高等代数(II)期末考试试卷及答案(A卷)
- 格式:doc
- 大小:558.00 KB
- 文档页数:15
2020-2021《高等代数二》期末课程考试试卷专业:信计 考试日期: 所需时间:120分钟 总分:100分 闭卷一、填空(5分×10)1在4P 中,向量(1,2,1,1)ξ=在12(1,1,1,1),(1,1,1,1),εε==--3(1,1,1,1)ε=--,4(1,1,1,1),ε=--下的坐标____.2 在[]P x 中定义0()()f x f x ψ=,其中0x 是一个固定的数,判断ψ是不是线性变换____.3 线性空间V 的两组基的过渡矩阵为A ,则这两组基的对偶基的过渡矩阵为____.4设矩阵2323ab ⎛⎝为正交矩阵,则a = ____,b = ____. 5 欧氏空间V 上的线性变换f 称之为正交变换,如果对任意的,V αβ∈____. 6已知三阶矩阵A 的特征值为1,-1,2,设矩阵325B A A =-,则____B .(提示:行列式的值等于它所有特征值的乘积.)7试写出线性空间V 上线性变换ψ核的表达式______.8 属于不同特征值的特征向量线性无关是否正确?______. 9 设A 是n 阶矩阵,满足2A A =,则矩阵A 的特征值______.二、计算与解答题 (10分×3)10在空间3P 中设线性变换()()12312231,,2,,A x x x x x x x x =-+.求A 在基()()()0231,0,0,1,1,0,0,0,1εεε===下的矩阵.11设B 是秩为2的54⨯矩阵,()()()1231,1,2,3,1,1,4,1,5,1,8,9T T Tααα==--=--是齐次方程组0Bx =的解向量,求0Bx =的解空间的一个规范正交基.12已知1122A ⎛⎫= ⎪⎝⎭,求nA .三、证明题 (10分×2)13设12,,,,n ααα是欧氏空间V 的一组基,证明:如果V γ∈满足(),0,1,2,,i i n γα==,则0γ=.14证明: 设123,,εεε是线性空间V 的一组基,123,,f f f 是它的对偶基,1132123323,,αεεαεεεαεε=-=++=+, 试证:123,,ααα是V 的一组基并求它的对偶基.2020-2021《高等代数二》期末课程考试试卷答案专业:信计 考试日期: 所需时间:120分钟 总分:100分 闭卷一、填空(5分×10)1在4P 中,向量(1,2,1,1)ξ=在12(1,1,1,1),(1,1,1,1),εε==--3(1,1,1,1)ε=--,4(1,1,1,1),ε=--下的坐标____.5111,,,4444--2 在[]P x 中定义0()()f x f x ψ=,其中0x 是一个固定的数,判断ψ是不是线性变换____.是3 线性空间V 的两组基的过渡矩阵为A ,则这两组基的对偶基的过渡矩阵为____. ()1'A -4设矩阵2323ab ⎛⎝为正交矩阵,则a = ____,b = ____.1,03. 5 欧氏空间V 上的线性变换f 称之为正交变换,如果对任意的,V αβ∈____.()(),,f f αβαβ=6已知三阶矩阵A 的特征值为1,-1,2,设矩阵325B A A =-,则____B .(提示:行列式的值等于它所有特征值的乘积.)【解】设()325f x x x =-,则B 的特征值为()()()14,16,212f f f =--=-=-.于是()()()4612288B =-⋅-⋅-=-.7试写出线性空间V 上线性变换ψ核的表达式______.(){}10|0x V x ψψ-=∈= 8 属于不同特征值的特征向量线性无关是否正确?______. 是 9 设A 是n 阶矩阵,满足2A A =,则矩阵A 的特征值______.【解】设λ是A 的特征值,α是其对应的特征向量,则,0A αλαα=≠,22A A αλαλα==,又由2A A =得到2A A ααλα==,所以2λαλα=.20,0,1λλλ-==.二、计算与解答题 (10分×3)10在空间3P 中设线性变换()()12312231,,2,,A x x x x x x x x =-+.求A 在基()()()0231,0,0,1,1,0,0,0,1εεε===下的矩阵.【解】略.11设B 是秩为2的54⨯矩阵,()()()1231,1,2,3,1,1,4,1,5,1,8,9TTTααα==--=--是齐次方程组0Bx =的解向量,求0Bx =的解空间的一个规范正交基.【解】既然B 是秩为2,解空间的维数为2,又12,αα线性无关,所以12,αα是解空间的一个基,()()()()1121221111,1,2,3,,14,2,10,6.,3TTβααββαβββ===-=-- 再单位化,))1121,1,2,3,2,1,5,3.TTηαη===--12已知1122A ⎛⎫=⎪⎝⎭,求nA . 【解】(1) 求A 的特征值,2300,3E A λλλλλ-=-=⇒==.(2) 求A 的特征向量,当3λ=时,112α⎛⎫= ⎪⎝⎭,当0λ=时,211α⎛⎫=⎪-⎝⎭.令()12,P αα=,则13000A P P -⎛⎫= ⎪⎝⎭,于是11111130303300002323nn n n nn n A P P P P ------⎛⎫⎛⎫⎛⎫===⎪ ⎪ ⎪⋅⋅⎝⎭⎝⎭⎝⎭. 三、证明题 (10分×2)13设12,,,,n ααα是欧氏空间V 的一组基,证明:如果V γ∈满足(),0,1,2,,i i n γα==,则0γ=.【证明】根据(),0γγ=.14证明: 设123,,εεε是线性空间V 的一组基,123,,f f f 是它的对偶基,1132123323,,αεεαεεεαεε=-=++=+,试证123,,ααα是V 的一组基并求它的对偶基.证明:()()123123011,,,,112111g g g f f f -⎛⎫ ⎪=- ⎪ ⎪--⎝⎭。
