大学物理习题及综合练习答案详解
- 格式:doc
- 大小:556.00 KB
- 文档页数:9
3-1 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 [ ] A.2ωmR J J + B. 02)(ωR m J J+ C.02ωmR JD. 0ω 答案:A3-2 如题3-2图所示,圆盘绕O 轴转动。
若同时射来两颗质量相同,速度大小相同,方向相反并在一直线上运动的子弹,子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度ω将:[ ]A. 增大.B. 不变.C. 减小.D. 无法判断. 题3-2 图 答案: C3-3 芭蕾舞演员可绕过脚尖的铅直轴旋转,当她伸长两手时的转动惯量为J 0,角速度为ω0,当她突然收臂使转动惯量减小为J 0 / 2时,其角速度应为:[ ] A. 2ω0 . B. ω0 . C. 4ω0 . D. ω 0/2. 答案:A3-4 如题3-4图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿过桌面中心的小孔O . 该物体原以角速度ω 在半径为R 的圆周上绕O 旋转,今将绳从小孔缓慢往下拉.则物体:[ ]A. 动量不变,动能改变; 题3-4图B. 角动量不变,动量不变;C. 角动量改变,动量改变;D. 角动量不变,动能、动量都改变。
答案:D3-5 在XOY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 = 2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量J z = .答案: 38kg ·m 23-6 如题3-6图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动,今有一子弹沿着与水平面成一角度的方向击中木球并嵌于其中,则在此击中过程中,木球、子弹、细棒系统对o 轴的 守恒。
库仑定律 7-1 把总电荷电量为Q 的同一种电荷分成两部分,一部分均匀分布在地球上,另一部分均匀分布在月球上,使它们之间的库仑力正好抵消万有引力,已知地球的质量M = 5.98l024kg ,月球的质量m =7.34l022kg 。
(1)求 Q 的最小值;(2)如果电荷分配与质量成正比,求Q 的值。
解:(1)设Q 分成q 1、q 2两部分,根据题意有 2221r MmG r q q k=,其中041πε=k即 2221q k q GMm q q Q +=+=。
求极值,令0'=Q ,得 0122=-kq GMmC 1069.5132⨯==∴k GMm q ,C 1069.51321⨯==k q GMm q ,C 1014.11421⨯=+=q q Q (2)21q m q M =Θ,k GMm q q =21 kGMm m q mq Mq ==∴2122 解得C 1032.61222⨯==kGm q , C 1015.51421⨯==m Mq q ,C 1021.51421⨯=+=∴q q Q 7-2 三个电量为 –q 的点电荷各放在边长为 l 的等边三角形的三个顶点上,电荷Q (Q >0)放在三角形的重心上。
为使每个负电荷受力为零,Q 值应为多大?解:Q 到顶点的距离为 l r 33=,Q 与-q 的相互吸引力为 20141rqQ F πε=, 两个-q 间的相互排斥力为 220241l q F πε=据题意有 10230cos 2F F =,即 2022041300cos 412rqQl q πεπε=⨯,解得:q Q 33= 电场强度7-3 如图7-3所示,有一长l 的带电细杆。
(1)电荷均匀分布,线密度为+,则杆上距原点x 处的线元d x 对P 点的点电荷q 0 的电场力为何?q 0受的总电场力为何?(2)若电荷线密度=kx ,k 为正常数,求P 点的电场强度。
解:(1)线元d x 所带电量为x q d d λ=,它对q 0的电场力为200200)(d 41)(d 41d x a l x q x a l q q F -+=-+=λπεπεq 0受的总电场力 )(4)(d 4000200a l a l q x a l xq F l+=-+=⎰πελπελ00>q 时,其方向水平向右;00<q 时,其方向水平向左q 0 图7-3a λ lP x q-q-q-ll rQ rr(2)在x 处取线元d x ,其上的电量x kx x q d d d ==λ,它在P 点的电场强度为2020)(d 41)(d 41d x a l xkx x a l q E P -+=-+=πεπε)ln (4)(d 40020al aa l k x a l x x kE lP ++=-+=∴⎰πεπε 方向沿x 轴正向。
