高等代数多项式月测试题(2010年10月)
- 格式:pdf
- 大小:54.42 KB
- 文档页数:1
数学与应用数学高等代数试卷一、选择题(每题3分,共30分)1. 在多项式f(x)=x^3 - 3x^2 + 2x - 1与g(x)=x^2 - x + 1的带余除法中,f(x)除以g(x)的商式q(x)和余式r(x)分别为()A. q(x)=x - 2,r(x)= - 3x + 1B. q(x)=x - 1,r(x)= - 2xC. q(x)=x,r(x)= - 3x - 1D. q(x)=x + 1,r(x)= - 2x + 12. 设A=(12 34),则| A|=()A. - 2.B. 2.C. - 1.D. 1.3. 向量空间V = { (x,y,z)mid x + y + z = 0,x,y,z∈ R}的维数是()A. 1.B. 2.C. 3.D. 0.4. 设α=(1,2,3),β=(4,5,6),则α·β=()A. 32.B. 30.C. 28.D. 26.5. 若n阶方阵A可逆,则r(A)=()A. n - 1B. nC. 1D. 06. 设A=(100 020 003),则A的特征值为()A. 1,2,3B. - 1,- 2,- 3C. 0,1,2D. 0, - 1, - 27. 二次型f(x,y,z)=x^2 + 2y^2+3z^2 - 2xy + 4yz的矩阵为()A. (1- 10 - 122 023)B. (110 12 - 2 0 - 23)C. (1- 10 - 12 - 2 0 - 23)D. (110 122 023)8. 设W_1={(x,0)mid x∈ R},W_2={(0,y)mid y∈ R},则W_1+W_2=()A. {(x,y)mid x,y∈ R}B. {(x,0)mid x∈ R}C. {(0,y)mid y∈ R}D. {(x,x)mid x∈ R}9. 若线性方程组Ax = b(A为系数矩阵)有解,则()A. r(A)=r(A,b)B. r(A)>r(A,b)C. r(A)D. r(A)与r(A,b)无关系。
多项式练习题带答案一、选择题1. 下列哪个表达式不是多项式?A. \( x^2 + 3x + 2 \)B. \( 5x - 3 \)C. \( \frac{x}{2} \)D. \( 2x^3 - 4x^2 + 7 \)答案:C2. 多项式 \( P(x) = ax^3 + bx^2 + cx + d \) 中,如果 \( a = 1 \),\( b = -1 \),\( c = 0 \),\( d = 2 \),则 \( P(x) \) 可以表示为:A. \( x^3 - x^2 + 2 \)B. \( x^3 - x^2 - 2 \)C. \( x^3 + x^2 + 2 \)D. \( x^3 - x^2 + 2x \)答案:A3. 如果 \( f(x) = x^3 - 6x^2 + 11x - 6 \),那么 \( f(1) \) 的值是:A. 0B. 1C. 2D. 3答案:B二、填空题1. 多项式 \( 2x^3 - 5x^2 + 3x - 4 \) 的次数是 ______ 。
答案:32. 如果 \( g(x) = x^4 - 3x^3 + 5x^2 - 2x + 1 \),那么 \( g(0) \) 的值是 ______ 。
答案:13. 多项式 \( h(x) = 4x^2 - 7x + 2 \) 与 \( x - 3 \) 的乘积是\( 4x^3 - \) ______ 。
答案:7x^2 + 10x - 6三、解答题1. 给定多项式 \( f(x) = 3x^3 - 2x^2 + 5x - 1 \),求 \( f(-1) \) 的值。
解:将 \( x = -1 \) 代入 \( f(x) \) 中,得到\( f(-1) = 3(-1)^3 - 2(-1)^2 + 5(-1) - 1 = -3 - 2 - 5 - 1 = -11 \)。
2. 已知 \( p(x) = 2x^3 + ax^2 + bx + c \),其中 \( p(1) = 5 \),\( p(-1) = -1 \),求 \( a \),\( b \),\( c \) 的值。
第一章 多项式习题解答1.用)(x g 除)(x f ,求商)(x q 与余式)(x r .1)123)(,13)(223+-=---=x x x g x x x x f9731929269791437134373132131232223232----+----+----+-x x x x x x x x x x x x x x 92926)(,9731)(--=-=x x r x x q . 2)2)(,52)(24+-=+-=x x x g x x x f17525422225200222223232342342-++--+-+--+---+-+-+++-x x x x x x x xx x x x x x x x x x x x x x75)(,1)(2+-=-+=x x r x x x q .2.q p m ,,适合什么条件时,有1)q px x mx x ++-+32|1m x m q x p m mx m x m qx p mx x mx x q px x x mx x --++++--+++--++++-+)()1()1(01222223232 当且仅当m q p m ==++,012时q px x mx x ++-+32|1.本题也可用待定系数法求解.当q px x mx x ++-+32|1时,用12-+mx x 去除q px x ++3,余式为零,比较首项系数及常数项可得其商为q x -.于是有q x mq x q m x mx x q x q px x ++--+=-+-=++)1()()1)((2323.因此有m q p m ==++,012.2)q px x mx x ++++242|1由带余除法可得)1()2()1)(1(2222224m p q x m p m m p mx x mx x q px x --++--++-+-++=++ 当且仅当0)1()2()(22=--++--=m p q x m p m x r 时q px x mx x ++++242|1.即⎩⎨⎧=--+=--010)2(22m p q m p m ,即⎩⎨⎧=+=,1,0p q m 或⎩⎨⎧==+.1,22q m p 本题也可用待定系数法求解.当q px x mx x ++++242|1时,用12++mx x 去除q px x ++24,余式为零,比较首项系数及常数项可得其商可设为q ax x ++2.于是有)1)((2224++++=++mx x q ax x q px x.)()1()(234q x mq a x q ma x a m x ++++++++=比较系数可得.0,1,0=+=++=+mq a p q ma a m 消去a 可得⎩⎨⎧=+=,1,0p q m 或⎩⎨⎧==+.1,22q m p 3.求)(x g 除)(x f 的商)(x q 与余式)(x r .1);3)(,852)(35+=--=x x g x x x x f解:运用综合除法可得327109391362327117083918605023---------商为109391362)(234+-+-=x x x x x q ,余式为.327)(-=x r2)i x x g x x x x f 21)(,)(23+-=--=.解:运用综合除法得:ii ii i i i 892521892421011121+----+-------商为)25(22i ix x +--,余式为i 89+-. 4.把)(x f 表成0x x -的方幂和,即表示成 +-+-+202010)()(x x c x x c c 的形式.1)1,)(05==x x x f ;2);2,32)(024-=+-=x x x x f3).1,73)1(2)(0234-=++-+-+=x i x x i ix x x f分析:假设)(x f 为n 次多项式,令])()()[()()()()(10021000202010--++-+-+=-++-+-+=n n nn x x c x x c c x x c x x c x x c x x c c x f0c 即为0x x -除)(x f 所得的余式,商为10021)()()(--++-+=n n x x c x x c c x q .类似可得1c 为0x x -除商)(x q 所得的余式,依次继续即可求得展开式的各项系数.解:1)解法一:应用综合除法得.5110141110416311563143211143211111111111100000115)(x x f =1)1(5)1(10)1(10)1(5)1(2345+-+-+-+-+-=x x x x x .解法二:把x 表示成1)1(+-x ,然后用二项式展开1)1(5)1(10)1(10)1(5)1(]1)1[(234555+-+-+-+-+-=+-=x x x x x x x2)仿上可得812226122412210412112082422128442302012-----------------432)2()2(8)2(22)2(2411)(+++-+++-=x x x x x f . 3)因为i iii i i i i i i i i i ii ii i i 2111510157104141173121-----------+-------+---- .)()(2))(1()(5)57(73)1(2)(432234i x i x i i x i i x i ix x i ix x x f +++-++-+-+=++-+-+=5.求)(x f 与)(x g 的最大公因式1)1)(,143)(23234--+=---+=x x x x g x x x x x f解法一:利用因式分解),13)(1(143)(3234--+=---+=x x x x x x x x f).1()1(1)(223-+=--+=x x x x x x g因此最大公因式为1+x .解法二:运用辗转相除法得)(3438)(01122132)(1434343)(41432112321212314121)(3122123423422223232x q x x q x x x x x x x x r x x x x x x x x x x r x x x x x x x x x x x x q =+=---------=--+---+--=------++--++-= 因此最大公因式为1+x .2)13)(,14)(2334+-=+-=x x x g x x x f .解:运用辗转相除法得(注意缺项系数补零)2564411627)(125627)(2565391649216491633323)(10310031004911916)(920910310132310323110391031)(13221232323423422223232--=--=+-+-+-+--=-++-+-+-++-+++--=+--++--+++-+-=x x q x x r x x x x x x x r x x x x x x x x x x x x x x x x r x x x x x x x x x x x x q .1))(),((=x g x f3).124624)(,110)(23424+++-=+-=x x x x x g x x x f)()()22(24)()(123x r x f x x x x f x g +=---=,),()22)((241)122()22)(22()(21223x r x x r x x x x x x x f ++-=---+--= ,)()122(22)(24122231x x r x x x x x x x r -=--=--=- 因此.122))(),((2--=x x x g x f6.