误;D、由三角形的内角和定理与对顶角相等,∠1+∠5+∠4=180°成立,故本选项错误.故选:A.10.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()A.30°B.40°C.50°D.60°【解答】解:∵ED是AC的垂直平分线,∴AE=CE∴∠EAC=∠C,又∵∠B=90°,∠BAE=10°,∴∠AEB=80°,又∵∠AEB=∠EAC+∠C=2∠C,∴∠C=40°.故选:B.11.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°【解答】解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.12.如图,从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CB′=∠ACB,④AB =A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确结论的个数是()A.1个B.2个C.3个D.4个【解答】解:①②③为条件,根据SAS,可判定△BCA≌△B′CA′;可得结论④;①②④为条件,根据SSS,可判定△BCA≌△B′CA′;可得结论③;①③④为条件,SSA不能证明△BCA≌△B′CA′.②③④为条件,SSA不能证明△BCA≌△B′CA′.最多可以构成正确结论2个.故选:B.二、填空题(每小题4分,共24分)13.如图,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是三角形的稳定性.【解答】解:给凳子加了两根木条之后形成了三角形,所以“这样凳子就比较牢固了”的数学原理是:三角形的稳定性,故答案为:三角形的稳定性.14.点A(3,﹣2)关于x轴对称的点的坐标是(3,2).【解答】解:点A(3,﹣2)关于x轴对称的点的坐标是(3,2).故答案为:(3,2).15.等腰三角形的一个角为50°,那么它的一个底角为50°或65°.【解答】解:(1)当这个内角是50°的角是顶角时,则它的另外两个角的度数是65°,65°;(2)当这个内角是50°的角是底角时,则它的另外两个角的度数是80°,50°;所以这个等腰三角形的底角的度数是50°或65°.故答案是:50°或65°.16.一个多边形的内角和是外角和的2倍,则这个多边形的边数为6.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.17.如图所示,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,若DE=2,则EC =8.【解答】解:∵AB=AC,∠A=120°,∴∠B=∠C=30°,∵DE垂直平分AB,∴BE=AE,∴∠B=∠BAE=30°,∴∠EAC=90°,∴AE CE=2DE=4,∴CE=2AE=8,故答案为:818.如图,在Rt△ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,要使△ABC和△QP A全等,则AP=6或12.【解答】解:①当AP=CB时,∵∠C=∠QAP=90°,在Rt△ABC与Rt△QP A中,,∴Rt△ABC≌Rt△QP A(HL),即AP=BC=6;②当P运动到与C点重合时,AP=AC,在Rt△ABC与Rt△QP A中,,∴Rt△QAP≌Rt△BCA(HL),即AP=AC=12,∴当点P与点C重合时,△ABC才能和△APQ全等.综上所述,AP=6或12.故答案为:6或12.三、解答题(共78分)19.(9分)如图,在直角坐标系中,先描出点A(1,3),点B(4,1).(1)描出点A关于x轴的对称点A1的位置,写出A1的坐标(1,﹣3);(2)用尺规在x轴上找一点C,使AC+BC的值最小(保留作图痕迹);(3)用尺规在x轴上找一点P,使P A=PB(保留作图痕迹).【解答】解:(1)如图所示:A1的坐标(1,﹣3);故答案为:(1,﹣3);(2)如图所示:点C即为所求;(3)如图所示:点P即为所求.20.(9分)如图,△ABC是等腰三角形,AB=AC,∠A=36°.(1)尺规作图:作∠B的角平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)判断△DBC是否为等腰三角形,并说明理由.【解答】解:(1)如图所示:BD即为所求;(2)∵AB=AC,∴∠ABC=∠C,∵∠A=36°,∴∠ABC=∠ACB=(180°﹣36°)÷2=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠BDC=36°+36°=72°,∴BD=BC,∴△DBC是等腰三角形.21.如图,CA=CD,∠BCE=∠ACD,BC=EC,求证:∠A=∠D.【解答】证明:∵∠BCE=∠ACD,∴∠BCE+∠ACE=∠ACD+∠ACE,即∠ACB=∠DCE,在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴∠A=∠D.22.已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.【解答】证明:如图,连接AD,在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,又∵DE⊥AB,DF⊥AC,∴DE=DF.23.如图,在等边△ABC中,点E为边AB上任意一点,点D在边CB的延长线上,且ED =EC.(1)当点E为AB的中点时(如图1),则有AE=DB(填“>”“<”或“=”);(2)猜想AE与DB的数量关系,并证明你的猜想.【解答】解:(1)如图1,∵△ABC是等边三角形,点E是AB的中点,∴CE平分∠ACB,CE⊥AB,∴∠ACB=60°,∠BEC=90°,AE=BE,又∵ED=EC,∴∠D=∠ECB=30°,∴∠DEC=120°,∴∠DEB=120°﹣90°=30°,∴∠D=∠DEB=30°,∴BD=BE=AE,即AE=DB.故答案为:=.(2)当点E为AB上任意一点时,如图2,AE与DB的大小关系不会改变.理由如下:过E作EF∥BC交AC于F,∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°,∴△AEF是等边三角形,∴AE=EF=AF,∵∠ABC=∠ACB=∠AFE=60°,∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°,∵DE=EC,∴∠D=∠ECD,∴∠BED=∠ECF,在△DEB和△ECF中,,∴△DEB≌△ECF(AAS),∴BD=EF=AE,即AE=BD24.(1)阅读理解:如图1,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中.利用三角形三边的关系即可判断中线AD的取值范围是2<AD<8;(2)问题解决:如图2,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF.【解答】解:(1)如图1所示:延长AD至E,使DE=AD,连接BE,∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,∵,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案为:2<AD<8;(2)如图2所示:延长FD至点M,使DM=DF,连接BM、EM,同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:BE+BM>EM,∴BE+CF>EF.25.如图①,已知等腰直角△ABC中,BD为斜边上的中线,E为DC上的一点,且AG⊥BE于G,AG交BD于F.(1)求证:AF=BE;(2)如图②,若点E在DC的延长线上,其它条件不变,①的结论还能成立吗?若不能,请说明理由;若能,请予以证明.【解答】证明:(1)∵△ABC是等腰三角形,BD为斜边上的中线,∴BD=AD AC,∠ADB=90°,∴∠1+∠GAD=90°,∵AG⊥BE于G,∴∠2+∠DBE=90°,∵∠1=∠2,∴∠DAF=∠DBE,在△AFD和△BED中,,∴△AFD≌△BED(ASA),∴AF=BE;(2)①的结论还能成立;∵△ABC是等腰三角形,BD为斜边上的中线,∴BD=AD AC,∠ADB=90°,∴∠DBE+∠DEB=90°,∵AG⊥BE于G,∴∠GBF+∠F=90°,∵∠DBE=∠GBF,∴∠F=∠DEB,在△AFD和△BED中,,∴△AFD≌△BED(AAS),∴AF=BE;。
2019~2020学年度第一学期学生素质中期评价八年级数学(人教版)一、选择题(本大题共14个小题,每题2分,共28分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算23()a a -⋅的结果正确的是()A.6a -B.6a C.5a - D.5a 2.下列图形具有稳定性的是()A. B. C. D.3.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1B.2C.8D.114.在△ABC 中,∠A =40°,∠B =60°,则∠C =()A.40°B.80°C.60°D.100°5.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是()A.∠A=∠DB.AB=DCC.∠ACB=∠DBCD.AC=BD6.在三角形中,最大的内角不小于()A .30°B.45°C.60°D.90°7.如果n 边形的内角和是它外角和的3倍,则n 等于()A.6B.7C.8D.98.下列计算错误的是()A.235m n mn+= B.624a a a ÷= C.()326x x = D.23a a a ⋅=9.若(x+m )(x ﹣8)中不含x 的一次项,则m 的值为()A.8B.﹣8C.0D.8或﹣810.下列各多项式中,能用平方差公式分解因式有是()A.﹣x 2+16B.x 2+9C.﹣x 2﹣4D.x 2﹣2y11.把代数式322363x x y xy -+分解因式,结果正确的是()A.(3)(3)x x y x y +-B.223(2)x x xy y -+C.2(3)x x y - D.23()x x y -12.如图所示,一个直角三角形纸片,剪去这个直角后,得到一个四边形,则∠1+∠2的度数为()A.150°B.180°C.240°D.270°13.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°14.如图,90B C ∠=∠=︒,M 是BC 的中点,D M 平分ADC ∠,且110ADC ∠=︒,则MAB ∠=()A.30°B.35︒C.40︒D.45︒二、填空题(本题共4个小题,每小题3分,共12分)15.计算:(x+3)2=_____.16.已知3xy =-,2x y +=,则代数式22x y xy +的值是__________.17.如图,ABC ∆中,90C = ∠,AD 平分BAC ∠,过点D 作DE AB ⊥于E ,测得9BC =,5BD =,则DE 的长为__________.18.一个三角形的三条边的长分别是3,5,7,另一个三角形的三条边的长分别是3,3x ﹣2y ,x +2y ,若这两个三角形全等,则x +y 的值是_.三、解答题(本题共8道题,满分60分)19.计算:(1)3222132a b c a b ⨯.(2)()22121(4)x x x x x +----();20.(1)若35a =,310b =,则3a b +的值.(2)已知3a b +=,225a b +=,求ab 的值.21.如图,在ABC ∆中(1)画出BC 边上的高AD 和角平分线AE .(2)若30B ∠=°,130ACB ∠=°,求BAD ∠和CAD ∠的度数.22.如图,AD 为ABC 的中线,BE 为ABD △的中线.(1)15ABE ∠=︒,55BED ∠=︒,求BAD ∠的度数;(2)若ABC 的面积为20, 2.5BD =,求BDE 中BD 边上的高.23.某学校的操场是一个长方形,长为2x 米,宽比长少5米,实施“阳光体育”行动以后,学校为了扩大学生的活动场地,让学生能更好地进行体育活动,将操场的长和宽都增加4米.(1)求操场原来的面积是多少平方米(用代数式表示)?(2)若x=20,求操场面积增加后比原来多多少平方米?24.对于任意的正整数n ,代数式n (n+7)-(n+3)(n-2)的值是否总能被6整除,请说明理由.25.已知,如图所示,CE AB ⊥与E ,BF AC ⊥与F ,且BD CD =,求证:(1)BDE CDF≌(2)点D 在BAC ∠的角平分线上.26.已知4AB cm =,3AC BD cm ==.点P 在AB 上以1/cm s 的速度由点A 向点B 运动,同时点Q 在BD 上由点B 向点D 运动,它们运动的时间为()t s .(1)如图①,AC AB ⊥,BD AB ⊥,若点Q 的运动速度与点P 的运动速度相等,当1t =时,ACP △与BPQ V 是否全等,请说明理由,并判断此时线段PC 和线段PQ 的位置关系;(2)如图②,将图①中的“AC AB ⊥,BD AB ⊥”为改“60CAB DBA ∠=∠=︒”,其他条件不变.设点Q 的运动速度为/xcm s ,是否存在实数x ,使得ACP △与BPQ V 全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.2019~2020学年度第一学期学生素质中期评价八年级数学(人教版)一、选择题(本大题共14个小题,每题2分,共28分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算23()a a -⋅的结果正确的是()A.6a -B.6a C.5a - D.5a 【答案】D 【解析】【分析】根据同底数幂的运算即可求解.【详解】原式235a a a =⋅=.故选D.【点睛】容易题.失分原因是:对幂的乘法和乘方法则混淆,没有熟练掌握.2.下列图形具有稳定性的是()A. B. C. D.【答案】A 【解析】【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断即可得.【详解】A 、具有稳定性,符合题意;B 、不具有稳定性,故不符合题意;C 、不具有稳定性,故不符合题意;D 、不具有稳定性,故不符合题意,故选A .【点睛】本题考查了三角形的稳定性和四边形的不稳定性,正确掌握三角形的性质是解题关键.3.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1B.2C.8D.11【答案】C 【解析】【分析】根据三角形两边之和大于第三边,两边之差小于第三边可确定出第三边的范围,据此根据选项即可判断.【详解】设第三边长为x ,则有7-3<x<7+3,即4<x<10,观察只有C 选项符合,故选C.【点睛】本题考查了三角形三边的关系,熟练掌握三角形三边之间的关系是解题的关键.4.在△ABC 中,∠A =40°,∠B =60°,则∠C =()A.40° B.80°C.60°D.100°【答案】B 【解析】根据三角形的内角和定理得:180406080B ∠=︒-︒-︒=︒.故选B.5.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是()A.∠A=∠DB.AB=DCC.∠ACB=∠DBCD.AC=BD【答案】D 【解析】A .添加∠A =∠D 可利用AAS 判定△ABC ≌△DCB ,故此选项不合题意;B .添加AB =DC 可利用SAS 定理判定△ABC ≌△DCB ,故此选项不合题意;C .添加∠ACB =∠DBC 可利用ASA 定理判定△ABC ≌△DCB ,故此选项不合题意;D .添加AC =BD 不能判定△ABC ≌△DCB ,故此选项符合题意.故选D .6.在三角形中,最大的内角不小于()A.30°B.45°C.60°D.90°【答案】C 【解析】解:∵三角形的内角和等于180°,180°÷3=60°,∴最大的角不小于60°.故选C .7.如果n 边形的内角和是它外角和的3倍,则n 等于()A.6 B.7C.8D.9【答案】C 【解析】【分析】利用多边形的外角和是360度,一个n 边形的内角和等于它外角和的3倍,则内角和是3×360°,而n 边形的内角和是(n-2)•180°,则可得到方程,解之即可.【详解】根据题意列方程,得:(n-2)180°=3×360°,解得:n=8,即边数n 等于8,故选C.【点睛】本题考查了多边形的内角和的计算公式以及多边形的外角和定理,熟练掌握是解题的关键.8.下列计算错误的是()A.235m n mn +=B.624a a a ÷= C.()326x x = D.23a a a ⋅=【答案】A 【解析】【分析】根据幂的乘方、同底数幂乘除的运算及合并同类项的法则解答.【详解】解:A 、2m 与3n 不是同类项,不能合并;B 、C 、D 符合同底数幂的运算,都正确;故选:A .【点睛】考查同底数幂的运算:乘法法则,底数不变,指数相加;除法法则,底数不变,指数相减;乘方,底数不变,指数相乘.9.若(x+m )(x ﹣8)中不含x 的一次项,则m 的值为()A.8B.﹣8C.0D.8或﹣8【答案】A 【解析】试题分析:根据整式的乘法可得(x+m)(x-8)=x 2+(m-8)x-8m,由于不含x 项,则可知m-8=0,解得m=8.故选A10.下列各多项式中,能用平方差公式分解因式有是()A.﹣x 2+16B.x 2+9C.﹣x 2﹣4D.x 2﹣2y【答案】A 【解析】【分析】利用平方差公式对选项进行判断即可.【详解】−x 2+16=(4+x )(4−x ),而B 、C 、D 都不能用平方差公式分解因式,故选:A .【点睛】本题考查因式分解−运用公式法,熟练掌握平方差公式是解本题的关键.11.把代数式322363x x y xy -+分解因式,结果正确的是()A.(3)(3)x x y x y +-B.223(2)x x xy y -+C.2(3)x x y -D.23()x x y -【答案】D 【解析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.解答:解:322363x x y xy -+,=3x (x 2-2xy+y 2),=3x (x-y )2.故选D .12.如图所示,一个直角三角形纸片,剪去这个直角后,得到一个四边形,则∠1+∠2的度数为()A.150°B.180°C.240°D.270°【答案】D【解析】【分析】先由三角形内角和为180°得∠A+∠3+∠4=180°,则∠3+∠4=90°.再由邻补角互补得∠1=180°-∠3,∠2=180°-∠4,最后代入计算∠1+∠2即可.【详解】解:由三角形内角和为180°可得,∠A+∠3+∠4=180°,则∠3+∠4=180°-90°=90°;又∠1=180°-∠3,∠2=180°-∠4,∴∠1+∠2=(180°-∠3)+(180°-∠4)=360°-(∠3+∠4)=360°-90°=270°,故选D.【点睛】本题考查了三角形内角和定理及邻补角性质,熟练掌握相关知识是解题关键.13.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°【答案】A【解析】分析:依据AD 是BC 边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE 平分∠BAC ,即可得到∠DAE=5°,再根据△ABC 中,∠C=180°﹣∠ABC ﹣∠BAC=70°,可得∠EAD+∠ACD=75°.详解:∵AD 是BC 边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE 平分∠BAC ,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC 中,∠C=180°﹣∠ABC ﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选A .点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.14.如图,90B C ∠=∠=︒,M 是BC 的中点,D M 平分ADC ∠,且110ADC ∠=︒,则MAB ∠=()A.30°B.35︒C.40︒D.45︒【答案】B 【解析】【分析】作MN ⊥AD 于N ,根据平行线的性质求出∠DAB ,根据角平分线的判定定理得到∠MAB=12∠DAB ,计算即可.【详解】解:作MN ⊥AD 于N ,∵∠B=∠C=90°,∴AB ∥CD ,∴∠DAB=180°-∠ADC=70°,∵DM 平分∠ADC ,MN ⊥AD ,MC ⊥CD ,∴MN=MC ,∵M 是BC 的中点,∴MC=MB ,∴MN=MB ,又MN ⊥AD ,MB ⊥AB ,∴∠MAB=12∠DAB=35°,故选:B.【点睛】本题考查的是角平分线的判定和性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.