大学物理试题讲解及答案一、选择题1. 光的波长为λ,频率为f,光速为c,下列关系式正确的是()。
A. λf = cB. λf = 2cC. λf = c/2D. λf = c^2答案:A2. 一个物体在水平面上做匀加速直线运动,已知加速度a=2m/s²,初速度v₀=3m/s,那么2秒后的速度v₂为()。
A. 7m/sB. 9m/sC. 11m/sD. 13m/s答案:B二、填空题3. 根据牛顿第二定律,物体的加速度a与作用力F和物体质量m的关系是a=______。
答案:F/m4. 一个物体从静止开始下落,忽略空气阻力,其下落过程中的加速度为______。
答案:g(重力加速度)三、计算题5. 一个质量为m的物体,从高度h处自由下落,求物体落地时的速度v。
解:由能量守恒定律可知,物体的势能转化为动能,即:mgh = 1/2 * mv²解得:v = √(2gh)答案:v = √(2gh)6. 一列火车以速度v₀进入一个隧道,隧道长度为L,火车长度为l,求火车完全通过隧道所需的时间t。
解:火车完全通过隧道时,其尾部刚好离开隧道口,此时火车行驶的距离为L+l。
由速度公式v = s/t,得:t = (L+l)/v₀答案:t = (L+l)/v₀四、简答题7. 简述牛顿第三定律的内容。
答案:牛顿第三定律指出,对于两个相互作用的物体,它们之间的作用力和反作用力大小相等、方向相反。
8. 什么是电磁感应现象?答案:电磁感应现象是指当导体在磁场中运动,或者磁场发生变化时,导体中会产生感应电动势的现象。
五、论述题9. 论述相对论中时间膨胀的概念。
答案:时间膨胀是相对论中的一个重要概念,指的是当一个物体以接近光速的速度运动时,相对于静止观察者的时间会变慢。
这种现象表明,时间并不是绝对的,而是相对的,取决于观察者的运动状态。
10. 试述量子力学与经典力学的主要区别。
答案:量子力学与经典力学的主要区别在于它们描述的物理现象的尺度不同。
姓名班级学号 ………密……….…………封…………………线…………………内……..………………不……………………. 准…………………答…. …………题…考试须知:123 一、填空题(共10小题,每题2分,共20分)1、如图所示,一静止的均匀细棒,长为、质量为,可绕通过棒的端点且垂直于棒长的光滑固定轴在水平面内转动,转动惯量为。
一质量为、速率为的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为,则此时棒的角速度应为______。
2、一个力F 作用在质量为 1.0 kg 的质点上,使之沿x 轴运动.已知在此力作用下质点的运动学方程为(SI).在0到 4 s 的时间间隔内, (1) 力F 的冲量大小I=__________________. (2) 力F 对质点所作的功W =________________。
3、从统计的意义来解释, 不可逆过程实质上是一个________________的转变过程, 一切实际过程都向着________________ 的方向进行。
4、图示曲线为处于同一温度T 时氦(原子量4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线。
其中曲线(a )是________气分子的速率分布曲线;曲线(c )是________气分子的速率分布曲线。
5、一圆锥摆摆长为I 、摆锤质量为m ,在水平面上作匀速圆周运动,摆线与铅直线夹角,则: (1) 摆线的张力T =_____________________; (2) 摆锤的速率v =_____________________。
6、两个同振动方向、同频率、振幅均为A 的简谐振动合成后振幅仍为A ,则两简谐振动的相位差为_______ 。
7、一质点的加速度和位移的关系为且,则速度的最大值为_______________ 。
8、质点p 在一直线上运动,其坐标x 与时间t 有如下关系:(A 为常数) (1) 任意时刻t,质点的加速度a =_______; (2) 质点速度为零的时刻t =__________.9、一平面余弦波沿Ox 轴正方向传播,波动表达式为,则x = -处质点的振动方程是_____;若以x =处为新的坐标轴原点,且此坐标轴指向与波的传播方向相反,则对此新的坐标轴,该波的波动表达式是_________________________。
