年上海市春考数学试卷(含答案)
- 格式:docx
- 大小:310.20 KB
- 文档页数:10
2020年上海市春季高考数学试卷一、填空题(本大题共12题,满分54分,第1~6题每题4分,第7-12题每题5分) 1.(4分)集合{1,3}A =,{1,2,}B a =,若A B ⊆,则a = . 2.(4分)不等式13x>的解集为 . 3.(4分)函数tan 2y x =的最小正周期为 .4.(4分)已知复数z 满足26z z i +=+,则z 的实部为 . 5.(4分)已知3sin22sin x x =,(0,)x π∈,则x = . 6.(4分)若函数133x x y a =+为偶函数,则a = . 7.(5分)已知直线1:1l x ay +=,2:1l ax y +=,若12//l l ,则1l 与2l 的距离为 .8.(5分)已知二项式5(2x +,则展开式中3x 的系数为 .9.(5分)三角形ABC 中,D 是BC 中点,2AB =,3BC =,4AC =,则AD AB = . 10.(5分)已知{3,2,1,0,1,2,3}A =---,a 、b A ∈,则||||a b <的情况有 种.11.(5分)已知1A 、2A 、3A 、4A 、5A 五个点,满足1120n n n n A A A A +++⋅=,(1n =,2,3),112||||1n n n n A A A A n +++⋅=+(1n =,2,3),则15||A A 的最小值为 .12.(5分)已知()f x =其反函数为1()f x -,若1()()f x a f x a --=+有实数根,则a 的取值范围为 . 二、选择题(本大题共4题,每题5分,共20分)13.(5分)计算:1135lim (35n n n n n --→∞+=+ )A .3B .53C .35D .514.(5分)“αβ=”是“22sin cos 1αβ+=”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分又非必要条件15.(5分)已知椭圆2212x y +=,作垂直于x 轴的垂线交椭圆于A 、B 两点,作垂直于y 轴的垂线交椭圆于C 、D 两点,且AB CD =,两垂线相交于点P ,则点P 的轨迹是( )A .椭圆B .双曲线C .圆D .抛物线16.(5分)数列{}n a 各项均为实数,对任意*n N ∈满足3n n a a +=,且行列式123n n n n a a c a a +++=为定值,则下列选项中不可能的是( )A .11a =,1c =B .12a =,2c =C .11a =-,4c =D .12a =,0c =三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)已知四棱锥P ABCD -,底面ABCD 为正方形,边长为3,PD ⊥平面ABCD . (1)若5PC =,求四棱锥P ABCD -的体积; (2)若直线AD 与BP 的夹角为60︒,求PD 的长.18.(14分)已知各项均为正数的数列{}n a ,其前n 项和为n S ,11a =. (1)若数列{}n a 为等差数列,1070S =,求数列{}n a 的通项公式; (2)若数列{}n a 为等比数列,418a =,求满足100n n S a >时n 的最小值.19.(14分)有一条长为120米的步行道OA ,A 是垃圾投放点1ω,若以O 为原点,OA 为x 轴正半轴建立直角坐标系,设点(,0)B x ,现要建设另一座垃圾投放点2(,0)t ω,函数()t f x 表示与B 点距离最近的垃圾投放点的距离.(1)若60t =,求60(10)f 、60(80)f 、60(95)f 的值,并写出60()f x 的函数解析式;(2)若可以通过()t f x 与坐标轴围成的面积来测算扔垃圾的便利程度,面积越小越便利.问:垃圾投放点2ω建在何处才能比建在中点时更加便利?20.(16分)已知抛物线2y x =上的动点00(),M x y ,过M 分别作两条直线交抛物线于P 、Q 两点,交直线x t =于A 、B 两点.(1)若点M ,求M 与焦点的距离; (2)若1t =-,(1,1)P ,(1,1)Q -,求证:A B y y ⋅为常数;(3)是否存在t ,使得1A B y y ⋅=且P Q y y ⋅为常数?若存在,求出t 的所有可能值,若不存在,请说明理由.21.(18分)已知非空集合A R ⊆,函数()y f x =的定义域为D ,若对任意t A ∈且x D ∈,不等式()()f x f x t +恒成立,则称函数()f x 具有A 性质.(1)当{1}A =-,判断()f x x =-、()2g x x =是否具有A 性质; (2)当(0,1)A =,1()f x x x=+,[,)x a ∈+∞,若()f x 具有A 性质,求a 的取值范围; (3)当{2A =-,}m ,m Z ∈,若D 为整数集且具有A 性质的函数均为常值函数,求所有符合条件的m 的值.2020年上海市春季高考数学试卷参考答案与试题解析一、填空题(本大题共12题,满分54分,第1~6题每题4分,第7-12题每题5分) 1.(4分)集合{1,3}A =,{1,2,}B a =,若A B ⊆,则a = 3 . 【解析】3A ∈,且A B ⊆,3B ∴∈,3a ∴=,故答案为:3. 【评注】本题主要考查了集合的包含关系,是基础题. 2.(4分)不等式13x >的解集为 1(0,)3. 【解析】由13x >得130x x ->,则(13)0x x ->,即(31)0x x -<,解得103x <<, 所以不等式的解集是1(0,)3,故答案为:1(0,)3.【评注】本题考查分式不等式、一元二次不等式的解法,以及转化思想,属于基础题. 3.(4分)函数tan 2y x =的最小正周期为 2π. 【解析】函数tan 2y x =的最小正周期为2π,故答案为:2π. 【评注】本题主要考查正切函数的周期性和求法,属于基础题. 4.(4分)已知复数z 满足26z z i +=+,则z 的实部为 2 .【解析】设z a bi =+,(,)a b R ∈.复数z 满足26z z i +=+,36a bi i ∴-=+, 可得:36a =,1b -=,解得2a =,1b =-.则z 的实部为2.故答案为:2.【评注】本题考查了复数的运算法则、复数相等,考查了推理能力与计算能力,属于基础题. 5.(4分)已知3sin22sin x x =,(0,)x π∈,则x = 1arccos 3.【解析】3sin22sin x x =,6sin cos 2sin x x x =,(0,)x π∈,sin 0x ∴≠,1cos 3x ∴=,故1arccos 3x =. 故答案为:1arccos 3.【评注】本题主要考查函数值的计算,利用三角函数的倍角公式是解决本题的关键. 6.(4分)若函数133x x y a =+为偶函数,则a = 1 . 【解析】根据题意,函数133x x y a =+为偶函数,则()()f x f x -=,即()()113333x xx xa a --+=+, 变形可得:(33)(33)x x x x a ---=-,必有1a =;故答案为:1.【评注】本题考查函数的奇偶性的性质以及应用,关键是掌握函数奇偶性的定义,属于基础题.7.(5分)已知直线1:1l x ay +=,2:1l ax y +=,若12//l l ,则1l 与2l【解析】直线1:1l x ay +=,2:1l ax y +=,当12//l l 时,210a -=,解得1a =±;当1a =时1l 与2l 重合,不满足题意;当1a =-时12//l l ,此时1:10l x y --=,2:10l x y -+=;则1l 与2l 的距离为d =.【评注】本题考查了平行线的定义和平行线间的距离计算问题,是基础题.8.(5分)已知二项式5(2x +,则展开式中3x 的系数为 10 .【解析】41435(2)10C x x =,所以展开式中3x 的系数为10.故答案为:10. 【评注】本题考查利用二项式定理求特定项的系数,属于基础题.9.(5分)三角形ABC 中,D 是BC 中点,2AB =,3BC =,4AC =,则AD AB = 194. 【解析】在ABC ∆中,2AB =,3BC =,4AC =,∴由余弦定理得,222416911cos 222416AB AC BC BAC AB AC +-+-∠===⨯⨯,∴111124162AB AC =⨯⨯=,且D 是BC 的中点,∴21111119()()(4)22224AD AB AB AC AB AB AB AC =+=+=⨯+=.故答案为:194. 【评注】本题考查了余弦定理,向量加法的平行四边形法则,向量数乘的几何意义,向量数量积的运算及计算公式,考查了计算能力,属于基础题.10.(5分)已知{3,2,1,0,1,2,3}A =---,a 、b A ∈,则||||a b <的情况有 18 种. 【解析】当3a =-,0种, 当2a =-,2种, 当1a =-,4种; 当0a =,6种, 当1a =,4种; 当2a =,2种, 当3a =,0种,故共有:2464218++++=.故答案为:18.【评注】本题主要考查分类讨论思想在概率中的应用,属于基础题目.11.(5分)已知1A 、2A 、3A 、4A 、5A 五个点,满足1120n n n n A A A A +++⋅=,(1n =,2,3),112||||1n n n n A A A A n +++⋅=+(1n =,2,3),则15||A A 的最小值为. 【解析】设12||A A x =,则232||A A x =,344538||,||23x A A A A x==,设1(0,0)A ,如图,求15||A A 的最小值,则:2(,0)A x ,3422(,),(,)2x A x A x x -,52(,)23x A x--,∴2222152242||()()23493x x A A x x=-+-=+,当且仅当22449x x=,即x =15||A A ∴. 【评注】本题考查了向量垂直的充要条件,利用向量坐标解决向量问题的方法,基本不等式求最值的方法,考查了计算能力,属于中档题.12.(5分)已知()f x =1()f x -,若1()()f x a f x a --=+有实数根,则a 的取值范围为 3[,)4+∞ . 【解析】因为1()y f x a -=-与()y f x a =+互为反函数,若1()y f x a -=-与()y f x a =+有实数根,则()y f x a =+与y x =有交点,x ,即221331()244a x x x =-+=-+,故答案为:3[,)4+∞.【评注】本题主要考查函数的性质,函数与方程的关系,属于中档题. 二、选择题(本大题共4题,每题5分,共20分)13.(5分)计算:1135lim (35n nn n n --→∞+=+ )A .3B .53C .35D .5【解析】111133()5355limlim 5335()15n n nn n n n n ---→∞→∞-++==++.故选:D . 【评注】本题考查数列极限的求法,是基础的计算题. 14.(5分)“αβ=”是“22sin cos 1αβ+=”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分又非必要条件【解析】(1)若αβ=,则2222sin cos sin cos 1αβαα+=+=,∴“αβ=“是“22sin cos 1αβ+=“的充分条件;(2)若22sin cos 1αβ+=,则22sin sin αβ=,得不出αβ=,∴“αβ=”不是“22sin cos 1αβ+=”的必要条件,∴“αβ=”是“22sin cos 1αβ+=”的充分非必要条件.故选:A .【评注】本题考查了充分条件、必要条件和充分不必要条件的定义,22sin cos 1αα+=,正弦函数的图象,考查了推理能力,属于基础题.15.(5分)已知椭圆2212x y +=,作垂直于x 轴的垂线交椭圆于A 、B 两点,作垂直于y 轴的垂线交椭圆于C 、D 两点,且AB CD =,两垂线相交于点P ,则点P 的轨迹是( )A .椭圆B .双曲线C .圆D .抛物线【解析】2AB ,2CD ∴,判断轨迹为上下两支,即选双曲线,设(,)A m t ,(,)D t n ,所以(,)P m n ,因为2212m t +=,2212t n +=,消去t 可得:22212m n -=,故选:B .【评注】本题考查轨迹方程的求法与判断,是基本知识的考查,基础题. 16.(5分)数列{}n a 各项均为实数,对任意*n N ∈满足3n n a a +=,且行列式123nn n n a a c a a +++=为定值,则下列选项中不可能的是( ) A .11a =,1c =B .12a =,2c =C .11a =-,4c =D .12a =,0c =【解析】行列式131223nn n n n n n n aa a a a a c a a ++++++=-=,对任意*n N ∈满足3n n a a +=,∴2122123n n n n n n a a a ca a a c +++++⎧-=⎪⎨-=⎪⎩, 作差整理得:1n n a a +=(常数列,0c =),或120n n n a a a ++++=,当120n n n a a a ++++=,则12n n n a a a +++=-及212n n na a a c ++=-, ∴方程220n nx a x a c ++-=有两根1n a +,2n a +,∴△2224()430n n n a a c c a =--=->,因为B 错,故选:B . 【评注】本题考查行列式,以及方程求解,属于中档题. 三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)已知四棱锥P ABCD -,底面ABCD 为正方形,边长为3,PD ⊥平面ABCD . (1)若5PC =,求四棱锥P ABCD -的体积; (2)若直线AD 与BP 的夹角为60︒,求PD 的长.【解析】(1)PD ⊥平面ABCD ,PD DC ∴⊥.3CD =,5PC ∴=,4PD ∴=,2134123P ABCD V -∴=⨯⨯=,所以四棱锥P ABCD -的体积为12.(2)ABCD 是正方形,PD ⊥平面ABCD ,BC PD ∴⊥,BC CD ⊥,又PD CD D =,BC ∴⊥平面PCD , BC PC ∴⊥,异面直线AD 与PB 所成角为60︒,//BC AD ,∴在Rt PBC ∆中,60PBC ∠=︒,3BC =,故PC =Rt PDC ∆中,3CD =,PD ∴=【评注】本题考查几何体的体积,空间点线面的距离的求法,考查转化思想以及空间想象能力计算能力,是中档题.18.(14分)已知各项均为正数的数列{}n a ,其前n 项和为n S ,11a =. (1)若数列{}n a 为等差数列,1070S =,求数列{}n a 的通项公式; (2)若数列{}n a 为等比数列,418a =,求满足100n n S a >时n 的最小值.【解析】(1)数列{}n a 为公差为d 的等差数列,1070S =,11a =,可得110109702d +⨯⨯=,解得43d =,则4411(1)333n a n n =+-=-;(2)数列{}n a 为公比为q 的等比数列,418a =,11a =,可得318q =,即12q =,则11()2n n a -=,111()122()1212nn n S --==--,100n nS a >,即为11112()100()22n n --->, 即2101n >,可得7n ,即n 的最小值为7.【评注】本题考查等差数列和等比数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题.19.(14分)有一条长为120米的步行道OA ,A 是垃圾投放点1ω,若以O 为原点,OA 为x 轴正半轴建立直角坐标系,设点(,0)B x ,现要建设另一座垃圾投放点2(,0)t ω,函数()t f x 表示与B 点距离最近的垃圾投放点的距离.(1)若60t =,求60(10)f 、60(80)f 、60(95)f 的值,并写出60()f x 的函数解析式;(2)若可以通过()t f x 与坐标轴围成的面积来测算扔垃圾的便利程度,面积越小越便利.问:垃圾投放点2ω建在何处才能比建在中点时更加便利?【解析】(1)投放点1(120,0)ω,2(60,0)ω,60(10)f 表示与(10,0)B 距离最近的投放点(即2ω)的距离, 所以60(10)|6010|50f =-=,同理分析,60(80)|6080|20f =-=,60(95)|12095|25f =-=, 由题意得,60(){|60|,|120|}min f x x x =--, 则当|60||120|x x --,即90x 时,60()|60|f x x =-;当|60||120|x x ->-,即90x >时,60()|120|f x x =-; 综上60|60|,90()|120|,90x x f x x x -⎧=⎨->⎩;(2)由题意得(){||,|120|}t min f x t x x =--,所以||,0.5(120)()|120|,0.5(120)t t x x t f x x x t -+⎧=⎨->+⎩,则()t f x 与坐标轴围成的面积如阴影部分所示,所以222113(120)603600244S t t t t =+-=-+,由题意,(60)S S <,即2360360027004t t -+<,解得2060t <<,即垃圾投放点2ω建在(20,0)与(60,0)之间时,比建在中点时更加便利. 【评注】本题是新定义问题,考查对题目意思的理解,分类讨论是关键,属于中档题.20.(16分)已知抛物线2y x =上的动点00(),M x y ,过M 分别作两条直线交抛物线于P 、Q 两点,交直线x t =于A 、B 两点.(1)若点M,求M 与焦点的距离; (2)若1t =-,(1,1)P ,(1,1)Q -,求证:A B y y ⋅为常数;(3)是否存在t ,使得1A B y y ⋅=且P Q y y ⋅为常数?若存在,求出t 的所有可能值,若不存在,请说明理由. 【解析】(1)解:抛物线2y x =上的动点00(),M x y ,过M 分别作两条直线交抛物线于P 、Q 两点,交直线x t =于A 、B 两点.