二、填空题(本题共4个小题,每小题3分,共12分)15.计算:(x+3)2=_____.【答案】x 2+6x+9【解析】【分析】根据完全平方公式进行计算.【详解】(x +3)2=x 2+2×x×3+32=x 2+6x+9.故答案为x 2+6x+9.【点睛】本题考查了完全平方公式的运用,熟练掌握完全平方公式是本题的解题关键.16.已知3xy =-,2x y +=,则代数式22x y xy +的值是__________.【答案】-6【解析】【分析】将所求的代数式利用提公因式法进行因式分解,然后代入求.【详解】解:∵3xy =-,2x y +=,∴22()326xy x x y x y y =+=-+⨯=-.故答案是:6-.【点睛】本题考查了求代数式的值,以及因式分解——提公因式法,口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.17.如图,ABC ∆中,90C = ∠,AD 平分BAC ∠,过点D 作DE AB ⊥于E ,测得9BC =,5BD =,则DE 的长为__________.【答案】4【解析】【分析】先根据角平分线的性质,得出DE =DC ,再根据BC =9,BD =5,得出DC =9−5=4,即可得到DE =4.【详解】∵∠C =90°,AD 平分∠BAC ,DE ⊥AB 于E ,∴DE =DC ,∵BC =9,BD =5,∴DC =9−5=4,∴DE =4,故答案为:4.【点睛】本题主要考查了角平分线的性质的运用,解题时注意:角的平分线上的点到角的两边的距离相等.18.一个三角形的三条边的长分别是3,5,7,另一个三角形的三条边的长分别是3,3x ﹣2y ,x +2y ,若这两个三角形全等,则x +y 的值是_.【答案】5或4【解析】【分析】根据全等三角形的性质可得方程组32527x y x y -=⎧⎨+=⎩,或25327x y x y +=⎧⎨-=⎩,解方程组可得答案.【详解】解:由题意得32527x y x y -=⎧⎨+=⎩,或25327x y x y +=⎧⎨-=⎩,解得:32x y =⎧⎨=⎩或31x y =⎧⎨=⎩,x+y=5或x+y=4,故答案为5或4【点睛】此题考查全等三角形的性质,解题关键在于根据题意列出方程.三、解答题(本题共8道题,满分60分)19.计算:(1)3222132a b c a b ⨯.(2)()22121(4)x x x x x +----();【答案】(1)5313a b c ;(2)3294x x -+-【解析】【分析】(1)直接利用单项式乘以单项式计算得出答案;(2)直接利用单项式乘以多项式以及多项式乘以多项式运算法则分别计算得出答案.【详解】(1)解:原式322153211323a b c a b c ++=⨯=;(2)解:原式32323228494x x x x x x x x =+--++-=-+-;【点睛】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.20.(1)若35a =,310b =,则3a b +的值.(2)已知3a b +=,225a b +=,求ab 的值.【答案】(1)50;(2)2【解析】【分析】(1)直接利用同底数幂的乘法运算法则计算得出答案;(2)利用完全平方公式将原式变形得出答案.【详解】(1)解:原式3351050a b =⨯=⨯=;(2)解:3a b += ,2229a ab b ∴++=,225a b += ,∴2954ab =-=.解得:2ab =.【点睛】此题主要考查了同底数幂的乘法运算以及完全平方公式,正确将原式变形是解题关键.21.如图,在ABC ∆中(1)画出BC 边上的高AD 和角平分线AE .(2)若30B ∠=°,130ACB ∠=°,求BAD ∠和CAD ∠的度数.【答案】(1)见解析;(2)60BAD ∠=°,40CAD ∠=°【解析】【分析】(1)延长BC ,作AD ⊥BC 于D ;根据角平分线的做法作出角平分线AE 即可;(2)可根据三角形的内角和定理解答即可.【详解】解:(1)如图所示:AD,AE 即为所求;(2)在△ABD 中,AD ⊥BD ,即∠ADB=90°,∵∠B=30°,∴∠BAD=180°-90°-30°=60°;在△ABC 中,∠B+∠ACB+∠BAC=180°∴∠BAC=180°-30°-130°=20°∴∠CAD=60°-20°=40°.【点睛】此题是计算与作图相结合的探索.考查学生运用作图工具的能力,以及运用直角三角形、三角形内角和外角等基础知识解决问题的能力.22.如图,AD 为ABC 的中线,BE 为ABD △的中线.(1)15ABE ∠=︒,55BED ∠=︒,求BAD ∠的度数;(2)若ABC 的面积为20, 2.5BD =,求BDE 中BD 边上的高.【答案】(1)40°;(2)4【解析】【分析】(1)利用三角形外角的性质即可求得;(2)作EF ⊥BC 于F ,三角形的中线将三角形的面积等分成两份,从而求得△ABD 的面积,再由S △ABD 再求出三角形BDE 的面积,则得BD 边上的高.【详解】解:(1)在ABE △中,15ABE ∠=︒ ,55BED ∠=︒,40BAD BED ABE ∴∠=∠-∠=︒;(2)过点E 作BD 边上的高EF ,AD 为ABC 的中线,BE 为ABD △的中线,12ABD ABC S S ∴=△△,12BDE S S ∴=△△ABD ,14BDE ABC S S ∴=△△,ABC 的面积为20, 2.5BD =,11524BDE ABC S BD EF S ∴=⋅==△△,即:1 2.552EF ⨯⨯=,4EF ∴=;【点睛】本题考查了三角形的面积,三角形的中线将三角形分成两个三角形,它们的面积等于原三角形面积的一半.23.某学校的操场是一个长方形,长为2x 米,宽比长少5米,实施“阳光体育”行动以后,学校为了扩大学生的活动场地,让学生能更好地进行体育活动,将操场的长和宽都增加4米.(1)求操场原来的面积是多少平方米(用代数式表示)?(2)若x=20,求操场面积增加后比原来多多少平方米?【答案】(1)2x(2x-5);(2)316【解析】试题分析:(1)根据等式“操场原来的面积=操场的长×宽”列出代数式即可;(2)根据等式“操场增加的面积=(操场的原来的长+4)×(操场原来的宽+4)-操场原来的面积”列出代数式,再把x=20代入即可求出.试题解析:(1)2x(2x -5);(2)(2x +4)(2x -1)-2x(2x -5)=16x -4,当x=20时,原式=316.答:活动场地面积增加后比原来多316平方米.24.对于任意的正整数n ,代数式n (n+7)-(n+3)(n-2)的值是否总能被6整除,请说明理由.【答案】能,理由见详解.【解析】【分析】将原代数式化简并因式分解得6(n+1)即可解题.【详解】解:n (n+7)-(n+3)(n-2)=n 2+7n-(n 2+n-6)=n 2+7n-n 2-n+6=6n+6=6(n+1)∵n 为任意的正整数∴代数式n (n+7)-(n+3)(n-2)的值总能被6整除【点睛】本题考查了多项式的因式分解,属于简单题,正确因式分解是解题关键.25.已知,如图所示,CE AB ⊥与E ,BF AC ⊥与F ,且BD CD =,求证:(1)BDE CDF≌(2)点D 在BAC ∠的角平分线上.【答案】(1)详见解析;(2)详见解析【解析】【分析】(1)根据全等三角形的判定定理ASA 证得△BED ≌△CFD ;(2)连接AD .利用(1)中的△BED ≌△CFD ,推知全等三角形的对应边ED=FD .因为角平分线上的点到角的两边的距离相等,所以点D 在∠BAC 的平分线上.【详解】证明:(1)BF AC ⊥ ,CE AB ⊥,90BED CFD ∴∠=∠=︒,在Rt BED 和Rt CFD △中,BED CFD BDE CDF BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,BED CFD ∴ ≌;(2)连接AD.由(1)知BED CFD ≌V V ,ED FD∴=AD ∴是EAF ∠的角平分线,即点D 在A ∠的平分线上.【点睛】本题考查了全等三角形的判定与性质.常用的判定方法有:ASA ,AAS ,SAS ,SSS ,HL 等,做题时需灵活运用.26.已知4AB cm =,3AC BD cm ==.点P 在AB 上以1/cm s 的速度由点A 向点B 运动,同时点Q 在BD 上由点B 向点D 运动,它们运动的时间为()t s .(1)如图①,AC AB ⊥,BD AB ⊥,若点Q 的运动速度与点P 的运动速度相等,当1t =时,ACP △与BPQ V 是否全等,请说明理由,并判断此时线段PC 和线段PQ 的位置关系;(2)如图②,将图①中的“AC AB ⊥,BD AB ⊥”为改“60CAB DBA ∠=∠=︒”,其他条件不变.设点Q 的运动速度为/xcm s ,是否存在实数x ,使得ACP △与BPQ V 全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.【答案】(1)全等,PC 与PQ 垂直;(2)存在,11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩【解析】【分析】(1)利用SAS 证得△ACP ≌△BPQ ,得出∠ACP=∠BPQ ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP ≌△BPQ ,分两种情况:①AC=BP ,AP=BQ ,②AC=BQ ,AP=BP ,建立方程组求得答案即可.【详解】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP 和△BPQ 中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△BPQ (SAS ).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC 与线段PQ 垂直.(2)①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,34t t xt =-⎧⎨=⎩,解得11t x =⎧⎨=⎩,②若△ACP ≌△BQP ,则AC=BQ ,AP=BP ,34xt t t =⎧⎨=-⎩,解得232 tx=⎧⎪⎨=⎪⎩,综上所述,存在11tx=⎧⎨=⎩或232tx=⎧⎪⎨=⎪⎩使得△ACP与△BPQ全等.【点睛】本题考查全等三角形的判定与性质,在解题时注意分类讨论思想的运用.。
2019-2020学年八年级上学期期中教学质量监测数学试题一、选择题:(本题有10个小题,每小题3分,共30分)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.已知点A与点B关于x轴对称,若点A的坐标为(﹣1,3),点B的坐标为(﹣1,b),则b的值等于()A.﹣3 B.﹣1 C.1 D.33.下列各式运算正确的是()A.3y3•5y4=15y12B.(ab5)2=ab10C.(a3)2=(a2)3D.(﹣x)4•(﹣x)6=﹣x104.如图,四边形ABCD的对角线AC,BD相交于点O,△ABO≌△ADO.下列结论错误的是()A.CB=CD B.DA=DC C.AB=AD D.△ABC≌△ADC 5.如图,在四边形ABCD中,AB∥CD,不能判定△ABD≌△CDB的条件是()A.AB=CD B.AD=BC C.AD∥BC D.∠A=∠C6.如图,在Rt△ACB中,∠ACB=90°,BC=12,BD=2CD,AD平分∠BAC,则点D到AB 的距离等于()A.3 B.4 C.5 D.97.如图,等腰△ABC中,AB=AC,∠A=36°.用尺规作图作出线段BD,则下列结论错误的是()A.AD=BD B.∠DBC=36°C.S△ABD=S△BCD D.△BCD的周长=AB+BC8.已知等腰三角形的周长为17cm,一边长为4cm,则它的腰长为()A.4cm B.6.5cm C.6.5cm或9cm D.4cm或6.5cm 9.简便计算:100002﹣9×11×101×10001等于()A.1 B.0 C.﹣1 D.以上都不对10.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.64二、填空题:(本题有6个小题,每小题3分,共18分)11.计算①a2•a1=;②(﹣3a2)2﹣a4=.12.小丽在镜子里看到对面墙上电子钟示数为12:01,则此时实际时刻为.13.已知10x=2,10y=5,则10x+y=.14.=.15.如图,在△ABC中,AB=AC,BD平分∠ABC,交AC于点D、过点D作DE∥AB,交BC于点E,那么图中等腰三角形有个.16.如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO 平分∠BMC.其中正确的.三、解答题:(本题有9个小题,共72分)17.计算:(1)(﹣2ab2)3(2)(﹣4m2n)•(﹣2mn)(3)﹣6a•(﹣a2﹣a+2)(4)(x﹣2y)(x+2y﹣1)+4y2.18.已知A=(3x﹣1)(2x+1)﹣x+1﹣6y2.(1)化简A;(2)当x、y满足方程组时,求A的值.19.如图平面直坐标系中,△ABC三个顶点都在格点上,点A的坐标为(2,4),解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出△ABC向左平移5个单位得到的△A2B2C2;(3)若点P为x轴上一点,且PB+PC的值最小,请通过计算求出P点的坐标.20.如图,AD∥BC,∠BAD=90°,以点B为圆心,BC长为半径画弧,与射线AD相交于点E,连接BE,过C点作CF⊥BE.垂足为F.(1)线段BF=(填写图中现有的一条线段);(2)证明你的结论.21.如图在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求∠A的度数.22.如图,轮船从A港出发,以28海里/小时的速度向正北方向航行,此时测的灯塔M在北偏东30°的方向上.半小时后,轮船到达B处,此时测得灯塔M在北偏东60°的方向上.(1)求轮船在B处时与灯塔M的距离;(2)轮船从B处继续沿正北方向航行,又经半小时后到达C处.求:此时轮船与灯塔M 的距离是多少?灯塔M在轮船的什么方向上?23.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.(1)求证:AD平分∠BAC;(2)已知AC=14,BE=2,求AB的长.24.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.25.在△ABC中,DE垂直平分AB,分别交AB、BC于点D、E,MN垂直平分AC,分别交AC,BC于点M、N.(1)如图1,若∠BAC=112°,求∠EAN的度数;(2)如图2,若∠BAC=82°,求∠EAN的度数;(3)若∠BAC=α(α≠90°),直接写出用α表示∠EAN大小的代数式.参考答案与试题解析一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义即可判断.【解答】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A.2.已知点A与点B关于x轴对称,若点A的坐标为(﹣1,3),点B的坐标为(﹣1,b),则b的值等于()A.﹣3 B.﹣1 C.1 D.3【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,先求出b的值即可.【解答】解:∵点A(﹣1,3)关于x轴对称的点B的坐标为(﹣1,b),∴b=﹣3,故选:A.3.下列各式运算正确的是()A.3y3•5y4=15y12B.(ab5)2=ab10C.(a3)2=(a2)3D.(﹣x)4•(﹣x)6=﹣x10【分析】根据同底数幂的乘法、积的乘方法则以及幂的乘方法则进行计算即可.【解答】解:A.3y3•5y4=15y7,故本选项错误;B.(ab5)2=a5b10,故本选项错误;C.(a3)2=(a2)3,故本选项正确;D.(﹣x)4•(﹣x)6=x10,故本选项错误;故选:C.4.如图,四边形ABCD的对角线AC,BD相交于点O,△ABO≌△ADO.下列结论错误的是()A.CB=CD B.DA=DC C.AB=AD D.△ABC≌△ADC 【分析】根据全等三角形的性质和判定解答即可.【解答】解:∵△ABO≌△ADO.∴AB=AD,选项C正确,∠BAC=∠DAC,在△ABC与△ADC中,∴△ABC≌△ADC(SAS),选项D正确∴CB=CD,选项A正确;故选:B.5.如图,在四边形ABCD中,AB∥CD,不能判定△ABD≌△CDB的条件是()A.AB=CD B.AD=BC C.AD∥BC D.∠A=∠C【分析】利用平行线的性质得到∠ABD=∠CDB,而BD无公共边,然后根据全等三角形的判定方法对各选项进行判断.【解答】解:∵AB∥CD,∴∠ABD=∠CDB,而BD=DB,∴当AB=CD时,根据“SAS”可判断△ABD≌△CDB;当∠A=∠C时,根据“AAS”可判断△ABD≌△CDB;当∠ADB=∠CBD或AD∥BC时,根据“ASA”可判断△ABD≌△CDB.故选:B.6.如图,在Rt△ACB中,∠ACB=90°,BC=12,BD=2CD,AD平分∠BAC,则点D到AB 的距离等于()A.3 B.4 C.5 D.9【分析】根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,可得点D 到AB的距离=点D到AC的距离=CD.【解答】解:∵BC=12,BD=2CD,∴CD=4,由角平分线的性质,得点D到AB的距离等于CD=,4.故选:B.7.如图,等腰△ABC中,AB=AC,∠A=36°.用尺规作图作出线段BD,则下列结论错误的是()A.AD=BD B.∠DBC=36°C.S△ABD=S△BCD D.△BCD的周长=AB+BC【分析】根据作图痕迹发现BD平分∠ABC,然后根据等腰三角形的性质进行判断即可.【解答】解:∵等腰△ABC中,AB=AC,∠A=36°,∴∠ABC=∠ACB=72°,由作图痕迹发现BD平分∠ABC,∴∠A=∠ABD=∠DBC=36°,∴AD=BD,故A、B正确;∵AD≠CD,∴S△ABD=S△BCD错误,故C错误;△BCD的周长=BC+CD+BD=BC+AC=BC+AB,故D正确,故选:C.8.已知等腰三角形的周长为17cm,一边长为4cm,则它的腰长为()A.4cm B.6.5cm C.6.5cm或9cm D.4cm或6.5cm 【分析】分两种情况讨论:当4cm为腰长时,当4cm为底边时,分别判断是否符合三角形三边关系即可.【解答】解:①若4cm是腰长,则底边长为:20﹣4﹣4=12(cm),∵4+4<12,不能组成三角形,舍去;②若4cm是底边长,则腰长为:=6.5(cm).则腰长为6.5cm.故选:B.9.简便计算:100002﹣9×11×101×10001等于()A.1 B.0 C.﹣1 D.以上都不对【分析】根据有理数的混合运算,构造平方差公式即可求解.【解答】解:原式=100002﹣(10﹣1)×(10+1)×101×10001=100002﹣(100﹣1)×(100+1)×10001=100002﹣(10000﹣1)×(10000+1)=100002﹣100002+1=1故选:A.10.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.64【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故选:C.二.填空题(共6小题)11.计算①a2•a1=a3;②(﹣3a2)2﹣a4=8a4.【分析】根据同底数幂的乘法和积的乘方解答即可.【解答】解:①a2•a1=a3;②(﹣3a2)2﹣a4=8a4;故答案为:a3;8a412.小丽在镜子里看到对面墙上电子钟示数为12:01,则此时实际时刻为10:51 .【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【解答】解:根据镜面对称的性质,分析可得题中所显示的时刻与10:51成轴对称,所以此时实际时刻为:10:51.故答案为:10:51.13.已知10x=2,10y=5,则10x+y=10 .【分析】根据同底数幂的乘法法则计算即可.【解答】解:∵10x=2,10y=5,∴10x+y=10x•10y=2×5=10.故答案为:1014.=﹣1 .【分析】根据同底数幂的乘法与幂的乘方的知识求解.【解答】解:=,故答案为:﹣115.如图,在△ABC中,AB=AC,BD平分∠ABC,交AC于点D、过点D作DE∥AB,交BC于点E,那么图中等腰三角形有 3 个.【分析】根据等腰三角形的判定和性质定理以及平行线的性质即可得到结论.【解答】解:∵AB=AC,∴△ABC是等腰三角形;∵DE∥AB,∴△CED是等腰三角形;∴∠BDE=∠ABD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠CBD=∠BDE,∴△EBD是等腰三角形;则图中等腰三角形的个数有3个;故答案为:3.16.