求)(),(x v x u 使:))(),(()()()()(x g x f x g x v x f x u =+1);22)(,242)(234234---+=---+=x x x x x g x x x x x f解:运用辗转相除法得:)()(1022)(222422)(222221)(3133123423422323242342x q x x q x x xx x r x x x x x x x x x x r xx x x x x x x x x x x x q ==--=---+---+-=--+----++= 因此2)())(),((22-==x x r x g x f .且有 )()()()(11x r x q x g x f +=,),()()()(221x r x q x r x g +=).()()(321x q x r x r =于是)()]()()([)()()()()(21212x q x q x g x f x g x q x r x g x r --=-=)()]()(1[)()(212x g x q x q x f x q ++-=..2)()(1)(,1)()(212+=+=--=-=x x q x q x v x x q x u2);452)(,951624)(23234+--=++--=x x x x g x x x x x f解:运用辗转相除法得:)(96)(20999966936)(810249516241)(32422324523131)(3122123423422223232x q x x q x x x xx x x x r xx x x x x x x x x r x x x x x x x x x x x x q =+=+-+-+-+--=+--++--+-=+--+---++--+-= 因此1)())(),((2-=-=x x r x g x f .且有)()()()(11x r x q x g x f +=,),()()()(221x r x q x r x g +=).()()(321x q x r x r =于是)()]()()([)()()()()(21212x q x q x g x f x g x q x r x g x r --=-=)()]()(1[)()(212x g x q x q x f x q ++-=..13232)3131(21)()(1)(,3131)()(2212--=+---=--=+-==x x x x x q x q x v x x q x u 3).1)(,144)(2234--=++--=x x x g x x x x x f解:运用辗转相除法得:)(32)(3331431441)(21211)(121222342342222x q x x x r x x x x x x x x x x x x r x x xx x x x x q =--=++-++---++--=-----+= 因此.1)())(),((2==x r x g x f 且有)()()()(11x r x q x g x f +=,),()()()(221x r x q x r x g +=).()()(321x q x r x r =于是)()]()()([)()()()()(21212x q x q x g x f x g x q x r x g x r --=-=)()]()(1[)()(212x g x q x q x f x q ++-=..23)1)(3(1)()(1)(,1)()(232212--+=+-+=+=--=-=x x x x x x q x q x v x x q x u7.设u tx x x g u x x t x x f ++=++++=323)(,22)1()(的最大公因式是一个二次多项式,求u t ,的值.解:运用带余除法有),()()2()1(1)(22)1()(12323x r x g u x t x t u tx x u x x t x x f +=+--++⋅++=++++= 由题意可得,)(1x r 即为)(),(x g x f 的最大公因式.因此有01≠+t .进一步),(])1(211)[()(221x r t t x t x r x g ++-++= ])1(21[)1()2()1()1()(22222t t u x t t t u t t x r +--++-++-+=. 要使)(1x r 为)(),(x g x f 的最大公因式的充要条件是.0)(2=x r 即⎩⎨⎧=--+=-++-+,0)]2()1[(,0)2()1()1(222t t u t t u t t 解得⎪⎩⎪⎨⎧--=+-=⎪⎩⎪⎨⎧+-=--=⎪⎩⎪⎨⎧±==⎩⎨⎧-==.2111,117;2111,117;231,0;4,0i t i u i t i u i t u t u 8.证明:如果),(|)(),(|)(x g x d x f x d 且)(x d 为)(x f 与)(x g 的一个组合,那么)(x d 是)(x f 与)(x g 的一个最大公因式.证明:由)(|)(),(|)(x g x d x f x d 可知)(x d 是)(x f 与)(x g 的一个公因式.下证)(x f 与)(x g 的任意一个公因式是)(x d 的因式.由)(x d 为)(x f 与)(x g 的一个组合可知,存在多项式)(),(x v x u ,使得)()()()()(x g x v x f x u x d +=.设)(x ϕ是)(x f 与)(x g 的任意一个公因式,则)(|)(),(|)(x g x x f x ϕϕ.故)()()()(|)(x g x v x f x u x +ϕ即).(|)(x d x ϕ因此)(x d 是)(x f 与)(x g 的一个最大公因式.9.证明:)()(())(),(())()(),()((x h x h x g x f x h x g x h x f =的首项系数为1). 证明:存在多项式)(),(x v x u ,使得)()()()())(),((x g x v x f x u x g x f +=.所以有)()()()()()()())(),((x h x g x v x h x f x u x h x g x f +=.即)())(),((x h x g x f 是 )()(x h x f 与)()(x h x g 的一个组合.显然有)(|))(),((),(|))(),((x g x g x f x f x g x f .从而)()(|)())(),((),()(|)())(),((x h x g x h x g x f x h x f x h x g x f .由第8题结果)())(),((x h x g x f 是)()(x h x f 与)()(x h x g 的一个最大公因式.又)(x h 是首项系数为1的,因此).())(),(())()(),()((x h x g x f x h x g x h x f =10.如果)(x f ,)(x g 不全为零,证明1))(),(()(,)(),(()((=x g x f x g x g x f x f . 证明:由)(x f ,)(x g 不全为零可得其最大公因式不为零多项式,即.0))(),((≠x g x f 又存在多项式)(),(x v x u ,使得)()()()())(),((x g x v x f x u x g x f +=.于是))(),(()()())(),(()()(1x g x f x g x v x g x f x f x u +=. 因此1))(),(()(,)(),(()((=x g x f x g x g x f x f . 11.如果)(x f ,)(x g 不全为零,且))(),(()()()()(x g x f x g x v x f x u =+,那么1))(),((=x v x u .证明:由)(x f ,)(x g 不全为零可得.0))(),((≠x g x f 由))(),(()()()()(x g x f x g x v x f x u =+有.1))(),(()()())(),(()()(=+x g x f x g x v x g x f x f x u 于是1))(),((=x v x u .12.证明:如果,1))(),((,1))(),((==x h x f x g x f 那么.1))()(),((=x h x g x f 证法一、由条件1))(),((,1))(),((==x h x f x g x f 可得存在多项式)(),(11x v x u ; )(),(22x v x u 使得1)()()()(11=+x g x v x f x u ,1)()()()(22=+x h x v x f x u .两式相乘得1)()()()()()]()()()()()()()()([21211221=+++x h x g x v x v x f x h x v x u x g x v x u x f x u x u . 因此有.1))()(),((=x h x g x f证法二、反证法证明.显然.0))()(),((≠x h x g x f 若,1))()(),((≠x h x g x f 则存在不可约多项式)(x p ,使得)(x p 为)(x f 与)()(x h x g 的公因式.因此有)(|)(x f x p 且)()(|)(x h x g x p .由)(x p 的不可约性有)(|)(x g x p 或)(|)(x h x p .若)(|)(x g x p ,则)(x p 为)(x f 与)(x g 的一个公因式,与1))(),((=x g x f 相矛盾.若)(|)(x h x p ,则)(x p 为)(x f 与)(x h 的一个公因式,与1))(),((=x h x f 相矛盾.因此1))()(),((≠x h x g x f 不成立,即有.1))()(),((=x h x g x f13.设)(),(),(),(,),(),(2121x g x g x g x f x f x f n m 都是多项式,而且).,,2,1;,,2,1(,1))(),((n j m i x g x f j i ===求证:1))()()(),()()((2121=x g x g x g x f x f x f n m .证明:由),,2,1(1))(),((1n j x g x f j ==,反复利用第12题结果可得1))()()(),((211=x g x g x g x f n .类似可得.,,2,1))()()(),((21m i x g x g x g x f n i ==再反复利用12题结果可得1))()()(),()()((2121=x g x g x g x f x f x f n m .14.