大学物理试题讲解及答案一、选择题(每题2分,共20分)1. 光在真空中的传播速度是()。
A. 3×10^5 km/sB. 3×10^8 m/sC. 3×10^9 km/sD. 3×10^11 m/s答案:B2. 根据牛顿第二定律,力和加速度的方向()。
A. 总是相同B. 总是相反C. 有时相同,有时相反D. 无关答案:A3. 一个物体的质量为2kg,受到的力为10N,那么它的加速度是()。
A. 5 m/s^2B. 10 m/s^2C. 20 m/s^2D. 无法确定答案:A4. 一个点电荷在电场中从静止开始运动,其电势能将()。
A. 增加B. 减少C. 保持不变D. 先增加后减少答案:B5. 根据热力学第一定律,一个系统在绝热过程中()。
A. 内能增加B. 内能减少C. 内能不变D. 无法确定答案:D6. 光的折射定律表明,入射角和折射角的关系是()。
A. 入射角大,折射角小B. 入射角小,折射角大C. 入射角和折射角成正比D. 入射角和折射角成反比答案:C7. 一个物体在自由下落过程中,其动能和重力势能的关系是()。
A. 动能增加,重力势能减少B. 动能减少,重力势能增加C. 动能和重力势能之和保持不变D. 动能和重力势能之和增加答案:C8. 根据麦克斯韦方程组,电磁波的传播速度是()。
A. 光速的一半B. 光速C. 超过光速D. 低于光速答案:B9. 在理想气体定律中,气体的压强与体积成()。
A. 正比B. 反比C. 无关D. 先正比后反比答案:B10. 根据欧姆定律,电阻两端的电压与通过电阻的电流之间的关系是()。
A. 正比B. 反比C. 无关D. 先正比后反比答案:A二、填空题(每题2分,共20分)1. 牛顿第三定律指出,作用力和反作用力大小相等、方向相反、作用在_________上。
答案:不同物体2. 在国际单位制中,力的单位是_________。
大一物理试题及答案解析一、选择题1. 光在真空中的传播速度是()。
A. 299,792,458 m/sB. 300,000,000 m/sC. 299,792,000 m/sD. 300,000,000 km/s答案:A解析:光在真空中的传播速度是一个常数,大约为299,792,458 m/s。
选项A是正确的。
2. 根据牛顿第二定律,力等于()。
A. 质量乘以加速度B. 加速度乘以质量C. 速度乘以质量D. 质量除以加速度答案:A解析:牛顿第二定律表明,力等于质量乘以加速度,公式表示为F=ma。
二、填空题3. 一个物体从静止开始以恒定加速度运动,其位移s与时间t的关系式为s = _______。
答案:(1/2)at^2解析:根据匀加速直线运动的位移公式,s = (1/2)at^2,其中a是加速度,t是时间。
4. 一个物体的质量为2kg,受到的力为10N,其加速度为 _______。
答案:5 m/s^2解析:根据牛顿第二定律,F=ma,所以a=F/m=10N/2kg=5 m/s^2。
三、计算题5. 一个质量为5kg的物体从静止开始,以2m/s^2的加速度加速运动,求物体在5秒内的位移。
答案:25m解析:根据位移公式s = (1/2)at^2,将已知数值代入公式,得到s = (1/2) * 2m/s^2 * (5s)^2 = 25m。
6. 一个物体在水平面上以10m/s的初速度开始运动,受到一个与运动方向相反的阻力,大小为5N,求物体在3秒内的速度变化。
答案:-3m/s解析:首先计算物体的加速度,a = F/m = 5N/5kg = 1m/s^2。
然后使用速度变化公式Δv = at,得到Δv = 1m/s^2 * 3s = 3m/s。
由于阻力方向与运动方向相反,所以速度变化为-3m/s。
四、简答题7. 简述牛顿第一定律的内容。
答案:牛顿第一定律,也称为惯性定律,指出一切物体在没有受到外力作用时,总保持静止状态或匀速直线运动状态。
⼤学物理习题及解答(运动学、动量及能量)1-1.质点在Oxy 平⾯内运动,其运动⽅程为j t i t r )219(22-+=。
求:(1)质点的轨迹⽅程;(2)s .t 01=时的速度及切向和法向加速度。
1-2.⼀质点具有恒定加速度j i a 46+=,在0=t 时,其速度为零,位置⽮量i r 100=。
求:(1)在任意时刻的速度和位置⽮量;(2)质点在oxy 平⾯上的轨迹⽅程,并画出轨迹的⽰意图。