如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO 平分∠BMC.其中正确的①②④.【分析】由SAS证明△AOC≌△BOD得出∠OCA=∠ODB,AC=BD,①正确;由全等三角形的性质得出∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,得出∠AMB=∠AOB=40°,②正确;作OG⊥MC于G,OH⊥MB于H,如图所示:则∠OGC=∠OHD=90°,由AAS证明△OCG≌△ODH(AAS),得出OG=OH,由角平分线的判定方法得出MO平分∠BMC,④正确;由∠AOB=∠COD,得出当∠DOM=∠AOM时,OM才平分∠BOC,假设∠DOM=∠AOM,由△AOC≌△BOD得出∠COM=∠BOM,由MO平分∠BMC得出∠CMO=∠BMO,推出△COM≌△BOM,得OB=OC,而OA=OB,所以OA=OC,而OA>OC,故③错误;即可得出结论.【解答】解:∵∠AOB=∠COD=40°,∴∠AOB+∠AOD=∠COD+∠AOD,即∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,①正确;∴∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,∴∠AMB=∠AOB=40°,②正确;作OG⊥MC于G,OH⊥MB于H,如图2所示:则∠OGC=∠OHD=90°,在△OCG和△ODH中,,∴△OCG≌△ODH(AAS),∴OG=OH,∴MO平分∠BMC,④正确;∵∠AOB=∠COD,∴当∠DOM=∠AOM时,OM才平分∠BOC,假设∠DOM=∠AOM∵△AOC≌△BOD,∴∠COM=∠BOM,∵MO平分∠BMC,∴∠CMO=∠BMO,在△COM和△BOM中,,∴△COM≌△BOM(ASA),∴OB=OC,∵OA=OB∴OA=OC与OA>OC矛盾,∴③错误;正确的有①②④;故答案为:①②④.三.解答题(共9小题)17.计算:(1)(﹣2ab2)3(2)(﹣4m2n)•(﹣2mn)(3)﹣6a•(﹣a2﹣a+2)(4)(x﹣2y)(x+2y﹣1)+4y2.【分析】(1)根据积的乘方可以解答本题;(2)根据同底数幂的乘除法可以解答本题;(3)根据单项式乘多项式可以解答本题;(4)根据平方差公式和合并同类项可以解答本题.【解答】解:(1)(﹣2ab2)3=﹣8a3b6;(2)(﹣4m2n)•(﹣2mn)=8m3n2;(3)﹣6a•(﹣a2﹣a+2)=3a3+2a2﹣12a;(4)(x﹣2y)(x+2y﹣1)+4y2=(x﹣2y)(x+2y)+(x﹣2y)×(﹣1)+4y2=x2﹣4y2﹣x+2y+4y2=x2﹣x+2y.18.已知A=(3x﹣1)(2x+1)﹣x+1﹣6y2.(1)化简A;(2)当x、y满足方程组时,求A的值.【分析】(1)直接去括号,然后合并同类项即可;(2)解方程组求出x、y,然后代入求值即可.【解答】解:(1)A=(3x﹣1)(2x+1)﹣x+1﹣6y2=6x2+x﹣1﹣x+1﹣6y2=6x2﹣6y2;(2)A=6x2﹣6y2=6(x2﹣y2)=6(x+y)(x﹣y)=6×5×1=30.19.如图平面直坐标系中,△ABC三个顶点都在格点上,点A的坐标为(2,4),解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出△ABC向左平移5个单位得到的△A2B2C2;(3)若点P为x轴上一点,且PB+PC的值最小,请通过计算求出P点的坐标.【分析】(1)根据轴对称的性质画出△A1B1C1;(2)根据图形平移的性质画出△A2B2C2即可;(3)连接BC1,交x轴于点P,则点P即为所求点.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)连接BC1,交x轴于点P,把(1,2),(5,﹣3)代入y=kx+b,可得:,解得:,所以直线BC1的解析式为:y=﹣,把y=0代入y=﹣,可得:x=,所以P(,0),20.如图,AD∥BC,∠BAD=90°,以点B为圆心,BC长为半径画弧,与射线AD相交于点E,连接BE,过C点作CF⊥BE.垂足为F.(1)线段BF=AE(填写图中现有的一条线段);(2)证明你的结论.【分析】(1)由已知得BF=AE;(2)由AD与BC平行得到一对内错角相等,再由一对直角相等,且BE=CB,利用AAS得到△AEB≌△FBC,利用全等三角形对应角相等即可得证.【解答】解:(1)BF=AE,故答案为:AE;(2)证明:∵CF⊥BE,∴∠A=∠BFC=90°,∵AD∥BC,∴∠AEB=∠FBC,在△AEB和△FBC中,,∴△AEB≌△FBC(AAS),∴BF=AE.21.如图在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求∠A的度数.【分析】由已知条件开始,通过线段相等,得到角相等,再由三角形内角和求出各个角的大小.【解答】解:设∠A=x°.∵BD=AD,∴∠A=∠ABD=x°,∠BDC=∠A+∠ABD=2x°,∵BD=BC,∴∠BDC=∠BCD=2x°,∵AB=AC,∴∠ABC=∠BCD=2x°,在△ABC中x+2x+2x=180,解得:x=36,∴∠A=36°.22.如图,轮船从A港出发,以28海里/小时的速度向正北方向航行,此时测的灯塔M在北偏东30°的方向上.半小时后,轮船到达B处,此时测得灯塔M在北偏东60°的方向上.(1)求轮船在B处时与灯塔M的距离;(2)轮船从B处继续沿正北方向航行,又经半小时后到达C处.求:此时轮船与灯塔M 的距离是多少?灯塔M在轮船的什么方向上?【分析】(1)据题意得到∠CBM=60°,∠BAM=30°,求得∠BMA=30°,得到AB=BM,于是得到结论;(2)根据已知条件得到△BMC是等边三角形,求得CM=BC,∠BCM=60°,于是得到结论.【解答】解:(1)据题意得,∠CBM=60°,∠BAM=30°,因为∠CBM=∠BAM+∠BMA,所以∠BMA=30°,所以∠BMA=∠BAM,所以AB=BM,AB=28×0.5=14,BM=14,答:轮船在B处时与灯塔M的距离为14海里;(2)∵BC=14,BM=BC且∠CBM=60°所以△BMC是等边三角形,所以CM=BC,∠BCM=60°,所以CM=14,答:轮船与灯塔M的距离是14海里,灯塔M在轮船的南偏东60°方向.23.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.(1)求证:AD平分∠BAC;(2)已知AC=14,BE=2,求AB的长.【分析】(1)求出∠E=∠DFC=90°,根据全等三角形的判定定理得出Rt△BED≌Rt△CFD,推出DE=DF,根据角平分线性质得出即可;(2)根据全等三角形的性质得出AE=AF,由线段的和差关系求出答案.【解答】(1)证明:∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°,∴BD=CD,BE=CF,∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∵DE⊥AB,DF⊥AC,∴AD平分∠BAC;(2)∵DE=DF,AD=AD,∴Rt△ADE≌Rt△ADF(HL)∴AE=AF,∵AB=AE﹣BE=AF﹣BE=AC﹣CF﹣BE,∴AB=14﹣2﹣2=10.24.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.【分析】(1)根据题意和题目中的条件可以找出△ABC≌△ADE的条件;(2)根据(1)中的结论和等腰直角三角形的定义可以得到∠FAE的度数;(3)根据题意和三角形全等的知识,作出合适的辅助线即可证明结论成立.【解答】证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.25.在△ABC中,DE垂直平分AB,分别交AB、BC于点D、E,MN垂直平分AC,分别交AC,BC于点M、N.(1)如图1,若∠BAC=112°,求∠EAN的度数;(2)如图2,若∠BAC=82°,求∠EAN的度数;(3)若∠BAC=α(α≠90°),直接写出用α表示∠EAN大小的代数式.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,再根据等边对等角可得∠BAE=∠B,同理可得,∠CAN=∠C,然后利用三角形的内角和定理求出∠B+∠C,再根据∠EAN=∠BAC﹣(∠BAE+∠CAN)代入数据进行计算即可得解;(2)同(1)的思路,最后根据∠EAN=∠BAE+∠CAN﹣∠BAC代入数据进行计算即可得解;(3)根据前两问的求解方法,分0°<α<90°与180°>α>90°两种情况解答.【解答】解:(1)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAC﹣∠BAE﹣∠CAN,=∠BAC﹣(∠B+∠C),在△ABC中,∠B+∠C=180°﹣∠BAC=68°,∴∠EAN=∠BAC﹣(∠BAE+∠CAN)=112°﹣68°=44°;(2)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAE+∠CAN﹣∠BAC,=(∠B+∠C)﹣∠BAC,在△ABC中,∠B+∠C=180°﹣∠BAC=98°,∴∠EAN=∠BAE+∠CAN﹣∠BAC=98°﹣82°=16°;(3)当0°<α<90°时,∠EAN=180°﹣2α;当180°>α>90°时,∠EAN=2α﹣180°.。
2019-2020学年江苏省无锡市惠山区阳山中学八年级第一学期期中数学试卷注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5 毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5 毫米黑色墨水签字笔描黑.一、选择题(共10题,每小题3分,满分30分.)1.2017年6月北京国际设计周面向社会公开征集“二十四节气”标识系统设计,以期通过现代设计的手段,尝试推动我国非物质文化遗产创新传承与发展.下面四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”,其中是轴对称图形的是()A.B.C.D.2.在实数5,,,中,无理数是()A.5B.C.D.3.下列说法正确的是()A.=±1B.1 的立方根是±1C.一个数的算术平方根一定是正数D.9 的平方根是±34.两边长分别为3、7的等腰三角形的周长为()A.13B.17C.13或17D.以上都不对5.下列条件中,不能判断△ABC为直角三角形的是()A.a2=1,b2=2,c2=3B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:56.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA 7.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米8.在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩“抢凳子”游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的()A.三边中垂线的交点B.三边中线的交点C.三条角平分线的交点D.三边上高的交点9.如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,已知正方形A、B、C的面积依次为2、4、3,则正方形D的面积为()A.8B.9C.27D.4510.如图,已知长方形ABCD的边长AB=16cm,BC=12cm,点E在边AB上,AE=6cm,如果点P从点B出发在线段BC上以2cm/s的速度向点C向运动,同时,点Q在线段CD 上由点D向C点运动.则当△BPE与△CQP全等时,时间t为()A.1s B.3s C.1s或3s D.2s或3s二、填空题(本大题共8小题,共8空,每空2分,共16分.)11.16的算术平方根是.12.若一个直角三角形的两直角边长分别为12、5,则其斜边长为.13.等腰△ABC中,AB=AC=10cm,BC=12cm,则BC边上的高是cm.14.如图示,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是.15.如图,在△ABC和△EDB中,∠C=∠EBD=90°,点E在AB上.若△ABC≌△EDB,AC=4,BC=3,则AE=.16.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,踩伤了花草.则他们仅仅少走了步路.(假设2步为1米)17.如图,△ABC的边BC的垂直平分线MN交AC于D,若△ADB的周长是10cm,AB=4cm,则AC=cm.18.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为.三、解答题(本大题共8小题,共54分.)19.计算:(1)计算:(﹣1)2019﹣2﹣2+;(2)(2016﹣π)0﹣+|﹣2|.20.解方程:(1)16x2﹣9=0;(2)(2x﹣1)3=﹣27.21.已知某正数的平方根是2a﹣7和a+4,b﹣12的立方根为﹣2.(1)求a、b的值;(2)求a+b的平方根.22.在4×4的方格中有三个同样大小的正方形如图摆放,请你在图1﹣图3中的空白处添加一个正方形方格(涂黑),使它与其余三个正方形组成的新图形是一个轴对称图形.23.如图,点A、B、D、E在同一直线上,AD=EB,BC∥DF,∠C=∠F.求证:AC=EF.24.如图,在△ABC中,∠B=90°,AB=4,BC=8.(1)在BC上求作一点P,使PA+PB=BC;(尺规作图,不写作法,保留作图痕迹)(2)求BP的长.25.有一架秋千,当它静止时,踏板离地的垂直高度DE=1m,将它往前推送6m(水平距离BC=6m)时,秋千的踏板离地的垂直高度BF=3m,秋千的绳索始终拉得很直,求绳索AD的长度?26.已知:如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值.参考答案一、选择题(本大题共10题,每小题3分,满分30分.)1.2017年6月北京国际设计周面向社会公开征集“二十四节气”标识系统设计,以期通过现代设计的手段,尝试推动我国非物质文化遗产创新传承与发展.下面四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”,其中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解即可.解:A、不是轴对称图形,本选项错误;B、不是轴对称图形,本选项错误;C、不是轴对称图形,本选项错误;D、是轴对称图形,本选项正确.故选:D.2.在实数5,,,中,无理数是()A.5B.C.D.【分析】根据无理数是无限不循环小数,可得答案.解:在实数5,,,中,无理数,故选:C.3.下列说法正确的是()A.=±1B.1 的立方根是±1C.一个数的算术平方根一定是正数D.9 的平方根是±3【分析】根据立方根、算术平方根的定义进行选择即可.解:A、=1,故错误;B、1 的立方根是1,故错误;C、0的算术平方根是0,故错误;D、9 的平方根是±3,故正确;故选:D.4.两边长分别为3、7的等腰三角形的周长为()A.13B.17C.13或17D.以上都不对【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为3和7,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.解:(1)若3为腰长,7为底边长,由于3+3<7,则三角形不存在;(2)若7为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为7+7+3=17.故选:B.5.下列条件中,不能判断△ABC为直角三角形的是()A.a2=1,b2=2,c2=3B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:5【分析】根据三角形内角和定理,以及勾股定理逆定理分别进行分析可得答案.解:A、可利用勾股定理逆定理判定△ABC为直角三角形,故此选项不合题意;B、根据勾股定理的逆定理可判断△ABC是直角三角形,故此选项不合题意;C、根据三角形内角和定理可以计算出∠A=90°,△ABC为直角三角形,故此选项不合题意;D、根据三角形内角和定理可以计算出∠A=45°,∠B=60°,∠C=75°,可判定△ABC不是直角三角形,故此选项符合题意;故选:D.6.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA 【分析】利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故A不符合题意;B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合题意;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故C不符合题意;D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故D不符合题意.故选:B.7.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC==10m,故选:B.8.在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩“抢凳子”游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的()A.三边中垂线的交点B.三边中线的交点C.三条角平分线的交点D.三边上高的交点【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.解:∵三角形的三条边的垂直平分线的交点到中间的凳子的距离相等,∴凳子应放在△ABC的三边中垂线的交点最适当.故选:A.9.如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,已知正方形A、B、C的面积依次为2、4、3,则正方形D的面积为()A.8B.9C.27D.45【分析】设正方形D的面积为x,根据图形得出方程2+4=x﹣3,求出即可.解:设正方形D的面积为x,∵正方形A、B、C的面积依次为2、4、3,∴根据图形得:2+4=x﹣3,解得:x=9,故选:B.10.如图,已知长方形ABCD的边长AB=16cm,BC=12cm,点E在边AB上,AE=6cm,如果点P从点B出发在线段BC上以2cm/s的速度向点C向运动,同时,点Q在线段CD 上由点D向C点运动.则当△BPE与△CQP全等时,时间t为()A.1s B.3s C.1s或3s D.2s或3s【分析】分别利用:①当EB=PC时,△BPE≌△CQP,②当BP=CP时,△BEP≌△CQP,进而求出即可.解:①当EB=PC时,△BPE≌△CQP,∵AB=16cm,AE=6cm,∴BE=10cm,∴PC=10cm,∵CB=12cm,∴BP=2cm,∵点P从点B出发在线段BC上以2cm/s的速度向点C向运动,∴时间为:2÷2=1s;②当BP=CP时,△BEP≌△CQP,设x秒时,BP=CP,由题意得:2x=12﹣2x,解得:x=3,故选:C.二、填空题(本大题共8小题,共8空,每空2分,共16分.)11.16的算术平方根是4.【分析】根据算术平方根的定义即可求出结果.解:∵42=16,∴=4.故答案为:4.12.若一个直角三角形的两直角边长分别为12、5,则其斜边长为13.【分析】由两个直角边的长度,利用勾股定理可求出斜边的长度,此题得解.解:=13.故答案为:13.13.等腰△ABC中,AB=AC=10cm,BC=12cm,则BC边上的高是8cm.【分析】利用等腰三角形的“三线合一”的性质得到BD=BC=6cm,然后在直角△ABD 中,利用勾股定理求得高线AD的长度.解:如图,AD是BC边上的高线.∵AB=AC=10cm,BC=12cm,∴BD=CD=6cm,∴在直角△ABD中,由勾股定理得到:AD===(8cm).故答案是:8.14.如图示,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是5.【分析】根据角平分线的性质求出DE,根据三角形的面积公式计算即可.解:作DE⊥AB于E,∵AD平分∠BAC,∠C=90°,DE⊥AB,DC=2,AB=5,∴DE=DC=2,∴△ABD的面积=×AB×DE=5,故答案为:5.15.如图,在△ABC和△EDB中,∠C=∠EBD=90°,点E在AB上.若△ABC≌△EDB,AC=4,BC=3,则AE=1.【分析】根据勾股定理求出AB,根据全等得出BE=AC=4,即可求出答案.解:在Rt△ACB中,∠C=90°,AC=4,BC=3,由勾股定理得:AB=5,∵△ABC≌△EDB,∴BE=AC=4,∴AE=5﹣4=1,故答案为:1.16.