证明:如果,1))(),((=x g x f 那么.1))()(),()((=+x g x f x g x f 证明:方法一.由,1))(),((=x g x f 存在多项式)(),(x v x u 使得1)()()()(=+x g x v x f x u .从而有,1)())()(())()()((,1))()()(()())()((111111=+-++=++-x g x v x u x g x f x u x g x f x v x f x v x u 因此有.1))()(),((,1))()(),((=+=+x g x f x g x g x f x f 由12题结果结论成立.方法二:用反证法.若.1))()(),()((≠+x g x f x g x f 则存在不可约多项式)(x p ,使得)(x p 为)()(x g x f 与)()(x g x f +的公因式.即)()(|)(x g x f x p 且)()(|)(x g x f x p +.由)(x p 的不可约性及)()(|)(x g x f x p ,有)(|)(x f x p 或)(|)(x g x p .若)(|)(x f x p ,又)()(|)(x g x f x p +,因此有)]())()([(|)(x f x g x f x p -+,即)(|)(x g x p ,也即)(x p 为)(x f 与)(x g 的一个公因式,与1))(),((=x g x f 相矛盾.类似可得当)(|)(x g x p 时也与已知1))(),((=x g x f 矛盾.所以.1))()(),()((=+x g x f x g x f15.求下列多项式的公共根:.12)(;122)(23423++++=+++=x x x x x g x x x x f解法一:利用因式分解可得);1)(1(122)(223+++=+++=x x x x x x x f ).1)(1(12)(22234+++=++++=x x x x x x x x g因此1))(),((2++=x x x g x f .)(x f 与)(x g 的公共根为.2321i ±- 解法二:运用辗转相除法求出)(x f 与)(x g 的最大公因式,最大公因式的根即为所求的公共根.),1(2)1)(()(2++--=x x x x f x g ).1)(1()(2+++=x x x x f因此1))(),((2++=x x x g x f .)(x f 与)(x g 的公共根为.2321i ±- 16.判别下列多项式有无重因式: 1);84275)(2345-+-+-=x x x x x x f 解:,4421205)('234+-+-=x x x x x f运用辗转相除法可得.)2(44))('),((22-=+-=x x x x f x f 因此2-x 为)(x f 的三重因式.解法二:试根可得2为)(x f 的根)1()2()2()2()43)(2()(23232234++-=----=++--=x x x x x x x x x x x x f .因此2-x 为)(x f 的三重因式. 2).344)(24--+=x x x x f解:).12(4484)('33-+=-+=x x x x x f 1))('),((=x f x f .故)(x f 无重因式. 17.求t 值使13)(23-+-=tx x x x f 有重根.解法一:要使)(x f 有重根,则1))('),((≠x f x f ..63)('2t x x x f +-=),12(33)(')3131(13)(23+-+-=-+-=x t x f x tx x x x f .415)41523)(12(63)('2++-+=+-=t x x t x x x f当,033=-t 即3=t 时),(|)(',)1(3363)('22x f x f x x x x f -=+-=2)1())('),((-=x x f x f ,因此1为)(x f 的三重根. 当0415=+t ,即415-=t 时,21))('),((+=x x f x f ,21-为)(x f 的二重根.解法二:设b a x ab a x b a x b x a x x f 22232)2()2()()()(-+++-=--=. 因此有⎪⎩⎪⎨⎧==+=+.1,2,3222b a t ab a b a 由第一个方程有a b 26-=,代人第三个方程有,0132,1)23(232=+-=-a a a a 即0)12()1(2=+-a a .因此有⎪⎩⎪⎨⎧===,3,1,1t b a 或⎪⎪⎩⎪⎪⎨⎧-==-=.415,4,21t b a即当3=t 时1为)(x f 的三重根;当415-=t 时,21-为)(x f 的二重根.18.求多项式q px x ++3有重根的条件.解:令q px x x f ++=3)(.显然当0==q p 时,0为)(x f 的三重根.当0≠p 时, p x x f +=23)(',q x px xf q px x x f ++=++=32)('31)(3,)427()42729)(32()('222p q p p q x p q x p x f ++-+=. 要使)(x f 有重根,则1))('),((≠x f x f .即,042722=+pq p 即.027423=+q p 显然 0==q p 也满足.027423=+q p 因此)(x f 有重根的条件是.027423=+q p19.如果,1|)1(242++-Bx Ax x 求.,B A解法一:利用整除判定方法,1|)1(242++-Bx Ax x 的充要条件是用2)1(-x 除124++Bx Ax ,余式为零.)31()42()32()1(12224B A x A B A B Ax Ax x Bx Ax --++++++-=++.因此有0)31()42(=--++B A x A B ,即⎩⎨⎧-==⎩⎨⎧=--=+.2,1.031,042B A B A A B 解法二:要使1|)1(242++-Bx Ax x 成立,则1至少是124++Bx Ax 的二重根.因此1既是124++Bx Ax 的根,也是其导数的根.而Bx Ax Bx Ax 24)'1(324+=++.故有⎩⎨⎧-==⎩⎨⎧=+=++.2,1.024,01B A B A B A 解法三:利用待定系数法.令Dx D C x D C A x A C Ax D Cx Ax x Bx Ax +-++-+-+=++-=++)2()2()2()()1(12342224因此有⎪⎪⎩⎪⎪⎨⎧==-=+-=-.1,02,2,02D D C B D C A A C 解得⎪⎪⎩⎪⎪⎨⎧==-==.1,2,2,1D C B A 20.证明:!!212n x x x n++++ 不能有重根.证明:令,!!21)(2n x x x x f n++++= 则,)!1(!21)('12-++++=-n x x x x f n因此有,!)(')(n x x f x f n +=从而有)!),('())('),((n x x f x f x f n =.!n x n因式只有)0(≠c c 及)1,0(n k c cx k ≤≤≠.而)1,0(n k c cx k ≤≤≠显然不是)('x f 的因式.因此有1)!),('())('),((==n x x f x f x f n.所以)(x f 没有重根.21.如果a 是)('''x f 的一个k 重根,证明a 是)()()](')('[2)(a f x f a f x f ax x g +-+-=的一个3+k 重根. 证明:)],(')('[21)(''2)(')(''2)](')('[21)('a f x f x f a x x f x f a x a f x f x g ---=--++=).('''2)(''21)('''2)(''21)(''x f ax x f x f a x x f x g -=--+=显然有0)(")(')(===a g a g a g .由a 是)('''x f 的一个k 重根可得a 是)(''x g 的一个1+k 重根,设a 是)(x g 的s 重根,则3,12+=+=-k s k s .本题常见错误证法.错误证法一:由a 是)('''x f 的一个k 重根就得出a 是)(''x f 的一个1+k 重根,a 是)('x f 的一个2+k 重根,a 是)(x f 的一个3+k 重根,于是)(2)()()()](')('[2)(3x h a x a f x f a f x f a x x g k +-=+-+-=从而a 是)(x g 的3+k 重根.事实上,由a 是)('''x f 的一个k 重根推不出a 是)(''x f 的一个1+k 重根,a 是)('x f 的一个2+k 重根,a 是)(x f 的一个3+k 重根. 如3)()()()(23+-+-+-=+a x a x a x x f k ,则1)(2))(3()('2+-+-+=+a x a x k x f k ,2))(2)(3()(''1+-++=+k a x k k x f .a 既不是)(x f 的根,也不是)('x f 与)(''x f 的根.错误证法二:由)],(')('[21)(''2)(')(''2)](')('[21)('a f x f x f a x x f x f a x a f x f x g ---=--++=)('''2)(''21)('''2)(''21)(''x f ax x f x f a x x f x g -=--+=得出a 是)(''x g 的1+k 重根,直接得出a 是)(x g 的3+k 重根,缺了a 是)(x g 与)('x g 的根验证.22.证明:0x 是)(x f 的k 重根的充分必要条件是,0)()(')(0)1(00====-x f x f x f k 而.0)(0)(≠x f k证明:必要性.设0x 是)(x f 的k 重根,从而0x x -是)(x f 的k 重因式,从而是)('x f 的1-k 重因式,是)(''x f 的2-k 重因式,...,是)()1(x f k -的单因式,而不是)()(x f k 的因式.因此0x 是)(x f ,)('x f ,)(''x f ,...,)()1(x f k -的根,而不是)()(x f k 的根.故有,0)()(')(0)1(00====-x f x f x f k 而.0)(0)(≠x f k充分性.由,0)()(')(0)1(00====-x f x f x f k 而0)(0)(≠x f k 可知0x 是)(x f ,)('x f ,)(''x f ,...,)()1(x f k -的根,而不是)()(x f k 的根.因此0x 是)()1(x f k -的单根,是)()2(x f k -二重根,依此类推,是)(x f 的k 重根.23.举例说明断语“如果α是)('x f 的m 重根,那么α是)(x f 的1+m 重根”是不对的.解:例如2)()(1+-=+m x x f α,m x m x f ))(1()('α-+=.α是)('x f 的m 重根,但α不是)(x f 的根.24.证明:如果),(|)1(n x f x -那么)(|)1(n n x f x -.证明:由)(|)1(n x f x -可得)()1()(x g x x f n -=.从而.0)1(=f 因此有),()1()(x h x x f -=从而有).