点M,∴点M的横坐标22M x ==,2y x =,12p ∴=, M ∴与焦点的距离为192244M p MF x =+=+=. (2)证明:设200(,)M y y ,直线0201:1(1)1y PM y x y --=--,当1x =-时,0011A y y y -=+, 直线0201:1(1)1y QM y x y ++=--,1x =-时,0011By y y --=-,1A B y y ∴=-,A B y y ∴⋅为常数1-. (3)解:设200(,)M y y ,(,)A A t y ,直线200020:()A y y MA y y x y y t--=--, 联立2y x =,得22220000000A A y t y t y y y y y y y y ---+-=--,2000p A y t y y y y -∴+=-,即00A P Ay y t y y y -=-,同理得00B Q By y t y y y -=-,1A B y y ⋅=,2200200()()1A B P Q A B y ty y y t y y y y y y -++∴=-++, 要使P Q y y 为常数,即1t =,此时P Q y y 为常数1,∴存在1t =,使得1A B y y ⋅=且P Q y y ⋅为常数1.【评注】本题考查点到焦点的距离的求法,考查两点纵坐标乘积为常数的证明,考查满足两点纵坐标乘积为常数的实数值是否存在的判断与求法,考查抛物线、直线方程等基础知识,考查运算求解能力,是中档题.21.(18分)已知非空集合A R ⊆,函数()y f x =的定义域为D ,若对任意t A ∈且x D ∈,不等式()()f x f x t +恒成立,则称函数()f x 具有A 性质.(1)当{1}A =-,判断()f x x =-、()2g x x =是否具有A 性质; (2)当(0,1)A =,1()f x x x=+,[,)x a ∈+∞,若()f x 具有A 性质,求a 的取值范围; (3)当{2,}A m =-,m Z ∈,若D 为整数集且具有A 性质的函数均为常值函数,求所有符合条件的m 的值. 【解析】(1)()f x x =-为减函数,()(1)f x f x ∴<-,()f x x ∴=-具有A 性质;()2g x x =为增函数,()(1)g x g x ∴>-,()2g x x ∴=不具有A 性质;(2)依题意,对任意(0,1)t ∈,()()f x f x t +恒成立,∴1()()f x x x a x=+为增函数(不可能为常值函数),由双勾函数的图象及性质可得1a ,当1a 时,函数单调递增,满足对任意(0,1)t ∈,()()f x f x t +恒成立, 综上,实数a 的取值范围为[1,)+∞. (3)D 为整数集,具有A 性质的函数均为常值函数,当0m 时,取单调递减函数()f x x =-,两个不等式恒成立,但()f x 不为常值函数; 当m 为正偶数时,取()0,1,n f x n ⎧=⎨⎩为偶数为奇数,两个不等式恒成立,但()f x 不为常值函数;当m 为正奇数时,根据对任意t A ∈且x D ∈,不等式()()f x f x t +恒成立,可得()()()(1)(1)()f x m f x f x m f x f x f x m -++--,则()(1)f x f x =+,所以()f x 为常值函数, 综上,m 为正奇数.【评注】本题以新定义为载体,考查抽象函数的性质及其运用,考查逻辑推理能力及灵活运用知识的能力,属于中档题.。
2020年上海市春季高考数学试卷2020.1一、填空题(1-6题每题4分,7-12题每题5分):1、集合{}3,1=A ,{}a B ,2,1=,若B A ⊆,则_______=a ;2、不等式31>x的解集为____________;3、x 2tan 的最小正周期为______________;4、已知复数i z z +=-62,则z 的实部为__________;5、已知()π,0,sin 22sin 3∈=x x x ,则________=x ;6、函数xxa y 313+⋅=为偶函数,则_______=a ;7、已知直线1:1=+ay x l ,1:2=+y ax l ,21//l l ,则1l 与2l 的距离为________;8、已知二项式()52x x +,则3x 的系数为__________;9、三角形ABC 中,D 是BC 中点,3,4,2===AC BC AB ,则=________AD AB ⋅;10、已知{}3,2,1,0,1,2,3---=A ,a 、A b ∈,则b a <有__________种情况;11、已知1A 、2A 、3A 、4A 、5A 五个点,向量1120n n n n A A A A +++⋅=,1121n n n n A A A A n +++⋅=+ ,则15A A的最小值为_________;12、已知()1-=x x f ,()a x f a x f +=--)(1有实数根,则a 的取值范围为______;二、选择题(每题5分):13、=++--∞→115353lim n n n n n ()A、3B 、51C、31D、514、“βα=”是“1cos sin 22=+βα”的()A、充分非必要条件B、必要非充分条件C、充要条件D、既不充分又不必要条件15、已知椭圆1222=+y x ,作垂直于x 轴的垂线交椭圆于A 、B 两点,作垂直于y 轴的垂线交椭圆于C 、D 两点,且CD AB =,两垂线相交于点P ,则点P 的轨迹是()A、椭圆B、双曲线C、圆D、抛物线16、对于数列{}n a 有n n a a =+3,且行列式c a a a a n n n n =+++321,下列选项中不可能的是()A、1,11==c aB、2,21==c aC、4,11=-=c a D、0,21==c a 三、解答题(14+14+14+16+18=76分)17、已知底面ABCD 为正方形,底面边长为3,⊥PD 面ABCD .(1)若4=PD ,求ABCD P -的体积;(2)若AD 与BP 夹角为60,求PD 的长.18、已知数列{}n a ,{}n S 是数列{}n a 的和,首项11=a .(1)已知7010=S ,{}n a 成等差数列,求n a 的通项;(2)814=a ,{}n a 是等比数列,当n n a S 100>时,求n 的最小值;19、有一条长为120米的步行道OA ,A 是垃圾投放点1ω,若以O 为原点OA 为x 轴正半轴建立直角坐标系,设点()0,x B ,现要建设另一座垃圾投放点()0,2t ω,函数()x f t 表示与B 点距离最近的垃圾投放点的距离.(1)若60=t ,求()()()95,80,10606060f f f ,并写出()x f 60的函数解析式;(2)定义:将()x f t 与坐标轴围成的面积估计为仍垃圾的便利程度,面积越小越便利,问:垃圾投放点2ω要建立在何处才能比建在中点时更加便利?20、抛物线x y =2上的动点()00,y x M ,过M 分别作两条直线交抛物线于P 、Q 两点,交直线t x =于A 、B 两点.(1)若点M 纵坐标为2,求M 与焦点距离;(2)若1-=t ,())1,1(,1,1-Q P ,求证:B A y y ⋅为常数;(3)是否存在t ,使1=⋅B A y y 且Q P y y ⋅为常数,若存在,求出t 的所有结果;若不存在,说明理由.21、函数()x f 的定义域为D ,A 为D 的非空子集,若对于任意A t ∈且D x ∈,满足()()t x f x f +≤,则称()x f 具有“A 性质”.(1)若{}1-=A ,判断函数()x x f -=1,()x x g 2=是否具有“A 性质”;(2)已知()[)0,,,1>+∞∈+=a a x xx x f 具有“A 性质”,且()1,0=A ,求a 的取值范围;(3){}m A ,2-=,若定义域为整数集,且具有“A 性质”的所有函数均为常值函数,求m 的值.2020年春考——参考答案一、填空题:1、3;2、⎪⎭⎫ ⎝⎛31,0;3、2π;4、6-;5、31arccos;6、1;7、2;8、10;9、45;10、18;11、36;12、⎪⎭⎫⎢⎣⎡+∞,43;二、选择题:13、D ;14、A ;15、B ;16、B ;三、解答题:17、(1)12;(2)23;18、(1)314-=n a n ;(2)7;19、(1)501060)10(60=-=f ,()2060808060=-=f ,2595120)95(60=-=f ,⎪⎩⎪⎨⎧≤≤-<≤-=12090,120900,60)(60x x x x x f ;(2)圾投放点2ω建立点()0,20和()0,60之间时,比在中点时更便利;20、(1)49;(2)1-;(3)存在,1=t ;21、(1)()x f 具有“A 性质”,()x g 不具有“A 性质”;(2)1≥a ;(3)()*∈-=Nk k m 12.。
……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2023年上海市春季高考数学试卷副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx题号 一 二 三 四 总分 得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I 卷(选择题)一、单选题(本大题共11小题,共53.0分。
在每小题列出的选项中,选出符合题目的一项)1. 若直线2x +y −1=0是圆(x −a)2+y 2=1的一条对称轴,则a =( )A. 12B. −12C. 1D. −12. 已知圆C :x 2+y 2=4,直线l :y =kx +m ,当k 变化时,l 截得圆C 弦长的最小值为2,则m =( )A. ±2B. ±√2C. ±√3D. ±33. 已知圆M:x 2+y 2−2x −2y −2=0,直线l:2x +y +2=0,P 为l 上的动点,过点P 作圆M 的切线PA ,PB ,且切点为A ,B ,当|PM|·|AB|最小时,直线AB 的方程为( )A. 2x −y −1=0B. 2x +y −1=0C. 2x −y +1=0D. 2x +y +1=0 4. 若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x −y −3=0的距离为( )A. √55B. 2√55C. 3√55D. 4√555. 若直线l 与曲线y =√x 和圆x 2+y 2=15都相切,则l 的方程为( )……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………A. y =2x +1B. y =2x +12C. y =12x +1D. y =12x +126. 已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ) A. 4B. 5C. 6D. 77. 直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x −2)2+y 2=2上,则ΔABP 面积的取值范围是( )A. [2,6]B. [4,8]C. [√2,3√2]D. [2√2,3√2]8. 下列函数是偶函数的是( ) A. y =sinxB. y =cosxC. y =x 3D. y =2x9. 根据下图判断,下列选项错误的是( )A. 从2018年开始后,图表中最后一年增长率最大B. 从2018年开始后,进出口总额逐年增大C. 从2018年开始后,进口总额逐年增大D. 从2018年开始后,图表中2020年的增长率最小10. 如图,P 是正方体ABCD −A 1B 1C 1D 1边A 1C 1上的动点,下列哪条边与边BP 始终异面( )A. DD 1B. ACC. AD 1D. B 1C……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………11. 已知数列{a n }的各项均为实数,S n 为其前n 项和,若对任意k >2022,都有|S k |>|S k+1|,则下列说法正确的是( )A. a 1,a 3,a 5,…,a 2n−1为等差数列,a 2,a 4,a 6,…,a 2n 为等比数列B. a 1,a 3,a 5,…,a 2n−1为等比数列,a 2,a 4,a 6,…,a 2n 为等差数列C. a 1,a 2,a 3,…,a 2022为等差数列,a 2022,a 2023,…,a n 为等比数列D. a 1,a 2,a 3,…,a 2022为等比数列,a 2022,a 2023,…,a n 为等差数列二、多选题(本大题共2小题,共10.0分。
2022届上海市春季高考数学试卷一. 填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分)1. 已知2i z =+,则z =2. 已知(1,2)A =-,(1,3)B =,则AB = 3. 不等式10x x-<的解集为 4. 已知tan 3α=,则tan()4πα+=5. 已知方程组2168x my mx y +=⎧⎨+=⎩有无穷解,则m 的值为 6. 已知函数3()f x x =的反函数为1()y f x -=,则1(27)f -=7. 在3121()x x +的展开式中,含41x 项的系数为 8. 在△ABC 中,3A π∠=,2AB =,3AC =,则△ABC 的外接圆半径为9. 已知有1、2、3、4四个数字组成无重复数字,则比2134大的四位数的个数为10. 在△ABC 中,2C π∠=,2AC BC ==,M 为AC 的中点,P 在AB 上,则MP CP ⋅的最小值为 11. 已知双曲线2221x y a-=(0)a >,双曲线上右支上有任意两点111(,)P x y ,222(,)P x y ,满足12120x x y y ->恒成立,则a 的取值范围是12. 已知()f x 为奇函数,当[0,1]x ∈时,()ln f x x =,且()f x 关于直线1x =对称,设()1f x x =+的正数解依次为1x 、2x 、3x 、⋅⋅⋅、n x 、⋅⋅⋅,则1lim()n n n x x +→∞-= 二. 选择题(本大题共4题,每题5分,共20分)13. 下列幂函数中,定义域为R 的是( )A . 1y x -=B . 12y x -= C . 13y x = D . 12y x = 14. 已知a b c d >>>,下列选项中正确的是( )A . a d b c +>+B . a c b d +>+C . ad bc >D . ac bd >15. 如图,上海海关大楼的上面可以看作一个正四棱柱,四个侧面有四个时钟,则相邻两个 时钟的时针从0时转到12时(含0时不含12时)的过程中,能够相互垂直( )次A . 0B . 2C . 4D . 1216. 已知{}n a 为等比数列,{}n a 的前n 项和为n S ,前n 项积为n T ,则下列选项中正确的是( )A . 若20222021S S >,则数列{}n a 单调递增B . 若20222021T T >,则数列{}n a 单调递增C . 若数列{}n S 单调递增,则20222021a a ≥D . 若数列{}n T 单调递增,则20222021a a ≥三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,在圆柱1OO 中,底面半径为1,1AA 为圆柱母线.(1)若14AA =,M 为1AA 中点,求直线1MO 与底面的夹角大小;(2)若圆柱的轴截面为正方形,求该圆柱的侧面积和体积.18. 已知数列{}n a ,21a =,{}n a 的前n 项和为n S .(1)若{}n a 为等比数列,23S =,求lim n n S →∞; (2)若{}n a 为等差数列,公差为d ,对任意*n ∈N ,均满足2n S n ≥,求d 的取值范围.19. 如图,矩形ABCD 区域内,D 处有一棵古树,为保护古树,以D 为圆心,DA 为半径划定圆D 作为保护区域,已知30AB =m ,15AD =m ,点E 为AB 上的动点,点F 为CD 上的动点,满足EF 与圆D 相切.(1)若∠ADE 20︒=,求EF 的长;(2)当点E 在AB 的什么位置时,梯形FEBC 的面积有最大值,最大面积为多少? (长度精确到0.1m ,面积精确到0.01m ²)20. 在椭圆222:1x y aΓ+=中,直线:l x a =上有两点C 、D (C 点在第一象限),左顶点为A ,下顶点为B ,右焦点为F .(1)若∠AFB 6π=,求椭圆Γ的标准方程; (2)若点C 的纵坐标为2,点D 的纵坐标为1,则BC 与AD 的交点是否在椭圆上?请说明理由;(3)已知直线BC 与椭圆Γ相交于点P ,直线AD 与椭圆Γ相交于点Q ,若P 与Q 关于原点对称,求||CD 的最小值.21. 已知函数()f x ,甲变化:()()f x f x t --;乙变化:|()()|f x t f x +-,0t >.(1)若1t =,()2x f x =,()f x 经甲变化得到()g x ,求方程()2g x =的解;(2)若2()f x x =,()f x 经乙变化得到()h x ,求不等式()()h x f x ≤的解集;(3)若()f x 在(,0)-∞上单调递增,将()f x 先进行甲变化得到()u x ,再将()u x 进行乙变化得到1()h x ;将()f x 先进行乙变化得到()v x ,再将()v x 进行甲变化得到2()h x ,若对任意0t >,总存在12()()h x h x =成立,求证:()f x 在R 上单调递增.参考答案一. 填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分)1. 已知2i z =+,则z = 【答案】2i z =-2. 已知(1,2)A =-,(1,3)B =,则AB = 【答案】AB =(1,2) 3. 不等式10x x-<的解集为 【答案】(0,1)4. 已知tan 3α=,则tan()4πα+= 【答案】2-5. 已知方程组2168x my mx y +=⎧⎨+=⎩有无穷解,则m 的值为【答案】4m =6. 已知函数3()f x x =的反函数为1()y f x -=,则1(27)f -=【答案】37. 在3121()x x +的展开式中,含41x 项的系数为 【答案】668. 在△ABC 中,3A π∠=,2AB =,3AC =,则△ABC 的外接圆半径为9. 已知有1、2、3、4四个数字组成无重复数字,则比2134大的四位数的个数为【答案】1710. 在△ABC 中,2C π∠=,2AC BC ==,M 为AC 的中点,P 在AB 上,则MP CP ⋅的最小值为【答案】7811. 已知双曲线2221x y a-=(0)a >,双曲线上右支上有任意两点111(,)P x y ,222(,)P x y , 满足12120x x y y ->恒成立,则a 的取值范围是【答案】1a ≥12. 已知()f x 为奇函数,当(0,1]x ∈时,()ln f x x =,且()f x 关于直线1x =对称,设()1f x x =+的正数解依次为1x 、2x 、3x 、⋅⋅⋅、n x 、⋅⋅⋅,则1lim()n n n x x +→∞-= 【答案】2二. 