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,踩伤了花草.则他们仅仅少走了8步路.(假设2步为1米)【分析】在Rt△ABC中,利用勾股定理求出AB的长,根据2步为1米,即可得出少走的步数.解:∵∠C=90°,AC=6m,BC=8m,∴AB==10(m),则(8+6﹣10)×2=8,∴他们仅仅少走了8步,故答案为:8.17.如图,△ABC的边BC的垂直平分线MN交AC于D,若△ADB的周长是10cm,AB=4cm,则AC=6cm.【分析】根据线段的垂直平分线性质得出CD=BD,求出△ADB的周长AD+DB+AB=AC+AB=10cm,求出即可.解:∵MN是线段BC的垂直平分线,∴CD=BD,∵△ADB的周长是10cm,∴AD+BD+AB=10cm,∴AD+CD+AB=10cm,∴AC+AB=10cm,∵AB=4cm,∴AC=6cm,故答案为:6.18.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为 4.8.【分析】设设CD与BE交于点G,AP=x,证明△ODP≌△OEG,根据全等三角形的性质得到OP=OG,PD=GE,根据翻折变换的性质用x表示出PD、OP,根据勾股定理列出方程,解方程即可.解:设CD与BE交于点G,∵四边形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=8,由折叠的性质可知△ABP≌△EBP,∴EP=AP,∠E=∠A=90°,BE=AB=8,在△ODP和△OEG中,,∴△ODP≌△OEG(ASA),∴OP=OG,PD=GE,∴DG=EP,设AP=EP=x,则PD=GE=6﹣x,DG=x,∴CG=8﹣x,BG=8﹣(6﹣x)=2+x,根据勾股定理得:BC2+CG2=BG2,即62+(8﹣x)2=(x+2)2,解得:x=4.8,∴AP=4.8,故答案为:4.8.三、解答题(本大题共8小题,共54分.)19.计算:(1)计算:(﹣1)2019﹣2﹣2+;(2)(2016﹣π)0﹣+|﹣2|.【分析】(1)直接利用有理数的乘方运算法则以及负整数指数的性质和二次根式的性质分别化简,再利用有理数的加减运算法则计算得出答案;(2)直接利用零指数幂的性质以及绝对值的性质和二次根式的性质分别化简,再利用有理数的加减运算法则计算得出答案.解:(1)原式=﹣1﹣+2=;(2)=1﹣2+2﹣=1﹣.20.解方程:(1)16x2﹣9=0;(2)(2x﹣1)3=﹣27.【分析】(1)先求得x2的值,然后依据平方根的定义求解即可;(2)依据立方根的定义可求得2x﹣1=﹣3,然后再解方程即可.解:(1)由题意得:x2=,x=±.(2)由立方根的定义可知2x﹣1=﹣3,解得:x=﹣1.21.已知某正数的平方根是2a﹣7和a+4,b﹣12的立方根为﹣2.(1)求a、b的值;(2)求a+b的平方根.【分析】利用正数的平方根有两个,且互为相反数列出方程,求出方程的解即可得到a 的值,根据立方根的定义求出b的值,根据算术平方根的定义求出a+b的算术平方根.解:(1)由题意得,2a﹣7+a+4=0,解得:a=1,b﹣12=﹣8,解得:b=4;(2)a+b=5,a+b的平方根为.22.在4×4的方格中有三个同样大小的正方形如图摆放,请你在图1﹣图3中的空白处添加一个正方形方格(涂黑),使它与其余三个正方形组成的新图形是一个轴对称图形.【分析】利用轴对称图形的性质分别得出符合题意的答案.解:如图所示:.23.如图,点A、B、D、E在同一直线上,AD=EB,BC∥DF,∠C=∠F.求证:AC=EF.【分析】根据BC∥DF证得∠CBD=∠FDB,利用利用等角的补角相等证得∠ABC=∠EDF,然后根据AD=EB得到AB=ED,利用AAS证明两三角形全等即可.【解答】证明:∵AD=EB∴AD﹣BD=EB﹣BD,即AB=ED又∵BC∥DF,∴∠CBD=∠FDB∴∠ABC=∠EDF在△ABC和△EDF中,∵∴△ABC≌△EDF,∴AC=EF.24.如图,在△ABC中,∠B=90°,AB=4,BC=8.(1)在BC上求作一点P,使PA+PB=BC;(尺规作图,不写作法,保留作图痕迹)(2)求BP的长.【分析】(1)作线段AC的中垂线,其与BC的交点即为所求;(2)设BP=x,则PA=CP=8﹣x,根据AB2+BP2=AP2求解可得.解:(1)如图所示,点P即为所求.(2)设BP=x,则CP=8﹣x,由(1)中作图知AP=CP=8﹣x,在Rt△ABP中,由AB2+BP2=AP2可得42+x2=(8﹣x)2,解得:x=3,所以BP=3.25.有一架秋千,当它静止时,踏板离地的垂直高度DE=1m,将它往前推送6m(水平距离BC=6m)时,秋千的踏板离地的垂直高度BF=3m,秋千的绳索始终拉得很直,求绳索AD的长度?【分析】设秋千的绳索长为xm,根据题意可得AC=(x﹣2)m,利用勾股定理可得x2=62+(x﹣2)2.解:设秋千的绳索长为xm,根据题意可列方程为:x2=62+(x﹣2)2,解得:x=10,答:绳索AD的长度是10m.26.已知:如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值.【分析】(1)直接根据勾股定理求出BC的长度;(2)当△ABP为直角三角形时,分两种情况:①当∠APB为直角时,②当∠BAP为直角时,分别求出此时的t值即可;(3)当△ABP为等腰三角形时,分三种情况:①当AB=BP时;②当AB=AP时;③当BP=AP时,分别求出BP的长度,继而可求得t值.解:(1)在Rt△ABC中,BC2=AB2﹣AC2=52﹣32=16,∴BC=4(cm);(2)由题意知BP=tcm,①当∠APB为直角时,点P与点C重合,BP=BC=4cm,即t=4;②当∠BAP为直角时,BP=tcm,CP=(t﹣4)cm,AC=3cm,在Rt△ACP中,AP2=32+(t﹣4)2,在Rt△BAP中,AB2+AP2=BP2,即:52+[32+(t﹣4)2]=t2,解得:t=,故当△ABP为直角三角形时,t=4或t=;(3)①当AB=BP时,t=5;②当AB=AP时,BP=2BC=8cm,t=8;③当BP=AP时,AP=BP=tcm,CP=(4﹣t)cm,AC=3cm,在Rt△ACP中,AP2=AC2+CP2,所以t2=32+(4﹣t)2,解得:t=,综上所述:当△ABP为等腰三角形时,t=5或t=8或t=.。
2019-2020学年福建省福州市连江县教研片八年级(上)期中数学试卷一、选择题(本大题共10题,每小题4分,共40分,每小题都有四个选项,其中有且只有一个选项正确)1.(4分)低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A.B.C.D.2.(4分)下面四个图形中,线段BD是△ABC的高的是()A.B.C.D.3.(4分)一个三角形的两边分别是2和7,则它的第三边可能是()A.3B.4C.5D.64.(4分)若点(3+m,n﹣2)关于y轴对称点的坐标是(3,2),则m,n的值为()A.m=﹣6,n=﹣4B.m=0,n=4C.m=﹣6,n=4D.m=﹣6,n=05.(4分)下列等式一定成立的是()A.a2+a3=a5B.(a+b)2=a2+b2C.(2ab2)3=6a3b6D.(x﹣a)(x﹣b)=x2﹣(a+b)x+ab6.(4分)将一副直角三角板如图放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠α的度数为()A.75°B.105°C.135°D.165°7.(4分)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°8.(4分)如图,在△ABC中,AD平分∠BAC,DE⊥AB于E,S△ABC=15,DE=3,AB=6,则AC长是()A.7B.6C.5D.49.(4分)已知a﹣b=3,则a2﹣ab﹣3b的值为()A.7B.11C.9D.510.(4分)若a=20180,b=2016×2018﹣20172,,则a,b,c的大小关系正确的是()A.a<b<c B.a<c<b C.b<a<c D.c<b<a二、填空题(每题4分,共24分)11.(4分)如图,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是.12.(4分)计算:x5•x3的结果等于.13.(4分)一个正多边形的每个外角都是36°,这个正多边形的边数是.14.(4分)如图,等边△ABC的周长是18,D是AC边上的中点,点E在BC边的延长线上.如果DE=DB,那么CE的长是.15.(4分)在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC与△ABO全等,则点C坐标为.(点C不与点A重合)16.(4分)如图,已知∠AOB=60°,点C在边OA上,点D、E在边OB上,CD=CE,OC=12,DE=2,则OD =.三、解答题(共86分)17.(8分)(1)计算:(9x2﹣12x3)÷9x2;(2)分解因式:3x2﹣6xy+3y2.18.(8分)先化简,再求值:(2x﹣3y)2+(x+3y)(x﹣3y),其中x=2,y=5.19.(8分)按要求完成作图:(1)作出△ABC关于x轴对称的图形;(2)写出A、B、C的对应点A′、B′、C′的坐标;(3)在x轴上画出点Q,使△QAC的周长最小.20.(8分)如图,在△ABC中,D是边AB上一点,E是边AC的中点,作CF∥AB交DE的延长线于点F.证明:△ADE≌△CFE.21.(8分)如图,在△ABC中,AB=AC,点D是BC上一点,点E是AC上一点,且DE⊥AD.若∠BAD=55°,∠B=50°,求∠DEC的度数.22.(10分)已知:如图,AC∥BD,请先作图再解决问题.(1)利用尺规完成以下作图,并保留作图痕迹.(不要求写作法)①作BE平分∠ABD交AC于点E;②在BA的延长线上截取AF=BA,连接EF;(2)判断△BEF的形状,并说明理由.23.(10分)根据几何图形的面积关系可以形象直观地表示多项式的乘法.例如:(2a+b)(a+b)=2a2+3ab+b2可以用图(1)表示(1)根据图(2),写出一个多项式乘以多项式的等式;(2)从A,B两题中任选一题作答:A.请画出一个几何图形,表示(x+p)(x+q)=x2+(p+q)x+pq,并仿照上图标明相应的字母;B.请画出一个几何图形,表示(x﹣p)(x﹣q)=x2﹣(p+q)x+pq,并仿照上图标明相应的字母.24.(12分)如图,△ABC和△AOD是等腰直角三角形,AB=AC,AO=AD,∠BAC=∠OAD=90°,点O是△ABC内的一点,∠BOC=130°.(1)由已知条件可知哪两个三角形全等,理由.(2)求∠DCO的大小;(3)设∠AOB=α,那么当α为多少度时,△COD是等腰三角形.25.(14分)在平面直角坐标系中,点A(﹣3,0),B(0,3),点C为x轴正半轴上一动点,过点A作AD⊥BC 交y轴于点E.(1)如图①,若点C的坐标为(2,0),试求点E的坐标;(2)如图②,若点C在x轴正半轴上运动,且OC<3,其它条件不变,连接DO,求证:OD平分∠ADC(3)若点C在x轴正半轴上运动,当AD﹣CD=OC时,求∠OCB的度数.2019-2020学年福建省福州市连江县教研片八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10题,每小题4分,共40分,每小题都有四个选项,其中有且只有一个选项正确)1.【解答】解:A、是轴对称图形.故选项正确;B、不是轴对称图形.故选项错误;C、不是轴对称图形.故选项错误;D、不是轴对称图形.故选项错误.故选:A.2.【解答】解:由图可得,线段BD是△ABC的高的图是D选项.故选:D.3.【解答】解:设第三边为a,根据三角形的三边关系可得:7﹣2<a<7+2.即:5<a<9故选:D.4.【解答】解:∵点(3+m,n﹣2)关于y轴对称点的坐标是(3,2),∴3+m+3=0,n﹣2=2,解得:m=﹣6,n=4,故选:C.5.【解答】解:A、不是同类项,不能合并,故本选项错误;B、(a+b)2=a2+2ab+b2,故本选项错误;C、(2ab2)3=8a3b6,故本选项错误;D、(x﹣a)(x﹣b)=x2﹣(a+b)x+ab,故本选项正确.故选:D.6.【解答】解:由三角形的外角性质得,∠1=45°+90°=135°,∠α=∠1+30°=135°+30°=165°.故选:D.7.【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.8.【解答】解:∵DE=3,AB=6,∴△ABD的面积为,∵S△ABC=15,∴△ADC的面积=15﹣9=6,∵AD平分∠BAC,DE⊥AB于E,∴AC边上的高=DE=3,∴AC=6×2÷3=4,故选:D.9.【解答】解:∵a﹣b=3,∴a2﹣ab﹣3b=a(a﹣b)﹣3b=3a﹣3b=3(a﹣b)=3×3=9故选:C.10.【解答】解:∵a=20180=1,b=2016×2018﹣20172=(2017﹣1)(2017+1)﹣20172=20172﹣1﹣20172=﹣1,=(﹣)2017×()2017×=(﹣)2017×=(﹣1)2017×=﹣.∵﹣<﹣1<1,∴c<b<a故选:D.二、填空题(每题4分,共24分)11.【解答】解:给凳子加了两根木条之后形成了三角形,所以“这样凳子就比较牢固了”的数学原理是:三角形的稳定性,故答案为:三角形的稳定性.12.【解答】解:x5•x3=x5+3=x8故答案为:x8.13.【解答】解:设所求正n边形边数为n,则36°n=360°,解得n=10.故正多边形的边数是10.14.【解答】解:∵△ABC为等边三角形,D为AC边上的中点,∴BD为∠ABC的平分线,且∠ABC=60°,∴∠DBE=30°,又DE=DB,∴∠E=∠DBE=30°,∵等边△ABC的周长为18,∴AC=6,且∠ACB=60°,∴∠CDE=∠ACB﹣∠E=30°,∴∠CDE=∠E,∴CD=CE=AC=3.故答案为:3.15.【解答】解:如图所示:有三个点符合,∵点A(2,0),B(0,4),∴OB=4,OA=2,∵△BOC与△AOB全等,∴OB=OB=4,OA=OC=2,∴C1(﹣2,0),C2(﹣2,4),C3(2,4).故答案为:(2,4)或(﹣2,0)或(﹣2,4).16.【解答】解:如图,作CH⊥OB于H.∵CD=CE,CH⊥DE,∴DH=HE=1,在Rt△OCH中,∵OC=12,∠O=60°,∴∠OCH=30°,∴OH=OC=6,∴OD=OH﹣DH=6﹣1=5,故答案为5.三、解答题(共86分)17.【解答】解:(1)原式=9x2÷9x2﹣12x3÷9x2=1x;(2)原式=3(x2﹣2xy+y2)=3(x﹣y)218.【解答】解:原式=4x2﹣12xy+9y2+x2﹣9y2=5x2﹣12xy,当x=2、y=5时,原式=5×22﹣12×2×5=20﹣120=﹣100.19.【解答】解:(1)△A'B'C'即为所求;(2)由图可得,A′(﹣4,﹣1)、B′(﹣3,﹣3)、C′(﹣1,﹣2);(3)点Q即为所求.20.【解答】证明:∵E是边AC的中点,∴AE=CE.又∵CF∥AB,∴∠A=∠ACF,∠ADF=∠F,在△ADE与△CFE中,.∴△ADE≌△CFE(AAS).21.【解答】解:∵AB=AC,∴∠B=∠C,∵∠B=50°,∴∠C=50°,∴∠BAC=180°﹣50°﹣50°=80°,∵∠BAD=55°,∴∠DAE=25°,∵DE⊥AD,∴∠ADE=90°,∴∠DEC=∠DAE+∠ADE=115°.22.【解答】解:(1)①如图,点E即为所求;②如图,AF,EF即为所求;(2)∵BE平分∠ABD,∴∠ABE=∠EBD.∵AC∥BD,∴∠EBD=∠AEB,∴AE=AB.∵AB=AF=AF,∴AE=AF,∴△BEF是直角三角形.23.【解答】解:(1)由图2可得等式:(a+2b)(2a+b)=2a2+5ab+2b2;(1)A、画出的图形如下:B、24.【解答】(1)解:△AOB≌△ADC,理由如下:∵∠BAC=∠OAD=90°,∴∠BAO=∠CAD,在△AOB和△ADC中,,∴△AOB≌△ADC(SAS);故答案为:△AOB≌△ADC,SAS;(2)∵∠BOC=130°,∴∠BOA+∠AOC=360°﹣130°=230°,∵△AOB≌△ADC,∠AOB=∠ADC,∴∠ADC+∠AOC=230°,又∵△AOD是等腰直角三角形,∠OAD=90°,∴四边形AOCD中,∠DCO=360°﹣90°﹣230°=40°;(3)分三种情况:①当CD=CO时,∴∠CDO=∠COD=(180°﹣∠DCO)=(180°﹣40°)=70°∵△AOD是等腰直角三角形,∴∠ODA=45°,∴∠CDA=∠CDO+∠ODA=70°+45°=115°又∠AOB=∠ADC=α,∴α=115°;②当OD=CO时,则∠DCO=∠CDO=40°,∴∠CDA=∠CDO+∠ODA=40°+45°=85°∴α=85°;③当CD=OD时,则∠DCO=∠DOC=40°,∴∠CDO=180°﹣∠DCO﹣∠DOC=180°﹣40°﹣40°=100°,∴∠CDA=∠CDO+∠ODA=100°+45°=145°,∴α=145°;综上所述:当α的度数为115°或85°或145°时,△COD是等腰三角形.25.【解答】解:(1)如图①,∵AD⊥BC,BO⊥AO,∴∠AOE=∠BDE,又∵∠AEO=∠BED,∵A(﹣3,0),B(0,3),∴OA=OB=3,∴△AOE≌△BOC,∴OE=OC,又∵点C的坐标为(2,0),∴OC=2=OE,∴点E的坐标为(0,2);(2)如图②,过点O作OM⊥AD于点M,作ON⊥BC于点N,∵△AOE≌△BOC,∴S△AOE=S△BOC,且AE=BC,∵OM⊥AE,ON⊥BC,∴OM=ON,∴OD平分∠ADC;(3)如所示,在DA上截取DP=DC,连接OP,∵∠PDO=∠CDO,OD=OD,∴△OPD≌△OCD,∴OC=OP,∠OPD=∠OCD,∵AD﹣CD=OC,∴AD﹣DP=OP,即AP=OP,∴∠P AO=∠POA,∴∠OPD=∠P AO+∠POA=2∠P AO=∠OCB,又∵∠P AO+∠OCD=90°,∴3∠P AO=90°,∴∠P AO=30°,。