()1()(n n n x h x x f -=即)(|)1(n n x f x -.证法二:要证)(|)1(n n x f x -,只要证1-n x 在复数域上的各个根都是)(n x f 的根.1-n x 的根为.1,,2,1,0,2sin 2cos-=+=n k nk i n k x k ππ由)(|)1(n x f x -可得)()1()(x g x x f n -=.从而.0)1(=f 从而0)1()(==f x f nk .即,2sin 2cos nk i n k x k ππ+=1,,2,1,0-=n k 都是)(n x f 的根.因此有)(|)1(n n x f x -.25.证明:如果)()(|)1(32312x xf x f x x +++,那么).(|)1(),(|)1(21x f x x f x --证明:要证)(|)1(),(|)1(21x f x x f x --成立,只要证1是)(1x f 和)(2x f 的根.12++x x 的两个根为231,23121ii --=+-=εε.由)()(|)1(32312x xf x f x x +++可得)()1()()(23231x g x x x xf x f ++=+.于是,0)()1()()(,0)()1()()(2223222321112312131121=++=+=++=+εεεεεεεεεεεεg f f g f f即0)1(231)1(,0)1(231)1(2121=+-=--f if f i f .故有.0)1()1(21==f f 所以 )(|)1(),(|)1(21x f x x f x --.26.求多项式1-n x 在复数范围内和在实数范围内的因式分解. 解:1-n x 的根为.1,,2,1,0,2sin 2cos -=+=n k nk i n k k ππε故在复数范围内的分解式为)())()(1(112-----=-n n x x x x x εεε .在实数范围内,因k n k -=εε,)0(n k <<.当n 为奇数时,1-n x 的根中一个为实根,其余为虚根,其分解式为]1)([]1)(][1)()[1(12121222212++-++-++--=-+---x x x x x x x x n n n n nεεεεεε .当n 为偶数时,1-n x 的根中二个为实根,即,1±其余为虚根,其分解式为].1)([]1)(][1)()[1)(1(11212222212++-++-++-+-=-+---x x x x x x x x x n n n n nεεεεεε27.求下列多项式的有理根. 1);1415623-+-x x x解:多项式可能的有理根为.14,7,2,1±±±±由系数取值可知,x 取负数时,多项式的值均为负的,故该多项式没有负根.检验得2为其根,进一步运用综合除法可得074114821415612-----即)74)(2(14156223+--=-+-x x x x x x ,显然742+-x x 没有有理根.因此1415623-+-x x x 仅有一个有理根2,且为单根.2);157424---x x x解:多项式可能的有理根为.41,21,1±±±444222026242113121570421------------因此有)1()12()444()21(1574222224--+=--+=---x x x x x x x x x ,显然12--x x 没有有理根.因此21-为157424---x x x 的二重根.3).3111462345----+x x x x x解:多项式可能的有理根为.3,1±±检验得1-为其根,进一步运用综合除法可得1213630351133511038601138601311146111--------------故)3()1()12)(3()1(3111464222345-+=++-+=----+x x x x x x x x x x x .即1-为其四重跟,3为单根.28.下列多项式在有理数域上是否可约? 1);12+x解:显然12+x 无有理根,又为二次的,故在有理数域上不可约. 2);2128234++-x x x解:取素数2=p ,满足艾森斯坦判别法的条件,因此在有理数域上不可约. 3);136++x x 解:令,1+=y x).(3918211561)1()1(1)(234563636y g y y y y y y y y x x x f =++++++=++++=++=取素数,3=p )(y g 满足艾森斯坦判别法条件,因此在有理数域上不可约,从而)(x f 在有理数域上不可约.4)p px x p ,1++为奇素数;解:令1-=y x ,由p 为奇数可得1)1()1(1)(+-+-=++=y p y px x x f p p).()(1222211y g p y p C y C y C yC y p p p p p p p p p =-++--+-=---- 由组合数定义)11(-≤≤p k C kp 均为整数,且12)1()1()1(⋅-+--= k k k p p p C k p,分子中有因子p ,分母个各数均小于p ,又p 为素数,因此约分时p 不会被约去,因此有kpC p |,取素数为p ,)(y g 满足艾森斯坦判别式条件,因此)(y g 在有理数域上不可约,从而)(x f 在有理数域上不可约. 5)k kx x ,144++为整数. 解:令,1+=y x 则有).(2)1(4641)1(4)1(1423444y g y k y y y y k y kx x =+++++=++++=++取素数,2=p )(y g 满足艾森斯坦判别法条件,因此在有理数域上不可约,从而)(x f 在有理数域上不可约.。
(完整word版)高等代数复习题精选.doc第一章多项式自测题一、填空题1. 设 g (x) f (x) ,则 f (x)与g( x)的一个最大公因式为.2. f ( x) a n x n a n 1x n 1 a1x a0 P[ x] ,若 x | f (x) ,则 a0 ; 若x 1是 f ( x) 的根,则a0 a1 a2 a n .3.若( f (x), f ( x)) x 1 ,则是 f (x) 的重根 .4. x4 4 在有理数域,实数域,复数域上的标准分解式为, , .二、选择题 (以下所涉及的多项式 ,都是数域 P 上的多项式 )1.设( x) | f ( x), ( x) | g( x),且 ( x) 0, g( x)与 f ( x) 不全为0,则下列命题为假的是 ( ).A. ( x) | (u(x) f ( x) v(x)g( x))B. deg( ( x)) min{deg f ( x),deg( g( x))}( deg 意思为次数)C.若存在u(x), v( x) ,使u(x) f ( x) v( x)g ( x) ( x), 则 ( f ( x), g(x)) ( x)D.若x a | (x), 则 f ( a) g (a) 02.若( f (x), g( x)) 1 ,则以下命题为假的是( ).A. ( f2( x), g3(x)) 1B. ( f (x), f ( x) g( x)) 1C. g( x) | f ( x)h( x)必有g( x) | h( x)D. 以上都不对3.下列命题为假的是 ( ).A.在有理数域上存在任意次不可约多项式B.在实数域上 3 次多项式一定可约C.在复数域上次数大于 0 的多项式都可约D.在实数域上不可约的多项式在复数域上没有重根4.下列命题为真的是 ( ).A.若p2( x) f (x) ,则p( x)是f (x)二重因式B.若p(x)是f ( x), f ( x), f (x) 的公因式,则 p( x) 的根是 f ( x) 的三重根C. f ( x)有重根 f (x), f ( x) 有一次因式D.若f (x)有重根 ,则f ( x)有重因式 ,反之亦然三、判断题1. 设 f ( x), g ( x), h( x) P[ x] , 若 g( x) 不能整除 h(x) ,则 g( x) 不整除( f ( x ) h (x )( ) 2.零多项式能被任意多项式所整除 ,也能整除任意多项式 . () 3. 若 f ( x) g (x)q( x)r ( x), 则 ( f ( x), g( x))(g (x), r ( x)).()4.如果 p( x) 是数域 P 上的不可约多项式 ,那么对于任意的 c P, 且c 0, cp (x)也是 P 上的不可约多项式 .( )5.若一个整系数多项式在有理数域上可约 , 则它一定能分解两个次数较低的整系数多项式之积 .第二章行列式自测题一、填空题1.六级行列式 a ij 6中的项a13a 32a 46a 51a25的符号为.2.设aij nd ,则 ka ij n.a 2 0 x3.已知行列式 0y 2中元素 a 与 b 的代数余子式分别为 -6 和 8 则0 0 2 1b0 0 3x y.x 1 x 2 ax 3 1如果方程组x 1 ax 2 x 3 a 有唯一的解 ,那么 a 满足的条件是.4.ax 1x 2 x 3 a 2a 11a 12 a 13a21a 31 a 11 5.设 a 2123 d ,则 a 22a 32 a12 .a31a 32a33a23a33a13二、选择题a 1 a 2 a 3a 1 2a 1b 1c 11.设 b 1 b 2 b 3 3,则 a 22a 1 b 2 c 2 ( ).c 1 c 2 c 3a 32a 3 b 3 c 3A.3B.-3C.6a b c行列式de f 中,元素 f 的代数余子式为 ( ).2.g h kA.d e B.d e a b a b g hg hC. -hD.hg g3a 1 6b 1 3c 1 a 1 b 1 c 1 3. a 22b 2 c 22, 则 a 2 b 2 c 2 ( ).a 33b 3 c 3a 3b 3c 3A.2B.2C. 113324.下列等式成立的是 ().A.a1c 1 a 2 c 2 a 1 a 2 c 1 c 2b 1 d 1 b 2 d 2 b 1 b 2 d 1 d 2 B.aijn naij nnC. a ij b ijn na ij n nb ij n na 11 a 12 a 13 a 21a22a23D.a 21a 23a 312a11a322a 12 a 332a13a 31 a 32 a 33a 11a 12a 135.下列命题为真的是 ( ).A.将行列式对换两列后,再将其中一列的倍数加到另一行上,行列式的值不变B. 若aij n 中 a ij 的代数余子式为 A ij (i , j 1,2,3, , n) 则na ij n n a i 1A k1 a i 2 A k 2a in A kn (1 k n)C.行列式为 0 的充分必要条件是其两列对应成比例D.系数行列式不为 0 的线性方程组的有且仅有一解三、判断题1、奇数次对换改变排列的奇偶性。
《高等代数》习题与参考答案数学系第一章 多项式1. 用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(223+-=---=x x x g x x x x f ; 2)2)(,52)(24+-=+-=x x x g x x x f 。