《高等代数(二)》期末考试样卷一、选择题(本大题有一项是符合题目要求的)1. 若σ是F 上向量空间V 的一个线性变换,则下列说法∙∙误错的是( )A.)()()(,,βσασβασβα+=+∈∀VB.0)0(=σC.)()(,,ασασαk k F k V =∈∈∀D.0)0(≠σ2.若},,{21s ααα 和},,{21t βββ 是两个等价的线性无关的向量组,则( ) A.t s > B. t s < C. t s = D.以上说法都不对 3.向量空间2F [x]的维数是( )A. 0B. 1C. 2D. 3 4.一个线性变换关于两个基的矩阵是( )A.正定的B.相似的C.合同的D.对称的 5.如果两个向量βα与正交,则下列说法正确的是( ) A. ><βα, > 0 B. ><βα, < 0 C. ><βα, = 0 D. ><βα, ≠ 06.设σ是欧氏空间V 的正交变换, 任意α,β∈V, 下列正确的是( ) A.<α,β > = <σ(α),β> B.<α,β> = <α,σ(β)> C.<α,β> = <σ(α), σ(β)> D. <α,β> = -<σ(α),σ(β)>7.如果n 元齐次线性方程组AX =0的系数矩阵的秩为r,那么它的解空间的 维数为( )A 、n-rB 、nC 、rD 、n+r 8.设21,W W 是向量空间V 的两个子空间,则下列说法正确的是( ) ①21W W +是向量空间V 的子空间 ②21W W +不是向量空间V 的子空间③21W W 是向量空间V 的子空间 ④21W W 不是向量空间V 的子空间 ⑤21W W 是向量空间V 的子空间 ⑥21W W 不一定是向量空间V 的子空间 A. ①③⑤ B. ②④⑥ C. ①③⑥ D. ②④⑤ 9.设σ是数域F 上向量空间V 的线性变换,W 是V 的子空间,如果对于W 中的任意向量ξ,有W ∈)(ξσ,则称W 是σ的 ( )A.非平凡子空间B.核子空间C.不变子空间D.零子空间10.欧氏空间的度量矩阵一定是( )A.正交矩阵B.上三角矩阵C. 下三角矩阵D. 正定矩阵 二、填空题(共10小题,每小题3分,共30分。
第 1 页 共 2 页教育科学系14级小学教育(科学与数学)专业2014—2015学年度春学期期末考试《高等代数Ⅱ》试卷 (A )试卷说明:1.本试卷共2页,4个大题,满分100分,120分钟完卷; 2.试题解答全部书写在本试卷上。
班号: 学号 姓名一、选择题:(每题3分,共15分)1.当λ=( )时,方程组1231231222x x x x x x λ++=⎧⎨++=⎩,有无穷多解。
A 1B 2C 3D 42.若向量组中含有零向量,则此向量组( )A 线性相关B 线性无关C 线性相关或线性无关D 不一定 3.已知A ,B 为同阶正交矩阵,则下列( )是正交阵。
A A B + B A B - C AB D kA 4.对于n 阶实对称矩阵A ,结论( )正确。
A A 一定有n 个不同的特征值 B A 一定有n 个相同的特征值 C 必存在正交矩阵P ,使1P AP -成为对角矩阵 D A 的不同特征值所对应的特征向量不一定是正交的 5.当( )时,0a A b c ⎛⎫=⎪⎝⎭是正交阵。
A 1,2,3a b c === B 1a b c ===C 1,0,1a b c ===-D 1,0a b c ===1.已知向量组)4,3,2,1(1=α,)5,4,3,2(2=α,)6,5,4,3(3=α,)7,6,5,4(4=α,则向量=-+-4321αααα 。
2.若120s ααα+++= ,则向量组12,,,s ααα 必线性 。
3.1+n 个n 维向量构成的向量组一定是线性 的。
4. 数域F 上任一n 维向量空间都与nF 。
(不同构,同构) 5.A 满足022=++I A A ,则A 有特征值______________________。
6. 二次型yz xz xy z y x z y x f ++----=222),,(的矩阵是____________。
7. A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=20001011k k 是正定阵,则k 满足条件__________________。
高等代数(II )期末考试试卷及答案(A卷)一、 填空题(每小题3分,共15分)1、线性空间[]Px 的两个子空间的交()()11L x L x -+=2、设12,,...,n εεε与12,,...,n εεε'''是n 维线性空间 V 的两个基, 由12,,...,n εεε到12,,...,n εεε'''的过渡矩阵是C ,列向量X 是V 中向量ξ在基12,,...,n εεε下的坐标,则ξ在基12,,...,n εεε'''下 的坐标是3、设A 、B 是n 维线性空间V 的某一线性变换在不同基下的矩阵, 则A 与B的关系是4、设3阶方阵A的3个行列式因子分别为:()21,,1,λλλ+则其特征矩阵E A λ-的标准形是5、线性方程组AX B =的最小二乘解所满足的线性方程组是:二、 单项选择题(每小题3分,共15分)1、 ( )复数域C作为实数域R 上的线性空间可与下列哪一个 线性空间同构:(A)数域P 上所有二级对角矩阵作成的线性空间; (B )数域P 上所有二级对称矩阵作成的线性空间; (C )数域P上所有二级反对称矩阵作成的线性空间; (D )复数域C作为复数域C 上的线性空间。