2019-2020学年八年级上学期期中考试数学试卷一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项符合题目要求1.若分式的值不存在,则x的取值是()A.x=﹣2 B.x≠﹣2 C.x=3 D.x≠32.若分式的值等于0,则x的取值是()A.x=0 B.x=3 C.x=﹣3 D.x=3或x=﹣3 3.下列式子变形,正确的是()A.=B.=﹣C.=D.=4.下列分式中,是最简分式的是()A.B.C.D.5.用科学记数法表示:0.00002018是()A.2.018×10﹣5B.2.018×10﹣4C.201.8×10﹣7D.2018×10﹣56.计算:()﹣3的结果是()A.﹣B.C.D.﹣7.如图,图中三角形的个数共有()A.3个B.4个C.5个D.6个8.如图,CD是△ABC的角平分线,∠A=30°,∠B=66°,则∠BDC的度数是()A.96°B.84°C.76°D.72°9.下列语句:①你叫什么名字;②负数的绝对值等于它的相反数;③相等的角是对顶角;④明天下雨吗?属于命题的是()A.①②B.②③C.③④D.①②③④10.在△ABC和△DEF中,下列条件不能判断这两个三角形全等的是()A.AB=DE,AC=DF,∠A=∠D B.∠A=∠D,∠B=∠E,AB=DEC.AC=DF,BC=EF,∠B=∠E D.AB=DE,AC=DF,BC=EF11.如图,∠CAB=60°,CD垂直平分AB,垂足为点D,∠CAB的平分线交CD于点E,连接EB,则∠BEC的度数是()A.120°B.110°C.100°D.90°12.如图,∠ADB=∠ACB=90°,AC与BD相交于点O,且OA=OB,下列结论:①AD=BC;②AC=BD;③∠CDA=∠DCB;④CD∥AB,其中正确的有()A.1个B.2个C.3个D.4个二、填空题:本大题共6小题,每小题3分,共18分13.若分式的值为0,则x的值是.14.分式,,的最简公分母是.15.若3x=10,3y=5,则3x﹣y=.16.命题“等腰三角形的两个底角相等”的逆命题是.17.如图,在△ABC中,AC=BC,∠B=70°,EF是AC边的垂直平分线,垂足为E,交BC 于点F,则∠AFE的度数等于.18.已知ab=1,m=+,则﹣m2018的值等于.三、解答题:本大题共8小题,满分66分,解答应写出文字说明、证明过程或演算步骤19.先约分,再求值:,其中x=﹣2,y=﹣.20.计算:(1)•(2)÷(3)()2(4)()321.计算(1)()3•()2•()2(2)()4•()3÷()522.计算:(1)+﹣(2)﹣﹣23.如图,已知AB∥ED,CD∥BF,AE=CF.求证:AB=ED.24.如图,AB=CD,AD=BC,E、F分别是AC上的点,且AE=CF(1)求证:AB∥CD;(2)求证:BE=DF.25.如图,已知AD∥BC,点E是CD上一点,AE平分∠BAD,BF平分∠ABC,延长BE交AD 的延长线于点F(1)求证:△ABE≌△AFE;(2)若AD=2,BC=6,求AB的长.26.甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用的时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水.(1)分别求甲、乙两种污水处理器的污水处理效率;(2)若某厂每天同时开甲、乙两种污水处理器处理污水共4小时,且甲、乙两种污水处理器处理污水每吨需要的费用分别30元和50元,问该厂每个月(以30天计)需要污水处理费多少?参考答案与试题解析一.选择题(共12小题)1.若分式的值不存在,则x的取值是()A.x=﹣2 B.x≠﹣2 C.x=3 D.x≠3【分析】直接利用分式有意义的条件得出x的值,进而得出答案.【解答】解:∵分式的值不存在,∴2x+4=0,解得:x=﹣2,则x的取值是:﹣2.2.若分式的值等于0,则x的取值是()A.x=0 B.x=3 C.x=﹣3 D.x=3或x=﹣3 【分析】直接利用分式的值为零则分子为零分母不为零,进而得出答案.【解答】解:∵分式的值等于0,∴|x|﹣3=0,2x﹣6≠0,解得:x=﹣3,故选:C.3.下列式子变形,正确的是()A.=B.=﹣C.=D.=【分析】根据分式的基本性质解答.【解答】解:A、原式=,故本选项错误;B、原式=﹣,故本选项正确;C、原式=,故本选项错误;D、原式=,故本选项错误;故选:B.4.下列分式中,是最简分式的是()A.B.C.D.【分析】根据最简分式的标准是分子,分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,然后对每一选项进行整理,即可得出答案.【解答】解:A.=,不符合题意;B.=,不符合题意;C.=,不符合题意;D.是最简分式,符合题意;5.用科学记数法表示:0.00002018是()A.2.018×10﹣5B.2.018×10﹣4C.201.8×10﹣7D.2018×10﹣5【分析】根据科学记数法的形式选择即可.【解答】解:0.00002018=2.018×10﹣5,故选:A.6.计算:()﹣3的结果是()A.﹣B.C.D.﹣【分析】先根据负整数指数幂的定义进行变形,再求出即可.【解答】解:()﹣3=()3=,故选:B.7.如图,图中三角形的个数共有()A.3个B.4个C.5个D.6个【分析】根据三角形的定义,找出图中所有的三角形,数出其个数即可得出结论.【解答】解:图中是三角形的有:△AOC、△BOD、△AOB、△ABC、△ABD.故选:C.8.如图,CD是△ABC的角平分线,∠A=30°,∠B=66°,则∠BDC的度数是()A.96°B.84°C.76°D.72°【分析】根据三角形内角和定理求出∠ACB的度数,再根据CD是△ABC的角平分线,即可求出∠ACD的度数;再根据三角形内角和外角的关系即可求出∠BDC的度数.【解答】解:∵∠A=30°,∠B=66°,∴∠ACB=180°﹣30°﹣66°=84°,∵CD是△ABC的角平分线,∴∠ACD=∠ACB=×84°=42°.∴∠BDC=∠A+∠ACD=30°+42°=72°.故选:D.9.下列语句:①你叫什么名字;②负数的绝对值等于它的相反数;③相等的角是对顶角;④明天下雨吗?属于命题的是()A.①②B.②③C.③④D.①②③④【分析】根据命题是判断性语句,可得答案.【解答】解:①你叫什么名字,没有作出判断,不是命题;②负数的绝对值等于它的相反数,正确,是命题;③相等的角是对顶角,正确,是命题;④明天下雨吗?是疑问句,不是命题,故选:B.10.在△ABC和△DEF中,下列条件不能判断这两个三角形全等的是()A.AB=DE,AC=DF,∠A=∠D B.∠A=∠D,∠B=∠E,AB=DEC.AC=DF,BC=EF,∠B=∠E D.AB=DE,AC=DF,BC=EF【分析】根据题意画出图形,再由全等三角形的判定定理对各选项进行逐一判断即可.【解答】解:如图所示,A、AB=DE,AC=DF,∠A=∠D,符合SAS定理,∴△ABC≌△DEF,故本选项正确;B、∠A=∠D,∠B=∠E,AB=DE,符合ASA定理,∴△ABC≌△DEF,故本选项正确;C、∵AC=DF,BC=EF,∠B=∠E,不符合全等三角形的判定定理,故本选项错误;D、∵AB=DE,AC=DF,BC=EF,符合SSS定理,∴△ABC≌△EFD,故本选项正确.故选:C.11.如图,∠CAB=60°,CD垂直平分AB,垂足为点D,∠CAB的平分线交CD于点E,连接EB,则∠BEC的度数是()A.120°B.110°C.100°D.90°【分析】根据三角形的外角的性质可知:∠BEC=∠B+∠EDB,想办法求出∠B,∠EDB即可解决问题;【解答】解:∵AE平分∠CAB,∠CAB=60°,∴∠EAD=∠CAB=30°,∵CD垂直平分线段AB,∴EA=EB,∠EDB=90°,∴∠B=∠EAD=30°,∴∠BEC=∠EDB+∠B=90°+30°=120°,故选:A.12.如图,∠ADB=∠ACB=90°,AC与BD相交于点O,且OA=OB,下列结论:①AD=BC;②AC=BD;③∠CDA=∠DCB;④CD∥AB,其中正确的有()A.1个B.2个C.3个D.4个【分析】由△ABC≌△BAD(AAS),推出AD=BC,AC=BD,故①②正确,再证明CO=OD,可得∠CDA=∠DCB,故③正确,由∠CDO=∠OAB,可得CD∥AB,故④正确;【解答】解:∵OA=OB,∴∠DAB=∠CBA,∵∠ACB=∠BDA=90°,AB=BA,∴△ABC≌△BAD(AAS),∴AD=BC,AC=BD,故①②正确,∵BC=AD,BO=AO,∴CO=OD,∴∠CDA=∠DCB,故③正确,∵∠COD=∠AOB,∴∠CDO=∠OAB,∴CD∥AB,故④正确,故选:D.二.填空题(共6小题)13.若分式的值为0,则x的值是0 .【分析】分式值为零的条件是分子等于零且分母不等于零.【解答】解:∵分式的值为0,∴x=0.将x=0代入x+1=1≠0.当x=0时,分式分式的值为0.故答案为:0.14.分式,,的最简公分母是12a2b2c.【分析】根据确定最简公分母的方法:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式确定;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:因为三分式中的常数项系数的最小公倍数是12,a的最高次幂是2,b的最高次幂是2,c的最高次幂是1,所以三分式的最简公分母是12a2b2c.故答案为:12a2b2c.15.若3x=10,3y=5,则3x﹣y= 2 .【分析】先根据同底数幂的除法进行变形,再代入求出即可.【解答】解:∵3x=10,3y=5,∴3x﹣y=3x÷3y=10÷5=2,故答案为:2.16.命题“等腰三角形的两个底角相等”的逆命题是两个角相等三角形是等腰三角形.【分析】先找到原命题的题设和结论,再将题设和结论互换,即可而得到原命题的逆命题.【解答】解:因为原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,所以命题“等腰三角形的两个底角相等”的逆命题是“两个角相等三角形是等腰三角形”.17.如图,在△ABC中,AC=BC,∠B=70°,EF是AC边的垂直平分线,垂足为E,交BC 于点F,则∠AFE的度数等于50°.【分析】根据等腰三角形的性质得到∠CAB=∠B=70°,根据三角形的内角和得到∠C =180°﹣∠CAB﹣∠B=40°,根据线段垂直平分线的性质得到CF=AF,EF⊥AC,于是得到结论.【解答】解:∵AC=BC,∠B=70°,∴∠CAB=∠B=70°,∴∠C=180°﹣∠CAB﹣∠B=40°,∵EF是AC边的垂直平分线,∴CF=AF,EF⊥AC,∴∠EAF=∠C=40°,∴∠AFE=90°﹣40°=50°,故答案为:50°.18.已知ab=1,m=+,则﹣m2018的值等于﹣1 .【分析】先利用异分母分式的加减法法则,计算m的值,再求出﹣m2018的值.【解答】解:m=+==∵ab=1,∴m==1∴﹣m2018=﹣12018=﹣1故答案为:﹣1三.解答题(共8小题)19.先约分,再求值:,其中x=﹣2,y=﹣.【分析】先把分子分母因式分解,再约分得到原式=,然后把x、y的值代入计算即可.【解答】解:原式==,当x=﹣2,y=﹣时,原式==.20.计算:(1)•(2)÷(3)()2(4)()3【分析】(1)先分解因式,再根据分式的乘法法则求出即可;(2)先把除法变成乘法,再根据分式的乘法法则求出即可;(3)根据分式的乘方法则求出即可;(4)根据分式的乘方法则求出即可.【解答】解:(1)•=•=﹣2x(x+1)=﹣2x2﹣2x;(2)原式=•=;(3)()2=;(4)()3=﹣=﹣.21.计算(1)()3•()2•()2(2)()4•()3÷()5【分析】(1)先算乘方,再算乘法即可;(2)先算乘方,把除法变成乘法,再算乘法即可.【解答】解:(1)原式=••=;(2)原式=••=﹣.22.计算:(1)+﹣(2)﹣﹣【分析】(1)直接通分进而利用分时加减运算法则计算得出答案;(2)直接通分进而利用分时加减运算法则计算得出答案.【解答】解:(1)+﹣=+﹣=;(2)﹣﹣=﹣﹣==﹣.23.如图,已知AB∥ED,CD∥BF,AE=CF.求证:AB=ED.【分析】根据平行线性质得到∠A=∠DEC,∠C=∠AFB,根据全等三角形的性质即可得到结论.【解答】证明:∵AB∥ED,CD∥BF,∴∠A=∠DEC,∠C=∠AFB,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ABF与△EDC中,∴△ABF≌△EDC,(ASA),∴AB=ED.24.如图,AB=CD,AD=BC,E、F分别是AC上的点,且AE=CF(1)求证:AB∥CD;(2)求证:BE=DF.【分析】(1)由全等三角形的判定定理SSS证得△ABD≌△CDB,则该全等三角形的对应角相等,即∠ABD=∠CDB,故AB∥CD;(2)欲证明BE=DF,只需推知△ABE≌△CDF即可.【解答】证明:(1)在△ABD与△CDB中,,∴△ABD≌△CDB(SSS),∴∠ABD=∠CDB,∴AB∥CD;(2)由(1)知,AB∥CD,∴∠BAE=∠DCF,又AB=CD,AE=CF,∴△ABE≌△CDF(SAS),∴BE=DF.25.如图,已知AD∥BC,点E是CD上一点,AE平分∠BAD,BF平分∠ABC,延长BE交AD 的延长线于点F(1)求证:△ABE≌△AFE;(2)若AD=2,BC=6,求AB的长.【分析】(1)根据角平分线的定义可得∠BAE=∠EAF,∠ABF=∠EBC,再根据两直线平行,内错角相等可得∠EBC=∠F,然后求出∠ABF=∠F,再利用“角角边”证明△ABE 和△AFE全等即可;(2)根据全等三角形对应边相等可得BE=FE,然后利用“角边角”证明△BCE和△FDE 全等,根据全等三角形对应边相等可得BC=DF,然后根据AD+BC整理即可得证.【解答】证明:(1)∵AE、BE分别平分∠DAB、∠CBA,∴∠BAE=∠EAF,∠ABF=∠EBC,∵AD∥BC,∴∠EBC=∠F,∠ABF=∠F,在△ABE和△AFE中,,∴△ABE≌△AFE(AAS);(2)∵△ABE≌△AFE,∴BE=EF,在△BCE和△FDE中,,∴△BCE≌△FDE(ASA),∴BC=DF,∴AD+BC=AD+DF=AF=AB,即AD+BC=AB.∵AD=2,BC=6,∴AB=8.26.甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用的时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水.(1)分别求甲、乙两种污水处理器的污水处理效率;(2)若某厂每天同时开甲、乙两种污水处理器处理污水共4小时,且甲、乙两种污水处理器处理污水每吨需要的费用分别30元和50元,问该厂每个月(以30天计)需要污水处理费多少?【分析】(1)首先设甲种污水处理器每小时处理污水x吨,则设乙种污水处理器每小时处理污水(x+20)吨,根据题意可得等量关系:甲种污水处理器处理25吨的污水=乙种污水处理器处理35吨的污水所用时间,根据等量关系,列出方程,再解即可.(2)根据题意列出计算式解答即可.【解答】解:(1)设甲种污水处理器每小时处理污水x吨,由题意得,,解之得,x=50,经检验,x=50是原方程的解,所以x=50,x+20=70,答,甲种污水处理器每小时处理污水50吨,乙种污水处理器每小时处理污水70吨.(2)30×4×50×30+30×4×70×50=180000+420000=600000(元),答:该厂每个月(以30天计)需要污水处理费600000元.。
2019-2020学年八年级数学第一学期年中期考试试卷分析本次试卷,整体难度有些大,综合性较强,学生得分不是很理想。
最高分101,最低分7分,均分61,比杜康低1分。
从本次考试情况来看,存在个别同学成绩虚假,如姚凯选择27,总分31。
存在个别同学态度严重出现问题,蔺凡晶7分,李琳婧14,蔺晓栋18分,除了张刘波和李晓松,这两个同学自身数学基础特别差,根本就跟不上以外。
蔺凡晶、李琳婧、蔺晓栋需个别谈话,端正态度,段会宁需额外辅导。
解答题里,得分率较高的是15,19,20,21,此类基础题,大部分学生都做的很好,中下游学生里段晓雪、刘晓欢、孟苗静、同学兵、孟佳乐等同学都得了满分,可见学生基础知识掌握较好,灵活变通、熟练应用还达不到要求。
失分率较高的是17,22,19题,17题是到三面墙距离相等,全级只有六个学生段博华、蔺刘欣、赵国强、李思佳、姚鑫阳、姚丹丹、高鑫丽做对,学生只懂得到两面墙距离相等,不能进行变形和灵活应用。
18题,求证点E在AF垂直平分线上,学生根本读不懂题想让干啥,如果换依据说法,让求证AE=EF的话,可能中等以上的学生很容易证明出来。
18题与22题都应用了三角形全等的证明,学生对于全等证明还算比较熟悉的,但是这两个全等证明都应用到“等角的余角相等”,这个知识对学生本身就是一个难点,中等以下学生根本达不到此类标准。
所以学生虽然知道需要证全等,但是就是不具备找相等角的能力。
23,24,25题,综合能力相当高,此类题,中等生根本没办法够到。
23题,考察三角形的外角,优生里有一半能得满分,答得还相当不错。
24题,姚丹丹、王莹莹、李新杰能做出来第一问证明等腰三角形,第二问每一个同学会。
难住学生的是,图中貌似AM=MP实际是证AP等于AM,学生不能很好观察到等腰三角形的腰何在,所以导致证明方向不明确。
25题,姚鑫阳、高鑫丽、沈若丹,王莹莹能找到证三角形全等。
有的能做好第一问,有的只会第一问一部分,大部分同学根本无从下手。
2019-2020学年八年级(上)期中数学试卷一.选择题(共9小题)1.4的平方根是()A.2 B.C.±2 D.±2.下列各组数是勾股数的是()A.2,3,4 B.0.3,0.4,0.5C.7,24,25 D.,,3.若正比例函数的图象经过点(﹣1,2),则这个图象必经过点()A.(1,2)B.(﹣1,﹣2)C.(2,﹣1)D.(1,﹣2)4.在平面直角坐标系中,点P(﹣20,a)与点Q(b,13)关于x轴对称,则a+b的值为()A.33 B.﹣33 C.﹣7 D.75.如图①所示,有一个由传感器A控制的灯,要装在门上方离地高4.5m的墙上,任何东西只要移至该灯5m及5m以内时,灯就会自动发光.请问一个身高1.5m的学生要走到离墙多远的地方灯刚好发光?()A.4米B.3米C.5米D.7米6.一次函数y=mx+n与正比例函数y=mnx(m,n是常数,且mn≠0),在同一平面直角坐标系的图象是()A.B.C.D.7.直角三角形斜边的平方等于两条直角边乘积的2倍,这个三角形的三条边长之比为()A.3:4:5 B.1::::2 C.2:3:4 D.1:1:8.如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.根据最近人体构造学的研究成果表明,一般情况下人的身高h是指距d的一次函数.下表是测得的指距与身高的一组数据:指距d(cm)20 21 22 23身高h(cm)160 169 178 187根据上表解决下面这个实际问题:姚明的身高是226厘米,他的指距为()A.26.8厘米B.26.9厘米C.27.5厘米D.27.3厘米9.已知梯形ABCD的四个顶点的坐标分別为A(﹣1,0),B(5,0),C(2,2),D(0,2),直线y=kx+2将梯形分成面积相等的两部分,则k的值为()A.B.C.D.二.填空题(共6小题)10.点M(﹣3,4)到y轴的距离是.11.如图,CB=1,OC=2,且OA=OB,BC⊥OC,则点A在数轴上表示的实数是.12.若实数满足++y=6,则代数式=.13.若一次函数y=(3﹣k)x﹣2k2+18的图象经过原点,则k=.14.如图所示,直线BC经过原点O,点A在x轴上,AD⊥BC于D,若B(m,3),C(n,﹣5),A(4,0),则AD•BC=.15.如图,在△ABC中,AB=BC=6,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为.三.解答题(共8小题)16.计算:(1)(﹣1)0+()﹣2﹣+(2)(3)(﹣)2019()2018(4)6﹣++17.如图,网格中的小正方形的边长为1.(1)作出平面直角坐标系中△ABC关于x轴的对称图形△A1B1C1;(2)直接写出△A1B1C1各顶点坐标:A1B1C1.18.已知a,b,c为△ABC的三边,且满足a2﹣8a+b﹣2+|c﹣5|+19=0,试判断△ABC 的形状.19.“十一黄金周”前,某旅行社要印刷旅游宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收1500元制版费;乙印刷厂提出:每份材料收2.5元印刷费,不收制版费.(1)分别写出两印刷厂的收费y(元)与印制宣传材料数量x(份)之间的关系式;(2)旅行社要印制800份宣传材料,选择那家印刷厂比较合算?说明理由.(3)旅行社拟拿出3000元用于印制宣传材料,哪家印刷厂印制的多?20.如图,OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D、E两点的坐标.21.已知A、B两地相距300千米,甲、乙两车同时从A地出发,以各自的速度匀速向B地行驶.甲车先到达B地,停留1小时后,速度不变,按原路返回.设两车行驶的时间是x小时,离开A地的距离是y千米,如图是y与x的函数图象.(1)甲车的速度是,乙车的速度是;(2)甲车在返程途中,两车相距20千米时,求乙车行驶的时间.22.如图,在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动,试解决下列问题:(1)求直线AC的表达式;(2)求△OAC的面积;(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在,求出此时点M的坐标;若不存在,请说明理由.23.知识储备如图①,点E、F分别是y=3和y=﹣1上的动点,则EF的最小值是;方法储备直角坐标系的建立,在代数和几何之间架起了一座桥梁,用代数的方法解决几何问题:某数学小组在自主学习时了解了三角形的中位线及相关的定理,在学习了《坐标与位置)后,该小组同学深入思考,利用中点坐标公式,给出了三角形中位线定理的一种证明方法.如图②,在△ABC中,点D,E分别是AB,AC边的中点,DE称为△ABC的中位线,则DE∥BC且DE=BC.该数学小组建立如图③的直角坐标系,设点A(a,b),点C(0,c)(c>0).请你利用该数学学习小组的思路证明DE∥BC且DE=BC.(提示:中点坐标公式,A(x1,y1),B(x2,y2),则A,B中点坐标为(,))综合应用结合上述知识和方法解决问题,如图④,在△ABC中,∠ACB=90°,AC=3,BC=6,延长AC至点D.DE⊥AD,连接EC并延长交AB边于点F.若2CD+DE=6,则EF是否存在最小值,若存在,求出最小值;若不存在,请说明理由.参考答案与试题解析一.选择题(共9小题)1.4的平方根是()A.2 B.C.±2 D.±【分析】原式利用平方根定义计算即可得到结果.【解答】解:∵(±2)2=4,∴4的平方根是±2,故选:C.2.下列各组数是勾股数的是()A.2,3,4 B.0.3,0.4,0.5C.7,24,25 D.,,【分析】三个正整数,其中两个较小的数的平方和等于最大的数的平方,则这三个数就是勾股数,据此判断即可.【解答】解:A、22+32≠42,故此选项错误;B、0.3,0.4,0.5不是正整数,故此选项错误;C、72+242=252,故此选项正确;D、()2+()2≠()2,同时它们也不是正整数,故此选项错误.故选:C.3.若正比例函数的图象经过点(﹣1,2),则这个图象必经过点()A.(1,2)B.(﹣1,﹣2)C.(2,﹣1)D.(1,﹣2)【分析】求出函数解析式,然后根据正比例函数的定义用代入法计算.【解答】解:设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象经过点(﹣1,2),所以2=﹣k,解得:k=﹣2,所以y=﹣2x,把这四个选项中的点的坐标分别代入y=﹣2x中,等号成立的点就在正比例函数y=﹣2x的图象上,所以这个图象必经过点(1,﹣2).故选:D.4.在平面直角坐标系中,点P(﹣20,a)与点Q(b,13)关于x轴对称,则a+b的值为()A.33 B.﹣33 C.