解 1)由带余除法,可得92926)(,9731)(--=-=x x r x x q ; 2)同理可得75)(,1)(2+-=-+=x x r x x x q 。
2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1, 2)q px x mx x ++++242|1。
解 1)由假设,所得余式为0,即0)()1(2=-+++m q x m p ,所以当⎩⎨⎧=-=++0012m q m p 时有q px x mx x ++-+32|1。
2)类似可得⎩⎨⎧=--+=--010)2(22m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。
综上所诉,当⎩⎨⎧+==10q p m 或⎩⎨⎧=+=212m p q 时,皆有q px x mx x ++++242|1。
3.求()g x 除()f x 的商()q x 与余式:1)53()258,()3f x x x x g x x =--=+; 2)32(),()12f x x x x g x x i =--=-+。
解 1)432()261339109()327q x x x x x r x =-+-+=-;2)2()2(52)()98q x x ix i r x i=--+=-+。
4.把()f x 表示成0x x -的方幂和,即表成2010200()()...()n n c c x x c x x c x x +-+-++-+的形式:1)50(),1f x x x ==;2)420()23,2f x x x x =-+=-;3)4320()2(1)37,f x x ix i x x i x i =+-+-++=-。
高等代数例题第一章 多项式1.44P 2 (1)m 、p 、q 适合什么条件时,有231x mx x px q +-++2.45P 7 设32()(1)22f x x t x x u =++++,3()g x x tx u =++的最大公因式是一个二次多项式,求t 、u 的值。
3.45P 14 证明:如果((),())1f x g x =,那么(()(),()())1f x g x f x g x += 4.45P 18 求多项式3x px q ++有重根的条件。
5.46P 24 证明:如果(1)()n x f x -,那么(1)()n n x f x -6.46P 25 证明:如果23312(1)()()x x f x xf x +++,那么1(1)()x f x -,2(1)()x f x - 7.46P 26 求多项式1nx -在复数域内和实数域内的因式分解。
8.46P 28 (4)多项式1p x px ++ (p 为奇素数)在有理数域上是否可约?9.47P 1 设1()()()f x af x bg x =+,1()()()g x cf x dg x =+,且0ad bc -≠。
求证:11((),())((),())f x g x f x g x =。
10.48P 5 多项式()m x 称为多项式()f x ,()g x 的一个最小公倍式,如果(1)()()f x m x ,()()g x m x ; (2)()f x ,()g x 的任意一个公倍式都是()m x 的倍式。
我们以[(),()]f x g x 表示首项系数为1的那个最小公倍式。
证明:如果()f x ,()g x 的首项系数都为1,那么()()[(),()]((),())f xg x f x g x f x g x =。
11.设 m 、n 为整数,2()1g x x x =++除33()2mn f x xx =+-所得余式为 。
一、填空题(共10 题,每题2分,共20分)。
1. 多项式可整除任意多项式。
2.艾森施坦因判别法是判断多项式在有理数域上不可约的一个 条件。
3.在n 阶行列式D 中,0的个数多于 个是0D =。
4.若A 是n 阶方阵,且秩1A n =-,则秩A *= 。
5.实数域上不可约多项式的类型有 种。
6.若不可约多项式()p x 是()f x 的k 重因式,则()p x 是(1)()k f x -的 重因式。
7.写出行列式展开定理及推论公式 。
8.当排列12n i i i 是奇排列时,则12n i i i 可经过 数次对换变成12n 。
9.方程组12312322232121x x x ax bx cx d a x b x c x d ++=⎧⎪++=⎨⎪++=⎩,当满足 条件时,有唯一解,唯一解为 。
10.若242(1)1x ax bx -∣++,则a = ,b = 。
二、判断题(共10 题,每题1分, 共 10分)。
1.任何两个多项式的最大公因式不因数域的扩大而改变。
( )2.两个多项式互素当且仅当它们无公共根。
( ) 3.设12n ααα是n P 中n 个向量,若nP β∀∈,有12,n αααβ线性相关,则12nααα线性相关。
( )4.设α是某一方程组的解向量,k 为某一常数,则k α也为该方程组的解向量。
( ) 5.若一整系数多项式()f x 有有理根,则()f x 在有理数域上可约。
( ) 6 秩()A B +=秩A ,当 且仅当秩0B =。
( ) 7.向量α线性相关⇔它是任一向量组的线性组合。
( )8. 若(),()[]f x g x P x ∈,且((),())1f x g x =,则(()(),()())1f x g x f x g x +=。
( ) 9.(),()[]f x g x Z x ∈,且()g x 为本原多项式,若()()()f x g x h x =则()[]h x Z x ∈。
§1 数域[达标训练题] 一填空题 1�数集{0}对 运算封闭. 2�自然数集N 对 运算封闭. 3�数集},{Z b ab i a ��对 封闭. 二判断题 1. 数域必含有无穷多个数. 2. 所有无理数构成的集合是数域. 三证明 1. 证明},{)(Q b a nb a n Q ���是数域,这里n 不是完全平方数. 2. 证明},2{3Q b a b a ��不是数域. 3. 若21,P P 是数域,证明21P P�也是数域,而21P P�不一定是数域.§1 数域[达标训练题解答] 一填空题 1�加法、 减法、 乘法�2.加法、乘法 �3.加法、减法、乘法. 二判断题 1. ( T )� 2. ( F ) 三、解答题 1�证明显然n Q �1,0.对任意的)(,2211n Q nb a n b a���,)()(2211nb a nb a ���=)(21a a �+n b b )(21�)(n Q �; )()(2211nb a n b a ��� n b a b a b n b a a )()(12212121����)(nQ �. 当011��nb a 时, nb anb a1122�� )(2121212121212121n Q n n b aa b b an b an b b a a��������.故},{)(Q b a n b a n Q���对加法减法乘法除法封闭.即},{)(Q b a nb a n Q���是数域. 2�证明 因为�32},2{3Q b a b a ��, ���333422},2{3Q b a b a ��.即},2{3Q b a b a ��对乘法不封闭.所以},2{3Q b a b a ��不是数域. 3�证明 由于任意数域都包含有理数, 故21,P P 也包含有理数域, 从而21P P �包含有理数域.令21,P P b a��,则1,P b a�,2,P b a�.由于21,P P是数域,故1,P a b b a��,2,P a b b a��;当0�b时,21,P baP ba��,所以21,,P P baa b b a���.即21P P�是数域. 例如: 取1P =},2{)2(Q b a b a Q ���, �2P},3{)3(Q b a b a Q ���, 容易验证21P P �不一定是数域; 取1P=Q ,�2P},3{)3(Q b a b a Q ���,显然21P P�=},3{Q b a b a ��是数域.§2 一元多项式[达标训练题] A组 一填空题 1. 系数在数域P 上的关于文字x 的一元多项式指的是形式表达式, 其中i 次项是 , i 次项系数是 , 常数项是 . 2. 下列形式表达式(i )2;(i i )x1; (i i i )0; (i v ))3l n (132x x x ���; (v )1)1(23���x i i x ;(v i )�������nxn xx!1!31!2113;其中 是多项式. 3. 零多项式是 , 零次多项式是 . 4. 设多项式������miii niii x b x g x a x f11)(,)(,则)()(x g x f的k次项系数是. 二判断题 1. 0是零次多项式. 2. 若)()()()(x h x fx g x f�,则)()(x h x g �. 3. 若)(),(),(x h x g x f都是数域P 上的多项式, 则))()((x g x f ��))((x f ��或者))()((x g x f ��))((x g ��. 三解答题 1. 设)2()1()2()(22�������x x c x b x a x f , 试确定c b a ,,, 使)(x f (i )零次多项式; (i i )零多项式; (i i i )一次多项式5�x . 2. 若)(),(x g x f是实数域上的多项式, 证明:若,0)()(22��x g x f则 0)()(��x g x f. B组 1.设)(),(),(x h x gx f是实数域上的多项式, 证明:若),()()(222x x h x x g x f��则0)()()(���x h x g x f. 2.求一组满足上式的不全为零的复系数多项式. 3. 次数定理中,式子 ))}(()),((m a x {))()((x g x f x g x f ����� 何时等号成立?何时小于号成立?§2 一元多项式[达标训练题解答] A组 一填空题 1�1110nnn n a x a x a x a �������i i x a �ia� 0a�2.�i ���i i i ��v ��3. 0�非零常数 � 4.����11ki i ki b a.二判断题 1�(F )� 2. (F ).; 3.(F ). 三解答题 1�解 因为 222()(2)(1)(2)()fx a x b x c x x a c x ����������(2)a b c x �� )24(c b a ���.利用多项式相等的定义的: (i )�������������024020c b a c b a c a(i i ) �������������024020c b a c b a c a (i i i ) ��������������524120c b a c b a c a即(i )当0,3,����c c b c a 时, )(x f 为零次多项式; (i i )当0���c b a 时)(x f为零多项式;(i i i )6,17,6�����c b a 时)(x f 是一次多项式5�x . 2�证明 设01)(a x a x a x fnn ������01)(b x b x a x g mm ������则)()(22x g x f�的第k 次项系数为)(0i k i ki i ki b b a a �����=0,当0�k 得000��b a ,当1�k 时得02121��b a ,进而011��b a ,同样地,得到022��b a …….