第五章常微分方程习题
- 格式:doc
- 大小:369.99 KB
- 文档页数:8
第五章 微分方程第一节 微分方程的基本概念 一、基本概念微分方程的定义:①凡是含有未知函数的导数(或微分)的方程,称为微分方程. ②未知函数是一元函数的微分方程称为常微分方程,未知函数是多元函数的微分方程称为偏微分方程.本书只讨论常微分方程,简称微分方程. 微分方程的阶、解与通解:微分方程中出现的未知函数最高阶导数的阶数,称为微分方程的阶.如果把函数)(x f y =代入微分方程后,能使方程成为恒等式,则称该函数为该微分方程的解.若微分方程的解中含有任意常数,且独立的任意常数的个数与方程的阶数相同,则称这样的解为微分方程的通解.初始条件与特解:用未知函数与其各阶导数在某个特定点的值作为确定通解中任意常数的条件,称为初始条件.满足初始条件的微分方程的解称为该微分方程的特解。
例1 课本294页 例1二、独立的任意常数线性相关与线性无关:设)(),(21x y x y 是定义在区间),(b a 的函数,若存在两个不全为零的数21,k k ,使得对于区间),(b a 的任一x ,恒有0)()(2211=+x y k x y k成立,则称函数)(),(21x y x y 在区间),(b a 线性相关,否则称为线性无关.显然,函数)(),(21x y x y 线性相关的充分必要条件是)()(21x y x y 在区间),(b a 恒为常数. 如果)()(21x y x y 不恒为常数,则)(),(21x y x y 在区间),(b a 线性无关.独立的任意常数:在表达式)()(2211x y C x y C y += (1C ,2C 为任意常数) 中,1C ,2C 为独立的任意常数的充分必要条件为)(1x y ,)(2x y 线性无关.例2 课本297页 例4第二节 可分离变量的微分方程 一、定义形如)()(d d y g x f xy= 的微分方程,称为可分离变量的方程.该微分方程的特点是等式右边可以分解成两个函数之积,其中一个仅是x 的函数,另一个仅是y 的函数,即)(),(y g x f 分别是变量y x ,的已知连续函数.二、求解方法可分离变量的微分方程)()(d d y g x f xy=的求解方法,一般有如下两步: 第一步:分离变量 x x f y y g d )(d )(=, 第二步:两边积分 ⎰⎰=x x f y y g d )(d )(.[例1]求微分方程ydy dx y xydy dx +=+2的通解.解先合并dx 与dy 的各项,得dx y dy x y )1()1(2-=- 设,01,012≠-≠-x y 分离变量得dx x dy y y 1112-=- 两端积分⎰⎰-=-dx x dy y y1112得 ||ln |1|ln |1|ln 2112C x y +-=- 于是 2212)1(1-±=-x C y 记,21C C ±=则得到题设方程的通解.)1(122-=-x C y注:在用分离变量法解可分离变量的微分方程的过程中, 我们在假定0)(≠y g 的前提下,用它除方程两边, 这样得到的通解, 不包含使0)(=y g 的特解. 但是, 有时如果我们扩大任意常数C 的取值围, 则其失去的解仍包含在通解中. 如在例2中,我们得到的通解中应该0≠C ,但这样方程就失去特解1±=y ,而如果允许0=C ,则1±=y 仍包含在通解22)1(1-=-x C y 中.[例2] 已知 ,tan 2cos )(sin 22x x x f +=' 当10<<x 时,求).(x f解设,sin 2x y =则,21sin 212cos 2y x x -=-=.1sin 1sin cos sin tan 22222yyx x x x x -=-==所以原方程变为,121)(y y y y f -+-='即.112)(yy y f -+-=' 所以 =)(y f ⎪⎪⎭⎫ ⎝⎛-+-y y 112dy 2y -=,)1ln(C y +-- 故 C x x x f +-+-=)]1ln([)(2).10(<<x第三节 线性微分方程 一、一阶线性微分方程定义 :形如)()(d d x Q y x P xy=+. 的微分方程,称为一阶线性微分方程,其中)(),(x Q x P 都是x 的已知连续函数,“线性”是指未知函数y 和它的导数y '都是一次的. 求解方法 :一阶线性微分方程)()(d d x Q y x P xy=+的求解方法,一般有如下两步: 第一步:先用分离变量法求一阶线性微分方程)()(d d x Q y x P xy=+所对应的齐次线性微分方程0)(d d =+y x P xy的通解⎰=-x x P c C y d )(e . 第二步:设⎰=-x x P x C y d )(e )(为一阶线性微分方程)()(d d x Q y x P xy=+的解,代入该方程后,求出待定函数)(x C .第三步: 将)(x C 代入⎰=-xx P x C y d )(e )(中,得所求一阶线性微分方程)()(d d x Q y x P xy=+的通解. 注:只要一阶线性微分方程是)()(d d x Q y x P xy=+的标准形式,则将⎰=-x x P x C y d )(e )(代入一阶线性微分方程后,整理化简后,必有)(e )(d )(x Q x C xx P =⎰'-,该结论可用在一阶线性微分方程的求解过程中,以简化运算过程. 一阶线性微分方程)()(d d x Q y x P xy=+的求解公式: ⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-C x x Q y x x P x x P d e )(e d )(d )( (其中C 为任意常数). [例1] 求微分方程 y y x y x y xy d d d d 2+=+ 满足条件20==x y 的特解.解 这是可以分离变量的微分方程,将方程分离变量,有x x y y y d 11d 12-=-,两边积分,得=-⎰y y yd 12⎰-x x d 11,求积分得121ln 1ln 21C x y +-=-,1222)1ln(1ln C x y +-=-, 1222e )1(1C x y -=-,222)1(e 11-±=-x y C ,记 0e12≠=±C C ,得方程的解 22)1(1-=-x C y .可以验证 0=C 时,1±=y ,它们也是原方程的解,因此,式22)1(1-=-x C y 中的 C 可以为任意常数,所以原方程的通解为 22)1(1-=-x C y (C 为任意常数).代入初始条件 20==x y得 3=C ,所以特解为 22)1(31-=-x y .[例2] 求微分方程(1)xy yy +=',(2) x xy y x cos e 22=-'的通解.(1)解一 原方程可化为1d d +=xyx yx y ,令 x yu =, 则 1d d +=+u u x u x u ,即 x x u u u d d 12-=+ ,两边取积分 ⎰⎰-=+x x u u u d 1d )11(2, 积分得C x u uln ln ln 1-=-,将x y u =代入原方程,整理得原方程的通解为yx C y e = (C 为任意常数).