﹣7 D.7【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得a、b 的值,进而得到a+b.【解答】解:∵点P(﹣20,a)与点Q(b,13)关于x轴对称,∴b=﹣20,a=﹣13,∴a+b=﹣20+(﹣13)=﹣33,故选:B.5.如图①所示,有一个由传感器A控制的灯,要装在门上方离地高4.5m的墙上,任何东西只要移至该灯5m及5m以内时,灯就会自动发光.请问一个身高1.5m的学生要走到离墙多远的地方灯刚好发光?()A.4米B.3米C.5米D.7米【分析】根据题意构造出直角三角形,利用勾股定理解答.【解答】解:由题意可知.BE=CD=1.5m,AE=AB﹣BE=4.5﹣1.5=3m,AC=5m由勾股定理得CE==4m故离门4米远的地方,灯刚好打开,故选:A.6.一次函数y=mx+n与正比例函数y=mnx(m,n是常数,且mn≠0),在同一平面直角坐标系的图象是()A.B.C.D.【分析】根据一次函数与正比例函数的性质对四个选项进行逐一分析即可.【解答】解:A、由一次函数的图象可知,m<0,n>0,故mn<0;由正比例函数的图象可知mn<0,两结论一致,故本选项正确;B、由一次函数的图象可知,m<0,n>0,故mn<0;由正比例函数的图象可知mn>0,两结论不一致,故本选项不正确;C、由一次函数的图象可知,m>0,n>0,故mn>0;由正比例函数的图象可知mn<0,两结论不一致,故本选项不正确;D、由一次函数的图象可知,m>0,n<0,故n>0,mn<0;由正比例函数的图象可知mn>0,两结论不一致,故本选项不正确.故选:A.7.直角三角形斜边的平方等于两条直角边乘积的2倍,这个三角形的三条边长之比为()A.3:4:5 B.1::::2 C.2:3:4 D.1:1:【分析】根据勾股定理和题意列出关系式,整理得到a=b,得到三角形为等腰直角三角形,得到答案.【解答】解:设直角三角形的两直角边分别为a、b,斜边为c,由勾股定理得,a2+b2=c2,由题意得,2ab=c2,则a2+b2=2ab,整理得,(a﹣b)2=0,则a=b,∴三角形为等腰直角三角形,∴三角形的三条边长之比为1:1:,故选:D.8.如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.根据最近人体构造学的研究成果表明,一般情况下人的身高h是指距d的一次函数.下表是测得的指距与身高的一组数据:指距d(cm)20 21 22 23身高h(cm)160 169 178 187根据上表解决下面这个实际问题:姚明的身高是226厘米,他的指距为()A.26.8厘米B.26.9厘米C.27.5厘米D.27.3厘米【分析】本题需先根据题意求出一次函数的解析式,再把y=226代入即可求出答案.【解答】解:设这个一次函数的解析式是:y=kx+b,,解得:,一次函数的解析式是:y=9x﹣20,当y=226时,9x﹣20=226,x=27.3.故选:D.9.已知梯形ABCD的四个顶点的坐标分別为A(﹣1,0),B(5,0),C(2,2),D(0,2),直线y=kx+2将梯形分成面积相等的两部分,则k的值为()A.B.C.D.【分析】首先根据题目提供的点的坐标求得梯形的面积,利用直线将梯形分成相等的两部分,求得直线与梯形的边围成的三角形的面积,进而求得其解析式即可.【解答】解:∵梯形ABCD的四个顶点的坐标分別为A(﹣1,0),B(5,0),C(2,2),D(0,2),∴梯形的面积为:=8,∵直线y=kx+2将梯形分成面积相等的两部分,∴直线y=kx+2与AD、AB围成的三角形的面积为4,设直线与x轴交于点(x,0),∴(x+1)×2=4,∴x=3,∴直线y=kx+2与x轴的交点为(3,0)∴0=3k+2解得k=﹣故选:A.二.填空题(共6小题)10.点M(﹣3,4)到y轴的距离是 3 .【分析】根据点到y轴的距离是点的横坐标的绝对值,可得答案.【解答】解:点A的坐标(﹣3,4),它到y轴的距离为|﹣3|=3,故答案为:3.11.如图,CB=1,OC=2,且OA=OB,BC⊥OC,则点A在数轴上表示的实数是﹣.【分析】根据勾股定理求出OB,即可得出答案.【解答】解:由勾股定理得:OB==,点A在数轴上表示的实数是﹣,故答案为:﹣.12.若实数满足++y=6,则代数式=.【分析】根据二次根式有意义的条件可得x的值,进而可得y的值,然后再计算即可.【解答】解:由题意得:,解得:x=,则y=6,∴=6=,故答案为:.13.若一次函数y=(3﹣k)x﹣2k2+18的图象经过原点,则k=﹣3 .【分析】把原点坐标代入函数解析式可求得k的值.【解答】解:∵一次函数y=(3﹣k)x﹣2k2+18的图象经过原点,∴0=﹣2k2+18,解得k=3(舍去)或k=﹣3,故答案为﹣3.14.如图所示,直线BC经过原点O,点A在x轴上,AD⊥BC于D,若B(m,3),C(n,﹣5),A(4,0),则AD•BC=32 .【分析】作三角形的高线,根据坐标求出BE、OA、OF的长,利用面积法可以得出BC•AD =32.【解答】解:过B作BE⊥x轴于E,过C作CF⊥y轴于F,∵B(m,3),∴BE=3,∵A(4,0),∴AO=4,∵C(n,﹣5),∴OF=5,∵S△AOB=AO•BE=×4×3=6,S△AOC=AO•OF=×4×5=10,∴S△AOB+S△AOC=6+10=16,∵S△ABC=S△AOB+S△AOC,∴BC•AD=16,∴BC•AD=32,故答案为:32.15.如图,在△ABC中,AB=BC=6,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为3或3或3.【分析】利用分类讨论,当∠ABP=90°时,如图2,由对顶角的性质可得∠AOC=∠BOP =60°,易得∠BPO=30°,易得BP的长,利用勾股定理可得AP的长;当∠APB=90°时,分两种情况讨论,情况一:如图1,利用直角三角形斜边的中线等于斜边的一半得出PO=BO,易得△BOP为等边三角形,利用锐角三角函数可得AP的长;易得BP,利用勾股定理可得AP的长;情况二:如图3,利用直角三角形斜边的中线等于斜边的一半可得结论.【解答】解:当∠APB=90°时(如图1),∵AO=BO,∴PO=BO,∵∠AOC=60°,∴∠BOP=60°,∴△BOP为等边三角形,∵AB=BC=6,∴AP=AB•sin60°=6×=3;当∠ABP=90°时(如图2),∵∠AOC=∠BOP=60°,∴∠BPO=30°,∴BP===3,在直角三角形ABP中,AP==3;如图3,∵AO=BO,∠APB=90°,∴PO=AO,∵∠AOC=60°,∴△AOP为等边三角形,∴AP=AO=3,故答案为3或3或3.三.解答题(共8小题)16.计算:(1)(﹣1)0+()﹣2﹣+(2)(3)(﹣)2019()2018(4)6﹣++【分析】(1)直接利用零指数幂的性质和负整数指数幂的性质分别化简得出答案;(2)直接利用二次根式的性质化简得出答案;(3)直接利用积的乘方运算法则计算得出答案;(4)直接化简二次根式进而合并得出答案.【解答】解:(1)原式=1+4﹣3+3=5;(2)原式==2;(3)原式=[(﹣)×(+)]2018×(﹣)=(3﹣2)2018×(﹣)=﹣;(4)原式=6×﹣2++×=2﹣2++=.17.如图,网格中的小正方形的边长为1.(1)作出平面直角坐标系中△ABC关于x轴的对称图形△A1B1C1;(2)直接写出△A1B1C1各顶点坐标:A1(﹣3,2)B1(﹣1,﹣2)C1(1,﹣1).【分析】(1)根据网格结构找出点A、B、C关于x轴的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据平面直角坐标系写出△A1B1C1各顶点的坐标即可.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,A1(﹣3,2),B1(﹣1,﹣2),C1(1,﹣1).故答案为:(﹣3,2),(﹣1,﹣2),(1,﹣1).18.已知a,b,c为△ABC的三边,且满足a2﹣8a+b﹣2+|c﹣5|+19=0,试判断△ABC 的形状.【分析】根据:a2﹣8a+b﹣2+|c﹣5|+19=0,可得:(a﹣4)2++|c﹣5|=0,所以,据此求出a、b、c的值各是多少,即可判断出△ABC的形状.【解答】解:∵a2﹣8a+b﹣2+|c﹣5|+19=0,∴(a2﹣8a+16)+(b﹣2+3)+|c﹣5|=0,∴(a﹣4)2++|c﹣5|=0,∴,解得,a2=42=16,b2==3,c2=52=25,∵a2+b2=16+3=19<c2,∴△ABC是钝角三角形.19.“十一黄金周”前,某旅行社要印刷旅游宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收1500元制版费;乙印刷厂提出:每份材料收2.5元印刷费,不收制版费.(1)分别写出两印刷厂的收费y(元)与印制宣传材料数量x(份)之间的关系式;(2)旅行社要印制800份宣传材料,选择那家印刷厂比较合算?说明理由.(3)旅行社拟拿出3000元用于印制宣传材料,哪家印刷厂印制的多?【分析】(1)利用题目中所给等量关系即可求得答案;(2)把x=800分别代入两函数解析式,分别计算y甲、y乙的值,比较大小即可;(3)令y=3000代入两函数解析式分别求x的值,比较大小即可.【解答】解:(1)由题意可得y甲=x+1500,y乙=2.5x;(2)当x=800时,y甲=2300,y乙=2000,y甲>y乙,所以选择乙印刷厂比较合算;(3)当y=3000时,甲:x=1500,乙:x=1200,1500>1200,∴选择甲印刷厂印制宣传材料能多一些.20.如图,OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D、E两点的坐标.【分析】先根据勾股定理求出BE的长,进而可得出CE的长,求出E点坐标,在Rt△DCE中,由DE=OD及勾股定理可求出OD的长,进而得出D点坐标.【解答】解:依题意可知,折痕AD是四边形OAED的对称轴,∴在Rt△ABE中,AE=AO=10,AB=8,BE===6,∴CE=4,∴E(4,8).在Rt△DCE中,DC2+CE2=DE2,又∵DE=OD,∴(8﹣OD)2+42=OD2,∴OD=5,∴D(0,5),综上D点坐标为(0,5)、E点坐标为(4,8).21.已知A、B两地相距300千米,甲、乙两车同时从A地出发,以各自的速度匀速向B地行驶.甲车先到达B地,停留1小时后,速度不变,按原路返回.设两车行驶的时间是x小时,离开A地的距离是y千米,如图是y与x的函数图象.(1)甲车的速度是100千米/小时,乙车的速度是60千米/小时;(2)甲车在返程途中,两车相距20千米时,求乙车行驶的时间.【分析】(1)图象可得甲车3小时行驶300公里,乙车5小时行驶300公里,即可求速度;(2)由图象可求乙车的函数关系式y乙=60x,甲车返回时的函数关系式:y甲=﹣100x+700(4≤x≤7),即可求两车相距20千米时,乙车行驶的时间.【解答】解:(1)根据题意可得:甲车速度为:=100千米/小时,乙车速度为:=60千米/小时故答案为100千米/小时,60千米/小时(2)由图象可得乙车表示的函数图象关系式为y乙=60x甲车返回时的函数图象关系式为y甲=﹣100x+700(4≤x≤7)∵甲,乙两车相距20千米∴|y甲﹣y乙|=20∴﹣100x+700﹣60x=20或﹣100x+700﹣60x=﹣20解得:x=或x=∴乙车行驶的时间为小时或小时.22.如图,在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动,试解决下列问题:(1)求直线AC的表达式;(2)求△OAC的面积;(3)是否存在点M,使△OMC的面积是△OAC的面积的?若存在,求出此时点M的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法即可求得函数的解析式;(2)求利用三角形的面积公式即可求解;(3)当△OMC的面积是△OAC的面积的时,根据面积公式即可求得M的横坐标,然后代入解析式即可求得M的坐标.【解答】解:(1)设直线AC的解析式是y=kx+b,根据题意得:,解得:.则直线的解析式是:y=﹣x+6;(2)S△OAC=×6×4=12;(3)设OA的解析式是y=mx,则4m=2,解得:m=.则直线的解析式是:y=x,∵当△OMC的面积是△OAC的面积的时,∴M到y轴的距离是×4=1,∴点M的横坐标为1或﹣1;当M的横坐标是:1,在y=x中,当x=1时,y=,则M的坐标是(1,);在y=﹣x+6中,x=1则y=5,则M的坐标是(1,5).则M的坐标是:M1(1,)或M2(1,5).当M的横坐标是:﹣1,在y=﹣x+6中,当x=﹣1时,y=7,则M的坐标是(﹣1,7).综上所述:M的坐标是:M1(1,)或M2(1,5)或M3(﹣1,7).23.知识储备如图①,点E、F分别是y=3和y=﹣1上的动点,则EF的最小值是 4 ;方法储备直角坐标系的建立,在代数和几何之间架起了一座桥梁,用代数的方法解决几何问题:某数学小组在自主学习时了解了三角形的中位线及相关的定理,在学习了《坐标与位置)后,该小组同学深入思考,利用中点坐标公式,给出了三角形中位线定理的一种证明方法.如图②,在△ABC中,点D,E分别是AB,AC边的中点,DE称为△ABC的中位线,则DE∥BC且DE=BC.该数学小组建立如图③的直角坐标系,设点A(a,b),点C(0,c)(c>0).请你利用该数学学习小组的思路证明DE∥BC且DE=BC.(提示:中点坐标公式,A(x1,y1),B(x2,y2),则A,B中点坐标为(,))综合应用结合上述知识和方法解决问题,如图④,在△ABC中,∠ACB=90°,AC=3,BC=6,延长AC至点D.DE⊥AD,连接EC并延长交AB边于点F.若2CD+DE=6,则EF是否存在最小值,若存在,求出最小值;若不存在,请说明理由.【分析】知识储备:根据垂线段最短,平行线之间的距离解决问题即可.方法储备:如图③中,设A(m,n),C(b,0).利用中点坐标公式求解即可.综合运用:建立如图平面直角坐标系,设DE=x,则CD=3﹣x.求出点E的运动轨迹,转化为知识储备的类型即可解决问题.【解答】解:知识储备:如图①,点E、F分别是y=3和y=﹣1上的动点,则EF的最小值是3+1=4,故答案为4.方法储备:如图③中,设A(m,n),C(b,0).∵AD=OD,AE=EC,∴D(,),E(,),∴DE∥BC,∴DE=﹣=b,∵OC=b,∴DE=OC.综合应用:建立如图平面直角坐标系,设DE=x,则CD=3﹣x.∵DE⊥AD,∴E(x,x﹣3),∴点E的运动轨迹是直线y=x﹣3,设这条直线与x轴交于M,由y轴交于N.∵A(0,3),B(﹣6,0),∴直线AB的解析式为y=x+3,∴AB∥MN,根据垂线段最短可知,当EF⊥AB时,EF队长最小,作CF⊥AB于F′,交MN于E′.∵AC=3,BC=6,∴AB===3,∴CF′==,∵直线MN与直线AB关于原点O对称,∴根据对称性可知CE′=CF′,∴EF的最小值=2CF′=.。
2019-2020学年河南省郑州八中八年级(上)期中数学试卷一、选择题(共10小题,满分30分,每小题3分)1.计算西的结果是()A. 9B. -9C. 3D. ±32. 下列实数中,无理数有( )个77、0、3.1415926、兀、0.1010010001...(每两个 1 之间 0 的个数依次加 1)A. 1B. 2C. 3D. 43. 在平面直角坐标系中,点F (4,-3)到x 轴的距离( )A. 4B. 3C. 5D. -34. 将下列长度的三根木棒首尾顾次连接,能构成直角三角形的是( )A. 6, 8, 12B. V3,4,V5C. 5, 12, 13D.扼播,75.已知点(k,b )为第二象限内的点,则一次函数y = -kx + b 的图象大致是( )A.面的平方根是±9C.上的平方根是上36 6B. -5的立方根是-如D. -9没有立方根7.如图,在2x2的正方形网格中,每个小正方形边长为1,点A, B, C 均为格点,以点A 为圆心,A3长为半径作弧,交格线于点则CD 的长为()A ' IB・|D. 2-V38.如图,点A 的坐标为(1,3) , O 为坐标原点,将。
4绕点O 按顺时针方向旋转90。
得到04,C.(一3,-1)D. (3,1)9.如图在AA3C 中,ZC = 90° ,平分匕BAC,DE1AB 于 E , DE = 3, BD = 2CD ,则 BC = ()10.如图,8 C. D. 10甲、乙两人以相同路线前往距离单位ios 的培训中心参加学习,图中4,匕分别表示甲、乙两人前往目的地所走的路程S (千米)随时间7 (分)变化的函数图象,以下说法:①甲比乙提前12分钟到达;②甲的平均速度为15千米/小时;③甲、乙相遇时,乙走了 6千米;④乙出发6分钟后追上甲,其中正确的是()9A.①②B.③④C.①③④D.②③④二、填空题(共5小题,满分15分,每小题3分)11.|V2-l|=.12.若x、y为实数,且满足|2x+31+J9-4y=0,则xy的立方根为.13.如图一个圆柱,底圆周长10cm,高4cm,一只蚂蚁沿外壁爬行,要从A点爬到3点,则最少要爬行cm.C~B14.在平面直角坐标系中,若点M(2,4)与点N(x,4)之间的距离是3,则x的值是.15.如图,矩形ABCD中,AB=6,BC=8,点.E是BC边上点连接AE,把ZB沿AE折叠,使点3落在点甘处,当左CB'E为直角三角形时,则AE的长为.三、解答题(共7小题,满分55分)16.计算:(1)(2V12-^|)xV6⑵(V3-V2)(V3+V2)+27^+^17.如图,已知在四边形ABCD中,ZA=90°,AB=2cm,AD=45cm,CD=5cm,BC=4cm,求四边形ABCD的面积.18.如图,\ABC中,A点坐标为(2,4),3点坐标为(-3,-2),C点坐标为(3,1).(1)在图中画出AA3C 关于y 轴对称的(不写画法),并写出点A, B', (7的坐标.(2)求AABC 的面积..二..:.4.............• • • • • :::::2 r - -1- - -1 - - r - -! ::-4: :................:\B' \ :-2................Illi*'• • • i i i i i ■L_«___________■r : 1 r :-4r i ---i 1 • ■>Illi 119.八年级(1)班张山同学利用所学函数知识,对函数y=\x + 2\-x-l 进行了如下研究:列表如下:描点并连线(如下图)X-5-4-3-2-10123Y 753m1n111(1) 自变量X 的取值范围是;(2) 表格中: m =; n =;(3) 在给出的坐标系中画出函数y=\x + 2\-x-l 的图象;(4) 一次函数y = -x + 3的图象与函数y=|x + 2|-x -1的图象交点的坐标为.20. 一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为必千米,出租车离甲地的距离为为千米,两车行驶的时间为x 小时,芳、方关于 x 的图象如图所示:(1)根据图象,分别写出为关于*的关系式(需要写出自变量取值范围);(2)当两车相遇时,求x的值;(3)甲、乙两地间有A、8两个加油站,相距200千米,若客车进入A加油站时,出租车恰好进入3加油站,求A加油站离甲地的距离.21.如图,将长方形A8CD沿AC对折,使AABC落在AAEC的位置,且CE与AD相文于点F(1)求证:EF=DF(2)若AB=也,BC=3求折叠后的重叠部分(阴影部分)的面积.22.如图,在平面直角坐标系中,过点A(0,6)的直线A3与直线。