选择题(本大题共4题,每题5分,共20分)13. 下列幂函数中,定义域为R 的是( )A . 1y x -=B . 12y x-= C . 13y x = D . 12y x = 【答案】C14. 已知a b c d >>>,下列选项中正确的是( )A . a d b c +>+B . a c b d +>+C . ad bc >D . ac bd >【答案】B15. 如图,上海海关大楼的上面可以看作一个正四棱柱,四个侧面有四个时钟,则相邻两个 时钟的时针从0时转到12时(含0时不含12时)的过程中,能够相互垂直( )次A . 0B . 2C . 4D . 12【答案】B16. 已知{}n a 为等比数列,{}n a 的前n 项和为n S ,前n 项积为n T ,则下列选项中正确的是( )A . 若20222021S S >,则数列{}n a 单调递增B . 若20222021T T >,则数列{}n a 单调递增C . 若数列{}n S 单调递增,则20222021a a ≥D . 若数列{}n T 单调递增,则20222021a a ≥【答案】D三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,在圆柱1OO 中,底面半径为1,1AA 为圆柱母线.(1)若14AA =,M 为1AA 中点,求直线1MO 与底面的夹角大小;(2)若圆柱的轴截面为正方形,求该圆柱的侧面积和体积.【答案】(1)arctan2;(2)侧面积24rh ππ=,体积22r h ππ=18. 已知数列{}n a ,21a =,{}n a 的前n 项和为n S .(1)若{}n a 为等比数列,23S =,求lim n n S →∞; (2)若{}n a 为等差数列,公差为d ,对任意*n ∈N ,均满足2n S n ≥,求d 的取值范围.【答案】(1)4;(2)[0,1]d ∈19. 如图,矩形ABCD 区域内,D 处有一棵古树,为保护古树,以D 为圆心,DA 为半径划定圆D 作为保护区域,已知30AB =m ,15AD =m ,点E 为AB 上的动点,点F 为CD 上的动点,满足EF 与圆D 相切.(1)若∠ADE 20︒=,求EF 的长;(长度精确到0.1m )(2)当AE 多长时,梯形FEBC 的面积有最大值,最大面积为多少?(面积精确到0.01m ²)【答案】(1)23.3EF ≈m ;(2)最大面积为2254503255.142-≈m ² 20. 在椭圆222:1x y aΓ+=中,直线:l x a =上有两点C 、D (C 点在第一象限),左顶点为A ,下顶点为B ,右焦点为F .(1)若∠AFB 6π=,求椭圆Γ的标准方程; (2)若点C 的纵坐标为2,点D 的纵坐标为1,则BC 与AD 的交点是否在椭圆上?请说明理由;(3)已知直线BC 与椭圆Γ相交于点P ,直线AD 与椭圆Γ相交于点Q ,若P 与Q 关于原点对称,求||CD 的最小值.【答案】(1)2214x y +=; (2)交点为34(,)55a ,在椭圆上; (3)621. 已知函数()f x ,甲变化:()()f x f x t --;乙变化:|()()|f x t f x +-,0t >.(1)若1t =,()2x f x =,()f x 经甲变化得到()g x ,求方程()2g x =的解;(2)若2()f x x =,()f x 经乙变化得到()h x ,求不等式()()h x f x ≤的解集;(3)若()f x 在(,0)-∞上单调递增,将()f x 先进行甲变化得到()u x ,再将()u x 进行乙变化得到1()h x ;将()f x 先进行乙变化得到()v x ,再将()v x 进行甲变化得到2()h x ,若对任意0t >,总存在12()()h x h x =成立,求证:()f x 在R 上单调递增.【答案】(1)2x =;(2)(,(1][(12),)t t -∞++∞;(3)证明略。
上海春季高考数学试卷选择题:1. 若函数f(x) = 2x + 5,g(x) = x^2 - 3x,则f(g(2))的值为:A. 1B. 3C. 5D. 72. 若正方形的对角线长为6根号2,则其边长是:A. 3B. 4C. 5D. 63. 绝对值函数y = |x - 2|的图象与x轴交点的横坐标是:A. 0B. 1C. 2D. 34. 若sin(x) = 0.6,cos(y) = -0.8,且x与y为锐角,则tan(x+y)的值为:A. 4/3B. -4/3C. 3/4D. -3/45. 已知函数f(x) = 2x^2 - 3x + 1,求f^-1(2)的值:A. 0B. 1C. 2D. 3填空题:6. 三角形的一个内角为80°,另一个内角是50°,求第三个内角的度数是__________°。
7. 若方程2x + 3y = 12的解为x = 3,则相应的y值为__________。
8. 已知等差数列的公差为4,前5项的和为30,求这个等差数列的首项是__________。
9. 若函数f(x) = x^3 - 2x^2 + 4x + 5,求f(-1)的值为__________。
10. 设直线L过点A(-1, 3)且与y轴垂直,其方程为x = ________。
应用题:11. 甲、乙两人同时从A、B两地相向出发,相遇后继续直线行驶,若甲比乙提前出发1小时,他们相遇时行驶的时间是4小时,求甲、乙的行驶速度。
12. 一个等差数列的首项是3,公差是4,求第10项的值。
13. 一条铁链长120米,两端固定在两个水平地面上,如果将铁链恰好放在地面上,形成一个正方形,正方形的面积是多少平方米?14. 某商品原价800元,商家打9折促销后售价为多少元?15. 甲、乙两地相距200公里,两车同时从两地相向出发,甲车速度为60km/h,乙车速度为80km/h,问几小时后两车相遇?。
2025届高三数学一模暨春考数学试卷2时间:120分钟满分:150一.填空题:1.已知集合{1,4}A =,{5,7}B a =-.若{4}A B = ,则实数a 的值是______.2.已知i 是虚数单位.若3i i(,R)a b a b =+∈,则a b +的值为______.3.已知一组数据1.6,1.8,2,2.2,2.4,则该组数据的方差是______.4.函数y =的定义域是______.5.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是______.6.已知双曲线2221(0)2x y a a-=>,则该双曲线的渐近线为______.7.如图,在三棱柱111A B C ABC -中,D ,E ,F 分别为AB ,AC ,1AA 的中点,设三棱锥F ADE -体积为1V ,三棱柱111A B C ABC -的体积为2V ,则12:V V =______.8.设n S 为等差数列{}n a 的前n 项和,若284a a +=,227332a a -=,则10S 的值为______.9.已知函数22,2()11,22x x x f x x x ⎧-≤⎪=⎨->⎪⎩,则关于x 的不等式()(1)f x f x -<-的解集为______.10.如图,在ABC △中,12AD AB = ,13AE AC = ,CD 与BE 交于点P ,2AB =,4AC =,2AP BC ⋅= ,则AB AC ⋅ 的值为______.11.圆22640x y x y ++-=与曲线243x y x +=+相交于A ,B ,C ,D 点四点,O 为坐标原点,则||OA OB OC OD +++= ______.12.在锐角三角形ABC 中,若sin 2sin sin A B C =,则22sin sin A B +的最大值为______.二.选择题:13.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2016年1月至2018年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,判断下列结论:(1)月接待游客量逐月增加;(2)年接待游客量逐年增加;(3)各年的月接待游客量高峰期大致在7,8月;(4)各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳。
2022届上海市春季高考数学试卷一. 填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分)1. 已知2i z =+,则z =2. 已知(1,2)A =-,(1,3)B =,则AB = 3. 不等式10x x-<的解集为 4. 已知tan 3α=,则tan()4πα+=5. 已知方程组2168x my mx y +=⎧⎨+=⎩有无穷解,则m 的值为 6. 已知函数3()f x x =的反函数为1()y f x -=,则1(27)f -=7. 在3121()x x +的展开式中,含41x 项的系数为 8. 在△ABC 中,3A π∠=,2AB =,3AC =,则△ABC 的外接圆半径为9. 已知有1、2、3、4四个数字组成无重复数字,则比2134大的四位数的个数为10. 在△ABC 中,2C π∠=,2AC BC ==,M 为AC 的中点,P 在AB 上,则MP CP ⋅的最小值为 11. 已知双曲线2221x y a-=(0)a >,双曲线上右支上有任意两点111(,)P x y ,222(,)P x y ,满足12120x x y y ->恒成立,则a 的取值范围是12. 已知()f x 为奇函数,当[0,1]x ∈时,()ln f x x =,且()f x 关于直线1x =对称,设()1f x x =+的正数解依次为1x 、2x 、3x 、⋅⋅⋅、n x 、⋅⋅⋅,则1lim()n n n x x +→∞-= 二. 选择题(本大题共4题,每题5分,共20分)13. 下列幂函数中,定义域为R 的是( )A . 1y x -=B . 12y x -= C . 13y x = D . 12y x = 14. 已知a b c d >>>,下列选项中正确的是( )A . a d b c +>+B . a c b d +>+C . ad bc >D . ac bd >15. 如图,上海海关大楼的上面可以看作一个正四棱柱,四个侧面有四个时钟,则相邻两个 时钟的时针从0时转到12时(含0时不含12时)的过程中,能够相互垂直( )次A . 0B . 2C . 4D . 1216. 已知{}n a 为等比数列,{}n a 的前n 项和为n S ,前n 项积为n T ,则下列选项中正确的是( )A . 若20222021S S >,则数列{}n a 单调递增B . 若20222021T T >,则数列{}n a 单调递增C . 若数列{}n S 单调递增,则20222021a a ≥D . 若数列{}n T 单调递增,则20222021a a ≥三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,在圆柱1OO 中,底面半径为1,1AA 为圆柱母线.(1)若14AA =,M 为1AA 中点,求直线1MO 与底面的夹角大小;(2)若圆柱的轴截面为正方形,求该圆柱的侧面积和体积.18. 已知数列{}n a ,21a =,{}n a 的前n 项和为n S .(1)若{}n a 为等比数列,23S =,求lim n n S →∞; (2)若{}n a 为等差数列,公差为d ,对任意*n ∈N ,均满足2n S n ≥,求d 的取值范围.19. 如图,矩形ABCD 区域内,D 处有一棵古树,为保护古树,以D 为圆心,DA 为半径划定圆D 作为保护区域,已知30AB =m ,15AD =m ,点E 为AB 上的动点,点F 为CD 上的动点,满足EF 与圆D 相切.(1)若∠ADE 20︒=,求EF 的长;(2)当点E 在AB 的什么位置时,梯形FEBC 的面积有最大值,最大面积为多少? (长度精确到0.1m ,面积精确到0.01m ²)20. 在椭圆222:1x y aΓ+=中,直线:l x a =上有两点C 、D (C 点在第一象限),左顶点为A ,下顶点为B ,右焦点为F .(1)若∠AFB 6π=,求椭圆Γ的标准方程; (2)若点C 的纵坐标为2,点D 的纵坐标为1,则BC 与AD 的交点是否在椭圆上?请说明理由;(3)已知直线BC 与椭圆Γ相交于点P ,直线AD 与椭圆Γ相交于点Q ,若P 与Q 关于原点对称,求||CD 的最小值.21. 已知函数()f x ,甲变化:()()f x f x t --;乙变化:|()()|f x t f x +-,0t >.(1)若1t =,()2x f x =,()f x 经甲变化得到()g x ,求方程()2g x =的解;(2)若2()f x x =,()f x 经乙变化得到()h x ,求不等式()()h x f x ≤的解集;(3)若()f x 在(,0)-∞上单调递增,将()f x 先进行甲变化得到()u x ,再将()u x 进行乙变化得到1()h x ;将()f x 先进行乙变化得到()v x ,再将()v x 进行甲变化得到2()h x ,若对任意0t >,总存在12()()h x h x =成立,求证:()f x 在R 上单调递增.参考答案一. 填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分)1. 已知2i z =+,则z = 【答案】2i z =-2. 已知(1,2)A =-,(1,3)B =,则AB = 【答案】AB =(1,2) 3. 不等式10x x-<的解集为 【答案】(0,1)4. 已知tan 3α=,则tan()4πα+= 【答案】2-5. 已知方程组2168x my mx y +=⎧⎨+=⎩有无穷解,则m 的值为【答案】4m =6. 已知函数3()f x x =的反函数为1()y f x -=,则1(27)f -=【答案】37. 在3121()x x +的展开式中,含41x 项的系数为 【答案】668. 在△ABC 中,3A π∠=,2AB =,3AC =,则△ABC 的外接圆半径为9. 已知有1、2、3、4四个数字组成无重复数字,则比2134大的四位数的个数为【答案】1710. 在△ABC 中,2C π∠=,2AC BC ==,M 为AC 的中点,P 在AB 上,则MP CP ⋅的最小值为【答案】7811. 已知双曲线2221x y a-=(0)a >,双曲线上右支上有任意两点111(,)P x y ,222(,)P x y , 满足12120x x y y ->恒成立,则a 的取值范围是【答案】1a ≥12. 已知()f x 为奇函数,当(0,1]x ∈时,()ln f x x =,且()f x 关于直线1x =对称,设()1f x x =+的正数解依次为1x 、2x 、3x 、⋅⋅⋅、n x 、⋅⋅⋅,则1lim()n n n x x +→∞-= 【答案】2二. 选择题(本大题共4题,每题5分,共20分)13. 下列幂函数中,定义域为R 的是( )A . 1y x -=B . 12y x-= C . 13y x = D . 12y x = 【答案】C14. 已知a b c d >>>,下列选项中正确的是( )A . a d b c +>+B . a c b d +>+C . ad bc >D . ac bd >【答案】B15. 如图,上海海关大楼的上面可以看作一个正四棱柱,四个侧面有四个时钟,则相邻两个 时钟的时针从0时转到12时(含0时不含12时)的过程中,能够相互垂直( )次A . 0B . 2C . 4D . 12【答案】B16. 已知{}n a 为等比数列,{}n a 的前n 项和为n S ,前n 项积为n T ,则下列选项中正确的是( )A . 若20222021S S >,则数列{}n a 单调递增B . 若20222021T T >,则数列{}n a 单调递增C . 若数列{}n S 单调递增,则20222021a a ≥D . 若数列{}n T 单调递增,则20222021a a ≥【答案】D三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,在圆柱1OO 中,底面半径为1,1AA 为圆柱母线.(1)若14AA =,M 为1AA 中点,求直线1MO 与底面的夹角大小;(2)若圆柱的轴截面为正方形,求该圆柱的侧面积和体积.【答案】(1)arctan2;(2)侧面积24rh ππ=,体积22r h ππ=18. 已知数列{}n a ,21a =,{}n a 的前n 项和为n S .(1)若{}n a 为等比数列,23S =,求lim n n S →∞; (2)若{}n a 为等差数列,公差为d ,对任意*n ∈N ,均满足2n S n ≥,求d 的取值范围.【答案】(1)4;(2)[0,1]d ∈19. 如图,矩形ABCD 区域内,D 处有一棵古树,为保护古树,以D 为圆心,DA 为半径划定圆D 作为保护区域,已知30AB =m ,15AD =m ,点E 为AB 上的动点,点F 为CD 上的动点,满足EF 与圆D 相切.(1)若∠ADE 20︒=,求EF 的长;(长度精确到0.1m )(2)当AE 多长时,梯形FEBC 的面积有最大值,最大面积为多少?(面积精确到0.01m ²)【答案】(1)23.3EF ≈m ;(2)最大面积为2254503255.142-≈m ² 20. 在椭圆222:1x y aΓ+=中,直线:l x a =上有两点C 、D (C 点在第一象限),左顶点为A ,下顶点为B ,右焦点为F .(1)若∠AFB 6π=,求椭圆Γ的标准方程; (2)若点C 的纵坐标为2,点D 的纵坐标为1,则BC 与AD 的交点是否在椭圆上?请说明理由;(3)已知直线BC 与椭圆Γ相交于点P ,直线AD 与椭圆Γ相交于点Q ,若P 与Q 关于原点对称,求||CD 的最小值.【答案】(1)2214x y +=; (2)交点为34(,)55a ,在椭圆上; (3)621. 已知函数()f x ,甲变化:()()f x f x t --;乙变化:|()()|f x t f x +-,0t >.(1)若1t =,()2x f x =,()f x 经甲变化得到()g x ,求方程()2g x =的解;(2)若2()f x x =,()f x 经乙变化得到()h x ,求不等式()()h x f x ≤的解集;(3)若()f x 在(,0)-∞上单调递增,将()f x 先进行甲变化得到()u x ,再将()u x 进行乙变化得到1()h x ;将()f x 先进行乙变化得到()v x ,再将()v x 进行甲变化得到2()h x ,若对任意0t >,总存在12()()h x h x =成立,求证:()f x 在R 上单调递增.【答案】(1)2x =;(2)(,(1][(12),)t t -∞++∞;(3)证明略。