因此0)()(��x g x f B组 1�证明 若0)(�x g (或0)(�x h )显然得)()()(222x x h x x g x f��是一个奇次多项式, 这是不可能的.又若0)(�x f ,则)(),(x h x g 不全为零,因此也得)()()(222x x h x x g x f��是一个奇次多项式, 这也是不可能的. 所以0)()()(���x h x g x f 2�解 取1)(),1()(,2)(�����x x h x i x g i x x f �则)()()(222x x h x x g x f ��. 3�解 当两个多项式次数不等时或者虽然相等但最高次项系数不是相反数时,等号成立; 其余情形小于号成立.§3 整除的概念[达标训练题] A组 一填空题 1. )(),(),(x h x g x f 都是][x P 中的多项式,若)()()(x h x g x f �,则称 整除�称 为 的因式� 为 的倍式�记为 . 2. 若0)(,0)(),()()()(����x r x g x r x q x g x f或))(())((x g x r ���,那么 除的商式是 ,余式是 ,这里][)(),(),(x P x r x gx f�. 二判断题 1. 零多项式能够整除任意多项式. 2. 整除任意多项式能够被零次多项式整除. 3. 若)()(),()(x fx g x g x f, 则))(())((x g x f ���. 4. 若0)(),()()()(���x g x r x q x g x f ,则满足该式的多项式)(),(x r x q 有且只有一对. 5.若))()(()(x h x g x f �,则)()()()(x h x f x g x f 或. 三解答题 1� 设b a x x x x f����232)(�2)(2���x x x g �)(x g 除)(x f 的余式12)(��x x r �求b a ,. 2. 如果))()(()()),()(()(2121x f x f x g x f x f x g��, 则 )()(,)()(21x f x g x f x g. 2� 如果x 不整除)(x f与)(x g �则x 不整除)(x f 与)(x g 的乘积. 3. 证明 p n m x x x x xp n m ,,,1231332������是非负整数. 4. 证明 ①如果)()(x f x h, ()|()h x g x , 则()|(()())h x f x g x �; ②如果()|(),()|()h x f x h x g x,则()|()()h x f x g x �不一定成立. B组 一多项选择题 1.)(x f 是任意多项式,c是非零常数,则下列结论成立的是. (A ))(0x f ;(B )0)(x f ;(C ) 00; (D ) c 0;(E ) 0c ;(F ) c x f )(;(G ) )(x f c ;(H ) )()(x fx cf . 2.若在][x P中,)(x g整除)(x f�为强调数域�我们记)()(x fx gP.设][)(),(x Q x g x f��下列结论 正确的有 . (A )若)()(x fx gQ,则)()(x fx gR;(B ) 若)()(x fx g R�,则)()(x fx g q�; (C )若)()(x f x g Q,则)()(x fx g R;(D )若)()(x fx g R�,则)()(x f x g q�. 3. 设)()(),()(x g x px f x p,则)(x p 整除于 . ①)()(x g x f �;②)()(22x g x f�;③)()(x g x f ;④)()(33x g x f�. 二证明题 1. 证明)(x f xk的充分必要条件是)(x f x.2. 证明113691234578����������x x x x x x x x x x.3. 证明1�dx 整除1�nx 的充要条件是n d . 4. 证明, 若)()()(1424423x h x x x g x f x x x�����,则1�x 同时整除)(),(),(x h x g x f.与例2联系,将此题推广到一般结果,并证明你的结论. 5. 对照多项式的整除性理论�讨论整数的整除性理论.§3 整除的概念[达标训练题解答] A组 一填空题 1�)(),(x h x g �)(x f �)(),(x h x g �)(x f �)(x f � )(),(x h x g �)()(),()(x f x h x f x g� )(x g �)(x f � 2.)(x q �)(x r . 二判断题 1.(F )� 2. (T )� 3. (F ); 4.(F ); 5.(F ) 三解答题 1�解 利用带余除法得)2()1)(()(�����b a x x x g x f �所以12)2(����x b a x �即3,2��b a. 2�证明 ))()(()()),()(()(2121x f x f x g x f x f x g��,利用整除性的性质�我们有))}()((21)))()(((21{)(2121x f x f x f x f x g����即)()(,)()(21x f x g x f x g. 3�证明 若)()(x g x f x,x不整除)(x f与)(x g 则存在常数0,021��r r,使2211)()(,)()(r x x q x g r x x q x f����, 所以��)()(()()(21x q x x q x x g x f2112))(r r x q r �,由于)()(x g x f x , 所以21r r x,得出矛盾.即x 不能整除)()(x g x f 证明 由于三次单位根21,��都是23133����p n m x x x 的根�即12��x x 的根都是23133����p n m x x x 的根.从而p n m x x x x xp n m ,,,1231332������.4. 证明 因为2121()(),x x x x �������其中(1,2)i i ��是三次单位虚根, 而331320m n p ii i��������,即33132(1,2)m n p i xx x x i �������,再利用12,x x ����互素得到3313212()()m n p x x x x x ��������,即 2331321m n p xx x xx������5�证明 ①如果)()()(x g x f x h�,因为 )()(x f x h ,由整除性性质得: )()()(()(x f x g x f x h��,即)()(x gx h ,与)()(x g x h �矛盾, 所以)()()(x g x fx h ��. B组 一多项选择题 1�B ,C ,E ,G ,H � 2.(A )(D );3.①②③④ 二、证明题 1�证明 充分性显然,仅证必要性. 设r x x q x f ��)()(,则 ����)())(()(x q x C r x x q x fk k o k k k r x q x C k k k )(111��kkk kk k r C r x xq C �����11)(�kr x x p ��)(因为)(x f x 且)(x x p x �由整除性的性质得�)(x f xk.2�证明 利用带余除法, )1`)(1(12343457836912���������������x x x x x x x x x x x x x x所以113691234578����������x x x x x x x x x x.3�证明 充分性显然,仅证必要性. 设r d q n ��若d r r ��,0,)1()1(11��������rrdq r dq nx x x x x,而11��dq d x x,因此11��r d x x,得出矛盾.所以0�r ,即n d.4�证明 因为)3,2,1(4s i n 4���k ki kc o n wk ��是123���x x x的根,显然)()()(4244x h x x x g x f w xk ���,即 0)1()1()1(2���h w g w fk k (3,2,1�k ), 从而0)1()1()1(���h g f . 一般地,我们有如下的结果: 若)()()(1122121nn nnnnnx fx x x f x f x x x������������,则 1,,2,1),(1���n i x f xi �.事实上,设i i i r x q x x f ���)()1()(,则in i n ni r x q x x f ���)()1()(,进一步有 )())()()()(1()()()(122112211221������������������n n n n n nnnnn nnnr x x r r x q x x x q x q x x fx x x f x f���由于 )()()(1122121n n nn n nnx fx x x f x f x x x������������,)()()()1(1122121nn nnnnnnx qx x x q x q x x x x�������������则1121211�����������nnnnrx x r r x x x��.5�参见张禾瑞先生的《高等代数》�第三版��高等教育出版社�教材�或者初等数论教材.§4 最大公因式[达标训练题] A组 一、填空 1�对于任意两个多项式),(),(x g x f 它们总有公因式 �我们称它为平凡公因式. 2�两个零多项式的做大公因式是 . 3�零多项式与任意多项式)(x f的最大公因式是.4�若),()(x f x g 则)(),(x fx g 的最大公因式是 . 5�x x g x x f����1)(,1)(2�则�))(),((x g x f,取�)(x u,)(x v = ,使)).(),(()()()()(x g x f x v x g x u x f �� 6.若,1)()()()(��x v x g x u x f 则)(x u 与)(x v . 二、判断题 1.若)(x d 是)(),(x g x f 的最大公因式�则)(x c d 也是)(),(x g x f 的最大公因式c (是常数�. 2. 存在惟一一对多项式),(),(x v x u 使)).(),(()()()()(x g x f x v x g x u x f �� 3�若 ,1))(),((�x g x f 则存在惟一一对),(),(x v x u 使 .1)()()()(��x v x g x u x f 4�若)(),(x g x f 不全为零�则 .1)))(),(()(,))(),(()((�x g x f x gx g x f x f5�由于�16,8�=8,所以多项式8与16不互素. .)(x f 与)(x g 的次数最高的公因式是最大公因式. 三、解答题 1. 判定32)(,1363)(223�������x d x x g x x x x f是否互素,并求),(),(x v x u使)).