解二 原方程可化为11d d =-x yy x 为一阶线性微分方程,用常数变易法.解原方程所对应的齐次方程01d d =-x yy x ,得其通解为 y C x =. 设y y C x )(=为原方程的解,代入原方程,化简得 1)(='y y C ,1ln)(C yy C =, 所以原方程的通解为 1ln C y y x=,即yx C ye = (C 为任意常数).(2)解一 原方程对应的齐次方程02d d =-xy xy 分离变量,得xy x y2d d =,x x yyd 2d =, 两边积分,得x x y y⎰⎰=d 2d ,C x y +=2ln ,)e ln(ln e ln ln 22x x C C y =+=,2e x C y =,用常数变易法.设2e )(x x C y =代入原方程,得 x x C x x cos e e )(22=',x x C cos )(=',C x x x x C +==⎰sin d cos )(,故原方程的通解为 )(sin e 2C x y x += (C 为任意常数).解二 这里x x P 2)(-=,x x Q x cos e )(2=代入通解的公式得)d e cos e (e d 2d 22⎰+⎰⋅⎰=---C x x y xx x x x=)d ecos e(e 222C x x x x x +⋅⎰-=)d cos (e 2C x x x +⎰=)(sin e 2C x x +(C 为任意常数).小结 一阶微分方程的解法主要有两种:分离变量法,常数变易法.常数变易法主要适用线性的一阶微分方程,若方程能化为标准形式 )()(x Q y x P y =+',也可直接利用公式C x x Q y xx P x x P +⎰⎰=⎰-d e )((e d )(d )()求通解.二、二阶常系数齐次线性微分方程定义:形如0=+'+''qy y p y的微分方程(其中q p ,均为已知常数,称为二阶常系数齐次线性微分方程. 求解方法:求解二阶常系数齐次线性微分方程,一般分为如下三步:第一步 写出方程0=+'+''qy y p y 的特征方程 02=++q pr r ,第二步 求出特征方程的两个特征根 1r ,2r ,第三步 根据下表给出的三种特征根的不同情形,写出0=+'+''qy y p y 的通解.[例3] 求微分方程02=+'-''y y a y 的通解.解 原方程对应的特征方程为 0122=+-ar r ,244222,1-±=a a r =12-±a a ,(1)当1>a ,即 1>a 或1-<a 时,特征方程有两个不相等的实根121-+=a a r ,122--=a a r ,故原方程的通解为xa a xa a C C y )1(2)1(122e e ---++=.(2)当1=a ,即1=a 或1-=a 时,特征方程有两个相等的实根 a r r ==21, 故原方程的通解为 axx C C y e )(21+=.(3)当1<a ,即 11<<-a 时,特征方程有两个共轭复根 22,11i a a r -±=,故原方程的通解为)1sin 1cos (e 2221x a C x a C y ax -+-=.三、二阶常系数非齐次线性微分方程定义:形如)(x f qy y p y =+'+''的微分方程(其中q p ,均为已知常数),称为二阶常系数非齐次线性微分方程.求解方法:求解二阶常系数非齐次线性微分方程, 一般分为如下三步:第一步 先求出非齐次线性微分方程)(x f qy y p y =+'+''所对应的齐次线性微分方程方程0=+'+''qy y p y 的通解c y ;第二步 根据下表设出非齐次线性微分方程)(x f qy y p y =+'+''的含待定常数的特解p y ,并将p y 代入非齐次线性微分方程)(x f qy y p y =+'+''解出待定常数,进而确定非齐次方程)(x f qy y p y =+'+''的一个特解p y ;第三步 写出非齐次线性微分方程)(x f qy y p y =+'+''的通解p c y y y +=.方程)(x f qy y p y =+'+''的特解p y 的形式表注:①表中的)(x P m 为已知的m 次多项式,)(x Q m 为待定的m 次多项式,如C Bx Ax x Q ++=22)( (C B A ,,为待定常数).②在设微分方程 xm x P qy y p y λe )(=+'+''的特解时,必须注意把特解p y 设全.如:2)(x x P m =,那么 2120)(b x b x b x Q m ++=,而不能设20)(x b x Q m =.另外,微分方程的特解都是满足一定初始条件的解,上面所求的特解p y 一般不会满足题设初始条件,因此需要从通解中找出一个满足该初始条件的特解.[例4] 求微分方程 xx y y e 4=-''满足初始条件00==x y,10='=x y 的特解.解 对应齐次方程的特征方程为 012=-r ,特征根 12,1±=r .故对应齐次微分方程的通解为 xx c C C y -+=e e 21.因为1=λ是特征方程的单根,所以设特解为 xP b x b x y e )(10+=,代入原方程得 x x b b b 4422010=++,比较同类项系数得 10=b ,11-=b ,从而原方程的特解为 xP x x y e )1(-=, 故原方程的通解为 =y xxC C -+ee 21x x x e )1(-+,由初始条件 0=x 时,0='=y y ,得 ⎩⎨⎧=-=+,2,02121C C C C从而11=C ,12-=C .因此满足初始条件的特解为 =y xx--ee x x x e )1(-+.[例5] 求微分方程 x y y y x2sin e 842=+'-''的通解.解 对应的齐次微分方程的特征方程 0842=+-r r ,特征根 i 222,1±=r .于是所对应的齐次微分方程通解为)2sin 2cos (e 212x C x C y x c +=.为了求原方程x y y y x2sin e842=+'-''的一个特解,先求x y y y )i 22(e 84+=+'-''(*)的特解.由于i 22+=λ是特征方程的单根,且1)(=x P m 是零次多项式。