1-3. ⼀质点在半径为m .r 100=的圆周上运动,其⾓位置为342t +=θ。
(1)求在s .t 02=时质点的法向加速度和切向加速度。
(2)当切向加速度的⼤⼩恰等于总加速度⼤⼩的⼀半时,θ值为多少?(3)t 为多少时,法向加速度和切向加速度的值相等?题3解: (1)由于342t +=θ,则⾓速度212t dt d ==θω,在t = 2 s 时,法向加速度和切向加速度的数值分别为 222s 2t n s m 1030.2-=??==ωr a22s t t s m 80.4d d -=?==t r a ω(2)当2t 2n t 212a a a a +==时,有2n 2t 3a a=,即 22212)24(3)r t (tr = s 29.0s 321==t此时刻的⾓位置为 rad.t 153423=+=θ (3)要使t n a a =,则有2212)24()t (r tr =s .t 550=3-1如图所⽰,在⽔平地⾯上,有⼀横截⾯2m 20.0=S 的直⾓弯管,管中有流速为1s m 0.3-?=v 的⽔通过,求弯管所受⼒的⼤⼩和⽅向。
解:在t ?时间内,从管⼀端流⼊(或流出)⽔的质量为t vS m ?=?ρ,弯曲部分AB 的⽔的动量的增量则为()()A B A B v v t vS v v m p -?=-?=?ρ依据动量定理p I ?=,得到管壁对这部分⽔的平均冲⼒()A B v v I F -=?=Sv t ρ从⽽可得⽔流对管壁作⽤⼒的⼤⼩为N 105.2232?-=-=-='Sv F F ρ作⽤⼒的⽅向则沿直⾓平分线指向弯管外侧。
《大学物理学》课后习题参考答案习题11-1. 已知质点位矢随时间变化函数形式为)ωtsin ωt(cos j i R r其中为常量.求:(1)质点轨道;(2)速度和速率。
解:1)由)ωtsin ωt(cos j i R r知t cos R x ωtsin R yω消去t 可得轨道方程222Ryx2)jr vt Rcos sin ωωt ωR ωdtd iRωt ωR ωt ωR ωv2122])cos ()sin [(1-2. 已知质点位矢随时间变化的函数形式为j ir )t 23(t 42,式中r 的单位为m ,t 的单位为s .求:(1)质点的轨道;(2)从0t到1t 秒的位移;(3)0t 和1t 秒两时刻的速度。
解:1)由j ir)t 23(t 42可知2t 4x t23y消去t 得轨道方程为:2)3y(x2)jir v 2t 8dtd jij i v r 24)dt2t 8(dt101Δ3)jv 2(0)jiv 28(1)1-3. 已知质点位矢随时间变化的函数形式为j ir t t 22,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
解:1)ji r v2t 2dtd iv a2dtd 2)212212)1t(2]4)t 2[(v1tt 2dtdv a 2t22221nta aat 1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。
解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为20121att v y (1)图 1-420221gttv h y (2)21y y (3)解之2d tg a 1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程;(3)落地前瞬时小球的td dr ,td dv ,tv d d .解:(1)t v x 0式(1)2gt21hy 式(2)jir )gt 21-h (t v (t)20(2)联立式(1)、式(2)得22v 2gx hy (3)ji r gt -v td d 0而落地所用时间gh 2t所以j i r 2gh -v t d d 0jv g td d 2202y2x)gt (vvvv 211222222[()](2)g ghg t dv dtvgt vgh 1-6. 路灯距地面的高度为1h ,一身高为2h 的人在路灯下以匀速1v 沿直线行走。
大学基础教育《大学物理(一)》综合练习试题附答案姓名:______ 班级:______ 学号:______考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
一、填空题(共10小题,每题2分,共20分)1、一质点作半径为0.1m的圆周运动,其运动方程为:(SI),则其切向加速度为=_____________。