2、( )设 是非零线性空间 V 的线性变换,则下列命题正确的是:(A) 的核是零子空间的充要条件是 是满射; (B) 的核是V的充要条件是 是满射(C) 的值域是零子空间的充要条件是 是满射 (D) 的值域是V的充要条件是 是满射。
3、( )λ-矩阵()A λ可逆的充要条件是: ()()()()0;A AB A λλ≠是一个非零常数;()()C A λ是满秩的;()()D A λ是方阵。
4、( )设实二次型f X AX '=(A 为对称阵)经正交变换后化为:2221122...n n y y y λλλ+++, 则其中的12,,...n λλλ是:()()1;A B ±全是正数;()C 是A 的所有特征值;()D 不确定。
北 京 交 通 大 学2006-2007学年第二学期高等代数(II )期末考试(A 卷)答案一、填空题(每题3分,共30分)1、设W 1和W 2是R n ⨯n 的两个子空间,其中W 1是由全体n 阶实反对称矩阵构成,W 2是由全体n 阶实下三角矩阵构成, 则 W 1+W 2的维数等于2n .2. 设ε1 = (1,0,0), ε2 = (0,1,0), ε3 = (0,0,1), η1 = (0,0,2), η2 =(0,3,0), η3 = (4,0,0) 是线性空间P 3的两组基, 则从基η1, η2, η3到基ε1, ε2, ε3的过渡矩阵是 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡413121。
3、线性空间22⨯R 中,矩阵⎥⎦⎤⎢⎣⎡=5432A 在基⎥⎦⎤⎢⎣⎡=00011E ,⎥⎦⎤⎢⎣⎡=00112E ,⎥⎦⎤⎢⎣⎡=01113E ,⎥⎦⎤⎢⎣⎡=11114E 下的坐标为: ()T5111---.4、设P 3的线性变换T 为:T(x 1, x 2, x 3) = (x 1, x 2, x 1 + x 2),取P 3的一组基:ε1 = (1, 0, 0), ε2 = (0, 1, 0), ε3 = (0, 0, 1),则T 在该基下的矩阵是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111010001. .5、设欧氏空间R 3[x ]的内积为dx x g x f x g x f )()())(),((11⎰+-=则一组基1, x, x 2的度量矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡520320323202. 6、已知三阶矩阵A 满足03E A 2E A E A =-=-=-,则=A 6 .7、已知矩阵A 的初等因子组为λ2,(λ-1)2,则其Jordon 标准形矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1110100 8、欧氏空间V 中两个向量βα,满足βαβα-=+,则α与β的夹角是090.9、3维欧氏空间R 3 (取标准内积)中的向量(2, 3,-1), (1, 1, 0),(0, 1,-1)生成的子空间的正交补空间的维数是 1 .10、设321,,εεε是数域P 上的3维线性空间V 的一组基,f 是V 上的一个线性函数。
高等代数(II )期末考试试卷及答案(A 卷) 一、 填空题(每小题3分,共15分)1、线性空间[]Px 的两个子空间的交()()11L x L x -+=2、设12,,...,n εεε与12,,...,n εεε'''是n 维线性空间 V 的两个基, 由12,,...,n εεε到12,,...,n εεε'''的过渡矩阵是C ,列向量X 是V 中向量ξ在基12,,...,n εεε下的坐标,则ξ在基12,,...,n εεε'''下 的坐标是3、设A 、B 是n 维线性空间V 的某一线性变换在不同基下的矩阵, 则A 与B 的关系是4、设3阶方阵A 的3个行列式因子分别为:()21,,1,λλλ+则其特征矩阵E A λ-的标准形是5、线性方程组AX B =的最小二乘解所满足的线性方程组是:二、 单项选择题(每小题3分,共15分)1、 ( )复数域C 作为实数域R 上的线性空间可与下列哪一个 线性空间同构:(A )数域P 上所有二级对角矩阵作成的线性空间; (B )数域P 上所有二级对称矩阵作成的线性空间; (C )数域P 上所有二级反对称矩阵作成的线性空间; (D )复数域C 作为复数域C 上的线性空间。
2、( )设 是非零线性空间 V 的线性变换,则下列命题正确的是:(A ) 的核是零子空间的充要条件是 是满射; (B ) 的核是V 的充要条件是 是满射; (C ) 的值域是零子空间的充要条件是 是满射; (D ) 的值域是V 的充要条件是 是满射。
3、( )λ-矩阵()A λ可逆的充要条件是: ()()()()0;A AB A λλ≠是一个非零常数;()()C A λ是满秩的;()()D A λ是方阵。
4、( )设实二次型f X AX '=(A 为对称阵)经正交变换后化为:2221122...n n y y y λλλ+++, 则其中的12,,...n λλλ是:()()1;A B ±全是正数;()C 是A 的所有特征值;()D 不确定。