微分⽅程数值解第五章答案第五章1,0,0, (,0)1/2,0,0,0.x u uu x x t x x ?>?1. 对初值问题=2试分别⽤左偏⼼格式、LW 格式计算其数值解u , k =1,2,3,4, 取/1/h τ=.k 解: 矩形⽹格剖分区域. 取空间步长h , 时间步长τ的矩形⽹格剖分区域, ⽤节点表⽰坐标点0,1,2,...;j =±±(,)j k (,)(,)j k x t jh k τ=, 0,1,2,3,4.k =0=+???kjk j x u t u (1)左偏⼼格式:,在t 上⽤向前差商,x 上⽤向后差商,得011=?++hu u u u kj k j k jk j τ中国地质⼤学(北京)廉海荣编 1,因为2/1/=h τ,整理得到k j k j k ju u u 212111+=?+ 把已知条件离散成,则可以根据下⼀层求上⼀层的值得到,=1,2,3,4,下图中节点处值即为求出来的值:>=<0,00,2/10,1j j j =0j u k k u k uLW 格式: )2(2)(21122111kj k j k j k j k j k jk ju u u r a u u ar u u++=+++ 在本题中,2/1/,1===h r a τ,整理得到:中国地质⼤学(北京)廉海荣编 2k j k j k j k ju u u u 111814383+?+?+=,同理可根据边值条件,根据下⼀层求上⼀层的值得到,k =1,2,3,4,下图中节点处值即为求出来的值:>=<0,00,2/10,1j j j =0j u k u k u0, 0,0x<, u(x,0)=(x), 0x<, u(0,t)=(t), 0. u u a t T t x t T ?ψ+=<≤<∞?≤∞??≤≤??中国地质⼤学(北京)廉海荣编32. 试对初边值问题其中建⽴以下差分格式 0a >111102k k k k j jj j u u u u ahτ+++++=1,(a )1111111()222k k k k k kj jj j j j u u u u u u a h hτ++++?+++(b )0=. 试分析它们的稳定性。
常微分方程习题4.2 2、解下列方程 (1)045)4(=+''-x x x解:特征方程1122045432124-==-===+-λλλλλλ,,,有根故通解为x=t t t te c e c e c e c --+++432221(2)03332=-'+''-'''x a x a x a x解:特征方程0333223=-+-a a a λλλ有三重根a =λ故通解为x=at at at e t c te c e c 2321++ (3)04)5(=''-x x解:特征方程0435=-λλ有三重根0=λ,=4λ2,=5λ-2故通解为54232221c t c t c e c e c x t t ++++=-(4)0=+'+''x x x解:特征方程012=++λλ有复数根=1λ,231i +-=2λ,231i-- 故通解为t e c t ec xt t 23sin 23cos 212211--+=(5) 12+=-''t s a s解:特征方程022=-a λ有根=1λa,=2λ-a当0≠a 时,齐线性方程的通解为s=atat e c e c -+21Bt A s +=~代入原方程解得21aB A -== 故通解为s=atat e c e c -+21-)1(12-t a当a=0时,)(~212γγ+=t t s 代入原方程解得21,6121==γγ故通解为s=t c c 21+-)3(612+t t (6) 32254+=-'+''-'''t x x x x解:特征方程025423=-+-λλλ有根=1λ2,两重根=λ 1 齐线性方程的通解为x=t t t te c e c e c 3221++又因为=λ0不是特征根,故可以取特解形如Bt A x +=~代入原方程解得A=-4,B=-1 故通解为x=t t t te c e c e c 3221++-4-t (7) 322)4(-=+''-t x x x解:特征方程121201224-===+-λλλλ重根,重根有 故齐线性方程的通解为x=t t t t te c e c te c e c --+++4321 取特解形如c Bt At x ++=2~代入原方程解得A=1,B=0,C=1 故通解为x=t t t t te c e c te c e c --+++4321+12+t (8)t x x cos =-'''解:特征方程013=-λ有复数根=1λ,231i +-=2λ,231i--13=λ 故齐线性方程的通解为t t t e c t e c t ec x 321221123sin 23cos ++=--取特解形如t B t A x sin cos ~+=代入原方程解得A=21,21-=B 故通解为t t t e c t e c t ec x 321221123sin 23cos ++=--)sin (cos 21t t +-(9) t x x x 2sin 82=-'+''解:特征方程022=-+λλ有根=1λ-2,=2λ 1 故齐线性方程的通解为x=tte c e c 221-+因为+-2i 不是特征根取特解形如t B t A x 2sin 2cos ~+=代入原方程解得A=56,52-=-B 故通解为x=tte c e c 221-+t t 2sin 562cos 52--(10)t e x x =-'''解:特征方程013=-λ有复数根=1λ,231i +-=2λ,231i--13=λ 故齐线性方程的通解为t t t e c t e c t ec x 321221123sin 23cos ++=-- =λ1是特征方程的根,故t Ate x =~代入原方程解得A=31 故通解为t t t e c t e c t ec x 321221123sin 23cos ++=--+t te 31(11)t e s a s a s =+'+''22解:特征方程0222=++a a λλ有2重根=λ-a 当a=-1时,齐线性方程的通解为s=t t te c e c 21+,=λ1是特征方程的2重根,故t e At x 2~=代入原方程解得A=21通解为s=22121t te c e c t t ++, 当a ≠-1时,齐线性方程的通解为s=at at te c e c --+21,=λ1不是特征方程的根,故t Ae x =~代入原方程解得A=2)1(1+a故通解为s=at at te c e c --+21+te a 2)1(1+ (12)t e x x x 256=+'+''解:特征方程0562=++λλ有根=1λ-1,=2λ-5 故齐线性方程的通解为x=tte c ec 521--+=λ2不是特征方程的根,故t Ae x 2~=代入原方程解得A=211故通解为x=t te c ec 521--++te 2211 (13)t e x x x t cos 32-=+'-''解:特征方程0322=+-λλ有根=1λ-1+2i,=2λ-1-2i 故齐线性方程的通解为t e c t e c x t t 2sin 2cos 21+=i ±-1 不是特征方程的根, 取特解行如t e t B t A x -+=)sin cos (~代入原方程解得A=414,415-=B 故通解为t e c t e c x t t 2sin 2cos 21+=+t e t t --)sin 414cos 415( (14) t t x x 2cos sin -=+''解:特征方程012=+λ有根=1λi,=2λ- i 故齐线性方程的通解为t c t c x sin cos 21+= 对于t x x sin =+'',=1λi,是方程的解, 设)sin cos (~t B t A t x +=代入原方程解得A=21-B=0 故t t x cos 21~-=对于t x x 2cos -=+'' ,设t B t A x 2sin 2cos ~+=代入原方程解得A=31 B=0 故t x 2cos 31~= 故通解为t c t c x sin cos 21+=t t cos 21-t 2cos 31+ 15)1442++=+'-''ttee x x x解:0442=+-λλ,22,1=λ,齐次方程的通解为)()(212t C C e t x t +=。