2023年上海市春季高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)考生应在答题纸的相应位置直接填写结果.1.(4分)已知集合A={1,2},B={1,a},且A=B,则a= 2 .【答案】见试题解答内容【解答】解:集合A={1,2},B={1,a},且A=B,则a=2.故答案为:2.2.(4分)已知向量=(3,4),=(1,2),则﹣2= (1,0) .【答案】见试题解答内容【解答】解:因为向量=(3,4),=(1,2),所以﹣2=(3﹣2×1,4﹣2×2)=(1,0).故答案为:(1,0).3.(4分)不等式|x﹣1|≤2的解集为: [﹣1,3] .(结果用集合或区间表示)【答案】见试题解答内容【解答】解:不等式|x﹣1|≤2即为﹣2≤x﹣1≤2,即为﹣1≤x≤3,则解集为[﹣1,3],故答案为:[﹣1,3].4.(4分)已知圆C的一般方程为x2+2x+y2=0,则圆C的半径为 1 .【答案】见试题解答内容【解答】解:根据圆C的一般方程为x2+2x+y2=0,可得圆C的标准方程为(x+1)2+y2=1,故圆C的圆心为(﹣1,0),半径为1,故答案为:1.5.(4分)已知事件A的对立事件为,若P(A)=0.5,则P()= 0.5 .【答案】见试题解答内容【解答】解:事件A的对立事件为,若P(A)=0.5,则P()=1﹣0.5=0.5.故答案为:0.5.6.(4分)已知正实数a、b满足a+4b=1,则ab的最大值为 .【答案】见试题解答内容【解答】解:正实数a、b满足a+4b=1,则ab=,当且仅当a=,时等号成立.故答案为:.7.(5分)某校抽取100名学生测身高,其中身高最大值为186cm,最小值为154cm,根据身高数据绘制频率组距分布直方图,组距为5,且第一组下限为153.5,则组数为 7 .【答案】见试题解答内容【解答】解:极差为186﹣154=32,组距为5,且第一组下限为153.5,=6.4,故组数为7组,故答案为:7.8.(5分)设(1﹣2x)4=a0+a1x+a2x2+a3x3+a4x4,则a0+a4= 17 .【答案】见试题解答内容【解答】解:根据题意及二项式定理可得:a0+a4==17.故答案为:17.9.(5分)已知函数f(x)=2﹣x+1,且g(x)=,则方程g(x)=2的解为 x=3 .【答案】见试题解答内容【解答】解:当x≥0时,g(x)=2⇔log2(x+1)=2,解得x=3;当x<0时,g(x)=f(﹣x)=2x+1=2,解得x=0(舍);所以g(x)=2的解为:x=3.故答案为:x=3.10.(5分)为了学习宣传党的二十大精神,某校学生理论宣讲团赴社区宣讲,已知有4名男生,6名女生,从10人中任选3人,则恰有1名男生2名女生的概率为 0.5 .【答案】见试题解答内容【解答】解:从10人中任选3人的事件个数为,恰有1名男生2名女生的事件个数为,则恰有1名男生2名女生的概率为.故答案为:0.5.11.(5分)已知z1,z2∈C且z1=i(i为虚数单位),满足|z1﹣1|=1,则|z1﹣z2|的取值范围为 [0,] .【答案】见试题解答内容【解答】解:设z1﹣1=cosθ+i sinθ,则z1=1+cosθ+i sinθ,因为z 1=i•,所以z2=sinθ+i(cosθ+1),所以|z1﹣z2|===,显然当=时,原式取最小值0,当=﹣1时,原式取最大值2,故|z1﹣z2|的取值范围为[0,].故答案为:[0,].12.(5分)已知、、为空间中三组单位向量,且⊥、⊥,与夹角为60°,点P为空间任意一点,且||=1,满足|•|≤|•|≤|•|,则|•|最大值为 .【答案】见试题解答内容【解答】解:设,,,,不妨设x,y,z>0,则||=x2+y2+z2=1,因为|•|≤|•|≤|•|,所以,可得,z≥y,所以,解得,故=y.故答案为:.二、选择题(本大题共有4题,满分18分,13−14题每题4分,第15−16题每题5分)每题有且只有一个正确选项,考生应在答题纸相应的位置,将代表正确选项的小方格涂黑. 13.(4分)下列函数是偶函数的是( )A.y=sin x B.y=cos x C.y=x3D.y=2x【答案】B【解答】解:对于A,由正弦函数的性质可知,y=sin x为奇函数;对于B,由正弦函数的性质可知,y=cos x为偶函数;对于C,由幂函数的性质可知,y=x3为奇函数;对于D,由指数函数的性质可知,y=2x为非奇非偶函数.故选:B.14.(4分)如图为2017﹣2021年上海市货物进出口总额的条形统计图,则下列对于进出口贸易额描述错误的是( )A.从2018年开始,2021年的进出口总额增长率最大B.从2018年开始,进出口总额逐年增大C.从2018年开始,进口总额逐年增大D.从2018年开始,2020年的进出口总额增长率最小【答案】C【解答】解:显然2021年相对于2020年进出口额增量增加特别明显,故最后一年的增长率最大,A对;统计图中的每一年条形图的高度逐年增加,故B对;2020年相对于2019的进口总额是减少的,故C错;显然进出口总额2021年的增长率最大,而2020年相对于2019年的增量比2019年相对于2018年的增量小,且计算增长率时前者的分母还大,故2020年的增长率一定最小,D正确.故选:C.15.(5分)如图所示,在正方体ABCD﹣A1B1C1D1中,点P为边A1C1上的动点,则下列直线中,始终与直线BP异面的是( )A.DD1B.AC C.AD1D.B1C【答案】B【解答】解:对于A,当P是A1C1的中点时,BP与DD1是相交直线;对于B,根据异面直线的定义知,BP与AC是异面直线;对于C,当点P与C1重合时,BP与AD1是平行直线;对于D,当点P与C1重合时,BP与B1C是相交直线.故选:B.16.(5分)已知无穷数列{a n}的各项均为实数,S n为其前n项和,若对任意正整数k>2022都有|S k|>|S k+1|,则下列各项中可能成立的是( )A.a1,a3,a5,⋯,a2n﹣1,⋯为等差数到,a2,a4,a6,⋯,a2n,⋯为等比数列B.a1,a3,a5,⋯,a2n﹣1,⋯为等比数列,a2,a4,a6,⋯,a2n,⋯为等差数列C.a1,a2,a3,⋯,a2022为等差数列,a2022,a2023,⋯,a n,⋯为等比数列D.a1,a2,a3,⋯,a2022为等比数列,a2022,a2023,⋯,a n,⋯为等差数列【答案】C【解答】解:由对任意正整数k>2022,都有|S k|>|S k+1|,可以知道a2022,a2033,a2024,⋯,a n不可能为等差数列,因为若d<0,当n→+∞,an→﹣∞,Sn→﹣∞,必有k使得|Sk+1|>|Sk|,矛盾;若d=0,a n=0,则|S k|=|S k+1|,矛盾;若d=0,a n<0,当n→+∞,S n→﹣∞,k使得|S k+1|>|S k|,矛盾;若d=0,a n>0,当n→+∞,S n→+∞,必有k使得|S k+1|>|S k|,矛盾;若d>0,当n→+∞,a n→+∞,S n→+∞必有k使得|S k+1|>|S k|,矛盾;所以选项B中的a2,a4,a6,⋯,a2n为等差数列与上述推理矛盾,故不可能正确;选项D中的a2022,a2023,a2024,⋯,a n为等差数列与上述推理矛盾,故不可能正确;选项A中的a1,a3,a5,⋯,a2n﹣1为等差数列与上述推理矛盾,故不可能正确;事实上,只需取即可.故选:C.三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤。
绝密★启用前2023年上海市春季高考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、单选题:本题共4小题,共18分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列函数是偶函数的是( )A. y=sinxB. y=cosxC. y=x3D. y=2x2.根据下图判断,下列选项错误的是( )A. 从2018年开始后,图表中最后一年增长率最大B. 从2018年开始后,进出口总额逐年增大C. 从2018年开始后,进口总额逐年增大D. 从2018年开始后,图表中2020年的增长率最小3.如图,P是正方体ABCD−A1B1C1D1边A1C1上的动点,下列哪条边与边BP始终异面( )A. DD 1B. ACC. AD 1D. B 1C4.已知数列{a n }的各项均为实数,S n 为其前n 项和,若对任意k >2022,都有|S k |>|S k+1|,则下列说法正确的是( )A. a 1,a 3,a 5,…,a 2n−1为等差数列,a 2,a 4,a 6,…,a 2n 为等比数列B. a 1,a 3,a 5,…,a 2n−1为等比数列,a 2,a 4,a 6,…,a 2n 为等差数列C. a 1,a 2,a 3,…,a 2022为等差数列,a 2022,a 2023,…,a n 为等比数列D. a 1,a 2,a 3,…,a 2022为等比数列,a 2022,a 2023,…,a n 为等差数列第II 卷(非选择题)二、填空题:本题共12小题,共54分。
a ab 2a b 上海市普通高等学校春季招生考试数 学 试 卷一. 填空题(本大题满分 048 分)1. 计算: lim 3n - 2= .n →∞ 4n + 32. 方程log 3 (2x - 1) = 1的解 x = .3. 函数 f (x ) = 3x + 5, x ∈[ 0, 1]的反函数 f -1 (x ) = .4. 不等式1 - 2x> 0 的解集是.x + 15. 已知圆C : (x + 5) 2 + y 2 = r 2(r > 0) 和直线l : 3x + y + 5 = 0 . 若圆C 与直线l 没有公共 点,则 r 的取值范围是.6. 已知函数 f (x ) 是定义在 ( - ∞, + ∞ ) 上的偶函数. 当 x ∈ ( - ∞, 0 ) 时, f (x ) = x - x 4 , 则当x ∈ ( 0, + ∞ ) 时, f (x ) = .7. 电视台连续播放 6 个广告,其中含 4 个不同的商业广告和 2 个不同的公益广告,要求首尾必须播放公益广告,则共有 种不同的播放方式(结果用数值表示). 8. 正四棱锥底面边长为 4,侧棱长为 3,则其体积为 .9. 在△ ABC 中,已知 BC = 8,AC = 5 ,三角形面积为 12,则cos 2C = .10. 若向量 、b 的夹角为150, = 3, = 4 ,则 + = .11. 已知直线l 过点 P ( 2, 1) ,且与 x 轴、y 轴的正半轴分别交于 A 、B 两点,O 为坐标原点,则三角形OAB 面积的最小值为.12. 同学们都知道,在一次考试后,如果按顺序去掉一些高分,那么班级的平均分将降低;反之,如果按顺序去掉一些低分,那么班级的平均分将提高. 这两个事实可以用数学语言描述为: 若有限数列a 1 , a 2 , , a n 满足 a 1 ≤ a 2 ≤ ≤ a n ,则(结论用数学式子表示).二.选择题(本大题满分 016 分)13. 抛物线 y 2 = 4x 的焦点坐标为( ) (A ) ( 0, 1) . (B ) (1, 0 ) . (C ) ( 0, 2 ) . (D ) ( 2, 0 ) . 14. 若 a 、b 、c ∈ R , a > b ,则下列不等式成立的是( )(A ) 1 < 1 . (B ) a 2 > b 2 . (C ) a > b.(D ) a | c |> b | c |.a b x 2 y 2c 2 + 1 c 2 + 115. 若 k ∈ R ,则“ k > 3”是“方程 k - 3 - k + 3= 1表示双曲线”的( )(A )充分不必要条件. (B )必要不充分条件. (C )充要条件. (D )既不充分也不必要条件.⎧⎪1⎪⎫ ⎧ 1 ⎫ 16. 若集合 A = ⎨ y y = x 3,-1≤ x ≤ 1⎬ , B = ⎨ y y = 2 - , 0 < x ≤ 1⎬ ,则 A ∩B 等于()⎪⎩ ⎪⎭⎩ x ⎭ (A ) ( - ∞, 1].(B ) [ - 1, 1 ].(C ) ∅ . (D ){1}.三.解答题(本大题满分 086 分)本大题共有 6 题,解答下列各题必须写出必要的步骤.17. (本题满分 12 分)在长方体 ABCD - A 1 B 1C 1 D 1 中,已知 DA = DC = 4, DD 1 = 3 ,求异面直线 A 1 B 与B 1C 所成角的大小(结果用反三角函数值表示).18. (本题满分 12 分) 已知复数 w 满足 w - 4 = (3 - 2w ) i( i 为虚数单位), z = 5+ | w - 2 |,求一个以 z 为根的实系数一元二次方程.w19. (本题满分 14 分) 本题共有 2 个小题,第 1 小题满分 8 分,第 2 小题满分 6 分.已知函数 f (x ) = ⎛ + π⎫ - 2 cos x ,x ∈ ⎡π,π⎤ .2 sin x ⎪⎝6 ⎭ ⎢⎣ 2 ⎥⎦(1)若sin x = 4,求函数 f (x ) 的值;(2)求函数 f (x ) 的值域.520. (本题满分 14 分)本题共有 2 个小题,第 1 小题满分 6 分,第 2 小题满分 8 分.学校科技小组在计算机上模拟航天器变轨返回试验. 设计方案如图:航天器运行(按顺时针方向)的 x 2 + y 2= 轨迹方程为 1,变轨(即航天器运行轨迹由椭圆变为抛物线)后返回的轨迹是以 y 轴为对称轴、100 25⎛ M 0, 64 ⎫ ⎪ 为顶点的抛物线的实线部分,降落点为 D ( 8, 0 ) . 观测点 A ( 4, 0 )、B ( 6, 0 ) 同时跟踪航天器.⎝7 ⎭ (1)求航天器变轨后的运行轨迹所在的曲线方程;(2)试问:当航天器在 x 轴上方时,观测点 A 、B 测得离航天器的距离分别为多少时,应向航天器发出变轨指令?21. (本题满分 16 分)本题共有 3 个小题,第 1 小题满分 4 分,第 2 小题满分 6 分,第 3 小题满分 6 分.设函数 f (x ) = x 2 - 4x - 5 .(1)在区间[ 2, 6 ]上画出函数f (x) 的图像;20 21 30 30 31 40(2)设集合 A = {x f (x ) ≥ 5 }, B = (- ∞, - 2 ] [ 0, 4 ] [ 6, + ∞ ) . 试判断集合 A 和 B 之间的关系, 并给出证明;(3)当 k > 2 时,求证:在区间[ - 1, 5 ] 上, y = kx + 3k 的图像位于函数 f (x ) 图像的上方.22. (本题满分 18 分)本题共有 3 个小题,第 1 小题满分 4 分,第 2 小题满分 8 分. 第 3 小题满分 6 分.已知数列 a 1 , a 2 , , a 30 ,其中 a 1 , a 2 , , a 10 是首项为 1,公差为 1 的等差数列; a 10 , a 11 , , a 20 是公差为 d 的等差数列; a , a , , a 是公差为 d 2 的等差数列( d ≠ 0 ). (1)若 a 20 = 40 ,求 d ;(2)试写出 a 30 关于 d 的关系式,并求 a 30 的取值范围;(3)续写已知数列,使得 a , a , , a 是公差为 d 3 的等差数列,……,依次类推,把已知数列推广为无穷数列. 提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?参考答案及评分标准一.(第 1 至 12 题)每一题正确的给 4 分,否则一律得零分.⎪1. 3 .2. 2.3.41(x - 5), 3x ∈[5, 8 ]. 4. ⎛ - 1, 1 ⎫ ⎝2 ⎭ 5. (0, 10 ) . 6. - x - x 4 . 7. 48.8.16 . 39.7. 10. 2. 11. 4. 2512. a 1 + a 2 + + a m ≤ a 1 + a 2 + + a n(1 ≤ m < n ) 和 m na m +1 + a m +2 + + a n ≥a 1 + a 2 + + a n(1 ≤ m < n ) n - m n二.(第 13 至 16 题)每一题正确的给 4 分,否则一律得零分.题 号 13141516代 号BCAB三.(第 17 至 22 题)17. [解法一] 连接 A 1 D ,A 1 D //B 1C , ∴ ∠BA 1D 为异面直线 A 1 B 与 B 1C 所成的角.……4 分连接 BD ,在△ A 1 DB 中, A 1 B = A 1 D = 5,BD = 4 ,……6 分则cos ∠BA 1 D = A 1 B 2 + A 1 D 2- BD 2 2 ⋅ A B ⋅ A D = 25 + 25 - 32 2 ⋅ 5 ⋅ 5 = 9 .……10 分2511∴ 异面直线 A B 与 B C 所成角的大小为arccos 9.……12 分1 125[解法二] 以 D 为坐标原点,分别以 DA 、 DC 、 DD 1 所在直线为 x 轴、 y 轴、 z 轴,建立空间直角坐标系.……2 分则 A 1 (4, 0, 3)、B (4, 4, 0)、B 1 (4, 4, 3)、C (0, 4, 0) ,得 A 1 B = (0, 4, - 3), B 1C = (-4, 0, - 3) .……6 分设 A 1 B 与 B 1C 的夹角为θ,则cos θ=A 1B ⋅ B 1C A 1 B ⋅ B 1C = 9 , ……10 分252 .⎩ ⎩b2 2 ∴ A B 与 B C 的夹角大小为 arccos 9,1 1 25即异面直线 A B 与 B C 所成角的大小为arccos 9.……12 分1 12518. [解法一]w (1 + 2 i) = 4 + 3i, ∴ 4 + 3i w == 2 - i , ……4 分1 + 2i∴ z =52 - i+ | -i |= 3 + i . ……8 分若实系数一元二次方程有虚根 z = 3 + i ,则必有共轭虚根 z = 3 - i .z + z = 6, z ⋅ z = 10 ,∴ 所求的一个一元二次方程可以是 x 2 - 6x + 10 = 0.……12 分[解法二] 设 w = a + b i (a 、b ∈ R)a +b i - 4 = 3i - 2a i + 2b ,⎧a - 4 = 2b , 得 ∴ ⎧ a = 2,⎨b = 3 - 2a , ⎨ = -1, ∴ w = 2 - i ,……4 分以下解法同[解法一].19. [解](1) sin x = 4 ,x ∈ ⎡π,π⎤, ∴ cos x = - 3 ,……2 分51⎢⎣ 2 ⎥⎦5⎫ f (x ) = 2x + cos x ⎪ - 2 cos x……4 分⎪⎝ ⎭= 3 sin x - cos x =4 3 + 3. ……8 分 5 5(2) f (x ) = ⎛ - π⎫ ,……10 分2 sin x ⎝π ≤ x ≤ π,⎪6 ⎭∴ π ≤ x - π ≤ 5π,1≤ ⎛ - π⎫≤ 1,23 6 6⎪ 2 ⎝6 ⎭ ∴ 函数 f (x ) 的值域为[1, 2 ] .