2009-2010学学年第二期 数高等代(下)期末考试试卷(A 卷)选择题题(本大共5题题小,每小3分,共15分) 1.( )义变换下列所定的σ哪个线变换,一是性(A)线间在性空V 设中,α为对一固定的非零向量,于任意的V ξ∈,义定()σξξα=+;(B) 在3R 义中,定221231233(,,)(,,)x x x x x x x σ=+;(C) 在3R 义中,定222222123131223(,,)(,,)x x x x x x x x x σ=+++;(D) 在[]P x 义中,定()0()()f x f x σ=,其中0x 为P 个数中一固定的。
2.( )实数在域R 中,由全体3阶阵构线间矩所成的性空V 维数为的 (A )2; (B )4; (C )6; (D )9。
3. ( ) 如果1V , 2V 线间是性空V 两个间的子空, 且()1dim 5V =, ()2dim 3V =,()12dim 6V V +=, 么那()12dim V V ∩为(A) 2 (B)3 (C)4 (D)5 4.( 设)σ为欧间氏空V 个线变换号的一性,符(,)αβ表示向量α和β内积的,则哪说与下列一法σ为变换正交不等价(A ) 对任意V α∈,有()(),()(,)σασααα=; (B ) 对任意,V αβ∈,有()(),()(,)σασβαβ=; (C )对任意,V αβ∈,有()()(),,()σαβασβ=;( D) σ组标阵阵在任意一准正交基下的矩是正交矩.5. ( ) 设A 和B 为数域P 上的n 阶阵则方,A 和B 当仅当相似且(A) A 和B 值有相同的特征; (B) A 和B 有相同的秩; (C) 为存在着行列式不零的n 阶阵方T 使得1B T AT −= ; ( D) A 和B 有相同的迹。
二、 填题空题(本大共5题题小,每小3分,共15分)1、设阶阵三方A 项为的特征多式32()225f λλλλ=−−−则, =||A ________。
《高等数学(二)》期末考试试卷考试形式:闭卷考试 考试时间:120分钟一、选择题(单选题,每题4分,共28分)1、0lim =∞→n n u 是∑∞=1n n u 收敛的( B )A .充分而非必要条件 B. 必要而非充分条件C.充要条件D. 既非充分也非必要条件2、若级数∑∞=1n n u 收敛,则下列命题( B )正确(其中∑==ni i n u s 1)A .0lim =∞→s n n B. s n n lim ∞→存在C. s n n lim ∞→ 可能不存在 D. {}为单调数列s n 3、设∑∞=1n n u 与∑∞=1n n v 都是正项级数,且n n v u ≤ ,2,1(=n )则下列命题正确的是( C )A .若∑∞=1n n u 收敛,则∑∞=1n n v 收敛 B. 若∑∞=1n n u 收敛,则∑∞=1n n v 发散C.若∑∞=1n n v 发散,则∑∞=1n n u 发散D.若∑∞=1n n v 收敛,则∑∞=1n n u 收敛4、下列级数中条件收敛的是( B )A .1)1(1+-∑∞=n n n nB. n n n 1)1(1∑∞=-C. 211)1(n n n ∑∞=-D. n n n ∑∞=-1)1( 5、幂级数∑∞=-12)2(n nn x 的收敛区间为( B ) A.(1,3) B.[]3,1 C.[)3,1 D.(]3,16、幂级数∑∞=1!n nn x 的收敛半径为( C )A. 0B. 1C. +∞D. 37、点A (-3,1,2)与B (1,-2,4)间的距离是( A ) A. 29 B. 23 C. 29 D. 23二、填空题(每题4分,共16分)1、球心在点(1,-2,3),半径为3的球面方程为 9)3()2()1(222=-+++-z y x2、方程0222222=-+-++z x z y x 表示的图形是圆心在(1,0,-1),半径为2的球面. .3、二元函数229y x z --=的定义域是{}9:),(22≤+y x y x4、y x y x y x F --=22),(,则)3,1(F = 5 . 5、幂级数1nn x n∞=∑的收敛半径为是 1 .三、计算题1、求函数的一阶偏导数(1))ln(222y x x z += (2)xy e u =223222)ln(2y x x y x x x z +++=∂∂ xy ye xu =∂∂ 2222y x y x y z +=∂∂ xy xe yu =∂∂2、求函数32y x z =,当01.0,02.0,1,2-=∆=∆-==y x y x 的全微分32xy xz =∂∂ 223y x y z =∂∂ 2.0)1,2()1,2(-=∆-+∆-=y f x f dy y x3,y x z 2)31(+=,求x z ∂∂,yz ∂∂ 216(13)y z y x x-∂=+∂)31ln()31(22x x yz y ++=∂∂4、设方程0sin 2=-+xy e y x 确定的一个隐函数,求dxdy 0).2(.cos 2='+-+'y xy y e y y x 22cos x e y y xy y-'=-5、求函数22)(4),(y x y x y x f ---=的极值(1)x f x 24-= y f y 24--=(2)令0,0==y x f f 得:2,2-==y x(3)2,0,2-==-=yy xy xx f f f 故2,0,2-==-=C B A 0,02<<-A AC B 有极大值.8)2,2(f =-=极大y6、计算积分⎰⎰Dxydxdy ,其中D 由3,x y x y ==在第一象限内所围成.161103==⎰⎰⎰⎰D x x ydy xdx xydxdy四、应用题1、建造容积为V 的开顶长方形水池,长、宽、高各应为多少时,才能使表面积最小?(10分) 长为32v x = 宽32v y = 高3221v z =2、把正数a 分成三个正数之和,使它们的乘积为最大,求这三个数.(7分) 3a z y x ===。