5.1 计算物理学第5章:微分方程课后习题答案初值问题【5.1.1】采用euler 方法求初值问题'2/, 01(0)1y y x y x y =-££ìí=î【解】取0.1h =,1(,)(2/)n n n n n n n n y y hf x y y h y x y +=+=+-x0.00.10.20.3y 1.000 1.1000 1.1918 1.2774【5.1.2】用euler 预测-校正公式求初值问题22', (0)1y x y y ì=-í=î【解】取0.1h =,1(,)n n n n y y hf x y +=+111(,)n n n n y y hf x y +++=+1000(,)0.9y y hf x y =+=221011(,)10.1(0.10.9)0.92y y hf x y =+=+´-=【5.1.3】用euler 公式和梯形公式建立的预测-校正公式求初值问题'23, 0(0)1y x y x y =+£ìí=î取0.1h =,(1)求(0.1)y ;(2)编程计算0:0.01:2x =【解】1111(,)1[(,)(,)]2n n n n n n n n n n y y hf x y y y h f x y f x y ++++=+=++10001000110.1(23) 1.30.05[(23)(23)]1.355y y x y y y x y x y =++==++++=【5.1.4】用显式Euler 方法,梯形方法和预估-校正Euler 方法给出求初值问题1,01(0)1d y y x x dx y ì=-++<<ïíï=î的迭代公式(取步长0.1h =)【解】取0.1h =,,0,1,k x kh k ==L ,(1)显式Euler 方法12(,)(1)(1)k k k k k k k y y hf x y y h y kh y h kh h+=+=+-++=-++1911010010k k k y y +=++(2)梯形方法为1121()2(2)(21)2219112110510k k k k k k k h y y f f h y k h h y hy k +++=++-+++=+=++(3)预估-校正Euler 方法为1111(,)[(,)(,)],20,1,,1x k k k k k k k k k k k y y h f x y h y y f x y f x y k n ++++=+ìïï=++íï=-ïîL 221(1/2)(/2)0.9050.00950.1k k k y y h h kh h h hy k +=-++-+=++【5.1.5】考虑下面初值问题2'''(0)1;'(0)2y y y t y y ì=-++í==î使用中点RK2,取步长0.1h =,求出()y h 的近似值【解】00,0.1t h =='y u y æö=ç÷èø,012u æö=ç÷èø,2''(,)'y u f t u y y t æö==ç÷-++èø,1002(,)1k f t u æö==ç÷èø,2001212 1.111(,)(0.05,0.05)(0.05,)21 2.0522 2.05 2.050.891.1 2.050.05k f t h u hk f f æöæöæö=++=+=ç÷ç÷ç÷èøèøèøæöæö==ç÷ç÷-++èøèø102 1.2052.089u u hk æö=+=ç÷èø,1(0.1) 1.205y y ==【5.1.6】考虑下面初值问题2'''2''(0)1;'(0)0,''(0)2y y y t y y y ì=++í===-î使用中点RK2,取步长0.2h =,求出()y h 的近似值【解】00,0.2t h ==取表示符号'''y u y y æöç÷=ç÷ç÷èø,2''(,)''2''y u f t u y y y t æöç÷==ç÷ç÷++èø,0102u æöç÷=ç÷ç÷-èø,010002000'()0(,)''()262()''()y t k f t u y t y t y t t æöæöç÷ç÷===-ç÷ç÷ç÷ç÷++èøèø200121011(,)(0.1,00.12)2226 10.20.2(0.1,0.2) 1.4 1.41.4 3.9721( 1.4)0.1k f t h u hk f f æöæöç÷ç÷=++=+-ç÷ç÷ç÷ç÷-èøèøæö--æöæöç÷ç÷ç÷=-=-=-ç÷ç÷ç÷ç÷ç÷ç÷-´+-èøèøèø1020.960.281.206u u hk æöç÷=+=-ç÷ç÷-èø,(0.2)0.96y =【5.1.7】采用Rk4编程求下列微分方程的初值问题:(1)23'1, (0)0y y x y =++=(2)2'2(1), (1)2y y x y =+--=(3)'', ()0,'()3y y y y p p =-==【5.1.8】求下面微分方程组的数值解2323'2'4(0)1,(0)0x x y t t t y x y t tx y ì=-+--ï=+-+íï==î补充题【5.1.1】对微分方程'(,)y f x y =用Sinpson 求积公式推出数值微分公式【解】{}111111111'(,)4(,)(,)3n n x n n n n n n n n x y dx y y h f x y f x y f x y +-+---++=-=++ò【5.1.2】用标准的4阶龙格库塔方法求初值问题',(0)1y x y y =+ìí=î,取0.1h =,计算出(0.2)y 【解】()1123422/6i i y y h k k k k +=++++1213243(,)(/2,/2)(/2,/2)(,)i i i i i i i i k f x y k f x h y hk k f x h y hk k f x h y hk ==++=++=++'(,)y f x y x y ==+,00(,)(0,1)x y =100200130024003(,)1(/2,/2) 1.1(/2,/2) 1.105(,) 1.2105k f x y k f x h y hk k f x h y hk k f x h y hk ===++==++==++=()10123422/6 1.1103y y h k k k k =++++=,11(,)(0.1,1.1103)x y =111211*********(,) 1.2103(/2,/2) 1.3208(/2,/2) 1.3263(,) 1.4429k f x y k f x h y hk k f x h y hk k f x h y hk ===++==++==++=()2112342(0.2)22/6 1.2428y y y h k k k k y ==++++==然后由22(,)(0.2,1.2428)x y =计算3(0.3)y y =,。