……14 分20. [ 解 ] ( 1 ) 设 曲 线 方 程 为y = ax 2 + 64 7,由 题 意 可 知 , 0 = a ⋅ 64 +64 .7∴ a = - 1.……4 分7∴ 曲线方程为 y = - 1 x 2 + 64.……6 分sin x7 7(2)设变轨点为C ( x , y ) ,根据题意可知⎧ x 2 ⎪ ⎨100 + y 2 25= 1, (1) 得 4 y 2 - 7 y - 36 = 0 , ⎪ y = - 1 x 2 + 64 , (2) ⎩⎪7 7 y = 4或 y = - 9(不合题意,舍去).4∴ y = 4 . 得 x = 6 或 x = -6 ( 不 合 题 意 , 舍 去 ) . ( 6, 4 ) , ……11 分| AC |= 2 5, | BC |= 4 .答 : 当 观 测 点 A 、B 测 得 AC 、BC 距 离 分 别 为 2 5 、 4 时 , 应 向 航 天 器 发 出 变 轨 指令.……14 分21. [解](1)……4 分(2)方程 f (x ) = 5 的解分别是2 -14, 0, 4和 2 + 14 ,由于 f (x ) 在( - ∞,- 1] 和[ 2, 5 ]上单调递减,在[ - 1, 2 ]和[ 5, + ∞ ) 上单调递增,因此A = (- ∞, 2 - ] [ 0, 4 ] [2 +14, + ∞ ).……8 分 由于 2 + < 6, 2 - > -2, ∴ B ⊂ A .……10 分(3)[解法一] 当 x ∈[ - 1, 5 ] 时, f (x ) = -x 2 + 4x + 5.g (x ) = k (x + 3) - (-x 2 + 4x + 5)= x 2 + (k - 4)x + (3k - 5)= ⎛ x - 4 - k ⎫ 2 ⎪ - k 2 - 20k + 36 , ……12 分⎝2 ⎭ 4k > 2, ∴4 - k< 1. 又- 1 ≤ x ≤ 5 , 2 ① 当- 1 ≤ 4 - k < 1 ,即 2 < k ≤ 6 时,取 x = 4 - k,2 2……9 分 ∴ C 点 的 坐 标 为14 14 14⎩ 40 30 10n 10n +1 10 (n +1) 10(n +1)⎨ = -k 2 - 20k + 36= -1 [( -)2- ]g (x ) mink 10 4464 .16 ≤ (k - 10) 2 < 64, ∴ (k - 10) 2 - 64 < 0 ,则 g (x ) m in > 0 .……14 分② 当 4 - k< -1,即 k > 6 时,取 x = -1,2g (x )min= 2k > 0.由 ①、②可知,当 k > 2 时, g (x ) > 0 , x ∈[ - 1, 5 ] .因此,在区间[ - 1, 5 ] 上, y = k (x + 3) 的图像位于函数 f (x ) 图像的上方. ……16 分[解法二] 当 x ∈[ - 1, 5 ] 时, f (x ) = -x 2 + 4x + 5 .⎧ y = k (x + 3),由⎨ y = -x 2+ 4x + 5,得 x 2 + (k - 4)x + (3k - 5) = 0 ,令 ∆ = (k - 4) 2 - 4(3k - 5) = 0 ,解得 k = 2 或 k = 18 , ……12 分在区间[ - 1, 5 ] 上,当 k = 2 时, y = 2(x + 3) 的图像与函数 f (x ) 的图像只交于一点(1, 8 ) ; 当 k = 18时, y = 18(x + 3) 的图像与函数 f (x ) 的图像没有交点. ……14 分如图可知,由于直线 y = k (x + 3) 过点 ( - 3, 0 ) ,当 k > 2 时,直线 y = k (x + 3) 是由直线 y = 2(x + 3) 绕 点( - 3, 0 ) 逆时针方向旋转得到. 因此,在区间[ - 1, 5 ] 上, y = k (x + 3) 的图像位于函数 f (x ) 图像的上 方.……16 分22. [解](1) a 10 = 10. a 20 = 10 + 10d = 40, ∴ d = 3. …… 4 分 (2) a 30 = a 20 + 10d 2 = 10(1 + d + d 2) (d ≠ 0) ,…… 8 分⎡ ⎛ 1 ⎫ 2 3 ⎤a 30 = 10⎢ d + 2 ⎪ + ⎥ ,4 ⎢⎣ ⎝ 当 d ∈ ( - ∞, ⎭0 ) ( 0, ⎥⎦+ ∞ ) 时, a 30 ∈[ 7.5,+ ∞ ).…… 12 分(3)所给数列可推广为无穷数列{a n },其中 a 1 , a 2 , , a 10 是首项为 1,公差为 1 的等差数列,当 n ≥ 1 时,数列 a , a , , a 是公差为d n 的等差数列. …… 14 分研究的问题可以是:试写出 a 10 ( n +1) 关于 d 的关系式,并求 a 10 ( n +1) 的取值范围.…… 16 分研究的结论可以是:由 a = a + 10d 3=10(1 + d + d 2 + d 3 ),依次类推可得 a = 10(1 + d + + d n )= ⎧⎪10 ⨯ 1 - d n +11 - d , d ≠ 1, ⎪⎩10(n + 1),d = 1. 当 d > 0 时, a 10(n +1) 的取值范围为(10, + ∞ ) 等.…… 18 分。
2023年上海市春季高考数学试卷(2023•上海)已知集合A={1,2},B={1,a},且A=B ,则a=2.【专题】转化思想;转化法;集合;数学运算.【分析】根据已知条件,结合集合相等的定义,即可求解.【解答】解:集合A={1,2},B={1,a},且A=B ,则a=2.故答案为:2.(2023•上海)已知向量a =(3,4),b =(1,2),则a -2b =(1,0).→→→→【专题】对应思想;定义法;平面向量及应用;数学运算.【分析】根据平面向量的坐标运算法则,计算即可.【解答】解:因为向量a =(3,4),b =(1,2),所以a -2b =(3-2×1,4-2×2)=(1,0).故答案为:(1,0).→→→→(2023•上海)不等式|x-1|≤2的解集为:[-1,3].(结果用集合或区间表示)【专题】计算题;不等式的解法及应用.【分析】运用|x|≤a ⇔-a≤x≤a,不等式|x-1|≤2即为-2≤x-1≤2,解出即可.【解答】解:不等式|x-1|≤2即为-2≤x-1≤2,即为-1≤x≤3,则解集为[-1,3],故答案为:[-1,3].(2023•上海)已知圆C 的一般方程为x 2+2x+y 2=0,则圆C 的半径为 1.【专题】计算题;转化思想;综合法;直线与圆;数学运算.【分析】把圆C 的一般方程化为标准方程,可得圆C 的圆心和半径.【解答】解:根据圆C 的一般方程为x 2+2x+y 2=0,可得圆C 的标准方程为(x+1)2+y 2=1,故圆C 的圆心为(-1,0),半径为1,故答案为:1.江南博哥(2023•上海)已知事件A的对立事件为A,若P(A)=0.5,则P(A)=0.5.【专题】方程思想;定义法;概率与统计;数学运算.【分析】利用对立事件概率计算公式直接求解.【解答】解:事件A的对立事件为A,若P(A)=0.5,则P(A)=1-0.5=0.5.故答案为:0.5.(2023•上海)已知正实数a、b满足a+4b=1,则ab的最大值为116.【专题】计算题;转化思想;综合法;不等式的解法及应用;逻辑推理;数学运算.【分析】直接利用基本不等式求出结果.【解答】解:正实数a、b满足a+4b=1,则ab=14×a•4b≤14×(a+4b2)2=116,当且仅当a=12,b=18时等号成立.故答案为:116.(2023•上海)某校抽取100名学生测身高,其中身高最大值为186cm,最小值为154cm,根据身高数据绘制频率组距分布直方图,组距为5,且第一组下限为153.5,则组数为7.【专题】对应思想;分析法;概率与统计;数学运算.【分析】计算极差,根据组距求解组数即可.【解答】解:极差为186-154=32,组距为5,且第一组下限为153.5,325=6.4,故组数为7组,故答案为:7.(2023•上海)设(1-2x)4=a0+a1x+a2x2+a3x3+a4x4,则a0+a4=17.【专题】转化思想;综合法;二项式定理;数学运算.【分析】根据二项式定理及组合数公式,即可求解.【解答】解:根据题意及二项式定理可得:a0+a4=C 04+C44•(−2)4=17.故答案为:17.(2023•上海)已知函数f(x)=2-x+1,且g(x)=V WX log2(x+1),x≥0f(−x),x<0,则方程g(x)=2的解为x=3.【专题】函数思想;综合法;函数的性质及应用;数学运算.【分析】分x≥0和x<0分别求解即可.【解答】解:当x≥0时,g(x)=2⇔log2(x+1)=2,解得x=3;当x<0时,g(x)=f(-x)=2x+1=2,解得x=0(舍);所以g(x)=2的解为:x=3.故答案为:x=3.(2023•上海)为了学习宣传党的二十大精神,某校学生理论宣讲团赴社区宣讲,已知有4名男生,6名女生,从10人中任选3人,则恰有1名男生2名女生的概率为0.5.【专题】对应思想;分析法;函数的性质及应用;数学运算.【分析】根据古典概型求解即可.【解答】解:从10人中任选3人的事件个数为C310=10×9×83×2×1=120,恰有1名男生2名女生的事件个数为C14C26=4×6×52×1=60,则恰有1名男生2名女生的概率为60120=0.5,故答案为:0.5.(2023•上海)已知z1,z2∈C且z1=i z2(i为虚数单位),满足|z1-1|=1,则|z1-z2|的取值范围为[0,2+2].√【专题】整体思想;综合法;数系的扩充和复数;数学运算.【分析】引入复数的三角形式,将问题转化为三角函数的值域问题求解.【解答】解:设z1-1=cosθ+isinθ,则z1=1+cosθ+isinθ,因为z1=i•z2,所以z2=sinθ+i(cosθ+1),所以|z1-z2|=(cosθ−sinθ+1)2+(sinθ−cosθ−1)2=2[2sin(θ−π4)−1]2=2|2sin(θ−π4)−1|,显然当sin(θ−π4)=22时,原式取最小值0,当sin(θ−π4)=-1时,原式取最大值2+2,√√√√√√√A.y=sinxC.y=x3D.y=2x 故|z1-z2|的取值范围为[0,2+2].故答案为:[0,2+2].√√(2023•上海)已知OA、OB、OC为空间中三组单位向量,且OA⊥OB、OA⊥OC,OB与OC夹角为60°,点P为空间任意一点,且|OP|=1,满足|OP•OC|≤|OP•OB|≤|OP•OA|,则|OP•OC|最大值为217.→→→→→→→→→→→→→→→→→→√【专题】综合题;转化思想;分析法;空间向量及应用;逻辑推理;数学运算.【分析】将问题坐标化,表示出OA,OB,OC的坐标,再设OP=(x,y,z),代入条件,结合不等式的性质求解.→→→→【解答】解:设OA=(0,0,1),OB=(32,12,0),OC=(0,1,0),OP=(x,y,z),不妨设x,y,z>0,则|OP|=x2+y2+z2=1,因为|OP•OC|≤|OP•OB|≤|OP•OA|,所以y≤32x+12y≤z,可得x≥33y,z≥y,所以1=x2+y2+z2≥13y2+y2+y2,解得y2≤37,故OP•OC=y≤217.故答案为:217.→→√→→→→→→→→→√√→→√√(2023•上海)下列函数是偶函数的是( )【专题】函数思想;定义法;函数的性质及应用;数学抽象.【分析】根据偶函数的定义逐项分析判断即可.【解答】解:对于A,由正弦函数的性质可知,y=sinx为奇函数;对于B,由正弦函数的性质可知,y=cosx为偶函数;对于C,由幂函数的性质可知,y=x3为奇函数;对于D,由指数函数的性质可知,y=2x为非奇非偶函数.故选:B.(2023•上海)如图为2017-2021年上海市货物进出口总额的条形统计图,则下列对于进出口贸易额描述错误的是( )A .从2018年开始,2021年的进出口总额增长率最大B .从2018年开始,进出口总额逐年增大D .从2018年开始,2020年的进出口总额增长率最小A .DD1C .AD1D .B 1C【专题】转化思想;综合法;概率与统计;数据分析.【分析】结合统计图中条形图的高度、增量的变化,以及增长率的计算方法,逐项判断即可.【解答】解:显然2021年相对于2020年进出口额增量增加特别明显,故最后一年的增长率最大,A 对;统计图中的每一年条形图的高度逐年增加,故B 对;2020年相对于2019的进口总额是减少的,故C 错;显然进出口总额2021年的增长率最大,而2020年相对于2019年的增量比2019年相对于2018年的增量小,且计算增长率时前者的分母还大,故2020年的增长率一定最小,D 正确.故选:C .(2023•上海)如图所示,在正方体ABCD-A 1B 1C 1D 1中,点P 为边A 1C 1上的动点,则下列直线中,始终与直线BP异面的是( )【专题】整体思想;综合法;立体几何;逻辑推理;数学运算.【分析】根据空间中的两条直线的位置关系,判断是否为异面直线即可.【解答】解:对于A ,当P 是A 1C 1的中点时,BP 与DD 1是相交直线;对于B ,根据异面直线的定义知,BP 与AC 是异面直线;A.a1,a3,a5,⋯,a2n-1,⋯为等差数到,a2,a4,a6,⋯,a2n,⋯为等比数列B.a1,a3,a5,⋯,a2n-1,⋯为等比数列,a2,a4,a6,⋯,a2n,⋯为等差数列D.a1,a2,a3,⋯,a2022为等比数列,a2022,a2023,⋯,a n,⋯为等差数列对于C,当点P与C1重合时,BP与AD1是平行直线;对于D,当点P与C1重合时,BP与B1C是相交直线.故选:B.(2023•上海)已知无穷数列{a n}的各项均为实数,S n为其前n项和,若对任意正整数k>2022都有|S k|>|S k+1|,则下列各项中可能成立的是( )【专题】分类讨论;综合法;点列、递归数列与数学归纳法;逻辑推理.【分析】由对任意正整数k>2022,都有|S k|>|S k+1|,可以知道a2022,a2033,a2024,⋯,a n不可能为等差数列,若d=0,a n=0,则|S k|=|S k+1|,矛盾;若d=0,a n<0,当n→+∞,S n→-∞,k使得|S k+1|>|S k|,矛盾;若d=0,a n>0,当n→+∞,S n→+∞,必有k使得|S k+1|>|S k|,矛盾;若d>0,当n→+∞,a n→+∞,S n→+∞必有k使得|S k+1|>|S k|,矛盾;若d<0,当n→+∞,a n→-∞,S n→-∞,必有k使得|S k+1|>|S k|,矛盾;即可判断.【解答】解:由对任意正整数k>2022,都有|S k|>|S k+1|,可以知道a2022,a2033,a2024,⋯,a n 不可能为等差数列,因为若d<0,当n→+∞,an→-∞,Sn→-∞,必有k使得|Sk+1|>|Sk|,矛盾;若d=0,a n=0,则|S k|=|S k+1|,矛盾;若d=0,a n<0,当n→+∞,S n→-∞,k使得|S k+1|>|S k|,矛盾;若d=0,a n>0,当n→+∞,S n→+∞,必有k使得|S k+1|>|S k|,矛盾;若d>0,当n→+∞,a n→+∞,S n→+∞必有k使得|S k+1|>|S k|,矛盾;所以选项B中的a2,a4,a6,⋯,a2n为等差数列与上述推理矛盾,故不可能正确;选项D中的a2022,a2023,a2024,⋯,a n为等差数列与上述推理矛盾,故不可能正确;选项A中的a1,a3,a5,⋯,a2n-1为等差数列与上述推理矛盾,故不可能正确;事实上,只需取a1=a2=⋯=a2022=−1,a n=(12)n,n≥2023,n∈N即可.故选:C.(2023•上海)已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,PA=AB=3,AC=4,M为BC中点,过点M分别作平行于平面PAB的直线交AC、PC于点E,F.(1)求直线PM与平面ABC所成角的大小;(2)求直线ME到平面PAB的距离.【专题】综合题;转化思想;综合法;空间角;数学运算.【分析】(1)连接AM,PM,∠PMA为直线PM与平面ABC所成的角,在△PAM中,求解即可;(2)先证明AC⊥平面PAB,可得AE为直线ME到平面PAB的距离.进则求AE的长即可.【解答】解:(1)连接AM,PM,∵PA⊥平面ABC,∴∠PMA为直线PM与平面ABC所成的角,在△PAM中,∵AB⊥AC,∴BC=32+42=5,∵M为BC中点,∴AM=12BC=52,∴tan∠PMA=65,即直线PM与平面ABC所成角为arctan65;(2)由ME∥平面PAB,MF∥平面PAB,ME∩MF=M,∴平面MEF∥平面PAB,∵ME⊂平面MEF,∴ME∥平面PAB,∵PA⊥平面ABC,AC⊂平面ABC,∴PA⊥AC,∵AB⊥AC,PA∩AB=A,PA,AB⊂平面PAB,∴AC⊥平面PAB,∴AE为直线ME到平面PAB的距离,∵ME∥平面PAB,ME⊂平面ABC,平面ABC∩平面PAB=AB,∴ME∥AB,∵M为BC中点,∴E为AC中点,∴AE=2,∴直线ME到平面PAB的距离为2.√(2023•上海)在△ABC中,角A、B、C所对应的边分别为a、b、c,其中b=2.(1)若A+C=120°,a=2c,求边长c;(2)若A-C=15°,a=2csinA,求△ABC的面积.√【专题】转化思想;转化法;解三角形;数学运算.【分析】(1)由已知结合和差角公式及正弦定理进行化简可求A,B,C,然后结合锐角三角函数即可求解;(2)由已知结合正弦定理先求出sinC,进而可求C,再由正弦定理求出a,结合三角形面积公式可求.【解答】解:(1)∵A+C=120°,且a=2c,∴sinA=2sinC=2sin(120°-A)=3cosA+sinA,∴cosA=0,∴A=90°,C=30°,B=60°,∵b=2,∴c=233;(2)a=2csinA,则sinA=2sinCsinA,sinA>0,∴sinC=22,∵A-C=15°,∴C为锐角,∴C=45°,A=60°,B=75°,∴a sin60°=2sin75°=82+6,∴a=432+6=32−6,∴S△ABC=12absinC=12×432+6×2×22=3-3.√√√√√√√√√√√√√√√√√(2023•上海)为了节能环保、节约材料,定义建筑物的“体形系数”S=F0V0,其中F0为建筑物暴露在空气中的面积(单位:平方米),V0为建筑物的体积(单位:立方米).