2019-2020学年八年级上学期期中考试数学试题一、选择题(本大题共12个小题;每小题3分,共36分在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形中为轴对称图形的是()A.B.C.D.2.以下各组线段为边,能组成三角形的是()A.2,4,6 B.8,6,4 C.2,3,6 D.6,7,143.如图,点A的坐标(﹣1,2),则点A关于y轴的对称点的坐标为()A.(1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)4.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.5.在△ABC中,∠A:∠B:∠C=2:2:5,则△ABC是()A.等腰三角形B.等边三角形C.直角三角形D.锐角三角形6.多边形每一个内角都等于150°,则从此多边形一个顶点发出的对角线有()A.7条B.8条C.9条D.10条7.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD8.如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°9.如图所示,一个直角三角形纸片,剪去这个直角后,得到一个四边形,则∠1+∠2的度数为()A.150°B.180°C.240°D.270°10.如图,AB=AC,∠BAC=100°,AB的垂直平分线交BC于点D,那么∠DAC的度数为()A.80°B.70°C.60°D.50°11.如图,BD是△ABC的角平分线,DE∥BC,DE交AB于E,若AB=BC,则下列结论中错误的是()A.BD⊥AC B.∠A=∠EDA C.2AD=BC D.BE=ED12.如图,在△ABC中,AB=AC,∠BAC=60°,BC边上的高AD=8,E是AD上的一个动点,F是边AB的中点,则EB+EF的最小值是()A.5 B.6 C.7 D.8二、填空题(本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)13.等腰三角形的顶角是50°,则它一腰上的高与底边的夹角为.14.等腰三角形的周长为20cm,且一边长为6cm,则它的腰长为.15.如图所示,∠A+∠B+∠C+∠D+∠E=.16.如图,在△ABC中,AB=AC,∠B=30°,AB的垂直平分线EF交AB于点E,交BC于点F,EF=2,则BC的长为.17.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,且DA=DB.若CD=3,则BC=.18.已知一张三角形纸片ABC(如图甲),其中AB=AC.将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为BD(如图乙).再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为EF(如图丙).原三角形纸片ABC中,∠ABC的大小为°.三、解答下列各题(本题有8个小题共66分)19.已知:如图,△ABC中,AD是高,AE平分∠BAC,∠B=50°,∠C=80°.求∠DAE的度数.20.如图,已知∠ACB=90°,点D是AB上一点,若DB=DC.求证:点D是AB的中点.21.△ABC在平面直角坐标系中的位置如图所示,A、B、C三点在格点(小正方形的顶点)上.(1)作出△ABC关于x轴对称的△A1B1C1,写出点A1、B1、C1的坐标;(2)求△ABC的面积.22.已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.23.如图,是由4×4个大小完在一样的小正方形组成的方格纸,其中有两个小正方形是涂黑的,请再选择三个小正方形并涂黑,使图中涂黑的部分成为轴对称图形.并画出它的一条对称轴(如图例.画对一个得1分)24.如图,CN是等边△ABC的外角∠ACM内部的一条射线,点A关于CN的对称点为D,连接AD,BD,CD,其中AD,BD分别交射线CN于点E,P.(Ⅰ)依题意补全图形;(Ⅱ)若∠ACN=α,求∠BDC的大小(用含α的式子表示);(Ⅲ)若PA=x,PC=y,求PB的长度(用x,y的代数式表示).25.如图,点C是线段AB上除点A,B外的任意一点,分别以AC,BC为边在线段AB的同旁作等边△ACD和等边△BCE,连接AE交DC于M,连接BD交CE于N,连接MN.(1)求证:BD=AE;(2)求证:△NMC是等边三角形.26.如图,在△ABC中,AC=BC,∠ACB=90°,D为△ABC内一点,∠BAD=15°,AD=AC,CE⊥AD于E,且CE=5.(1)求BC的长;(2)求证:BD=CD.参考答案与试题解析一.选择题(共12小题)1.下列图形中为轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义即可判断.【解答】解:A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形;故选:D.2.以下各组线段为边,能组成三角形的是()A.2,4,6 B.8,6,4 C.2,3,6 D.6,7,14 【分析】看看是否符合三角形三边关系定理即可.【解答】解:A、∵2+4=6,∴以2、4、6为边不能组成三角形,故本选项不符合题意;B、∵8+6>4,4+6>8,8+4>6,∴以8、6、4为边能组成三角形,故本选项符合题意;C、∵2+3<6,∴以2、3、6为边不能组成三角形,故本选项不符合题意;D、∵6+7=13<14,∴以6、7、14为边不能组成三角形,故本选项不符合题意;故选:B.3.如图,点A的坐标(﹣1,2),则点A关于y轴的对称点的坐标为()A.(1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)【分析】直接利用关于y轴对称点的性质分析得出答案.【解答】解:点A的坐标(﹣1,2),点A关于y轴的对称点的坐标为:(1,2).故选:A.4.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:为△ABC中BC边上的高的是A选项.故选:A.5.在△ABC中,∠A:∠B:∠C=2:2:5,则△ABC是()A.等腰三角形B.等边三角形C.直角三角形D.锐角三角形【分析】设∠A=2x,则∠B=2x,∠C=5x,再由三角形内角和定理求出x的度数,进而可得出∠C的度数,由此判断出△ABC的形状即可【解答】解:∵△ABC中,∠A:∠B:∠C=2:2:5,∴设∠A=2x,则∠B=2x,∠C=5x,∵∠A+∠B+∠C=180°,∴2x+2x+5x=180°,解得x=20°,∴∠A=∠B=40°,∠C=5x=5×20°=100°.∴AC=CB.∴△ABC是钝角三角形,等腰三角形.故选:A.6.多边形每一个内角都等于150°,则从此多边形一个顶点发出的对角线有()A.7条B.8条C.9条D.10条【分析】多边形的每一个内角都等于150°,多边形的内角与外角互为邻补角,则每个外角是30度,而任何多边形的外角是360°,则求得多边形的边数;再根据不相邻的两个顶点之间的连线就是对角线,则此多边形从一个顶点出发的对角线共有(n﹣3)条,即可求得对角线的条数.【解答】解:∵多边形的每一个内角都等于150°,∴每个外角是30°,∴多边形边数是360°÷30°=12,则此多边形从一个顶点出发的对角线共有12﹣3=9条.故选:C.7.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA 添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.故选:D.8.如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30°B.40°C.50°D.60°【分析】根据直角三角形两锐角互余求出∠3,再利用“HL”证明Rt△ABC和Rt△ADC 全等,根据全等三角形对应角相等可得∠2=∠3.【解答】解:∵∠B=90°,∠1=30°,∴∠3=90°﹣∠1=90°﹣30°=60°,在Rt△ABC和Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL),∴∠2=∠3=60°.故选:D.9.如图所示,一个直角三角形纸片,剪去这个直角后,得到一个四边形,则∠1+∠2的度数为()A.150°B.180°C.240°D.270°【分析】首先根据三角形内角和定理算出∠3+∠4的度数,再根据四边形内角和为360°,计算出∠1+∠2的度数.【解答】解:∵∠5=90°,∴∠3+∠4=180°﹣90°=90°,∵∠3+∠4+∠1+∠2=360°,∴∠1+∠2=360°﹣90°=270°,故选:D.10.如图,AB=AC,∠BAC=100°,AB的垂直平分线交BC于点D,那么∠DAC的度数为()A.80°B.70°C.60°D.50°【分析】根据等腰三角形性质和三角形内角和定理求出∠B,根据线段垂直平分线性质得出AD=BD,求出∠BAD=40°,代入∠DAC=∠BAC﹣∠BAD求出即可.【解答】解:∵AB=AC,∠BAC=100°,∴∠B=∠C=(180°﹣∠BAC)=40°,∵D在AB的垂直平分线上,∴AD=BD,∴∠BAD=∠B=40°,∴∠DAC=∠BAC﹣∠BAD=100°﹣40°=60°,故选:C.11.如图,BD是△ABC的角平分线,DE∥BC,DE交AB于E,若AB=BC,则下列结论中错误的是()A.BD⊥AC B.∠A=∠EDA C.2AD=BC D.BE=ED【分析】根据等腰三角形顶角的角平分线与底边的高、底边的中线三线重合这一性质,可得BD⊥AC,然后,根据平行线的性质,可得∠C=∠ADE,即可推出∠A=∠C,由∠EDB =∠DBC,结合已知,可推出∠EBD=∠EDB,便可推出BE=ED.【解答】解:∵BD是△ABC的角平分线,AB=BC,∴BD⊥AC,∠A=∠C,∠EBD=∠DBC,∵DE∥BC,∴∠C=∠EDA,∠EDB=∠DBC,∴∠A=∠EDA,∠EBD=∠EDB,∴BE=ED.故选:C.12.如图,在△ABC中,AB=AC,∠BAC=60°,BC边上的高AD=8,E是AD上的一个动点,F是边AB的中点,则EB+EF的最小值是()A.5 B.6 C.7 D.8【分析】先连接CF,再根据EB=EC,将FE+EB转化为FE+CE,最后根据两点之间线段最短,求得CF的长,即为FE+EB的最小值.【解答】解:连接CF,∵等边△ABC中,AD是BC边上的中线∴AD是BC边上的高线,即AD垂直平分BC∴EB=EC,当C、F、E三点共线时,EF+EC=EF+BE=CF,∵等边△ABC中,F是AB边的中点,∴AD=CF=8,∴EF+BE的最小值为8,故选:D.二.填空题(共6小题)13.等腰三角形的顶角是50°,则它一腰上的高与底边的夹角为25°.【分析】根据等腰三角形的性质和三角形内角和定理可求出等腰三角形的底角的度数,然后在一腰上的高与底边所构成的直角三角形中,可得出所求角的度数.【解答】解:如图:△ABC中,AB=AC,BD是边AC上的高.∵∠A=70°,且AB=AC,∴∠ABC=∠C=(180°﹣50°)÷2=65°;在Rt△BDC中,∠BDC=90°,∠C=65°;∴∠DBC=90°﹣65°=25°.故答案为:25°14.等腰三角形的周长为20cm,且一边长为6cm,则它的腰长为6cm或7cm.【分析】当腰长=6cm时,底边=20﹣6﹣6=8cm,当底边=6cm时,腰长==7cm,根据三角形的三边关系,即可推出腰长.【解答】解:∵等腰三角形的周长为20cm,∴当腰长=6cm时,底边=20﹣6﹣6=8cm,∴当底边=6cm时,腰长==7cm,故答案为6cm或7cm.15.如图所示,∠A+∠B+∠C+∠D+∠E=180°.【分析】根据三角形内角与外角的关系可得∠A+∠B=∠2,∠D+∠E=∠1,再根据三角形内角和定理可得∠1+∠2+∠C=180°,进而可得答案.【解答】解:延长BE交AC于F,∵∠A+∠B=∠2,∠D+∠E=∠1,∠1+∠2+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°,故答案为:180°.16.如图,在△ABC中,AB=AC,∠B=30°,AB的垂直平分线EF交AB于点E,交BC于点F,EF=2,则BC的长为12 .【分析】连接AF,根据等腰三角形性质求出∠C=∠B=30°,根据线段垂直平分线求出AF=BF=2EF=4,求出CF=2AF=8,即可求出答案.【解答】解:连接AF,∵AC=AB,∴∠C=∠B=30°,∵EF是AB的垂直平分线,∴AF=BF,∴∠B=∠FAB=30°,∴∠CFA=30°+30°=60°,∴∠CAF=180°﹣∠C﹣∠CFA=90°,∵EF⊥AB,EF=2,∴AF=BF=2EF=4,∵∠C=30°,∠CAF=90°,∴CF=2AF=8,∴BC=CF+BF=8+4=12,故答案为:12.17.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,且DA=DB.若CD=3,则BC=9 .【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后根据全等三角形的判定和性质即可得到结论..【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD=3,∵AD=BD,∴AE=BE,在Rt△AED与Rt△ACD中,∴Rt△AED≌Rt△ACD(HL),∴AE=AC,∴AB=2AC,∴∠B=30°,∴∠CAD=30°,∴AD=BD=2CD=6,∴BC=9.18.已知一张三角形纸片ABC(如图甲),其中AB=AC.将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为BD(如图乙).再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为EF(如图丙).原三角形纸片ABC中,∠ABC的大小为72 °.【分析】设∠A=x,根据翻折不变性可知∠A=∠EDA=x,∠C=∠BED=∠A+∠EDA=2x,利用三角形内角和定理构建方程即可解决问题.【解答】解:设∠A=x,根据翻折不变性可知∠A=∠EDA=x,∠C=∠BED=∠A+∠EDA =2x,∵AB=AC,∴∠ABC=∠C=2x,∵∠A+∠ABC+∠C=180°,∴5x=180°,∴x=36°,∴∠ABC=72°故答案为72三.解答题(共8小题)19.已知:如图,△ABC中,AD是高,AE平分∠BAC,∠B=50°,∠C=80°.求∠DAE的度数.【分析】根据三角形的内角和定理,可求得∠BAC的度数,由AE是∠BAC的平分线,可得∠EAC的度数,在直角△ADC中,可求出∠DAC的度数,所以∠DAE=∠EAC﹣∠DAC,即可得出.【解答】解:∵△ABC中,∠B=50°,∠C=80°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣80°=50°,∵AE是∠BAC的平分线,∴∠EAC=∠BAC=25°,∵AD是BC边上的高,∴在直角△ADC中,∠DAC=90°﹣∠C=90°﹣80°=10°,∴∠DAE=∠EAC﹣∠DAC=25°﹣10°=15°20.如图,已知∠ACB=90°,点D是AB上一点,若DB=DC.求证:点D是AB的中点.【分析】因为∠ACB=90°,DB=DC,可求得∠A=∠DCA,利用三角形中两内角相等来证AD=DC,则可证得点D是AB的中点.【解答】证明:∵∠ACB=90°∴∠ACD+∠DCB=∠A+∠B=90°∵DB=DC∴∠DCB=∠B∴∠ACD+∠B=∠A+∠B=90°∴∠A=∠ACD∴AD=DC∴AD=DB∴点D是AB的中点.21.△ABC在平面直角坐标系中的位置如图所示,A、B、C三点在格点(小正方形的顶点)上.(1)作出△ABC关于x轴对称的△A1B1C1,写出点A1、B1、C1的坐标;(2)求△ABC的面积.【分析】(1)分别作出点A、B、C关于x轴的对称点,再首尾顺次连接即可得;(2)利用割补法求解可得.【解答】解:(1)如图所示,△A1B1C1即为所求.由图可知A1(2,﹣4),B1(1,﹣1),C1(3,﹣2);(2)S△ABC=2×3﹣×1×2﹣×1×2﹣×1×3=.22.已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.【分析】连接AD,利用“边边边”证明△ABD和△ACD全等,然后根据全等三角形对应角相等可得∠BAD=∠CAD,再根据角平分线上的点到角的两边距离相等证明即可.【解答】证明:如图,连接AD,在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,又∵DE⊥AB,DF⊥AC,∴DE=DF.23.如图,是由4×4个大小完在一样的小正方形组成的方格纸,其中有两个小正方形是涂黑的,请再选择三个小正方形并涂黑,使图中涂黑的部分成为轴对称图形.并画出它的一条对称轴(如图例.画对一个得1分)【分析】直接利用轴对称图形的性质分别得出符合题意的答案.【解答】解:如图所示:24.如图,CN是等边△ABC的外角∠ACM内部的一条射线,点A关于CN的对称点为D,连接AD,BD,CD,其中AD,BD分别交射线CN于点E,P.(Ⅰ)依题意补全图形;(Ⅱ)若∠ACN=α,求∠BDC的大小(用含α的式子表示);(Ⅲ)若PA=x,PC=y,求PB的长度(用x,y的代数式表示).【分析】(Ⅰ)根据对称性和等边三角形的性质可得结论;(Ⅱ)根据对称得:CN是AD的垂直平分线,则CA=CD,根据等腰三角形的性质和等边三角形可得结论;(Ⅲ)作辅助线,在PB上截取PF使PF=PC,连接CF,PA.先证明△CPF是等边三角形,再证明△BFC≌△APC,则BF=PA,由此即可解决问题.【解答】解:(Ⅰ)∵点A与点D关于CN对称,∴CN是AD的垂直平分线,∴CA=CD,∵等边△ABC,∴CA=CB,∴CD=CB;(Ⅱ)∵CN是AD的垂直平分线,CA=CD.∴∠ACE=∠DCE,∵∠ACN=α,∴∠ACD=2∠ACN=2α.∵CB=CD,∠ACB=60°.∴∠BCD=∠ACB+∠ACD=60°+2α.∴∠BDC=∠DBC=(180°﹣∠BCD)=60°﹣α.(Ⅲ)在PB上截取PF使PF=PC,连接CF,PA设∠ACN=α,∵CA=CD,∠ACD=2α,∴∠CDA=∠CAD=90°﹣α.∵∠BDC=60°﹣α,∴∠PDE=∠CDA﹣∠BDC=30°,∵∠CPF=∠DPE=90°﹣∠PDE=60°.∴△CPF是等边三角形.∴CF=CP,∠PCF=60°∵∠PCF=∠ACB,∴∠BCF=∠ACP,∵CB=CA,CF=CP,∴∠BFC=∠DPC=120°.∴△BFC≌△APC(SAS).∴BF=PA,∴PB=PF+BF=PA+PC=x+y.25.如图,点C是线段AB上除点A,B外的任意一点,分别以AC,BC为边在线段AB的同旁作等边△ACD和等边△BCE,连接AE交DC于M,连接BD交CE于N,连接MN.(1)求证:BD=AE;(2)求证:△NMC是等边三角形.【分析】(1)先由△ACD和△BCE是等边三角形,可知AC=DC,CE=CB,∠DCA=60°,∠ECB=60°,故可得出∠DCA+∠DCE=∠ECB+∠DCE,∠ACE=∠DCB,根据SAS定理可知△ACE≌△DCB,由全等三角形的性质即可得出结论;(2)由(1)中△ACE≌△DCB,可知∠CAM=∠CDN,再根据∠ACD=∠ECB=60°,A、C、B三点共线可得出∠DCN=60°,由全等三角形的判定定理可知,△ACM≌△DCN,故MC =NC,再根据∠MCN=60°可知△MCN为等边三角形.【解答】证明:(1)∵△ACD和△BCE是等边三角形,∴AC=DC,CE=CB,∠DCA=60°,∠ECB=60°,∵∠DCA=∠ECB=60°,∴∠DCA+∠DCE=∠ECB+∠DCE,∠ACE=∠DCB,在△ACE与△DCB中,.∴△ACE≌△DCB(SAS),∴AE=BD;(2)∵由(1)得,△ACE≌△DCB,∴∠CAM=∠CDN,∵∠ACD=∠ECB=60°,而A.C.B三点在同一条直线上,∴∠DCN=60°,在△ACM与△DCN中,∵∠MAC=∠NDC,AC=DC,∠ACM=∠DCN=60°,∴△ACM≌△DCN(ASA),∴MC=NC,∵∠MCN=60°,∴△MCN为等边三角形.26.如图,在△ABC中,AC=BC,∠ACB=90°,D为△ABC内一点,∠BAD=15°,AD=AC,CE⊥AD于E,且CE=5.(1)求BC的长;(2)求证:BD=CD.【分析】(1)求出∠BAC,求出∠CAD=30°,求出AC=2CE=10,即可求出BC;(2)过D作DF⊥BC于F,求出∠ECD=∠DCF=15°,证CE=CF=5,推出BF=CF,根据线段垂直平分线的性质求出即可.【解答】(1)解:在△ABC中,∵AC=BC,∠ACB=90°,∴∠BAC=45°,∵∠BAD=15°,∴∠CAD=30°,∵CE⊥AD,CE=5,∴AC=10,∴BC=10;(2)证明:过D作DF⊥BC于F在△ADC中,∠CAD=30°,AD=AC,∴∠ACD=75°,∵∠ACB=90°,∴∠FCD=15°,在△ACE中,∠CAE=30°,CE⊥AD,∴∠ACE=60°,∴∠ECD=∠ACD﹣∠ACE=15°,∴∠ECD=∠FCD,∴DF=DE.∵在Rt△DCE与Rt△DCF中,,∴Rt△DCE≌Rt△DCF(HL),∴CF=CE=5,∵BC=10,∴BF=BC﹣CF=5,∴BF=FC,∵DF⊥BC,∴BD=CD.。