常微分方程第5章答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March习题1.给定方程组x = x x= (*)a)试验证u(t)= ,v(t)= 分别是方程组(*)的满足初始条件u(0)= , v(0)= 的解.b)试验证w(t)=c u(t)+c v(t)是方程组(*)的满足初始条件w(0)= 的解,其中是任意常数.解:a) u(0)= =u (t)= = u(t)又 v(0)= =v (t)= = = v(t)因此 u(t),v(t)分别是给定初值问题的解.b) w(0)= u(0)+ u(0)= + =w (t)= u (t)+ v (t)= +=== w(t)因此 w(t)是给定方程初值问题的解.2. 将下面的初值问题化为与之等价的一阶方程组的初值问题:a) x +2x +7tx=e ,x(1)=7, x (1)=-2b) x +x=te ,x(0)=1, x (0)=-1,x (0)=2,x (0)=0c)x(0)=1, x (0)=0,y(0)=0,y (0)=1解:a)令 x =x, x = x , 得即又 x =x(1)=7 x (1)= x (1)=-2于是把原初值问题化成了与之等价的一阶方程的初值问题:x = x(1)=其中 x= .b) 令=x ===则得:且 (0)=x(0)=1, = (0)=-1, (0)= (0)=2,(0)= (0)=0于是把原初值问题化成了与之等价的一阶方程的初值问题:= x(0)= , 其中 x= .c) 令w =x, w =,w =y,w =y ,则原初值问题可化为:且即 ww(0)= 其中 w=3. 试用逐步逼近法求方程组= x x=满足初始条件x(0)=的第三次近似解.解:0241201 杨素玲习题02412—02 02412—031.试验证 =是方程组x = x,x= ,在任何不包含原点的区间a 上的基解矩阵。
北师大数值分析习题及答案第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式1n n Y Y -=( n=1,2,…)计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字27.982).8. 当N 充分大时,怎样求211Ndx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2? 10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小.11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好?3--13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式ln(ln(x x =-计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b cs a b c ∆∆∆∆≤++第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令2000011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xx x ----==证明()n V x 是n 次多项式,它的根是01,,n x x -,且 101101()(,,,)()()n n n n V x V x x x x x x x ---=--.2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3.4. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i) 0()(0,1,,);nk kj j j x l x xk n =≡=∑ii) 0()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()xf x e =的等距节点函数表,若用二次插值求xe 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?9. 若2n n y =,求4n y ∆及4n y δ.10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)k f x k m ∆≤≤是m k -次多项式,并且()0(m l f x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆. 12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n n n n f x a a x a x a x --=++++有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i)若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+.16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦及0182,2,,2f ⎡⎤⎣⎦.17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限. 19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()n x ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差.23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差.试求三次样条插值并满足条件 i) (0.25) 1.0000,(0.53)0.6868;S S '='= ii)(0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明 i)[][][][]222()()()()2()()()bbbbaaaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n ==,式中i x 为插值节点,且01n a x x x b =<<<=,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =. 3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式. 4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式. 5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一?9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式.10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nT x 是在[]0,1上带权ρ=的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式. 13. 