(1)若有一个圆柱体建筑的底面半径为R,高度为H,暴露在空气中的部分为上底面和侧面,试求该建筑体的“体形系数”S;(结果用含R、H的代数式表示)(2)定义建筑物的“形状因子”为f=L 2A,其中A为建筑物底面面积,L为建筑物底面周长,又定义T为总建筑面积,即为每层建筑面积之和(每层建筑面积为每一层的底面面积).设n为某宿舍楼的层数,层高为3米,则可以推导出该宿舍楼的“体形系数”为S=f•nT +13n.当f=18,T=10000时,试求当该宿舍楼的层数n为多少时,“体形系数”S最小.√【专题】函数思想;分析法;函数的性质及应用;数学运算.【分析】(1)利用圆柱体的表面积和体积公式,结合题目中S的定义求解即可;(2)利用导函数求S的单调性,即可求出S最小时n的值.【解答】解:(1)由圆柱体的表面积和体积公式可得:F 0=2πRH +πR 2.V 0=πR 2H ,所以S =F 0V 0=πR (2H +R )πR 2H=2H +RHR.(2)由题意可得S=18n 10000+13n =32n 100+13n,n ∈N *,所以S′=32200n -13n2=92n 32−200600n2,令S′=0,解得n=32000081≈6.27,所以S 在[1,6.27]单调递减,在[6.27,+∞)单调递增,所以S 的最小值在n=6或7取得,当n=6时,S=32×6100+13×6≈0.31,当n=7时,S=32×7100+13×7≈0.16,所以在n=6时,该建筑体S 最小.√√√√√√√(2023•上海)已知椭圆Γ:x2m2+y 23=1(m >0且m≠3).(1)若m=2,求椭圆Γ的离心率;(2)设A 1、A 2为椭圆Γ的左右顶点,椭圆Γ上一点E 的纵坐标为1,且EA 1•EA 2=-2,求实数m 的值;(3)过椭圆Γ上一点P 作斜率为3的直线l,若直线l 与双曲线y25m2-x 25=1有且仅有一个公共点,求实数m 的取值范围.√→→√【专题】计算题;转化思想;综合法;圆锥曲线的定义、性质与方程;数学运算.【分析】(1)由题意可得a,b,c,可求离心率;(2)由已知得A 1(-m,0),A 2(m,0),设E (p,1),由已知可得p 2=23m 2,p 2-m 2+1=-2,求解即可;(3)设直线y=3x+t,与椭圆方程联立可得t 2≤3m 2+3,与双曲线方程联立可得t 2=5m 2-15,可求m 的取值范围.√【解答】解:(1)若m=2,则a 2=4,b 2=3,∴a=2,c=a2−b2=1,∴e=c a =12;(2)由已知得A 1(-m,0),A 2(m,0),设E (p,1),∴p2m2+13=1,即p 2=23m 2,∴EA 1=(-m-p,-1),EA 2=(m-p,-1),∴EA 1•EA 2=(-m-p,-1)•(m-p,-1)=p 2-m 2+1=-2,∵p 2=23m 2,代入求得m=3;√→→→→(3)设直线y=3x+t,联立椭圆可得x2m2+(3x +t )23=1,整理得(3+3m 2)x 2+23tm 2x+(t 2-3)m 2=0,由△≥0,∴t 2≤3m 2+3,联立双曲线可得(3x +t )25m2-x 25=1,整理得(3-m 2)x 2+23tx+(t2-5m 2)=0,由Δ=0,t 2=5m 2-15,∴5m 2-15≤3m 2+3,∴-3≤m≤3,又5m 2-15≥0,∴m≥3,∵m≠3,综上所述:m ∈(3,3].√√√√√√√√(2023•上海)已知函数f (x )=ax 3-(a+1)x 2+x,g (x )=kx+m (其中a≥0,k,m ∈R ),若任意x ∈[0,1]均有f (x )≤g (x ),则称函数y=g (x )是函数y=f (x )的“控制函数”,且对所有满足条件的函数y=g (x )在x 处取得的最小值记为f (x ).(1)若a=2,g (x )=x,试判断函数y=g (x )是否为函数y=f (x )的“控制函数”,并说明理由;(2)若a=0,曲线y=f (x )在x=14处的切线为直线y=h (x ),证明:函数y=h (x )为函数y=f (x )的“控制函数”,并求f (14)的值;(3)若曲线y=f (x )在x=x 0,x 0∈(0,1)处的切线过点(1,0),且c ∈[x 0,1],证明:当且仅当c=x 0或c=1时,f (c )=f (c ).【专题】计算题;整体思想;综合法;导数的综合应用;数学运算.【分析】(1)设h (x )=f (x )-g (x )=2x 3-3x 2,h′(x )=6x 2-6x=6x (x-1),当x ∈[0,1]时,易知h′(x )=6x (x-1)≤0,即h (x )单调减,求得最值即可判断;(2)根据题意得到f (x )≤h (x ),即y=h (x )为函数y=f (x )的“控制函数“,代入即可求解;(3)f (x )=ax 3-(a+1)x 2+x,f′(x )=3ax 2-2(a+1)x+1,y=f (x )在x=x 0(x 0∈(0,1))处的切线为t (x ),求导整理得到函数t (x )必是函数y=f (x )的“控制函数“,又此时“控制函数“g (x )必与y=f (x )相切于x 点,t (x )与y=f (x )在x =12a 处相切,且过点(1,0),在(12a,1)之间的点不可能使得y=f (x )在(12a ,1)切线下方,所以f (c )=f (c )⇒c =12a =x 0或c=1,即可得证.【解答】解:(1)f (x )=2x 3-3x 2+x,设h (x )=f (x )-g (x )=2x 3-3x 2,h′(x )=6x 2-6x=6x (x-1),当x ∈[0,1]时,易知h′(x )=6x (x-1)≤0,即h (x )单调减,∴h (x )max =h (0)=0,即f (x )-g (x )≤0⇒f (x )≤g (x ),∴g (x )是f (x )的“控制函数“;(2)f (x )=−x 2+x ,f (14)=316,f ′(x )=−2x +1,f ′(14)=12,∴h (x )=12(x −14)+316=12x +116,f (x )−h (x )=−x 2+12x −116=−(x −14)2≤0,∴f (x )≤h (x ),即y=h (x )为函数y=f (x )的“控制函数“,又f(14)=h(14)=316,且g(14)≥f(14)=316,∴f(14)=316;证明:(3)f(x)=ax3-(a+1)x2+x,f′(x)=3ax2-2(a+1)x+1,y=f(x)在x=x0(x0∈(0,1))处的切线为t(x),t(x)=f′(x0)(x-x0)+f(x0),t(x0)=f(x0),t(1)=0⇒f(1)=0,f′(x0)=3ax02−2(a+1)x0+1⇒f′(x0)(1−x0)=f(1)−f(x0)=(1−x0)[a(1+x0+x02)−(a+1) (1+x0)+1]⇒3a x02−2(a+1)x0+1=a x02−x0⇒(2a x0−1)(x0−1)=0,x0≠1⇒a=12x0∈(12,+∞)⇒x0=1 2a ,f′(x0)=3ax02−2(a+1)x0+1=3a(12a )2−2(a+1)(12a)+1=−14a,f(x0)=a(12a )3−(a+1)(12a)2+12a=2a−18a2,t(x)=f′(x0)(x−x0)+f(x0)=−14a (x−12a)+2a−18a2⇒t(x)=−14a(x−1),f(x)=x(x−1)(ax−1)≤t(x)⇒ax2−x+14a ≥0,(x−12a)2≥0恒成立,函数t(x)必是函数y=f(x)的“控制函数“,∀g(x)=kx+m≥f(x)⇒∀f(x)≥f(x),f(x)=f(x),x∈(0,1)是函数y=f(x)的“控制函数“,此时“控制函数“g(x)必与y=f(x)相切于x点,t(x)与y=f(x)在x=12a处相切,且过点(1,0),在(12a ,1)之间的点不可能使得y=f(x)在(12a,1)切线下方,所以f(c)=f(c)⇒c=12a=x0或c=1,所以曲线y=f(x)在x=x0(x0∈(0,1))处的切线过点(1,0),且c∈[x0,1],当且仅当c=x0或c=1时,f(c)=f(c).。
上海市2022届春季高考数学试卷12题,满分54分,第1~6题每题4分,第题每题5分) (共12题;共54分)1.(4分)已知z=2+i,则z̅=【答案】2-i【解析】【解答】解:∵z=2+i,∴z=2−i故答案为:2-i【分析】根据共轭复数的定义求解即可.2.(4分)已知A=(−1,2),B=(1,3),则A∩B=【答案】(1,2)【解析】【解答】解:∵A=(−1,2),B=(1,3)∴A∩B=(1,2)故答案为:(1,2)【分析】根据交集的定义求解即可.3.(4分)不等式x−1x<0的解集为【答案】(0,1)【解析】【解答】解:由题意得x−1x<0等价于x(x-1)<0,解得0<x<1,故所求解集为(0,1).故答案为:(0,1).【分析】根据分式不等式的解法直接求解即可.4.(4分)已知tanα=3,则tan(α+π4)=【答案】-2【解析】【解答】解:由题意得tan(α+π4)=tanα+11−tanα=3+11−3=−2故答案为:-2【分析】根据和角的正切公式求解即可.5.(4分)已知方程组{x+my=2mx+16y=8有无穷解,则m的值为【解析】【解答】解:∵方程组 {x +my =2mx +16y =8 有无穷解, ∴两直线重合 ∴1m =m 16=28 解得m=4 故答案为:4【分析】根据方程组解的个数与直线的位置关系直接求解即可.6.(4分)已知函数 f(x)=x 3 的反函数为 y =f −1(x) ,则 f −1(27)= 【答案】3【解析】【解答】解:∵函数 f(x)=x 3 的反函数为 y =f −1(x) ,∴令x 3=27,得x=3 即 f −1(27)=3 故答案为:3【分析】根据反函数的定义直接求解即可.7.(5分)在 (x 3+1x)12 的展开式中,含 1x 4 项的系数为【答案】66【解析】【解答】解:由题意得 (x 3+1x )12的通项公式为T r+1=C 12r (x 3)12−r(x −1)r=C 12r x36−4r (0≤r≤12,r∈N) 令36-4r=-4,得r=10,则T 11=C 1210x−4=66x −4, 则1x4 项的系数为66.故答案为:66【分析】根据二项式定理直接求解即可.8.(5分)在∈ABC 中, ∠A =π3 , AB =2 , AC =3 ,则∈ABC 的外接圆半径为【答案】√213【解析】【解答】解:设AB=c ,AC=b ,BC=a ,则c=2,b=3,则由余弦定理a 2=b 2+c 2-2bccosA 得a 2=22+32−2×2×3×cos π3=7则由正弦定理得2R =a sinA =√7√32=2√213,则R= √213故答案为: √213【分析】根据余弦定理与正弦定理求解即可.9.(5分)已知有1、2、3、4四个数字组成无重复数字,则比2134大的四位数的个数为 【答案】17【解析】【解答】解:由题意知符合要求的四位数分成三类,①千位数为3或4的四位数,共有C 21A 33=12个;②千位数为2且百位数是3或4的四位数,共有C 21A 22=4个;③千位数为2且百位数是1的四位数,只有一个数:2143. 根据分类加法计数原理得所求四位数的个数为12+4+1=17 故答案为:17【分析】根据分类加法计数原理与根据分步加法计数原理,结合排列组合求解即可.10.(5分)在∈ABC 中, ∠C =π2, AC =BC =2 ,M 为AC 的中点,P 在AB 上,则 MP ⃗⃗⃗⃗⃗⃗ ⋅CP ⃗⃗⃗⃗⃗ 的最小值为【答案】78【解析】【解答】解:由题意知,可以C 为原点,CB 为x 轴,CA 为y 轴建立平面直角坐标系,如图所示,则A(0,2),B(2,0),C(0,0),M(0,1), 由题意可设P(x ,2-x),则MP →=(x ,1−x ),CP →=(x ,2−x ), 则MP →·CP →=(x ,1−x )·(x ,2−x )=2x 2−3x +2=2(x −34)2+78≥78(0≤x ≤2)则当x =34时, MP ⃗⃗⃗⃗⃗⃗ ⋅CP ⃗⃗⃗⃗⃗ 取得最小值为78 故答案为:78【分析】根据平面向量的坐标运算,以及向量的数量积的坐标表示,结合二次函数的最值求解即可.11.(5分)已知双曲线 x 2a2−y 2=1(a >0) ,双曲线上右支上有任意两点 P 1(x 1,y 1) , P 2(x 2,y 2) ,满足 x 1x 2−y 1y 2>0 恒成立,则a 的取值范围是【答案】a ≥1【解析】【解答】解:如图所示,取点P 1关于x 轴对称的点P 3,则P 3(x 2,-y 2),分别在渐近线上取点M ,N则由 x 1x 2−y 1y 2>0恒成立,得OP 1→·OP 3→>0恒成立, 则∈P 1OP 3恒为锐角, 即∈MON≤90°,则其中一条渐近线y =1a x 的斜率1a ≤1,则 a ≥1故答案为: a ≥1【分析】根据双曲线的几何性质,结合向量的数量积求解即可.12.(5分)已知 f(x) 为奇函数,当 x ∈[0,1] 时, f(x)=lnx ,且 f(x) 关于直线 x =1 对称,设 f(x)=x +1 的正数解依次为 x 1 、 x 2 、 x 3 、 ⋅⋅⋅ 、 x n 、 ⋅⋅⋅ ,则 lim n→∞(x n+1−x n )= 【答案】2【解析】【解答】解:因为 f(x) 为奇函数,所以f(x)关于原点对称, 又 f(x) 关于直线 x =1 对称, 则函数f(x)的周期为T=4(1-0)=4, 又因为 当 x ∈[0,1] 时, f(x)=lnx , 作出函数f(x)的图象,如图所示,则由题意知, lim n→∞(x n+1−x n )的几何意义是相邻两条渐近线之间的距离2,即 lim n→∞(x n+1−x n )=2. 故答案为:2【分析】根据函数的图象与性质,结合极限的几何意义,运用数形结合思想求解即可.4题,每题5分,共20分) (共4题;共20)13.(5分)下列幂函数中,定义域为R 的是( )A .y =x −1B .y =x −12C .y =x 13D .y =x 12【答案】C【解析】【解答】解:对于A , y =x −1的定义域为{x|x≠0},故A 错误;对于B , y =x −12的定义域为{x|x>0},故B 错误; 对于C , y =x 13的定义域为R ,故C 正确; 对于D , y =x 12的定义域为{x|x>0},故D 错误. 故答案为:C【分析】根据函数的定义域,结合幂函数的定义求解即可.14.(5分)已知 a >b >c >d ,下列选项中正确的是( )A .a +d >b +cB .a +c >b +dC .ad >bcD .ac >bd【答案】B【解析】【解答】解:对于A ,令a=2,b=1,c=0,d=-3,则a+d=-1,b+c=1,此时a+d<b+c ,故A错误;对于B ,因为 a >b >c >d ,即a>b ,c>d ,则根据不等式的性质得 a +c >b +d ,故B 正确; 对于C , 令a=2,b=1,c=0,d=-3,则ad=-3,bc=0,此时ad<bc ,故C 错误;对于D,令a=-1,b=-2,c=-3,d=-4,则ac=3,bd=8,此时ac<bd,故D错误.故答案为:B【分析】运用特殊值法,结合不等式的性质逐项判断即可求解.15.(5分)如图,上海海关大楼的上面可以看作一个正四棱柱,四个侧面有四个时钟,则相邻两个时钟的时针从0时转到12时(含0时不含12时)的过程中,能够相互垂直()次A.0B.2C.4D.12【答案】B【解析】【解答】解:根据直线与平面垂直的性质定理易知当相邻两个时钟在3时和9时的时候,时针相互垂直.故答案为:B【分析】根据直线与平面垂直的性质定理求解即可.16.(5分)已知{a n}为等比数列,{a n}的前n项和为S n,前n项积为T n,则下列选项中正确的是()A.若S2022>S2021,则数列{a n}单调递增B.若T2022>T2021,则数列{a n}单调递增C.若数列{S n}单调递增,则a2022≥a2021D.若数列{T n}单调递增,则a2022≥a2021【答案】D【解析】【解答】解:对于A,设a n=12n,显然有S2022>S2021,但数列{a n}单调递减,故A错误;对于B,设a n=-2n,显然有T2022>T2021,但数列{a n}单调递减,故B错误;对于C,设a n=12n,显然有数列{S n}单调递增,但a2022<a2021,故C错误;对于D,若数列{T n}单调递增,则T n>T n-1>0,则a n>1,q≥1,则a2022≥a2021,故D正确.故答案为:D【分析】根据等比数列的性质,结合特殊值法求解即可.5题,共14+14+14+16+18=76分) (共5题;76分)17.(14分)如图,在圆柱 OO 1 中,底面半径为1, AA 1 为圆柱母线.(1)(7分)若 AA 1=4 ,M 为 AA 1 中点,求直线 MO 1 与底面的夹角大小; (2)(7分)若圆柱的轴截面为正方形,求该圆柱的侧面积和体积.【答案】(1)根据直线与平面所成角的定义,易知 直线MO 1与底面的夹角为∈MO 1A 1 则由题意得tan∠MO 1A 1=A 1MO 1A 1=2,则∈MO 1A 1= arctan2 ;(2)设圆柱的底面圆的半径为r ,高为h , 则因为圆柱的轴截面为正方形, 所以h=2r=2所以圆柱的侧面积为2πrℎ=2π×1×2=4π 圆柱的体积为 πr 2ℎ=π×12×2=2π【解析】【分析】根据直线与平面所成角的定义,以及圆柱的侧面积与体积公式求解即可. 18.(14分)已知数列 {a n } , a 2=1 , {a n } 的前n 项和为 S n .(1)(7分)若 {a n } 为等比数列, S 2=3 ,求 lim n→∞S n ; (2)(7分)若 {a n } 为等差数列,公差为d ,对任意 n ∈N ∗ ,均满足 S 2n ≥n ,求d 的取值范围.【答案】(1)设等比数列的公比为q ,则由题意得a 1=2, 则q =12则S n =a 1(1−q n )1−q =4(1−12n ) 则 lim n→∞S n =lim4n→∞(1−12n )=4(2)由题意得S2n=2n·(a2+a2n−1)2=2dn2+(2−3d)n⩾n则(3-2n)d≤1当n=1时,d≤1;当n≥2时,d≥13−2n恒成立;∵13−2n∈[−1,0)∴d≥0综上d∈[0,1]【解析】【分析】(1)根据等比数列的前n项和公式,结合极限求解即可;(2)根据等差数列的前n项和公式,结合不等式的解法求解即可.19.(14分)如图,矩形ABCD区域内,D处有一棵古树,为保护古树,以D为圆心,DA为半径划定圆D作为保护区域,已知AB=30m,AD=15m,点E为AB上的动点,点F为CD上的动点,满足EF与圆D相切.(1)(7分)若∈ADE =20°,求EF的长;(2)(7分)当点E在AB的什么位置时,梯形FEBC的面积有最大值,最大面积为多少?