2、一圆盘正绕垂直于盘面的水平光滑固定轴O转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并留在盘内,则子弹射入后的瞬间,圆盘的角速度_____。
3、两列简谐波发生干涉的条件是_______________,_______________,_______________。
4、从统计的意义来解释, 不可逆过程实质上是一个________________的转变过程, 一切实际过程都向着________________ 的方向进行。
5、质量为M的物体A静止于水平面上,它与平面之间的滑动摩擦系数为μ,另一质量为的小球B以沿水平方向向右的速度与物体A发生完全非弹性碰撞.则碰后它们在水平方向滑过的距离L=__________。
6、质量为m的物体和一个轻弹簧组成弹簧振子,其固有振动周期为T.当它作振幅为A的自由简谐振动时,其振动能量E=__________。
7、简谐振动的振动曲线如图所示,相应的以余弦函数表示的振动方程为__________。
8、静电场中有一质子(带电荷) 沿图示路径从a点经c点移动到b点时,电场力作功J.则当质子从b点沿另一路径回到a点过程中,电场力作功A=___________;若设a点电势为零,则b点电势=_________。
9、两根相互平行的“无限长”均匀带正电直线1、2,相距为d,其电荷线密度分别为和如图所示,则场强等于零的点与直线1的距离a为_____________ 。
10、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为,角速度为;然后将两手臂合拢,使其转动惯量变为,则转动角速度变为_______。
r r r r r r rr、⎰ dt⎰0 dx = ⎰ v e⎰v v1122v v d tv v d tvg 2 g h d tdt [v 2 + ( g t ) 2 ] 12 (v 2 + 2 g h ) 12第一章质点运动学1、(习题 1.1):一质点在 xOy 平面内运动,运动函数为 x = 2 t, y = 4 t 2 - 8 。
(1)求质点 的轨道方程;(2)求 t = 1 s 和 t = 2 s 时质点的位置、速度和加速度。
解:(1)由 x=2t 得,y=4t 2-8可得: r y=x 2-8r 即轨道曲线(2)质点的位置 : r = 2ti + (4t 2 - 8) jr r rr r 由 v = d r / d t 则速度: v = 2i + 8tjr r rr 由 a = d v / d t 则加速度: a = 8 jrr r r r r r r 则当 t=1s 时,有 r = 2i - 4 j , v = 2i + 8 j , a = 8 j r当 t=2s 时,有r = 4i + 8 j , v = 2i +16 j , a = 8 j 2 (习题 1.2): 质点沿 x 在轴正向运动,加速度 a = -kv , k 为常数.设从原点出发时速度为 v ,求运动方程 x = x(t ) .解:dv = -kvdt v1 v 0 vd v = ⎰ t - k dt 0v = v e - k tdx x= v e -k t0 t0 -k t d t x = v0 (1 - e -k t )k3、一质点沿 x 轴运动,其加速度为 a = 4 t (SI),已知 t = 0 时,质点位于 x 0=10 m 处,初速 度 v 0 = 0.试求其位置和时间的关系式.解:a = d v /d t = 4 td v = 4 t d tv 0d v = ⎰t 4t d t v = 2 t 2v = d x /d t = 2 t 2⎰x d x = ⎰t 2t 2 d t x = 2 t 3 /3+10 (SI)x4、一质量为 m 的小球在高度 h 处以初速度 v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; d r d v d v (3)落地前瞬时小球的 ,,.d td td t解:(1)x = v t式(1)v v v y = h - gt 2 式(2)r (t ) = v t i + (h - gt 2 ) j0 (2)联立式(1)、式(2)得y = h -vd r(3) = v i - gt j而落地所用时间t =0 gx 22v 22hgvd r所以 = v i - 2gh jvd vdv g 2t= - g j v = v 2 + v 2 = v 2 + (-gt) 2= =x y 0 0vv v d rv d v 2) v = [(2t )2+ 4] 2 = 2(t 2+ 1)2t t 2 + 1, V a = a - a = m + M m + Mvg gvv v 5、 已知质点位矢随时间变化的函数形式为 r = t 2i + 2tj ,式中 r 的单位为 m , 的单位为 s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