(),(()()()()(x g x f x v x g x u x f�� 2. 证明:)).()(),(())()(),(())(),((x g x fx f x g x f x f x g x f ���� 3. 证明:两个多项式)(),(x g x f 都与)(x h 互素的充要条件是它们乘积)()(x g x f 与)(x h互素. 4. 若,1))(),((�x g x f 则.1))(),((�x g x f mmB组 一、 选择题 1. 若),()(),((x d x g x f �则 成立. (A ));()()(),((x d x g x fx f �� (B ));()())()().()((x h x d x h x g x h x f ���� (C )).()())()(),()()(();())(),((,x h x d x h x g x h x f D x d x g x f n mm m��� 2.若,0)(�x f 且),()()()()(),())(,)((x d x v x g x u x f x d x g x f ���则错误结是. ;1))()(,0()()(();()(),()((��x d x g x dx fB x d x g x f A nnn).())(),()()(();())(),()((x d x g x g x f D x d x v x u C ��� 3.(多项选择)若),()()()(x r x q x g x f ��则 成立. ),(())(),()((x g x g x f A �();r x ()((),())((),())B f x g x f x r x � )).(),(())(),()(());(),(()(),()(());(),(())(),()((x r x q x q x f E x q x g x r x f D x r x q x g x f C ���二、 解答题 1. 确定k ,使24)6(2����k x k x 与k x k x 2)2(2���的最大公因式是一次的. 2.设)(),(x g x f 不全为零,则)(x f 与)(x g 的次数最高的公因式是最大公因式;反之,)(x f 与)(x g 的最大公因式都是次数最高的公因式. 3. 证明:若,1))(),((�x g x f 且,0))((,0))((����x g x f 那么存在惟一第一对多项式)),(()(()),(())((),(),(x f x v x g x u x v x u������使 1)()(,0()(�x v x g x u x f 4. 依照两个多项式的最大公因式式理论,讨论的有限多个多项式的最大公因式的理论(定义,存在性,求法,互素).§4 最大公因式[达标训练题解答] A组 一、 填空题 1� 零次多项式�2. 零多项式;3.多项式()c f x c 为零次多项式;4.)(x c g ,c 为零次多项式; 5.1,,1��x x ;6.互素. 二、判断题 1� F �2.F ;3.F ;4.T ;5.F ;6.F . 三、解答题 1. 解:通过辗转相除法求得 1))(),((�x g x f ,973697339718)(,9711976)(2������x xx v xx u. 2.证明:设)())(),((x d x g x f �,容易证明)(x d 是)()(),(x g x f x f �的公因式;对)()(),(x g x f x f �的任意公因式,容易证明它是)(),(x g x f 的公因式,从而它整除于)(),(x g x f 的最大公因式)(x d .即)()(),(x g x f x f �的任意公因式整除于它的公因式)(x d ,所以)(x d 是)()(),(x g x f x f �的最大公因式. 3.证明:1))(),((�x h x f ,1))(),((�x h x g ,则存在)(),(x v x u 与)(),(x q x p ,使1)()()()(��x h x v x f x u,1)()()()(��x q x h x p x g ,以上两式相乘容易得到1)()()()()(��x h x V x g x f x U,故1))(),()((�x h x g x f .反过来若1))(),()((�x h x g x f �则存在)(),(x v x u �使1)()()()()(��x v x h x u x g x f �若令)()()(x p x u x g��则有1)()()()(��x v x h x p x f �故1))(),((�x h x f �同样的若令)()()(x q x u x f��则有1)()()()(��x v x h x q x g �故1))(),((�x h x g . 4� 证明�首先利用上题及归纳法容易证明�若1))(),((�x g x f �1))(),((�x g x f m�同样的利用归纳法证明1))(),((�x g x f n m . B组 一、 选择题 1��A �(D )�2.�C �;3. (A ,E ) 二、 解答题 1�解 利用辗转相除法容易得到: )224()()(����k x x g x f,)1)(3(41)232)(224(41)(��������k k kx k x x g因此最大公因式是一次的条件是3�k 或者1�k . 2.证明 设)(x d 是)(),(x g x f 的次数最高的公因式,)(0x d 是)(),(x g x f 的最大公因式,所以)()(0x d x d ,而0)(0�x d 因此)(0x d 的次数等于)(x d 的次数,从而)()(0x c d x d�.故)(x d 是)(),(x g x f 的最大公因式式.反之,若)(0x d 是)(),(x g x f 的最大公因式,由于)(x d 是公因式,因此)()(0x d x d ,所以要么)(x d 是零多项式,要么)(x d 的次数不大于)(0x d 的次数.但0)(0�x d ,所以)(x d 的次数不大于)(0x d的次数.故)(0x d 是)(),(x g x f 的次数最大的多项式. 3.证明: 由 互素的充分必要条件知存在)(),(x v x u 使1��g v f u . 首先证明若g u ���,必有f v ���.由g v f u ��1g v f u ���,所以v g u f �������,因此若g u ���,必有f v ���. 其次证明如果,可以重新选取11,v u ,使11,v u 符合要求. 由带余除法定理知存在r q ,使g r r r g q u �������0,,所以1)(���g v r g q f.若0�r 上式为1)(��v f q g ,可得到0��g 与已知矛盾.若g r ���,上式为1)(���v f q g f r ,由(1)知f v f q ����)(令11,v v f q u r ���,则有111��g v f u . 最后证明唯一性. 如果存在2211,;,v u v u ,2,1,,,1,12211�����������i f v g u g v f u g v f u i i 则)()(1221v v g u u f���,因为1),(�g f ,所以12v v f�,故21v v �,同样的21u u �. 4.(参照张禾瑞编高等代数)§5因式分解定理[达标训练题] 一、填空题 1.)(x p 是不可约多项式,],[)(x P x f �若 )(x p�)(x f,则 . 2. )(x p 是不可约多项式, ],[)(x P x f�则)(x p与)(x f互素的充要条件是. 3.判定多项式2x +2在数域P 上的可约性.(i )P =Q 时 ;)(i i P =R 时;)(i i i P =C 时 . 4.)(x f=)42(�x 23)33(�x )2(�x 的标准分解式是 . 5.)(x f=2)2(�x 3)1()4(24��x x ,)(x g=4)3(�x )1(�x 2)2(�x 2,则()(x f ,)(x g )= . 二、 判断题 1. 任意数域上都有不可约多项式. 2. 若)(x h )(x f )(x g,则)()(x fx h或).()(x g x h 3. )(x p 是不可约多项式,)()(x fx p�且)()(x g x p �,则)()()(x g x fx p�. 三、 解答题 1.分别在有理数、实数域、复数域上分解14�x 为不可约多项式的乘积. 2.证明:若)(x p 不可约, )(x p()(x f +)(x g ),)(x p)(x f)(x g,则)(x p)(x f,且)(x p)(x g.若)(x p 可约,上述结论是否成立?为什么? 3. )(x p 是次数大于零的多项式,若 )(x p 与任一多项式)(x f 的关系只有两种情况()(x p ,)(x f )=1, 或)(x p)(x f,)(x p 是否是不可约的?并说明理由. 4.若)(x f 是次数大于零的首项系数为1的多项式,证明)(x f 是不可约多项式的方幂的充要条件是:对任意的多项式)(x g ,或者()(x f ,)(x g )=1,或者存在正整数m,使)()(x g x fm .§5因式分解定理[达标训练题解答] 一、填空题 1.1))(),((�x f x p ; 2.)(x p 不整除于)(x f � 3. 不可约, 不可约,可约; 4.32)1()2)(2(36���x x x ; 5. 1. 二、判断题 1.T ; 2.F ; 3.F . 三、 解答题 1. 解 在有理数14�x 为不可约多项式, 因此在有理数14�x 的分解式为其本身. 在实数域: 4221(21)(21)x x x x x ������在复数域上: ))()()(())((123232121224i x i x i x i x i x i x x���������. 2. 证明:若)(x p 不可约, 由)(x p )(x f)(x g,则)(x p)(x f或)(x p)(x g.若)(x p)(x f成立, 又)(x p()(x f +)(x g ),所以)(x p)(x f )(x g,则)(x p )(x g成立;同样地若)(x p)(x g成立利用)(x p()(x f +)(x g )得到)(x p)(x f成立.总之有)(x p)(x f 与)(x p)(x g同时成立. 若)(x p 可约,上述结论不成立.事实上取,)(,)(,)(22x x x g x x f x x p ����则)()()(x g x f x p且)(x p()(x f +)(x g ),但)(x p 即不整除0(x f 也不整除)(x g . 3. )(x p 是不可约多项式. 证明如下: 若)(x p 可约,则存在)2,1)(()(0),(�����i x p x p x p i i ,使)()()(21x p x p x p �,利用题设可以得出()(x p ,)(x p i )=1或者)()(x p x p i ,而事实上,这两种结果都不能成立.因此)(x p 可约的假设不正确. 4�证明:必要性.