高等代数II 》课程期末考试试卷一、 选择题(每小题3分,共12分)1.设(){},,|,W a a b a b a b =+-∈R ,这里R 为实数集,则 ( )(A) W 与2R 同构。
(B) W 与3R 同构。
(C) W 与2R 的一个真子空间同构。
(D) 2R 与W 的一个真子空间同构。
2. 设1V ,2V 是偶氏空间V 的两个子空间,则2V 是1V 的正交补的充要条件是 ( ) (A) 0 ,2121=+=V V V V V (B) 1V ⊥2V(C) 2121dim dim dimV ,V V V V V +=+= (D) 0),(,2121=∈∈∀+=βαβα有,且 V V V V V3. 设A 是欧氏空间V 的线性变换,则A 是正交变换的必要而非充分条件是( ) (A) βαβαβα , , ,=∈∀A A V , (B) ααα=∈∀A V ,(C) ),(),( ,βαβαβα=∈∀A A V ,(D) A 在V 的任何一组标准正交基下的矩阵是正交矩阵(注:其中,表示两个向量的夹角,(,)表示该空间的内积。
)4. 设A 是线性空间V 的线性变换,n W W ,,1 都是V 的一组A -不变子空间,且n W W V ⊕⊕= 1,则V 中一定存在一组基,使A 在该基下的矩阵是( ) (A) 对角矩阵 (B) 反对称矩阵 (C) 可逆矩阵 (D) 准对角矩阵二、 判断题(对的打√,错的打×)(每小题3分,共12分)1. 若两个n m ⨯的-λ矩阵)(λA 与)(λB 有相同的秩,则)(λA 与)(λB 等价 ( ).2. 在3R 空间中,A 是V 中任一向量在xoy 平面上的垂直投影的线性变换,则 (i) Im ker {0}.A A = ( ); (ii) .ker Im V A A =+ ( )3. 欧氏空间中保持长度不变的变换是正交变换. ( )4. 多项式1416623-+-x x x 在有理数域上不可约. ( )三、 填空题(每小题4分,共16分)1. 若矩阵A 的全部初等因子为22)2(,)1(,1+--λλλ,则A 的不变因子为 .2. 设τσ,是2R 空间的线性变换,定义为,,),,(),(),,0(),(R y x x y y x x y x ∈∀== τσ则2(23)(,)x y στ-= .3. 已知133092)(23-+-=x x x x f 有一个根为,32i -则)(x f 在实数域上典型分解式为=)(x f .4.设s 为有限维复线性空间上的一个线性变换,l 为s 的一个特征值,若12,r r 分别表示s 的属于特征值l 的特征子空间和根子空间的维数,3r 表示l 的重数,则123,,r r r 的大小关系满足 。
井冈山大学数理学院2013 ~2014学年度第二学期 《高等代数 2》期末试卷(A 卷) 2014 年6 月一、填空题(每小题 4 分,共 20 分) 1. 已知 3 阶方阵 12121A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则 1A -= . 2. 已知实二次型 222123123121323(,,)5224f x x x x x x x x x x x x λ=+++-+ 正定,则 λ 的取值范围是. 3. 设 123,,ααα 是 3 维线性空间 V 的一组基,11212,βαβαα==+,31βα=+ 23αα+,则基 123,,βββ 到基 123,,ααα 的过渡矩阵是 . 4. 在 22P ⨯ 中定义线性变换 ()a b X X c d ⎛⎫= ⎪⎝⎭,则 在基 11122122,,,E E E E 下的矩阵是 . 5. 设 3 阶方阵 A 的特征值为 ,2,3a ,且 6,A =- 则 a = ,tr A = . 二、选择题(每小题 4 分,共 20 分) 1. 设 A 是 n 级可逆矩阵,下列命题错误的是( ). (A) 11()A A --=; (B) ()()A A **''=; (C) ()A A **=; (D) ()11()A A **--=. 2. 设 A 为 n 级实对称矩阵,下列条件中( ) 不是 A 为正定矩阵的等价条件. (A) A 的秩为 n ; (B) A 的顺序主子式全大于零; (C) A 的主子式全大于零; (D) A 的正惯性指数为 n . 3. 设123,,V V V 为n 维线性空间V 的子空间,则下列条件中( ) 不是 123V V V ++ 是直和的等价条件.(A) 零向量按子空间 123,,V V V 的表法唯一; (B) 123V V V {0}=;(C) 123123dim()dim dim dim V V V V V V ++=++;(D) 123,,V V V 的一个基合在一起是 123V V V ++ 的一个基.4. 设是线性空间 2 的线性变换,使得(1,1)(1,1),(3,2)(2,1)=-=,则 (4,2) 等于( ).(A) (2,4); (B) (4,2)-; (C) (2,3)-; (D) (2,3)-.5. 设 1201B ⎛⎫= ⎪⎝⎭,在线性空间 22P ⨯ 中,定义一个变换 σ 为 (),A BA σ=则( ). (A) σ是22P ⨯的线性变换,但不是满变换;(B )σ是22P ⨯的线性变换,但不是单变换;(C) σ 是 22P⨯ 的可逆线性变换; (D) σ 不是 22P ⨯ 的线性变换.