(长度精确到0.1m,面积精确到0.01m²)【答案】(1)如图,作DH∈EF,则EF=EH+HF=15tan20°+15tan50°≈23.3m;(2)设∈ADE=θ,AE=15tanθ,FH=15tan(90°-2θ),则S AEFD =152(30tanθ+15cot2θ)=2254(3tanθ+1tanθ)≥225√32当且仅当3tanθ=1tanθ,即tanθ=√33时,等号成立,即当AE =15tanθ=5√3时,最大面积为450−225√32≈255.14m 2【解析】【分析】(1)根据正切函数的定义,运用数形结合思想求解即可;(2)根据面积公式,结合基本不等式求最值求解即可.20.(16分)在椭圆 Γ:x 2a2+y 2=1 中,直线 l :x =a 上有两点C 、D (C 点在第一象限),左顶点为A ,下顶点为B ,右焦点为F.(1)(5分)若∈AFB =π6 ,求椭圆 Γ 的标准方程;(2)(5.5分)若点C 的纵坐标为2,点D 的纵坐标为1,则BC 与AD 的交点是否在椭圆上?请说明理由;(3)(5.5分)已知直线BC 与椭圆 Γ 相交于点P ,直线AD 与椭圆 Γ 相交于点Q ,若P 与Q 关于原点对称,求 |CD| 的最小值.【答案】(1)由题意知,∵ ∈AFB =π6 ,∴在RT∈BOF 中,BF=2OB ,即a=2b=2 则椭圆 Γ 的标准方程为 x 24+y 2=1 ;(2)由题意知A(-a ,0),B(0,-1),C(a ,2),D(a ,1), 则直线BC :y =3ax −1直线AD :y =12a x +12则由{y =3a x −1y =12a x +12得交点为(3a 5,45),符合椭圆 Γ:x 2a 2+y 2=1,故交点在椭圆上; (3)设P 为(acosθ,sinθ),又B(0,-1), 则K BP =sinθ+1acosθ,则直线BP :y =sinθ+1acosθx −1,∴点C (a ,sinθ+1cosθ−1),同理可得,设Q 为(-acosθ,-sinθ),又A(-a ,0),则K AQ=sinθacosθ−a,则直线AQ:y=sinθacosθ−a(x+a),∴点D(a,2sinθcosθ−1),∴|CD|=sinθ+1cosθ−1−2sinθcosθ−1=2sinθ2cosθ2+sin2θ2+cos2θ2cos2θ2−sin2θ2−4sinθ2cosθ2−2sin2θ2设t=tan θ2,则|CD|=2(11−t+1t)−2∵1a+1b≥4a+b∴11−t+1t≥41−t+t=4∴|CD|≥6即|CD|的最小值为6【解析】【分析】(1)根据椭圆方程,运用数形结合思想求解即可;(2)根据直线的斜截式方程,以及两直线的交点,结合点在椭圆上的判定求解即可;(3)根据直线的斜截式方程,以及直线与椭圆的位置关系,运用换元法,结合两点间的距离公式以及不等式的性质求解即可.21.(18分)已知函数f(x),甲变化:f(x)−f(x−t);乙变化:|f(x+t)−f(x)|,t>0.(1)(6分)若t=1,f(x)=2x,f(x)经甲变化得到g(x),求方程g(x)=2的解;(2)(6分)若f(x)=x2,f(x)经乙变化得到ℎ(x),求不等式ℎ(x)≤f(x)的解集;(3)(6分)若f(x)在(−∞,0)上单调递增,将f(x)先进行甲变化得到u(x),再将u(x)进行乙变化得到ℎ1(x);将f(x)先进行乙变化得到v(x),再将v(x)进行甲变化得到ℎ2(x),若对任意t>0,总存在ℎ1(x)=ℎ2(x)成立,求证:f(x)在R上单调递增.【答案】(1)由题意得g(x)=f(x)-f(x-1)=2x-2x-1=2x-1,则由g(x)=2得2x-1=2,解得x=2;(2)由题意得h(x)=|2tx+t2|,如图所示①当x≤−t2时,h(x)≤f(x)恒成立;②当x>−t2时,h(x)=2tx+t2,则由h(x)≤f(x)得2tx+t2≤x2,解得x≤(1−√2)t或x≥(1+√2)t,综上可得x≤(1−√2)t或x≥(1+√2)t,故解集为:(−∞,(1−√2)t]∪[(1+√2)t,+∞)(3)由题意得h1(x)=|[f(x+t)-f(x)]-[f(x)-f(x-t)]|,h2(x)=|[f(x+t)-f(x)]|-|[f(x)-f(x-t)]|,∵x∈R时,h1(x)=h2(x)恒成立∴|[f(x+t)-f(x)]-[f(x)-f(x-t)]|=|[f(x+t)-f(x)]|-|[f(x)-f(x-t)]|……①∵t>0且f(x)在(−∞,0)上单调递增∴x-t<x<0则根据|a-b|≥|a|-|b|(当且仅当ab≥0且|a|≥|b|时等号成立)得f(x-t)<f(x)∴f(x)-f(x-t)>0则由①得{[f(x+t)−f(x)]·[f(x)−f(x−t)]⩾0|f(x+t)−f(x)|≥|f(x)−f(x−t)|=f(x)−f(x−t)>0∴f(x+t)-f(x)>0即f(x+t)-f(x)>f(x)-f(x-t)>0∴{f(x +t)−f(x)>f(x)−f(x −t)f(x +t)>f(x)f(x)>f(x −t)对t>0都成立,则f(x)在R 上单调递增.【解析】【分析】(1)根据函数的新定义,结合对数方程的解法求解即可;(2)根据函数的新定义,运用数形结合思想,结合不等式的解法求解即可;(3)根据函数的新定义,结合函数的单调性,以及绝对值不等式的性质求解即可.试题分析部分1、试卷总体分布分析2、试卷题量分布分析3、试卷难度结构分析4、试卷知识点分析。
2022年上海市普通高等学校春季招生真题考试数学试卷一. 填空题(本大题满分56分)本大题共有14题,直接填写结果,每题答对得4分,否则一律得零分.二.选择题(本大题满分16分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的,考生必须把正确结论的代号写在题后的圆括号内,选对得 5分,否则一律得零分.三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须写出必要的步骤.19. (本题满分12分) 本题共有两个小题,第1小题满分6分,第2小题满分6分.20. (本题满分14分) 本题共有2个小题,第1小题满分7分,第2小题满分7分.21. (本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.22. (本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.23. (本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.2023年上海市春季高考数学试卷一.填空题(本大题共12题,满分48分,第1~6题每题4分,第7~12题每题5分)1.设集合A={1,2,3},集合B={3,4},则A∪B= .2.不等式|x﹣1|<3的解集为.3.若复数z满足2﹣1=3+6i(i是虚数单位),则z= .4.若,则= .5.若关于x、y的方程组无解,则实数a= .6.若等差数列{an }的前5项的和为25,则a1+a5= .7.若P、Q是圆x2+y2﹣2x+4y+4=0上的动点,则|PQ|的最大值为.8.已知数列{an}的通项公式为,则= .9.若的二项展开式的各项系数之和为729,则该展开式中常数项的值为.10.设椭圆的左、右焦点分别为F1、F2,点P在该椭圆上,则使得△F1F2P是等腰三角形的点P的个数是.11.设a1、a2、…、a6为1、2、3、4、5、6的一个排列,则满足|a1﹣a2|+|a3﹣a4|+|a5﹣a6|=3的不同排列的个数为.12.设a、b∈R,若函数在区间(1,2)上有两个不同的零点,则f(1)的取值范围为.二.选择题(本大题共4题,每题5分,共20分)13.函数f(x)=(x﹣1)2的单调递增区间是()A.[0,+∞)B.[1,+∞)C.(﹣∞,0] D.(﹣∞,1]14.设a∈R,“a>0”是“”的()条件.A.充分非必要 B.必要非充分C.充要D.既非充分也非必要15.过正方体中心的平面截正方体所得的截面中,不可能的图形是()A.三角形B.长方形C.对角线不相等的菱形 D.六边形16.如图所示,正八边形A1A2A3A4A5A6A7A8的边长为2,若P为该正八边形边上的动点,则的取值范围为()A.B.C D.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=3;(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1C与DD1所成角的大小.18.(12分)设a∈R,函数;(1)求a的值,使得f(x)为奇函数;(2)若对任意x∈R成立,求a的取值范围.19.(12分)某景区欲建造两条圆形观景步道M1、M2(宽度忽略不计),如图所示,已知AB⊥AC,AB=AC=AD=60(单位:米),要求圆M1与AB、AD分别相切于点B、D,圆M2与AC、AD分别相切于点C、D;(1)若∠BAD=60°,求圆M1、M2的半径(结果精确到0.1米)(2)若观景步道M1与M2的造价分别为每米0.8千元与每米0.9千元,如何设计圆M1、M2的大小,使总造价最低?最低总造价是多少?(结果精确到0.1千元)20.(12分)已知双曲线(b>0),直线l:y=kx+m(km≠0),l与Γ交于P、Q两点,P'为P关于y轴的对称点,直线P'Q与y轴交于点N(0,n);(1)若点(2,0)是Γ的一个焦点,求Γ的渐近线方程;(2)若b=1,点P的坐标为(﹣1,0),且,求k的值;(3)若m=2,求n关于b的表达式.21.(12分)已知函数f(x)=log2;(1)解方程f(x)=1;(2)设x∈(﹣1,1),a∈(1,+∞),证明:∈(﹣1,1),且f()﹣f(x)=﹣f();(3)设数列{xn }中,x1∈(﹣1,1),xn+1=(﹣1)n+1,n∈N*,求x1的取值范围,使得x3≥xn对任意n∈N*成立.2023年上海市春季高考数学试卷参考答案与试题解析一.填空题(本大题共12题,满分48分,第1~6题每题4分,第7~12题每题5分)1.设集合A={1,2,3},集合B={3,4},则A∪B= {1,2,3,4} .2.不等式|x﹣1|<3的解集为(﹣2,4).3.若复数z满足2﹣1=3+6i(i是虚数单位),则z= 2﹣3i .4.若,则= .5.若关于x、y的方程组无解,则实数a= 6 .6.若等差数列{an }的前5项的和为25,则a1+a5= 10 .7.若P、Q是圆x2+y2﹣2x+4y+4=0上的动点,则|PQ|的最大值为 2 .8.已知数列{an}的通项公式为,则= .9.若的二项展开式的各项系数之和为729,则该展开式中常数项的值为160 .10.设椭圆的左、右焦点分别为F1、F2,点P在该椭圆上,则使得△F1F2P是等腰三角形的点P的个数是 6 .11.设a1、a2、…、a6为1、2、3、4、5、6的一个排列,则满足|a1﹣a2|+|a3﹣a4|+|a5﹣a6|=3的不同排列的个数为48 .12.设a、b∈R,若函数在区间(1,2)上有两个不同的零点,则f(1)的取值范围为(0,1).解:函数在区间(1,2)上有两个不同的零点,即方程x2+bx+a=0在区间(1,2)上两个不相等的实根,⇒⇒,如图画出数对(a,b)所表示的区域,目标函数z=f(1)═a+b+1∴z的最小值为z=a+b+1过点(1,﹣2)时,z的最大值为z=a+b+1过点(4,﹣4)时∴f(1)的取值范围为(0,1)故答案为:(0,1)二.选择题(本大题共4题,每题5分,共20分)13.函数f(x)=(x﹣1)2的单调递增区间是( B )A.[0,+∞)B.[1,+∞)C.(﹣∞,0] D.(﹣∞,1]14.设a∈R,“a>0”是“”的( C )条件.A.充分非必要 B.必要非充分C.充要D.既非充分也非必要15.过正方体中心的平面截正方体所得的截面中,不可能的图形是( A )A.三角形B.长方形C.对角线不相等的菱形 D.六边形16.如图所示,正八边形A1A2A3A4A5A6A7A8的边长为2,若P为该正八边形边上的动点,则的取值范围为( B )A.B.C.D.解:由题意,正八边形A1A2A3A4A5A6A7A8的每一个内角为135°,且,,,.再由正弦函数的单调性及值域可得,当P与A8重合时,最小为==.结合选项可得的取值范围为.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(12分)长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=3;(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1C与DD1所成角的大小.解:(1)∵长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=3,∴四棱锥A1﹣ABCD的体积:====4.(2)∵DD1∥CC1,∴∠A1CC1是异面直线A1C与DD1所成角(或所成角的补角),∵tan∠A1CC1===,∴=.∴异面直线A1C与DD1所成角的大小为;18.(12分)设a∈R,函数;(1)求a的值,使得f(x)为奇函数;(2)若对任意x∈R成立,求a的取值范围.解:(1)由f(x)的定义域为R,且f(x)为奇函数,可得f(0)=0,即有=0,解得a=﹣1.则f(x)=,f(﹣x)===﹣f(x),则a=﹣1满足题意;(2)对任意x∈R成立,即为<恒成立,等价为<,即有2(a﹣1)<a(2x+1),当a=0时,﹣1<0恒成立;当a>0时,<2x+1,由2x+1>1,可得≤1,解得0<a≤2;当a<0时,>2x+1不恒成立.综上可得,a的取值范围是[0,2].19.(12分)某景区欲建造两条圆形观景步道M1、M2(宽度忽略不计),如图所示,已知AB⊥AC,AB=AC=AD=60(单位:米),要求圆M1与AB、AD分别相切于点B、D,圆M2与AC、AD分别相切于点C、D;(1)若∠BAD=60°,求圆M1、M2的半径(结果精确到0.1米)(2)若观景步道M1与M2的造价分别为每米0.8千元与每米0.9千元,如何设计圆M1、M2的大小,使总造价最低?最低总造价是多少?(结果精确到0.1千元)解:(1)M1半径=60tan30°≈34.6,M2半径=60tan15°≈16.1;(2)设∠BAD=2α,则总造价y=0.8•2π•60tanα+0.9•2π•60tan(45°﹣α),设1+tanα=x,则y=12π•(8x+﹣17)≥84π,当且仅当x=,tanα=时,取等号,∴M1半径30,M2半径20,造价42.0千元.20.(12分)已知双曲线(b>0),直线l:y=kx+m(km≠0),l与Γ交于P、Q两点,P'为P关于y轴的对称点,直线P'Q与y轴交于点N(0,n);(1)若点(2,0)是Γ的一个焦点,求Γ的渐近线方程;(2)若b=1,点P的坐标为(﹣1,0),且,求k的值;(3)若m=2,求n关于b的表达式.解:(1)∵双曲线(b>0),点(2,0)是Γ的一个焦点,∴c=2,a=1,∴b2=c2﹣a2=4﹣1=3,∴Γ的标准方程为: =1,Γ的渐近线方程为.(2)∵b=1,∴双曲线Γ为:x2﹣y2=1,P(﹣1,0),P′(1,0),∵=,设Q(x2,y2),则有定比分点坐标公式,得:,解得,∵,∴,∴=.(3)设P(x1,y1),Q(x2,y2),kPQ=k,则,由,得(b2﹣k2)x2﹣4kx﹣4﹣b2=0,,,由,得()x2﹣2knx﹣n2﹣b2=0,﹣x1+x2=,﹣x1x2=,∴x1x2==,即,即=,====,化简,得2n 2+n (4+b 2)+2b 2=0,∴n=﹣2或n=,当n=﹣2,由=,得2b 2=k 2+k 02,由,得,即Q (,),代入x 2﹣=1,化简,得:,解得b 2=4或b 2=kk 0,当b 2=4时,满足n=,当b 2=kk 0时,由2b 2=k 2+k 02,得k=k 0(舍去),综上,得n=.21.(12分)已知函数f (x )=log 2;(1)解方程f (x )=1;(2)设x ∈(﹣1,1),a ∈(1,+∞),证明:∈(﹣1,1),且f ()﹣f (x )=﹣f ();(3)设数列{x n }中,x 1∈(﹣1,1),x n+1=(﹣1)n+1,n ∈N *,求x 1的取值范围,使得x 3≥x n 对任意n ∈N *成立. 解:(1)∵f (x )=log 2=1,∴=2,解得;(2)令g (x )=,ax a a x g --+-=21)(∵a ∈(1,+∞),∴g (x )在(﹣1,1)上是增函数, 又g (﹣1)=,g (1)==1,∴﹣1<g (x )<1,即∈(﹣1,1).∵f (x )﹣f ()=log 2﹣log 2=log 2﹣log 2=log 2()=log 2,f ()=log 2=log 2.∴f ()=f (x )﹣f (),∴f ()﹣f (x )=﹣f ().(3)∵f (x )的定义域为(﹣1,1), f (﹣x )=log 2=﹣log 2=﹣f (x ),∴f (x )是奇函数.∵x n+1=(﹣1)n+1,∴x n+1=.①当n 为奇数时,f (x n+1)=f ()=f (x n )﹣f ()=f (x n )﹣1,∴f (x n+1)=f (x n )﹣1; ②当n 为偶数时,f (x n+1)=f (﹣)=﹣f ()=1﹣f (x n ),∴f (x n+1)=1﹣f (x n ).∴f (x 2)=f (x 1)﹣1,f (x 3)=1﹣f (x 2)=2﹣f (x 1), f (x 4)=f (x 3)﹣1=1﹣f (x 1),f (x 5)=1﹣f (x 4)=f (x 1), f (x 6)=f (x 5)﹣1=f (x 1)﹣1,…∴f (x n )=f (x n+4),n ∈N +. 设12111)(---=-+=x x x x h ∴h (x )在(﹣1,1)上是增函数, ∴f (x )=log 2=log 2h (x )在(﹣1,1)上是增函数.∵x 3≥x n 对任意n ∈N *成立,∴f (x 3)≥f (x n )恒成立,∴,即,解得:f (x 1)≤1,即log 2≤1,∴0<≤2,解得:﹣1<x 1≤.2022年上海市春季高考(学业水平考试)数学试卷2022.1一. 填空题(本大题共12题,每题3分,共36分) 1. 复数34i +(i 为虚数单位)的实部是 ; 2. 若2log (1)3x +=,则x = ; 3. 直线1y x =-与直线2y =的夹角为 ; 4. 函数()2f x x =-的定义域为 ;5. 三阶行列式135400121--中,元素5的代数余子式的值为 ; 6. 函数1()f x a x=+的反函数的图像经过点(2,1),则实数a = ; 7. 在△ABC 中,若30A ︒=,45B ︒=,6BC =AC = ;8. 4个人排成一排照相,不同排列方式的种数为 ;(结果用数值表示)9. 