设()xf x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若n f L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差. 15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n n F x H ∈也是奇(偶)函数.17. 求a 、b 使[]220sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义 ()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.sin (1)arccos ()n n x u x +=是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin 2f x x=在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差. 25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.26.2y a bx =+. 27.用最小二乘拟合求.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: (1)101()()(0)()hh f x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)1,4n =⎰;(4),6n =.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. 用辛普森公式求积分10x e dx-⎰并计算误差. 5. 推导下列三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2ba f f x dxb a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰. 6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8.1x e dx-,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是S a =θ,这里a 是椭圆的半长轴,c 是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长. 10. 证明等式3524sin3!5!n nn n ππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计误()f x第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。
5.1常微分⽅程的数值解法第五章常微分⽅程的差分⽅法⼀、教学⽬标及基本要求通过对本节课的学习,使学⽣掌握常微分⽅程、常微分⽅程⽅程组的数值解法。
⼆、教学内容及学时分配本节课主要介绍常微分⽅程的数值解法。
具体内容如下:讲授内容:欧拉公式、改进的欧拉公式。
三、教学重点难点1.教学重点:改进的欧拉公式、龙格库塔⽅法、收敛性与稳定性。
2. 教学难点:收敛性与稳定性。
四、教学中应注意的问题多媒体课堂教学为主。
适当提问,加深学⽣对概念的理解。
五、正⽂基于数值积分的求解公式:欧拉公式、改进的欧拉公式引⾔1.主要考虑如下的⼀阶常微分⽅程初值问题的求解:00()(,)()y x f x y y x y '=??=?微分⽅程的解就是求⼀个函数y=y(x),该函数满⾜微分⽅程并且符合初值条件。
2. 例如微分⽅程:xy'-2y=4x ;初始条件: y(1)=-3。
于是可得⼀阶常微分⽅程的初始问题24(1)3y y x y ?'=+=-?。
显然函数y(x)=x 2-4x 满⾜以上条件,因⽽是该初始问题的微分⽅程的解。
3. 但是,只有⼀些特殊类型的微分⽅程问题能够得到⽤解析表达式表⽰的函数解,⽽⼤量的微分⽅程问题很难得到其解析解,有的甚⾄⽆法⽤解析表达式来表⽰。
因此,只能依赖于数值⽅法去获得微分⽅程的数值解。
4.微分⽅程的数值解:设微分⽅程问题的解y(x)的存在区间是[a,b],初始点x 0=a ,将[a,b]进⾏划分得⼀系列节点x 0 , x 1 ,...,x n ,其中a= x 0< x 1<…< x n =b 。
y(x)的解析表达式不容易得到或根本⽆法得到,我们⽤数值⽅法求得y(x)在每个节点x k 的近似值y(x k ),即 y≈y(x k ),这样y 0 , y 1 ,...,y n 称为微分⽅程的数值解。
如果计算y n 时,只利⽤y n-1,称这种⽅法为单步法;如果在计算y n 时不仅利⽤y n-1,⽽且还要利⽤y n-2, y n-3,…, y n-r ,则称这种⽅法为r 步⽅法,也称多步法。
第五章部分习题1. 对于5.1节传染病的SIR 模型,证明:(1)若σ/10>s ,则()t i 先增加,在σ/1=s 处最大,然后减少并趋于零;()t s 单调减少至∞s 。
(2)若σ/10>s ,则()t i 单调减少并趋于零,()t s 单调减少至∞s 。
9. 在5.6节人口的预测和控制模型中,总和生育率()t β和生育模式()t r h ,是两种控制人口增长的手段,试说明我国目前的人口政策,如提倡一对夫妇只生一个孩子、晚婚晚育,及生育第2胎的一些规定,可以怎样通过这两种手段加以实施。
*16. 建立铅球掷远模型,不考虑阻力,设铅球初速度为v ,出手高度为h 出手角度为∂(与地面夹角),建立投掷距离与∂,,h v 的关系式,并在h v ,一定的条件下求最佳出手角度。
参考答案1. SIR 模型(14)式可写作().,1si dt di s i dt di λσμ-=-=由后一方程知()t s dtds ,0<单调减少。
1) 若σ10>s ,当01s s <<σ时,()t i dt di ,0>增加;当σ1=s 时,()t i dt di ,0=达到最大值m i ;当σ1<s 时,()t i dt di ,0<减少且()()式180=∞i 2) 若σ10<s ,()t i dt di ,0<单调减少至零 9. 一对夫妻只生一个孩子,即总和生育率()1=t β;晚婚晚育相当于生育模式()r h 中(5。
6节(13)式)使1r 和c r 增大;生育第2胎一些规定可相当于()t β略高于1,且()r h 曲线(5。
6节图19)扁平一些(规定生2胎要间隔多少年)*16. 在图中坐标下铅球运动方程为()()()().sin 0,cos 0,0,00,,0ααv y v x h y x g yx ====-== 解出()t x ,()t y 后,可以求得铅球掷远为,cos 2sin cos sin 2/12222ααααv g h g v g v R ⎪⎪⎭⎫ ⎝⎛++=这个关系还可表为()ααtan cos 2222R h v g R +=由此计算0*=ααd dR,得最佳出手角度()gh v v +=-21*2sin α,和最佳成绩gh v g v R 22*+=设m h 5.1=,s m v /10=,则0*4.41≈α,m R 4.11*=。