三、计算题:(每题10 分,共50分)1. 设 101A 020100⎛⎫ ⎪= ⎪ ⎪⎝⎭,001020101B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,已知AX B A X -=+,求 X .2. 用非退化线性替换把下列二次型化为标准形:2212312121323(,,)3226f x x x x x x x x x x x =--+-并求相应的非退化线性替换.3. 在4P 中,11232123(,,),(,,)V L V αααβββ==,其中1(1,1,0,2)α=,2(1,1,1,3)α=-, 3(1,2,1,2)α=-,123(1,2,0,6),(1,2,2,4),(2,3,1,5)βββ=-=-=-.分别求 12,V V + 12V V 的一个基和维数.4. 判断矩阵 A 是否相似于对角阵,如果是,求可逆矩阵 P ,使 1P AP - 为对角阵: 100252241A ⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭.5. 设 123,,ηηη 是 3 维欧氏空间 V 的一个标准正交基,σ 是 V 的正交变换,且满足1123221()333σηηηη=+-, 2123212()333σηηηη=-+, 3123()a b c σηηηη=++,试求 ,,a b c 的值.四、证明题( 10 分)设 ,A B 是 n 阶非零矩阵,且有 22,,0A A B B AB BA ====,证明:(1) 0,1 必是 ,A B 的特征值;(2) 若 X 是 A 的属于特征值 1 的特征向量,则 X 也是 B 的属于特征值 0 的特征向量.。
高等代数 课程 A 卷试题答案一、填空题(本题共10小题,每小题2分,满分20分. 把正确答案填在题中横线上)1. 8;2. 0;3. 0;4. 92111⎛⎫ ⎪⎝⎭;5. 1或52;6。
1()3A E E A -+=-;7. 2;8。
23a ≠; 9. 6;10。
112-⎛⎫⎪ ⎪⎝⎭。
二、选择题(本题共10小题,每小题2分,满分20分。
每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号(答题框)内)三、计算题(本题共2小题,每小题10分,满分20分.解答应写出文字说明、证明过程或演算步骤)1. 计算n阶行列式a b bb b a bb D b b ab b b ba=。
解:观察行列式,每一行只有一个a 而有1n -个b ,于是将第2列,第3列,……,第n 列分别乘以1加到第1列,得(1)...(1)...(1)..................(1)...a nb b b b a n b a b b D a n bb a b a n b b ba+-+-=+-+-[]1 (1)...(1)1 (1)...b b b a b ba nb b a b bba =+-[]1...00...0(1)00...0 000...b b b a b a n b a b a b-=+--- []1(1)()n a n b a b -=+--2. 设111111111A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,123124051B ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭,求A AB 23-.解:1111231111111242111111051111323AB A -------⎛⎫⎛⎫⎛⎫⎪⎪ ⎪-= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭05822221322305622221720.2902224292-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=---=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭四、解答题(本题共2小题,第1小题15分、第2小题10分,满分25分。
一、填空题(每题3分共15分) 1、已知C 是实数域R 上的线性空间,则()dim C = 2 ;2、已知三阶矩阵A 的特征值分别为1,-1,2,矩阵235A A B -=,则B 的特征值是___-4,-6,-12__;3、设V 是由矩阵A 的全体实系数多项式组成的线性空间,21000000A w w ⎛⎫⎪= ⎪ ⎪⎝⎭,其中w =,则V 的一组基为___A,A 2__,E_;5、已知A 是一个正交矩阵,那么 2A= 1 .二、单项选择题(3分×5)(将每小题正确答案的序号,填在下表对应的方框中)1、设ϕ 是n 维欧氏空间V 上的正交变换, 以下说法错误的有( A )个.① 若nξξ,,1 是V 的一组标准正交基, 则)(,),(1n ξϕξϕ 仍是标准正交基;② 存在一组标准正交基, 使得ϕ在这组基下的表示矩阵是正交阵;③ 若U 是ϕ 的不变子空间, 则⊥U 也是ϕ 的不变子空间;④ϕ在任一组标准正交基下的矩阵是正交矩阵.A 0;B 1;C 2;D 3.3、下列关于有限维空间V 中线性变换T 的说法中错误的是( C ) A. T 的值域与核都是T 的不变子空间; B. T 是单射当且仅当T 是满射; C. T 的值域与核的和等于V ; D. T 在两组不同基下的矩阵相似.4、下列关于数域P 上线性空间说法错误的是( C ) A . n 维线性空间中n 个线性无关向量一定为一组基; B . n 维线性空间中n+1个向量线性相关; C . 两个子空间的并还是子空间; D .两个维数相同的有限维空间同构.5、二次型323121232221321444)(),,(x x x x x x x x x a x x x f +++++=经非退化线性替换X = CY 化为标准形213216),,(y y y y f =,则=a( D )A. 6;B. 0;C. 1;D. 2.三、计算题(第1、4小题10分,2、3小题各15分)1、设()(),1,1,1,1,0,1,2,121T T -==αα(),1,0,1,21T-=β()T7,3,1,12-=β求:),(),();,(),(21212121ββααββααL L L L +的一组基和维数。