导体8-1两个同心导体球壳A 和B ,A 球壳带电+Q ,现从远处移来一带+q 的带电体(见图8-1),试问(请阐明理由):(1)两球壳间的电场分布与无+q 时相比有无变化?(2)两球壳间的电势差是否变化?(3)两球壳的电势是否变化?(4)如将B 球壳接地,上述(1)、(2)、(3)的情况又如何? 解:(1)由于静电屏蔽作用,+q 对两球壳间的电场没有影响。
(2)由⎰⋅=B A AB l E U d 可知,由于E 不变,所以AB U 不变,即两求壳间的电势差不变。
(3)由电势叠加原理,+q 使两球壳的电势升高。
(4)B 球壳接地,由于屏蔽作用,两球壳间的电场分布不变,从而AB U 不变。
因B 球壳接地,电势不变,所以A 球壳电势也不变。
8-2半径为R 1的导体球A ,带电q ,其外同心地套一导体球壳B ,内外半径分别为R 2和R 3(见图8-2),且R 2=2R 1,R 3=3R 1。
今在距球心O 为d =4R 1的P 处放一点电荷Q ,并将球壳接地。
问(1)球壳B 所带的净电荷Q ’ 为多少?(2)如用导线将导体球A 与球壳B 相连,球壳所带电荷Q ” 为多少? 解:(1)根据静电平衡条件,A 球上电荷q 分布在A 球表面上,B 球壳内表面带电荷-q 。
由高斯定理可得,R r R 21<<:0204r r q Eπε=A 球电势 10210208)11(4d 4d 21R q R R qr rq l E U R R BAA πεπεπε=-==⋅=⎰⎰设B 球壳外表面带电荷q ’,由电势叠加原理,A 球球心处电势40302010044'44R Q R q R q R q U πεπεπεπε++-+=1010********'244RR q R q R q πεπεπεπε++-= 1010104434'8R Q R q R q πεπεπε++=108R qU A πε==, Q q 43'-=∴ B 球壳所带净电荷 q Q q q Q --=-=43''(2)用导线将和相连,球上电荷与球壳内表面电荷相消。
⼤学物理综合练习题及答案综合练习题AII⼀、单项选择题(从每⼩题给出的四个备选答案中,选出⼀个正确答案,并将其号码填在题⼲后的括号内,每⼩题2分,共计20分)。
1、关于⾼斯定理,下⾯说法正确的是:()A. ⾼斯⾯内不包围电荷,则⾯上各点的电场强度E 处处为零;B. ⾼斯⾯上各点的E 与⾯内电荷有关,与⾯外的电荷⽆关;C. 穿过⾼斯⾯的电通量,仅与⾯内电荷有关;D. 穿过⾼斯⾯的电通量为零,则⾯上各点的E 必为零。
2、真空中有两块互相平⾏的⽆限⼤均匀带电平板,其中⼀块的电荷⾯密度为+σ,另⼀块的电荷⾯密度为-σ,两板间的电场强度⼤⼩为:()A. 0;B. 023εσ;C. 0εσ;D. 02εσ。
3、图1所⽰,P 点在半圆中⼼处,载流导线旁P 点的磁感应强度B 的⼤⼩为:() A. µ0I(r r 2141+π); B. µ0I(r r2121+π); C. µ0I(r r 4141+π); D. µ0I(r r 4121+π) 。
4、⼀带电粒⼦以速率V 垂直射⼊某匀强磁场B 后,运动轨迹是圆,周期为T 。
若以速率2V 垂直射⼊,则周期为:() A. T/2; B. 2T ; C. T ; D. 4T 。
5、根据洛仑兹⼒的特点指出下列叙述错误的为:() A. 洛仑兹⼒与运动电荷的速度相垂直; B. 洛仑兹⼒不对运动电荷做功; C. 洛仑兹⼒始终与磁感应强度相垂直;D. 洛仑兹⼒不改变运动电荷的动量。
6、在杨⽒双缝⼲涉实验中,两条狭缝相距2mm ,离屏300cm ,⽤600nm 光照射时,⼲涉条纹的相邻明纹间距为:()A. 4.5mm ;B. 0.9mm ;C. 3.12mm ;D. 4.15mm 。
7、若⽩光垂直⼊射到光栅上,则第⼀级光谱中偏离中⼼最远的光是:()A. 蓝光;B. 黄光;C. 红光;D. 紫光。
8、⼀束光是⾃然光和线偏振光的混合光,让它垂直通过⼀偏振⽚。