常微分方程习题答案第五章定性与稳定性理论简介教材习题同步解答习题5.21. 对于方程组41114221,,xx x x x x ⎧=-⎨=⎩ 试说明 441212(,)V x x x x =+是正定的,而dVdt是常负的。
证:易知(0,0)0V =,当22120x x +≠时,12(,)0V x x > 正定。
34344444121122211212124()4()440dV V V x x x x x x x x x x x x dt x x ∂∂=+=-+-=-+=∂∂ ,故dV dt是常负。
(0,0)0V =。
2. 讨论方程组312132124,3,xx x x x x ⎧=--⎨=-⎩ 零解的稳定性。
证:取 221212(,)V x x x x =+, 易知(0,0)0V =,当22120x x +≠时, 12(,)0V x x >即正定。
334411221212121212222(4)2(3)22()0dV x x x x x x x x x x x x x x dt=+=--+-=---< ,故方程的零解是渐进稳定的。
3. 讨论自治系统2111222212,,x Ax x x x Ax x x ⎧=-⎨=-⎩ 零解的稳定性。
证:证:取 221212(,)V x x x x =+, 易知(0,0)0V =,当22120x x +≠时,12(,)0V x x >即正定。
222211221112221212222()2()2()dV x x x x x Ax x x x Ax x x A x x dt=+=-+-=+ ,故方程的0A >,则零解是不稳定的;若0A <,则零解是渐进稳定的。
习题5.3通过求解,确定下列各方程的奇点类型,画出相图,并确定奇点的稳定性:(1)2,3;dx x dt dy y dt ⎧=-⎪⎪⎨⎪=-⎪⎩(2)3,3;dx x dt dy x y dt⎧=⎪⎪⎨⎪=+⎪⎩(3),;dx y dt dy x dt ⎧=⎪⎪⎨⎪=-⎪⎩(4)23,3;dxx y dtdy x y dt ⎧=+⎪⎪⎨⎪=+⎪⎩解:(1)方程的奇点为(0,0)O ,方程所对应的系数矩阵为2003A -⎡⎤=⎢⎥-⎣⎦,系数矩阵所对应的特征方程为20003λλ--=-- 或2560λλ++= ,特征根为 1220,30,λλ=-<=-<奇点(0,0)O 为稳定结点。
第五章微分方程建模案例微分方程作为数学科学的中心学科,已经有三百多年的发展历史,其解法和理论已日臻完善,可以为分析和求得方程的解(或数值解)提供足够的方法,使得微分方程模型具有极大的普遍性、有效性和非常丰富的数学内涵。
微分方程建模包括常微分方程建模、偏微分方程建模、差分方程建模及其各种类型的方程组建模。
微分方程建模对于许多实际问题的解决是一种极有效的数学手段,对于现实世界的变化,人们关注的往往是其变化速度、加速度以及所处位置随时间的发展规律,其规律一般可以用微分方程或方程组表示,微分方程建模适用的领域比较广,涉及到生活中的诸多行业,其中的连续模型适用于常微分方程和偏微分方程及其方程组建模,离散模型适用于差分方程及其方程组建模。
本章主要介绍几个简单的用微分方程建立的模型,让读者一窥方程的应用。
下面简要介绍利用方程知识建立数学模型的几种方法:1.利用题目本身给出的或隐含的等量关系建立微分方程模型这就需要我们仔细分析题目,明确题意,找出其中的等量关系,建立数学模型。
例如在光学里面,旋转抛物面能将放在焦点处的光源经镜面反射后成为平行光线,为了证明具有这一性质的曲线只有抛物线,我们就是利用了题目中隐含的条件——入射角等于反射角来建立微分方程模型的。
2.从一些已知的基本定律或基本公式出发建立微分方程模型我们要熟悉一些常用的基本定律、基本公式。
例如从几何观点看,曲线上某点)yy=点的导数;力学中的牛顿第二运动(x(xyy=的切线斜率即函数在该)F=,其中加速度a就是位移对时间的二阶导数,也是速度对时间的一定律:ma阶导数等等。
从这些知识出发我们可以建立相应的微分方程模型。
例如在动力学中,如何保证高空跳伞者的安全问题。
第一章 极限与连续一、填空 1、设11()01x f x x ⎧≤⎪=⎨>⎪⎩ ,则[]()___________.f f x = 2、假设数列{}n x 收敛,则数列{}n x 肯定 。
3、假设0lim ()x x f x A →=,而0lim ()x x g x →不存在,则0lim(()())x x f x g x →+ 。
4、当0→x 时,1132-+ax 与1cos -x 为等价无穷小,则_______=a 5、设函数()f x 在点0x x =处连续,则()f x 在点0x x =处是否连续。
6、设21))((,sin )(x x f x x f -==ϕ,则)(x ϕ的定义域为_________7、如果⎪⎩⎪⎨⎧=≠-+=0,00,12sin )(2x x xe x xf ax 在),(+∞-∞内连续,则__=a8、 曲线22x e x y -=的渐近方程为__________________二、选择9、如果)(),(x g x f 都在0x 点处间断,那么〔 〕〔A 〕)()(x g x f +在0x 点处间断 〔B 〕)()(x g x f -在0x 点处间断 〔C 〕)()(x g x f +在0x 点处连续 〔D 〕)()(x g x f +在0x 点处可能连续。
10、设数列n x 与n y 满足lim 0n n n x y →∞=,则以下断言正确的选项是〔 〕〔A 〕假设n x 发散,则n y 必发散。
〔B 〕假设n x 无界,则n y 必有界 〔C 〕假设n x 有界,则n y 必为无穷小〔D 〕假设1nx 为无穷小,则n y 必为无穷小。
11、已知0()lim0x f x x→=,且(0)1f =,那么〔 〕〔A 〕()f x 在0x =处不连续。
〔B 〕()f x 在0x =处连续。
〔C 〕0lim ()x f x →不存在。
〔D 〕0lim ()1x f x →=12、设2()43x xf x x x+=- ,则0lim ()x f x →为〔 〕〔A 〕12 (B)13 (C) 14 (D)不存在13、设2(1)sin ()(1)x xf x x x-=-,那么0x =是函数的〔 〕〔A 〕无穷间断点。
第五章 常微分方程 §1 常微分方程的基本概念与分离变量法1.xy dxdy 2=,并求满足初始条件:0,1x y ==的特解.2.2(1)0y dx x dy ++=,并求满足初始条件:0,1x y ==的特解. 3.(1)(1)0x ydx y xdy ++-= 4.(ln ln )0x x y dy ydx --= 5.x ydy edx-=答案1.通解2x y ce =;特解2x y e = 2.通解1ln 1y c x=++;另有解0y =;特解11ln 1y x=++3.ln ;0x y xy c y -+== 4.1lny cyx +=5.y x e e c =+§2 一阶线性微分方程1.(1)( )是微分方程。
(A )(B )(C )(D )(2)( )不是微分方程。