无穷等比数列{}n a 的首项为2,公比为13,则{}n a 的各项和为 ; 10. 若2i +(i 为虚数单位)是关于x 的实系数一元二次方程250x ax ++=的一个虚根,则a = ;11. 函数221y x x =-+在区间[0,]m 上的最小值为0,最大值为1,则实数m 的取值范围 是 ;12. 在平面直角坐标系xOy 中,点A 、B 是圆22650x y x +-+=上的两个动点,且满足||23AB =||OA OB +的最小值为 ;二. 选择题(本大题共12题,每题3分,共36分) 13. 满足sin 0α>且tan 0α<的角α属于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限; 14. 半径为1的球的表面积为( )A. πB.43π C. 2π D. 4π 15. 在6(1)x +的二项展开式中,2x 项的系数为( ) A. 2 B. 6 C. 15 D. 20 16. 幂函数2y x -=的大致图像是( )A. B. C. D.17. 已知向量(1,0)a =,(1,2)b =,则向量b 在向量a 方向上的投影为( ) A. 1 B. 2 C. (1,0) D. (0,2) 18. 设直线l 与平面α平行,直线m 在平面α上,那么( ) A. 直线l 平行于直线m B. 直线l 与直线m 异面 C. 直线l 与直线m 没有公共点 D. 直线l 与直线m 不垂直19. 用数学归纳法证明等式2123...22n n n ++++=+*()n N ∈的第(ii )步中,假设n k =时原等式成立,那么在1n k =+时,需要证明的等式为( ) A. 22123...22(1)22(1)(1)k k k k k k ++++++=+++++ B. 2123...22(1)2(1)(1)k k k k ++++++=+++C. 22123...2(21)2(1)22(1)(1)k k k k k k k ++++++++=+++++ D. 2123...2(21)2(1)2(1)(1)k k k k k ++++++++=+++20. 关于双曲线221164x y -=与221164y x -=的焦距和渐近线,下列说法正确的是( ) A. 焦距相等,渐近线相同 B. 焦距相等,渐近线不相同 C. 焦距不相等,渐近线相同 D. 焦距不相等,渐近线不相同21. 设函数()y f x =的定义域为R ,则“(0)0f =”是“()y f x =为奇函数”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件22. 下列关于实数a 、b 的不等式中,不恒成立的是( ) A. 222a b ab +≥ B. 222a b ab +≥- C. 2()2a b ab +≥ D. 2()2a b ab +≥-23. 设单位向量1e 与2e 既不平行也不垂直,对非零向量1112a x e y e =+,2122b x e y e =+, 有结论:① 若12210x y x y -=,则a ∥b ;② 若12120x x y y +=,则a b ⊥;关于以上两 个结论,正确的判断是( )A. ①成立,②不成立B. ①不成立,②成立C. ①成立,②成立D. ①不成立,②不成立24. 对于椭圆22(,)22:1a b x y C a b +=(,0,)a b a b >≠,若点00(,)x y 满足2200221x y a b+<,则称该点在椭圆(,)a b C 内,在平面直角坐标系中,若点A 在过点(2,1)的任意椭圆(,)a b C 内或椭圆(,)a b C 上,则满足条件的点A 构成的图形为( )A. 三角形及其内部B. 矩形及其内部C. 圆及其内部D. 椭圆及其内部三. 解答题(本大题共5题,共8+8+8+12+12=48分)25. 如图,已知正三棱柱111ABC A B C -的体积为3,求异面直线1BC 与AC 所成的角的大小;26. 已知函数()sin f x x x =,求()f x 的最小正周期及最大值,并指出()f x 取得 最大值时x 的值;27. 如图,汽车前灯反射镜与轴截面的交线是抛物线的一部分,灯口所在的圆面与反射镜的轴垂直,灯泡位于抛物线的焦点F 处,已知灯口直径是24cm ,灯深10cm ,求灯泡与反射 镜的顶点O 的距离;28. 已知数列{}n a 是公差为2的等差数列; (1)若1a 、3a 、4a 成等比数列,求1a 的值;(2)设119a =-,数列{}n a 的前n 项和为n S ,数列{}n b 满足11b =,11()2nn n b b +-=,记 12n n n n c S b -=+⋅()n N *∈,求数列{}n c 的最小值0n c ;(即0n n c c ≤对任意n N *∈成立)29. 对于函数()f x 与()g x ,记集合{|()()}f g D x f x g x >=>; (1)设()2||f x x =,()3g x x =+,求f g D >;(2)设1()1f x x =-,21()()313x xf x a =+⋅+,()0h x =,如果12f hf h D D R >>=,求实数a 的取值范围;附加题一. 选择题(本大题共3题,每题3分,共9分)1. 若函数()sin()f x x ϕ=+是偶函数,则ϕ的一个值是( ) A. 0 B.2πC. πD. 2π2. 在复平面上,满足|1|4z -=的复数z 所对应的点的轨迹是( ) A. 两个点 B. 一条线段 C. 两条直线 D. 一个圆3. 已知函数()f x 的图像是折线段ABCDE ,如图,其中(1,2)A 、(2,1)B 、(3,2)C 、(4,1)D 、(5,2)E ,若直线y kx b =+(,)k b R ∈与()f x 的图像恰有4个不同的公共点,则k 的取值范围是( )A. (1,0)(0,1)- B. 11(,)33-C. (0,1]D. 1[0,]3二. 填空题(本大题共3题,每题3分,共9分)4. 椭圆221259x y +=的长半轴的长为 ; 5. 已知圆锥的母线长为10,母线与轴的夹角为30︒,则该圆锥的侧面积为 ; 6. 小明用数列{}n a 记录某地区2015年12月份31天中每天是否下过雨,方法为:当第k 天 下过雨时,记1k a =,当第k 天没下过雨时,记1k a =-(131)k ≤≤;他用数列{}n b 记录该 地区该月每天气象台预报是否有雨,方法为:当预报第k 天有雨时,记1k b =,当预报第k 天 没有雨时,记1k b =-(131)k ≤≤;记录完毕后,小明计算出1122333131...a b a b a b a b ++++25=,那么该月气象台预报准确的总天数为 ;三. 解答题(本大题12分)7. 对于数列{}n a 与{}n b ,若对数列{}n c 的每一项k c ,均有k k c a =或k k c b =,则称数列{}n c 是{}n a 与{}n b 的一个“并数列”;(1)设数列{}n a 与{}n b 的前三项分别为11a =,23a =,35a =,11b =,22b =,33b =, 若数列{}n c 是{}n a 与{}n b 的一个“并数列”,求所有可能的有序数组123(,,)c c c ; (2)已知数列{}n a 、{}n c 均为等差数列,{}n a 的公差为1,首项为正整数t ,{}n c 的前10项和为30-,前20项和为260-,若存在唯一的数列{}n b ,使得{}n c 是{}n a 与{}n b 的 一个“并数列”,求t 的值所构成的集合;参考答案一. 填空题1. 3;2. 7;3.4π; 4. [2,)+∞;5. 8;6. 1;7.8. 24;9. 3; 10. 4-; 11. [1,2]; 12. 4;二. 选择题13. B ; 14. D ; 15. C ; 16. C ; 17. A ; 18. C ; 19. D ; 20. B ; 21. B ; 22. D ; 23. A ; 24. B ;三. 解答题25. 34arccos 10h θ=⇒=; 26. 2T π=,当26x k ππ=+()k Z ∈时,有max 2y =;27. 214.4|| 3.6y x OF cm =⇒=;28.(1)18a =-;(2)22021nn c n n =-+-,min 449c c ==-;29.(1)(,1)(3,)f g D >=-∞-+∞;(2)49a >-;附加题1. B ;2. D ;3. B ;4. 5;5. 50π;6. 28;7.(1)(1,3,5),(1,3,3),(1,2,5),(1,2,3); (2)*{|3,6,}t t t t N ≠≠∈;。
2018年上海市普通高校春季招生统一文化考试数学试卷一、填空题(54分)1、不等式1>x 的解集为______________;2、计算:_________213lim=+-∞→n n n ;3、设集合{}20<<=x x A ,{}11<<-=x x B ,则________=B A ;4、若复数i z +=1(i 是虚数单位),则______2=+zz ; 5、已知{}n a 是等差数列,若1082=+a a ,则______753=++a a a ;6、已知平面上动点P 到两个定点()0,1和()0,1-的距离之和等于4,则动点P 的轨迹方程为_________;7、如图,在长方体1111D C B A ABCD -中,3=AB ,4=BC ,51=AA ,O 是11C A 的中点,则三棱锥11OB A A -的体积为_________;第7题图 第12题图8、某校组队参加辩论赛,从6名学生中选出4人分别担任一、二、三、四辩,若其中学生甲必须参赛且不担任四辩,则不同的安排方法种数为_____________(结果用数值表示)。
9、设R a ∈,若922⎪⎭⎫ ⎝⎛+x x 与92⎪⎭⎫ ⎝⎛+x a x 的二项展开式中的常数项相等,则_______=a ;10、设R m ∈,若z 是关于x 的方程0122=-++m mx x 的一个虚根,则-z 的取值范围是________;11、设0>a ,函数()()1,0),sin()1(2∈-+=x ax x x x f ,若函数12-=x y 与()x f y =的图像有且仅有两个不同的公共点,则a 的取值范围是__________;12、如图,在正方形ABCD 的边长为20米,圆O 的半径为1米,圆心是正方形的中心,点P 、Q 分别在线段AD 、CB 上,若线段PQ 与圆O 有公共点,则称点Q 在点P 的“盲区”中,已知点P 以1.5米/秒的速度从A 出发向D 移动,同时,点Q 以1米/秒的速度从C 出发向B 移动,则在点P 从A 移动到D 的过程中,点Q 在点P 的盲区中的时长均为_____秒(精确到0.1). 二.选择题(20分)13. 下列函数中,为偶函数的是( )A 2-=x y B 31x y = C 21-=xy D3x y =14. 如图,在直三棱柱111C B A ABC -的棱所在的直线中,与直线1BC 异面的直线的条数为( ) A 1 B 2 C 3 D 415. 若数列}{n a 的前n 项和,“}{n a 是递增数列”是“}{n S 是递增数列”的( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 即不充分也不必要条件16、已知A 、B 是平面内两个定点,且2=→AB ,该平面上的动线段PQ 的两个端点P 、Q 满足:5≤→AP ,6=⋅→→AB AP ,→→-=AP AQ 2,则动线段PQ 所围成的面积为( )A、50 B、60 C、72 D 、108三、解答题(14+14+14+16+18=76分)17、已知x x f cos )(=(1).若31)(=αf ,且],0[πα∈,求)3(πα-f 的值; (2).求函数)(2)2(x f x f y -=的最小值; ﻬ18、已知R a ∈,双曲线1:222=-Γy ax(1).若点)1,2(在Γ上,求Γ的焦点坐标;(2).若1=a ,直线1+=kx y 与Γ相交于B A ,两点,若线段AB 中点的横坐标为1,求k 的值;19.利用“平行与圆锥母线的平面截圆锥面,所得截线是抛物线”的几何原理;某公司用两个射灯(射出的光锥视为圆锥)在广告牌上投影出其标识,如图1所示,图2投影出的抛物线的平面图,图3是一个射灯投影的直观图,在图2与图3中,点O 、A 、B 在抛物线上,OC 是抛物线的对称轴,AB OC ⊥于C ,3=AB 米,5.4=OC 米.(1)求抛物线的焦点到准线的距离;(2)在图3中,已知OC 平行于圆锥的母线SD ,AB 、DE 是圆锥底面的直径,求圆锥的母线与轴的夹角的大小(精确到01.0).20.设0>a ,函数xa x f 211)(⋅+=(1).若1=a ,求)(x f 的反函数)(1x f -(2)求函数)()(x f x f y -⋅=的最大值,(用a 表示)(3)设=)(x g )1()(--x f x f ,若对任意)0()(],0,(g x g x ≥-∞∈恒成立,求a 的取值范围?21.若}{n c 是递增数列,数列}{n a 满足:对任意*,N m R n ∈∃∈,使得01≤--+n m nm c a a a ,则称}{n a 是}{n c 的“分隔数列”(1)设1,2+==n a n c n n ,证明:数列}{n a 是}{n c 的分隔数列;(2)设n n S n c ,4-=是}{n c 的前n 项和,23-=n n c d ,判断数列}{n S 是否是数列}{n d 的分隔数列,并说明理由;(3)设n n n T aq c ,1-=是}{n c 的前n 项和,若数列}{n T 是}{n C 的分隔数列,求实数q a ,的取值范围?2018年上海市普通高校春季招生统一文化考试数学试卷参考答案:一、填空题:1、()()+∞-∞-,11, ;2、3;3、()1,0;4、2;5、15;6、13422=+y x ;7、5;8、180; 9、4;10、⎪⎪⎭⎫⎝⎛∞+,33;11、⎥⎦⎤⎝⎛619611ππ,;12、4.4; 二、选择题:13、A ;14、C;15、D ;16、B ; 三、解答题:17、(1)6621+;(2)23-; 18、(1)()()0,30,3-,;(2)215-; 19、(1)41;(2)59.9; 20、解析:(1)()()1,011log )(11log 112212∈⎪⎭⎫ ⎝⎛-=⇒⎪⎪⎭⎫ ⎝⎛-=⇒-=-x x x f y x y x ; (2)()()xx x x x a a a a y 2122211211⋅++=⋅+⋅⋅+=-,设02>=t x, 则()111222+++=+++=a taat at a at ty ,因为0>a ,所以a taat 2≥+,当且仅当1=t 时取等号,所以12122++≥+++a a a t a at ,即()⎥⎦⎤ ⎝⎛+∈211,0a y ; (3)()223222221122+⋅+⋅-=⋅+-⋅+=xx x x a t a a a a x g ,设t x=2,因为()0,∞-∈x , 所以()1,0∈t ,则()att a a t g 322++-=,若a t t t a 222=⇒=,1°当12≥a 时,即20≤<a ,a t t a y 322++=单调递减,所以()+∞++∈,232a a y , 则()⎪⎭⎫⎝⎛++-∈0,232a a a a g ,且()2302++-=a a a g ,故满足()()0g x g ≥,符合题意;2°当120<<a 时,即2>a ,则a a a aa t t a y 322322322+=+⋅≥++=, 则()()0,322-∈a g ,因为()()02log 2ming a g x g ≠⎪⎪⎭⎫⎝⎛=,故不符合题意,舍去; 综上:(]2,0∈a 。
21、解析(1)依题意得,()[][]12120)12(0)12(120)22(1211+<≤-⇔⎩⎨⎧≠+-≤+---⇔≤+-+-+=--+n m n n m n m n m n m nm c a c a n m n m因为*∈N m ,于是,可得,n m 2=,故存在这样的m ,使得01≤--+n m nm c a c a ,所以数列{}m a 是{}n c 的分隔数列,得证;(2)6323-==-n c d n n ,又因为n S 是{}n c 的前n 项和,所以()n n n n S n2722432-=-+-=,假设数列{}n S 是否是数列{}n d 的分隔数列,则必定存在*∈N m ,使得01≤--+n m nm d S d S ,代入不并化简得:()()()[]()[]()⎪⎩⎪⎨⎧≠+--≤+--+--⇔≤+--+--0667066712670667126722222n m m n m mn m m n m m n m m所以,6671262-<-≤-n m m n ,又因为()()Z k k m m ∈=-27,所以{}86,106,126)7(---=-n n n m m ,对于任意的*∈N n ,三个方程⎪⎩⎪⎨⎧-=--=--=-③②①86710671267222n m m n m m n m m 都不能确保m 一直偶整数解,故不符合定义,所以数列{}n S 不是数列{}n d 的分隔数列;另解:举出反例即可!1°当1=n 时,()6076=⇒⎩⎨⎧∈<-≤-*m Nm m m ,存在; 2°当2=n 时,()7670=⇒⎩⎨⎧∈<-≤*m Nm m m ,存在;3°当3=n 时,()81276=⇒⎩⎨⎧∈<-≤*m Nm m m ,存在;4°当4=n 时,()∅=⇒⎩⎨⎧∈<-≤*m Nm m m 18712,不存在; 综上,数列{}n S 不是数列{}n d 的分隔数列;(3)因为{}n c 是递增数列,所以⎩⎨⎧>>01a q ,或⎩⎨⎧<<<100q a ; ①当1=q 时,na T a c n n =⇒=,则011>=--=--+ama ama c T c T n m n m ,不符合数列{}n T 是{}n c 的分隔数列,故舍去。
②当1>q 时,()q q a T n n --=11,因为01≤--+n m nmc T c T ,代入并化简得: 1111+-<≤+-+-n n m n n q q q q q ,令n m =,则()01211≥+-⇒>+-+q q q q qn n n n ,对任意的*∈N n 恒成立,则2≥q ,而1111≥⇒≤+---n n n n q q qq (恒成立),故数列{}n T 是{}n c 的分隔数列,且此时0>a ;③当10<<q 时,因为01≤--+n m nm c T c T ,代入并化简得:1111+-<≤+-+-n n m n n q q q q q ,因为mq 单调递减,而111−−→−+-∞→-n n nqq ,111−−→−+-∞→+n n n q q ,此时m 不存在,故这种情况,舍去; 综上,0>a 或2≥q 。