2019-2020学年八年级(上)期中数学试卷一.选择题(共9小题)1.若分式有意义,则x应满足的条件是()A.x≠0 B.x≥3 C.x≠3 D.x≤32.下列各式中不是分式的是()A.B.C.D.3.下列由左到右的变形中属于因式分解的是()A.24x2y=3x•8xy B.m2﹣2m﹣3=m(m﹣2)﹣3C.m2﹣2m﹣3=(m﹣3)(m+1)D.(x+3)(x﹣3)=x2﹣94.某校5名同学在“国学经典颂读”比赛中,成绩(单位:分)分别是86,95,97,90,88,这组数据的中位数是()A.97 B.90 C.95 D.885.利用因式分解计算:2100﹣2101=()A.﹣2 B.2 C.2100D.﹣21006.把分式(x+y≠0)中的x,y都扩大3倍,那么分式的值()A.扩大为原来的3倍B.缩小为原来的C.扩大为原来的9倍D.不变7.一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):则被遮盖的两个数据依次是()A.80,80 B.81,80 C.80,2 D.81,28.从甲地到乙地有两条同样长的路,一条是平路,另一条的是上山,是下山,如果上山的速度为平路速度的,平路速度是下山速度的,那么从甲地到乙地()A.走山路快B.走平路快C.走山路与平路一样快D.哪个快不能确定9.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2﹣ab﹣ac﹣bc的值是()A.0 B.1 C.2 D.3二.填空题(共5小题)10.已知x2+4mx+16能用完全平方公式因式分解,则m的值为.11.一组数据2.2,3.3,4.4,11.1,a.其中整数a是这组数据中的中位数,则这组数据的平均数是.12.若,则=.13.关于x的方程的解为x=1,则a=.14.观察以下等式第1个等式:第2个等式:第3个等式:第4个等式:第5个等式:……按照以上规律,写出你猜想的第n个等式:.(用含n的等式表示).三.解答题(共2小题)15.分解因式(1)a2b﹣b;(2)﹣2x3+12x2﹣18x.16.计算下列各题(1).(2).17.解分式方程(1).(2).18.为了提高学生对毒品危害性的认识,我市相关部门每个月都要对学生进行“禁毒知识应知应会”测评.为了激发学生的积极性,某校对达到一定成绩的学生授予“禁毒小卫士”的荣誉称号.为了确定一个适当的奖励目标,该校随机选取了七年级20名学生在5月份测评的成绩,数据如下:收集数据:90 91 89 96 90 98 90 97 91 98 99 97 91 8890 97 95 90 95 88(1)根据上述数据,将下列表格补充完整.整理、描述数据:数据分析:样本数据的平均数、众数和中位数如下表得出结论:(2)根据所给数据,如果该校想确定七年级前50%的学生为“良好”等次,你认为“良好”等次的测评成绩至少定为分.数据应用:(3)根据数据分析,该校决定在七年级授予测评成绩前30%的学生“禁毒小卫士”荣誉称号,请估计评选该荣誉称号的最低分数,并说明理由.19.学习了因式分解的知识后,老师提出了这样一个向题:设n为整数,则(n+7)2﹣(n﹣3)2的值一定能被20整除吗?若能,请说明理由;若不能,请举出一个反例.你能解答这个问题吗?20.先化简,再从﹣1、2、3、4中选一个合适的数作为x的值代入求值.(﹣)÷21.如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)用含m,n的代数式表示所有裁剪线(图中虚线部分)的长度之和;(2)观察图形,发现代数式2m2+5mn+2n2可以因式分解为;(3)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求(m+n)2的值.22.为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.23.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案与试题解析一.选择题(共9小题)1.若分式有意义,则x应满足的条件是()A.x≠0 B.x≥3 C.x≠3 D.x≤3【分析】本题主要考查分式有意义的条件:分母≠0.【解答】解:∵x﹣3≠0,∴x≠3.故选:C.2.下列各式中不是分式的是()A.B.C.D.【分析】根据分式的定义对四个选项进行逐一分析即可.【解答】解:A、分母中含有未知数,故是分式,故本选项错误;B、分母中不含有未知数,故不是分式,故本选项正确;C、分母中含有未知数,故是分式,故本选项错误;D、分母中含有未知数,故是分式,故本选项错误.故选:B.3.下列由左到右的变形中属于因式分解的是()A.24x2y=3x•8xy B.m2﹣2m﹣3=m(m﹣2)﹣3C.m2﹣2m﹣3=(m﹣3)(m+1)D.(x+3)(x﹣3)=x2﹣9【分析】根据因式分解的定义,逐个判断,得到正确结论.【解答】解:选项B和D都是和的形式,不是因式分解,选项A不是多项式的积的形式,不是因式分解;因为选项C是整式积的形式,符合因式分解的定义.故选:C.4.某校5名同学在“国学经典颂读”比赛中,成绩(单位:分)分别是86,95,97,90,88,这组数据的中位数是()A.97 B.90 C.95 D.88【分析】先将题中的数据按照从小到大的顺序排列,然后根据中位数的概念求解即可.【解答】解:将小明所在小组的5个同学的成绩重新排列为:86、88、90、95、97,所以这组数据的中位数为90分,故选:B.5.利用因式分解计算:2100﹣2101=()A.﹣2 B.2 C.2100D.﹣2100【分析】提取公因式2100,整理并计算即可.【解答】解:2100﹣2101=2100﹣2100•2=2100(1﹣2)=﹣2100.故选:D.6.把分式(x+y≠0)中的x,y都扩大3倍,那么分式的值()A.扩大为原来的3倍B.缩小为原来的C.扩大为原来的9倍D.不变【分析】把分式中的x换成3x,y换成3y,然后根据分式的基本性质进行化简即可.【解答】解:(x+y≠0)中的x,y都扩大3倍,那么分式的值扩大3倍,故选:A.7.一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):则被遮盖的两个数据依次是()A.80,80 B.81,80 C.80,2 D.81,2【分析】根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案.【解答】解:根据题意得:80×5﹣(81+77+80+82)=80(分),则丙的得分是80分;众数是80,故选:A.8.从甲地到乙地有两条同样长的路,一条是平路,另一条的是上山,是下山,如果上山的速度为平路速度的,平路速度是下山速度的,那么从甲地到乙地()A.走山路快B.走平路快C.走山路与平路一样快D.哪个快不能确定【分析】本题中无路程量,可设为1;根据路程与速度、时间的等量关系可得代数式,解可得答案.【解答】解:设从甲地到乙地的路程为1,平路速度为x,则上山速度为x,下山的速度为2x,则走平路所用的时间:,走山路所用时间:+=;故选:C.9.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2﹣ab﹣ac﹣bc的值是()A.0 B.1 C.2 D.3【分析】根据题目中的式子,可以求得a﹣b、a﹣c、b﹣c的值,然后对所求式子变形,利用完全平方公式进行解答.【解答】解:∵a=2018x+2018,b=2018x+2019,c=2018x+2020,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,∴a2+b2+c2﹣ab﹣ac﹣bc=====3,故选:D.二.填空题(共5小题)10.已知x2+4mx+16能用完全平方公式因式分解,则m的值为±2 .【分析】利用完全平方公式的结构特征判断就确定出m的值.【解答】解:∵关于x的多项式x2﹣4mx+16能用完全平方公式进行因式分解,∴m=±2,故答案为:±2.11.一组数据2.2,3.3,4.4,11.1,a.其中整数a是这组数据中的中位数,则这组数据的平均数是 5 .【分析】先利用中位数的定义得到a=4,然后根据平均线的计算方法计算这组数据的平均数.【解答】解:∵整数a是这组数据中的中位数,∴a=4,∴这组数据的平均数=(2.2+3.3+4.4+4+11.1)=5.故答案为5.12.若,则= 2 .【分析】灵活运用完全平方和公式的变形,x2+y2=(x+y)2﹣2xy,直接代入计算即可.【解答】解:∵,∴=(x+)2﹣2=4﹣2=2.故应填:2.13.关于x的方程的解为x=1,则a=﹣3 .【分析】根据方程的解的定义,把x=1代入方程,即可得到一个关于a的方程,即可求解.【解答】解:根据题意得:=,去分母得:4(2a+3)=3(a﹣1),解得:a=﹣3.故答案是:﹣3.14.观察以下等式第1个等式:第2个等式:第3个等式:第4个等式:第5个等式:……按照以上规律,写出你猜想的第n个等式:.(用含n的等式表示).【分析】根据已知等式得出规律即可.【解答】解:第1个等式:第2个等式:第3个等式:第4个等式:第5个等式:……第n个等式为:,故答案为:三.解答题(共2小题)15.分解因式(1)a2b﹣b;(2)﹣2x3+12x2﹣18x.【分析】(1)首先提取公因式,进而利用平方差公式进行分解即可;(2)首先提取公因式,进而利用完全平方公式进行分解即可【解答】解:(1)a2b﹣b=b(a2﹣1)=b(a+1)(a﹣1);(2)﹣2x3+12x2﹣18x=﹣2x(x2﹣6x+9)=﹣2x(x﹣3)2.16.计算下列各题(1).(2).【分析】(1)根据分式的运算法则即可求出答案;(2)根据分式的运算法则即可求出答案;【解答】解:(1)原式=b(a﹣b)•=ab2;(2)原式=•=;17.解分式方程(1).(2).【考点】B3:解分式方程.【专题】522:分式方程及应用;66:运算能力.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:2x+4=3x,解得:x=4,经检验x=4是分式方程的解;(2)去分母得:x2+2x﹣1=x2﹣4,解得:x=﹣1.5,经检验x=﹣1.5是分式方程的解.18.为了提高学生对毒品危害性的认识,我市相关部门每个月都要对学生进行“禁毒知识应知应会”测评.为了激发学生的积极性,某校对达到一定成绩的学生授予“禁毒小卫士”的荣誉称号.为了确定一个适当的奖励目标,该校随机选取了七年级20名学生在5月份测评的成绩,数据如下:收集数据:90 91 89 96 90 98 90 97 91 98 99 97 91 8890 97 95 90 95 88(1)根据上述数据,将下列表格补充完整.整理、描述数据:数据分析:样本数据的平均数、众数和中位数如下表得出结论:(2)根据所给数据,如果该校想确定七年级前50%的学生为“良好”等次,你认为“良好”等次的测评成绩至少定为91 分.数据应用:(3)根据数据分析,该校决定在七年级授予测评成绩前30%的学生“禁毒小卫士”荣誉称号,请估计评选该荣誉称号的最低分数,并说明理由.【考点】V5:用样本估计总体;W2:加权平均数;W4:中位数;W5:众数.【专题】542:统计的应用.【分析】(1)由题意即可得出结果;(2)由20×50%=10,结合题意即可得出结论;(3)由20×30%=6,即可得出结论.【解答】解:(1)由题意得:90分的有5个;97分的有3个;出现次数最多的是90分,∴众数是90分;故答案为:5;3;90;(2)20×50%=10,如果该校想确定七年级前50%的学生为“良好”等次,则“良好”等次的测评成绩至少定为91分;故答案为:91;(3)估计评选该荣誉称号的最低分数为97分;理由如下:∵20×30%=6,∴估计评选该荣誉称号的最低分数为97分.19.学习了因式分解的知识后,老师提出了这样一个向题:设n为整数,则(n+7)2﹣(n﹣3)2的值一定能被20整除吗?若能,请说明理由;若不能,请举出一个反例.你能解答这个问题吗?【考点】54:因式分解﹣运用公式法.【专题】512:整式;66:运算能力.【分析】直接利用平方差公式将原式变形进而得出答案.【解答】解:(n+7)2﹣(n﹣3)2=[(n+7)+(n﹣3)][(n+7)﹣(n﹣3)]=10(2n+4)=20(n+2),故(n+7)2﹣(n﹣3)2的值一定能被20整除.20.先化简,再从﹣1、2、3、4中选一个合适的数作为x的值代入求值.(﹣)÷【考点】6D:分式的化简求值.【专题】513:分式.【分析】先化简分式,然后将x的值代入计算即可.【解答】解:原式=[﹣]÷=[﹣]÷=•=x+2∵x﹣2≠0,x﹣4≠0,∴x≠2且x≠4,∴当x=﹣1时,原式=﹣1+2=1.21.如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)用含m,n的代数式表示所有裁剪线(图中虚线部分)的长度之和;(2)观察图形,发现代数式2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);(3)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求(m+n)2的值.【考点】59:因式分解的应用.【专题】11:计算题.【分析】(1)根据整式的加减混合运算法则计算;(2)根据图形的面积的不同的表示方法解答;(3)变形完全平方公式,代入计算即可.【解答】解:(1)图中所有裁剪线(虚线部分)长度之和为:2(m+2n)+2(2m+n)=6m+6n =6(m+n);(2)2m2+5mn+2n2可以因式分解为:(m+2n)(2m+n),故答案为:(m+2n)(2m+n);(3)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49.22.为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.【考点】B7:分式方程的应用.【专题】522:分式方程及应用.【分析】设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由时间关系“甲校师生比乙校师生晚1小时到达目的地”列出方程,解方程即可.【解答】解:设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由题意得:,解得:x=60,经检验,x=60是所列方程的解,则1.5x=90,答:甲、乙两所学校师生所乘大巴车的平均速度分别为60千米/小时、90千米/小时.23.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【专题】12:应用题.【分析】(1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;(2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.【解答】解:(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,依题意有=,解得:x=30.经检验,x=30是原方程的解,x+10=30+10=40.答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元.(2)设他们可购买y棵乙种树苗,依题意有30×(1﹣10%)(50﹣y)+40y≤1500,解得y≤11,∵y为整数,∴y最大为11.答:他们最多可购买11棵乙种树苗.。
八年级数学期中考试试卷分析八年级数学期中考试试卷分析试题分析:这次考式是采用100分制、90分钟考试时间、全部闭卷。
内容覆盖了数学八年级第一学期的第一章至第四章所有知识点。
题型丰富多样,包括了选择题、填空题、计算题、解答题、应用题、综合题,既考查了学生的基础知识,还有考查了学生的学习态度以及学习能力,这是一份不错的试卷。
一、从卷面看,大致可以分为两大类,第一类是基础知识,通过填空、选择的检测。
第二类是综合应用,主要是考应用实践题。
试卷能从检测学生的学习能力入手,细致、灵活地来抽测这单元的数学知识。
打破了学生的习惯思维,能测试学生思维的多角度性和灵活性。
二、学生的基本检测情况如下:总体来看,学生都能在检测中发挥出自己的实际水平。
在基本知识中,填空的情况基本较好。
应该说题目类型非常好,而且学生在先前也已练习过,因此正确较高,这也说明学生初步建立了数感,对数的领悟、理解能力有了一定的发展,学生良好思维的培养就在于做像这样的数学题,改变以往的题目类型,让学生的思维得到了很好的拓展!试卷分析:第一题选择题;得分率为60,,错在第(4)、(8)和第(9)(11)(17)小题的较多,对分式有意义的理解不够深刻,特别是在分式的基本性质中,容易出现计算错误,对反比例函数图像的走势理解不够。
第二题填空题:灵活度比较大,注重数学理解,得分率较高。
但也有部分学生存在对数学知识理解不到位的问题。
第三题计算题:得分率为50,,主要错误有如下情况(1)解题格式不对;(2) 书写不规范,计算能力低。
第四题解答题:是综合应用题:重在发挥学生的的思维能力,得分率比较低。
但有利于有潜力的学生发挥自我的能力。
存在情况:1、学生的学习态度不够好,缺乏学习目的,譬如学习的知识点非常容易遗忘而影响继续学习、老师在堂上讲解多遍的知识点,考试时仍然不会做; 2、书写格式不规范,过程不详细、潦草,对条件的因果表达还存在相当的缺陷,对几何知识掌握极度不扎实;3、对相当的数学概念理解不透彻,练习量没落实到个人。
2019-2020学年度八年级第一学期期末数学阅卷质量分析报告本次考试统一采用网上阅卷的形式,抽调专任教师17人参与阅卷,元月17日顺利完成阅卷任务,并发布成绩。
现将本学科阅卷情况分析如下:一、试卷分析:本次数学试题共分三个大题,24个小题,试题综合性强,注重了知识之间的联系,关注学生的发展,注重数学核心内容如二次根式、勾股定理、一次函数、二元一次方程组等重要数学思想方法的能力与考察。
1、试题考查内容依据《课标》,既注重了基础知识又注重了对学生能力的考查。
基本知识、基本技能、基本思想方法是培养和提高学生数学素养、发展实践能力和创新精神的基础,是学生进一步学习和发展的必备条件,试题在这一点上立意明确,充分体现数学学科的教育价值。
全卷基础知识、基本技能、基本方法的考查题覆盖面广,难易安排有序,层次合理,有助于考生较好地发挥思维水平。
这样,考生直接运用所学过的数学知识和方法进行“似相识”的解答即可,既可坚定考生考好数学的信心,又对今后的数学课堂教学起到良好的导向作用。
2、突出了对数学思想方法的及计算的考查。
数学思想方法是数学的精髓,是培养学生数学思维能力的重要环节。
数学思想是对数学知识与方法形成的规律性的理性认识,是解决问题的根本策略;数学方法则是解决问题的手段和工具。
例如第10题、18题和24题突出数形结合思想,21题突出了数学推理论证能力。
如第20题和22题考查了学生对二元一次方程的熟练应用。
第19题考察了实数的运算。
二、暴露的主要问题:1、基本技能不过关,这主要反映在读图、计算和几何推理论证上。
知识点掌握不到位,如公式记忆错误。
2、审题不清,读题不细。
比较突出的表现在22题上,不能将问题一一解答。
3、没有养成良好的几何语言书写过程。
比较典型的如第21题,大多同学不凭条件,胡乱创造条件,胡乱书写,根本不通过几何推理论证去做。
4、数学能力薄弱。
分析问题的能力需进一步提高,基本的数学思想需加强。
如第24小题,不会用函数观点解决实际问题三、教学建议和措施:1、依据课本,夯实基础。
2019-2020学年第一学期期中八年级数学试卷分析
一、试题分析
试卷在总体上体现了《课程标准》的评价理念。
重视了对学生学习数学知识与技能的结果和过程的评价,也关注了对学生在数学思考能力、计算能力和解决问题能力等方面发展状况的评价。
突出了数学思想方法的理解与应用;注重了数学与现实的联系;关注了对获取数学信息能力以及“用数学、做数学”的意识的考查;特别是重视几何推理书写为我们以后的教学起了较好的导向作用。
1、重视双基,突出重点知识考查
整张试卷考查双基意图明显,试题对基础知识的考查既注意全面性,又突出重点,在试卷中,四边形、对几何内容进行了侧重考查。
2、重视与实际生活相联系,考查数学应用能力
如第6题、21题就是生活中的实际问题。
试题贴近学生的实际生活,体现了数学与生活的联系。
在考查中引导学生经历解决实际问题的过程,体验运用数学知识解决实际问题的情感,考查学生从实际问题中抽象数学模型的能力,培养用数学,做数学的意识。
二、主要失分及原因分析
1、主要失分情况:失分较严重的题有:第4题,学生图形思维能力弱,对图形的理解变化理解不透彻;第6题,理解能力差,不能联系生活实际,不明白题目的考察方向;第15题:不能从动点的变化轨迹中理解到数学原理等等。
2、主要失分原因:
(1)考前复习时间过短,只用了2天的时间复习,未能对所学知识有一个系统的整合和梳理。
(2)平时讲解的习题起点过低,导致学生缺乏应有的应变能力,对于灵活的题目束手无策,提优补差工作落实不到位。
(3)分类、探究能力较差,
三、改进措施:
针对试卷中的情况,本备课组进行了认真的反思,打算在下阶段的工作中作以下改进:
1、立足课本,加强基础知识的巩固,让学生在理解的基础上掌握概念的本质,并能灵活运用。
对基础相对较差的学生,耐心指导他们将知识内容落实到位,让其每节课都有一点收获,真正将补差工作落到实处。
重视对基础知识的精讲多练,让学生在动手的过程中巩固知识,提高能力。
2、加强基本方法的训练。
在教学过程中要不断引导学生归纳一些常见题型的一般方法,以便让学生在以后的学习过程中能够触类旁通。
3、加强数学思想方法的渗透。
提高学生的数学素养及综合解决问题的能力。
4、强化过程意识,注意数学概念、公式、定理、法则的提出过程,重视知识的形成、发展过程,解题思路的探索过程,解题方法和规律的概括过程,让学生展开思维,弄清楚其背景和来源,真正理解所学知识,同时学习分析、解决问题的方法,真正做到结论和过程并重。
5、数学课堂教学过程中,力求从学生的思维角度去分析问题,要精心备课,积极创设问题情景,不失时机地引导学生进行质疑、探
究、类比、推广、归纳总结,努力促使学生由“学会”向“会学”进行转变。
6、加强非智力因素的培养,提高学生认真审题、规范解题的习惯。
如审题时可划出关键字句,在图形中作标记等。
7、重视对试题、教材的研究,多分析中考试卷的命题方向,常见题型进行针对性训练,对学生进行一些解题技巧方面的指导。