(A )(B )(C )(D )2.求微分方程的通解;(2)。
(1)3.求微分方程的特解(1);(2)4.解下列微分方程;(2);(1)答案1.(1)B;(2)C2.(1)y=cx;(2)y4-x4=C。
3.(1)2/x3;(2)。
4.(1); (2)y=Csinx;§3 二阶常系数线性微分方程1.求下列微分方程的通解;(2);(1)(3)(5)2.求微分方程的特解3.求下列微分方程的通解(1); (2) ;(3); (4)。
4.求方程2100y y y '''++=满足初始条件02x y==和01x y ='=的特解5.求方程221y y y x '''+-=+的一个特解6.求方程22x y y y xe '''+-=的一个特解7.求方程32(41)x y y y x e '''-+=-的一个特解答案1.(1) ; (2);(3); (4) ;(5) ; (6) 。
2.3.(1);(2) ;(3) ;(4) 。
4.(2cos 3sin 3)x y e x x -=+ 5.2411y x x =--- 6.(4)x y x e =- 7.(23)x y x x e =--总复习题1、1)、微分方程232()20d y dy x dxdx++=的阶数是( )A.1B.2C.3D.0 2)、下列微分方程中,是一阶方程的是( ) A.2y x y '=+ B.2()0x y y e '''++= C.220d x xy dy+= D.444d S S S dt+=3)、方程322321xx d yd ye e dx dx++= 的通解中应包含的任意常数的个数为( )A.2B.3C.4D.04)、微分方程34()0x y yy '''-=的阶数是( ) A.1 B.2 C.3 D.4 5)、下列函数中,( )是微分方程y y xx'+=的解A.213x+ B.313xx+C. 213x-+ D.213xx+6)、方程30xy y '+=的通解是( )A.3x -B.x C xeC. 3x C -+D. 3Cx - 7)、方程y xdy dx e dx +=的通解是( ) A.x y C xe = B.x y xe C =+ C.ln(1)y Cx =-- D.ln(1)y x C =-++8)、方程sin cos cos sin x ydx x ydy =满足04x y π==的特解是( )A.2sin sin 2y x =B. 2cos cos 2y x =C. 2sin cos 2y x =D. 2cos sin 2y x =9)、0x d y y d x -=的通解是( )A.y Cx =B.C y x=C.x y Ce =D.ln y C x =10)、方程ln xdy y ydx =的一个解为( )A.ln y x =B.sin y x =C.x y e =D.2ln y x = 11)、方程22904d y x dx-=的通解是( )A.338y x x =+ B. 338y x C x=+ C. 31238y x C x C =++ D. 338y x x C=++12)、下列函数中,是微分方程220xd ye dx-=的解的是( )A.ln(1)y x =-B. ln(1)y x =--C.1x e x -=-D.x y e x =+ 13)、函数y=cosx 是方程( )的解 A.0y y ''+= B.20y y '+= C.0y y '+= D. cos y y x ''+=2、指出下列方程中哪些是微分方程, 并说明它们的阶数:1)、120d y yd x-=2)、22y y x =+ 3)、2s i n 0x dy y d x +=4)、2223td y ye dt+=5)、3y y x '''+= 6)、2yd y d x x y=+7)、2()0x y y ''''-=3、判别下列微分方程属于何种类型:1)、2si n 0x d y y d x +=2)、23tdy y edt+=3)、2dx dy x y=+4)、4(1)3(1)xx y y e x '+-=+5)、22d yyd x x y x=-6)、2(1)2c o s x y x y x'++=4、求下列微分方程的通解: 1)、l n 0x y y y '-=2)、l n l n 0y d x x d y +=3)、t a n d y yyd x xx=+5、验证下列函数(其中C 为任意常数)是否是相应的微分方程的解,是通解还是特解:1)、222,,xy y y C x y x '=== 2)、,s i n ,3s i n 4c o s y yy xy x x ''=-==-3)、22,,xxdy y y ey C edx===6、求下列微分方程的通解: 1)、21y y '+= 2)、22(1)1y y x x '-=++3)、22(2)0x dy xy x dx +-=4)、xdy y edx -+=5)、32dy xy x dx-= 6)、22s i n 3y y x xx'-=7)、2(1)2c o s 0x y x y x '++-=7、求下列微分方程满足初始条件的特解:1)、1200(),0,1x x y y yy ==''''===2)、200(1)3,0,0x x x y xy yy ==''''--===8、求下列微分方程满足所给初始条件的特解: 1)、00340,0,5x x y y y y y ==''''--===-2)、00250,2,15x x y y yy =='''+===3)、004290,0,15x x y y y yy ==''''++===9、求下列微分方程的通解: 1)、2xy y e ''-=2)、22x y y y e '''+-=总复习题1、1):B 2):A 3):B 4):B 5):D 6):D 7):C 8):B 9):A 10):C 11):C 12):D 13):A2、1):是,一阶; 2):不是; 3):是,一阶; 4):是,二阶; 5):是,二阶; 6):是,一阶; 7):是,三阶 3、1):一阶可分离变量的微分方程; 2):一阶非齐次线性微分方程 3):关于,x x '的一阶非齐次线性微分方程; 4):一阶非齐次线性微分方程; 5):一阶齐次方程; 6):一阶非齐次线性微分方程 4、1):ln y cx = 2):22(ln )(ln )x y c += 3):a r c s i n ()y x cx =5、1):通解,特解; 2):特解,特解; 3):不是,通解6、1):212xy c e -=+; 2):2()(1)y xc x =++; 3):23x c y x=+;4):()xy e x c -=+; 5):23223xy c e =-; 6):21(c os 3)3y x c x =-;7):2si n 1x c y x +=+7、1):312(2)123y x =+-; 2):23(a r c s i n )2y x=;8、1):4x x y e e -=-+; 2):2c o s 53s i n 5y x x=+; 3):23si n 5xy e x-=9、1):21213xxxy c e c ee-=++; 2):212xx x y c e c e e -=++;。