高等代数(II )期末考试试卷及答案(A 卷) 一、 填空题(每小题3分,共15分)1、线性空间[]Px 的两个子空间的交()()11L x L x -+=2、设12,,...,n εεε与12,,...,n εεε'''是n 维线性空间 V 的两个基, 由12,,...,n εεε到12,,...,n εεε'''的过渡矩阵是C ,列向量X 是V 中向量ξ在基12,,...,n εεε下的坐标,则ξ在基12,,...,n εεε'''下 的坐标是3、设A 、B 是n 维线性空间V 的某一线性变换在不同基下的矩阵, 则A 与B 的关系是4、设3阶方阵A 的3个行列式因子分别为:()21,,1,λλλ+则其特征矩阵E A λ-的标准形是5、线性方程组AX B =的最小二乘解所满足的线性方程组是:二、 单项选择题(每小题3分,共15分)1、 ( )复数域C 作为实数域R 上的线性空间可与下列哪一个 线性空间同构:(A )数域P 上所有二级对角矩阵作成的线性空间; (B )数域P 上所有二级对称矩阵作成的线性空间;(C )数域P 上所有二级反对称矩阵作成的线性空间; (D )复数域C 作为复数域C 上的线性空间。
2、( )设是非零线性空间 V 的线性变换,则下列命题正确的是:(A )的核是零子空间的充要条件是是满射;(B )的核是V 的充要条件是是满射;(C )的值域是零子空间的充要条件是是满射;(D )的值域是V 的充要条件是是满射。
3、( )λ-矩阵()A λ可逆的充要条件是: ()()()()0;A AB A λλ≠是一个非零常数;()()C A λ是满秩的;()()D A λ是方阵。
4、( )设实二次型f X AX '=(A 为对称阵)经正交变换后化为:2221122...n n y y y λλλ+++, 则其中的12,,...n λλλ是:()()1;A B ±全是正数;()C 是A 的所有特征值;()D 不确定。
5、( )设3阶实对称矩阵A 有三重特征根“2-”,则A 的若当 标准形是:()()()200200200020;120;120;002002012A B C ---⎛⎫⎛⎫⎛⎫⎪⎪⎪--- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭()D 以上各情形皆有可能。
三、 是非题(每小题2分,共10分)(请在你认为对的小题对应的括号内打“√”,否则打“”)1、( )设V 1,V 2均是n 维线性空间V 的子空间,且{}120V V =则12VV V =⊕。
2、( )n 维线性空间的某一线性变换在由特征向量作成的基下 的矩阵是一对角矩阵。
3、( )同阶方阵A 与B 相似的充要条件是E A λ-与E B λ- 等价。
4、( )n 维欧氏空间的正交变换在任一基下的矩阵都是正交矩阵。
5、( )欧氏空间的内积是一对称的双线性函数。
四、 解答题(每小题10分,共30分)1、在线性空间4P 中,定义线性变换:()()()()4,,,,,,,,,a b c d a b a c b d a b c d P '''=++∀∈(1)求该线性变换在自然基:()()121,0,0,0,0,1,0,0εε''==()()340,0,1,0,0,0,0,1εε''==下的矩阵A ;(2)求矩阵A 的所有特征值和特征向量。
2、(1)求线性空间[]3P x 中从基()()()2:1,1,1I x x --到基()()()2:1,1,1II x x ++的过渡矩阵;(2)求线性空间[]3Px 中向量()2123f x x x =-+在基()()()2:1,1,1I x x --下的坐标。
3、在R 2中,()()1212,,,a a b b αβ∀==,规定二元函数:()11122122,4a b a b a b a b αβ=--+(1) 证明:这是R 2的一个内积。
(2) 求R 2的一个标准正交基。
五、 证明题(每小题10分,共30分)1、 设P 3的两个子空间分别为:(){}(){}11231232123123,,0,,,0W x x x x xx W x x x x xx =++==--= 证明:(1)312P W W =+;(2)12W W +不是直和。
2、设是数域P 上线性空间V 的线性变换,证明()12,,...,r W L ααα= 是的不变子空间的兖要条件是()1,2,...,i Wi r α∈=3、已知A E -是n 级正定矩阵,证明: (1)A 是正定矩阵; (2)23n A E +>答案一、 填空题(每小题3分,共15分)1、线性空间[]Px 的两个子空间的交()()11L x L x -+={}2、设12,,...,n εεε与12,,...,n εεε'''是n 维线性空间 V 的两个基, 由12,,...,n εεε到12,,...,n εεε'''的过渡矩阵是C ,列向量X 是V中向量ξ在基12,,...,n εεε下的坐标,则ξ在基12,,...,n εεε'''下 的坐标是1C X-3、设A 、B 是n 维线性空间V 的某一线性变换在不同基下的矩阵, 则A 与B 的关系是 相似关系4、设3阶方阵A 的3个行列式因子分别为:()21,,1,λλλ+则其特征矩阵E A λ-的标准形是()10000001λλλ⎛⎫ ⎪ ⎪ ⎪+⎝⎭5、线性方程组AX B =的最小二乘解所满足的线性方程组是:A AX A B''=二、 单项选择题(每小题3分,共15分)2、 ( A )复数域C 作为实数域R 上的线性空间可与下列哪一个 线性空间同构:(A )数域P 上所有二级对角矩阵作成的线性空间; (B )数域P 上所有二级对称矩阵作成的线性空间; (C )数域P 上所有二级反对称矩阵作成的线性空间; (D )复数域C 作为复数域C 上的线性空间。
2、( D )设是非零线性空间 V 的线性变换,则下列命题正确的是:(A )的核是零子空间的充要条件是是满射;(B )的核是V 的充要条件是是满射;(C )的值域是零子空间的充要条件是是满射;(D )的值域是V 的充要条件是是满射。
3、( B )λ-矩阵()A λ可逆的充要条件是: ()()()()0;A AB A λλ≠是一个非零常数;()()C A λ是满秩的;()()D A λ是方阵。
4、( C )设实二次型f X AX '=(A 为对称阵)经正交变换后化为:2221122...n n y y y λλλ+++, 则其中的12,,...n λλλ是:()()1;A B ±全是正数;()C 是A 的所有特征值;()D 不确定。
5、( A )设3阶实对称矩阵A 有三重特征根“2-”,则A 的若当 标准形是:()()()200200200020;120;120;002002012A B C ---⎛⎫⎛⎫⎛⎫⎪⎪⎪--- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭()D 以上各情形皆有可能。
三、 是非题(每小题2分,共10分)(请在你认为对的小题对应的括号内打“√”,否则打“”)1、( × )设V 1,V 2均是n 维线性空间V 的子空间,且{}120V V =则12VV V =⊕。
2、( √ )n 维线性空间的某一线性变换在由特征向量作成的基下 的矩阵是一对角矩阵。
3、( √ )同阶方阵A 与B 相似的充要条件是E A λ-与E B λ- 等价。
4、( × )n 维欧氏空间的正交变换在任一基下的矩阵都是正交矩阵。
5、( √ )欧氏空间的内积是一对称的双线性函数。
四、 解答题(每小题10分,共30分)1、在线性空间4P 中,定义线性变换:()()()()4,,,,,,,,,a b c d a b a c b d a b c d P '''=++∀∈(1)求该线性变换在自然基:()()121,0,0,0,0,1,0,0εε''==()()340,0,1,0,0,0,0,1εε''==下的矩阵A ;(2)求矩阵A 的所有特征值和特征向量。
解:(1)线性变换在自然基下的矩阵是1000010010100101A ⎛⎫⎪⎪= ⎪⎪⎝⎭(5分)(2)因为()41E A λλ-=-所以矩阵A 的所有特征值是12341λλλλ====解齐次线性方程组()0E A X -=得矩阵A 的所有特征向量:()()120,0,1,00,0,0,1k k ''+,其中12,k k 不全为零。
(5分)2、(1)求线性空间[]3Px 中从基()()()2:1,1,1I x x --到基()()()2:1,1,1II x x ++的过渡矩阵;(2)求线性空间[]3P x 中向量()2123f x x x =-+在基()()()2:1,1,1I x x --下的坐标。
解:(1)因为()()()()221111,1,11,,012001x x x x -⎛⎫ ⎪--=- ⎪ ⎪⎝⎭()()()()221111,1,11,,012001x x x x ⎛⎫ ⎪++= ⎪ ⎪⎝⎭所以()()()()()()1221111111,1,11,1,1012012001001x x x x --⎛⎫⎛⎫ ⎪ ⎪++=--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭()()()21111111,1,1012012001001x x ⎛⎫⎛⎫ ⎪⎪=-- ⎪⎪ ⎪⎪⎝⎭⎝⎭即所求的过渡矩阵为124014001⎛⎫ ⎪ ⎪ ⎪⎝⎭(5分) ()()()21241,1,1014001x x ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭(2)因为()()()()221111,,1,1,1012001x x x x ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭故()()2211231,,23f x x x x x ⎛⎫ ⎪=-+=- ⎪ ⎪⎝⎭()()()()()2211111,1,10122241310013x x x x ⎛⎫⎛⎫⎪⎪=---=+-+- ⎪⎪ ⎪⎪⎝⎭⎝⎭所以()f x 在基()()()2:1,1,1I x x --下的坐标是:243⎛⎫ ⎪ ⎪ ⎪⎝⎭(5分) 3、在R 2中,()()1212,,,a a b b αβ∀==,规定二元函数:()11122122,4a b a b a b a b αβ=--+(3) 证明:这是R 2的一个内积。