设)()(x p x f m�()(x p 为不可约多项式),显然对任意的)(x g ,若1))(),((�x g x p ,则1))(),(())(),((��x g x p x g x f m ,若)()(x g x p ,则)()(x g x pmm,即存在正整数m ,使)()(x g x fm. 充分性: 设)1))()((,0)()()(()()(1111����x f x p x f x p x f x p x f k不可约�,取)()(1x p x g �,则()(x f ,)(x g )=1不成立, 且对任意正整数m ,)()(x g x fm 不成立.故)1))()((,0)()()(()()(1111����x f x p x f x p x f x p x fk不可约�不成立.即)(x f 是不可约多项式的方幂.§6 重因式[达标训练题] 一、 填空题 1.设多项式)(x f=22)4�x 2)2(�x )2(�x )3(�x ,则)(x f 的单项式是 ,重因式是 ,它们的重数分别是 . 2.若)(x p是)(x f的5重因式,则)(x p是的3重因式, 的单项式. 3.)(2x f的微商是 . 4. 与)(x f 有相同的不可约因式,但无重因式. 5, )(x p 是()(x f ,)(/x f)的)1(�k k 重因式,则)(x p 是)(x f 的 重因式. 一、 判断题 1. )(x p 是)(x f 的k 重因式,则 )(x p 是)(/x f的1�k 重因式)1(�k 2., )(x p 是)(/x f 的k 重因式,则 )(x p 是)(x f 的1�k 重因式. 2� 多项式的重因式不因数域的扩大改变. 四、解答题 1. 判断下列多项式有无重因式,若有,求出重因式. (i ))(x f =35423���x x x ;(i i ))(x f =3x 1� 2. 将)(x f =x x x ��232单项式化,然后分解因式. 3. 证明: )(x f =1+!!22nxxxn����没有重因式. 4. a ,b 满足什么条件,b a x x ��33有重因式.§6 重因式[达标训练题解答] 一、 填空题 1.3�x , 2�x 与2�x , 4与3; 2.)(x f ��; 3.)()(2x f x f �; 4.))(),(()(x f x f x f�; 5.1�k . 二、 判断题 1.F ; 2.T ; 3.F . 三、 解答题 1. 解: (1)利用辗转相除法容易求出1))(),((��x f x f ,所以)(x f=35423���x x x 无重因式. (2)同(1). 2. 解�容易计算)1())(),((���x x f x f �所以1�x 是)(x f 的二重因式�又)1())(),(()(���x x x f x f x f�故)(x f =2)1(�x x x x x��232. 3. 证明: 12)!1(1!211)(��������nxn xx x f�, 1))!1(11,!1())(),()(())(),((1������������nnxn x xn x f x f x f x f x f �.故无重因式. 4.解: 显然当0a b ��时�b a x x��33有三重因式x �当0,0a b ��时b a x x��33无重因式�当0a �时�当204baa ��时�2((),())22bf x f x x x a a ������b a x x��33有二重因式22x a �§7 多项式函数[达标训练题] A组 一、 填空题 1.多项式 有无穷多个根. 2,若)(x f=23432x x x ��,则)2(f = , )(x f 的根是 ,重根是 ,其重数是 . 3.�是多项式)(x f 微商的k 重根,则 �是)()3(x f的 重根.这里k�5. 4.若�是)(/x f的k 重根,且满足 , �是)(x f 的1�k 重根. 二、 判断题 1. 若)(x f 没有重根,则)(x f 没有重因式. 2. 若)(x f 没有根,则)(x f 不可约. 3.)(x f 没有重根,()(x f ,)(/x f)=1 4. ()(x f ,)(/x f)=1,则)(x f 无重根. 三、 解答题 1. 求一个次数小于3的多因式,使f (2)=1,)1(�f =2�, f(3)=2. 2. 证明多项式)(x f =!)1(21n x n n n x x nnn�������无重根. B组 1. 求一个满足下列条件的三次多项式: (i )3�x)(x f;(i i )3�x 除)(x f 的余数是4; (i i i ))(x f 被2�x ,2�x 除的余数相等. 2. 证明x s i n 不能表示成x 的多项式. 3. 多项式)(x f 满足)(x f =)(b x f �求证: )(x f 是常量,这里0�b . 4. 证明:如果)()()(1432424123x f x x x f x f x x x�����则�f(1)=0,�=1,2,3. 5. 设)(x f 和)(x p 是有理系数多项式, )(x p 在Q 上不可约,若)(x f 与)(x p 有一个公共复根,则)()(x fx p.§7 多项式函数[达标训练题答案] A组 一、 填空题1�零多项式�2.-12, 0(二重),3,-1, 0,2; 3. 4�k ; 4. �是)(x f 的根; 二、判断题 1�F �2.F ; 3.F ; 4.T . 三、解答题 1�解 利用拉格朗日插枝公式 13231))1(3)(23())1()(2(2)31)(21()3)(2(2)32))(1(2()3))(1((1)(2����������������������������xxx x x x x x x f2.证明�)!1()2)(1()1()(221�������������n x n n n x n n n x x f nnn��所以 ������))()(),(())(),((x f x f x f x f x f ),)!1()2)(1()1((321nnnnx n x n n n x n n n x ������������=1. 所以)!1()2)(1()1()(21�����������n x n n n x n n n x x f nnn�无重根. B组 1� 解�设)()3()(x g x x f ���c b x a x x g ���2)(�则 c x b c x a b a x x f3)3()3()(2������利用综合除法得到用3�x 除)(x f 得余数461854����c b a ,用2,2��x x 除)(x f得到的余式分别是20510,42�����b a b a .由题设得到下列方程组�������������c b a c b a c b a 5102024461854由此解出一个解��������������0458456c b a . 2� 证明�若x s i n 表示成一个n 次多项式�则它最多只能有n 个根因此它是0.事实上0s i n �x . 3� 证明 令)0)(()()(����b b x f x f x g �则)(x g 若不是零多项式�则其常数项为0)(��b f �从而�,2,b b 都是)(x f 根�这样0)(�x f .若)(x g 不是0多项式�而它有无穷多个根. 4� 证明�考虑四次单位根42s i n 42c o s ���k i k k ��3,2,1�k�显然)(143123��������x x x xk �则42s i n 42c o s ���k i k k ��是)()()(424221x f x x x f x f ��的根�即)3,2,1(0)1()1()1()1(3211�����k f f f f k k k ���进一步得0)1(�k f . 5� 证明 首先多项式的最大公因式不因数域的扩大而改变.因此若)(x p 在有理数域上不能整除于)(x f �则无论在有理数域还是复数域均有1))(),((�x f x p 而事实上在复数域上1))(),((�x f x p 不成立.因此)(x p 在有理数域上整除于)(x f .§8 复数域与实数域上多项式的因式分解[达标训练题] A组 一、填空题 1�复数域上不可约多项式是 �实数域上不可约多项式是. 2. )(x f ][x R �是首项系数为1的7次多项式,且 )(x f 有2重根i 32�,单根0、1、-2�则)(x f 的标准分解式是 . 3. )(x f =][3x R q p x x���,有一须根,b i a�则)(x f的所有根是. 4.44�x 在复数域上分解式是 .在实数域上的分解式是. 二、解答题 1. 求有单根i 21�及2重根1懂得次数最低的受项系数为1的复系数多项式和实系数多项式. 2. 证明:奇数次实系数多项式必有实根. 3. 设)(x p 是R 上不可约多项式,对于)(x f ][x R �,如果)(x p 与)(x f 在C 中有多项式�,证明)()(x fx p. B组 1.(选择填空)若多项式)(x f的各项系数都同号,那么)(x f. (i )无实根;(i i )无复实根;(i i i )无正实根;(i v )既有正根又有负根. 2.在C 和R 上分解1�nx 为不可约因式之积. 3.设)(x f 表示把多项式)(x f 的系数换成它们的公轭复数所得到的多项式.证明: (i )若)()(x fx g,则)()(x f x f;(i i )( )(x f ,)(x f )=)(x d 是实系数多项式.§8 复数域与实数域上多项式的因式分解[达标训练题解答] A组 一、 填空题 1�一次多项式�一次与部分二次不可约多项式�2.22)74)(2)(1(����x x x x x�3.2a 2��b i a b i a��,�4.)2)(2)(2)(2(i x i x x x �����)2)(2)(2(2���x x x . 二、解答题 1�解�在复数域上)21)(21()1()(2i x i x x x f ������, 在实数域上)32()1()(22����x x x x f . 2.证明: 若无实根,则该多项式全是虚根,而实系数多项式的虚根成对出现,因此与多项式是奇数次的矛盾. 3� 证明: 首先多项式的最大公因式不因数域的扩大而改变.因此若)(x p 在实数数域上不能整除于)(x f �则无论在实数数域还是复数域均有1))(),((�x f x p 而事实上在复数域上1))(),((�x f x p 不成立.因此)(x p 在实数域上整除于)(x f . B组 1��i i i � 2�解�在实数域上�11(1)(1)nnx x x x ������� 在复数域上 011221()()(),c o s s i n ,0,1,1nn k k k xx x x i k nnn����������������.3� 证明 (i )若)()(x fx g,则存在(),()()()h x f x g x h x ��利用共轭复数的运算性质喝多项式乘法法则�有()()()f x g x h x ��故()()g x f x ;(i i )由于()()f x f x �是实系数多项式� ((),())((),()())f x f x f x f x f x ��,�故((),())()f x f x d x �是实系数多项式.§9 有理数域上多项式 [达标训练题] A组 一、填空题 1.设)(x f 是数域P 上的不可约多项式,))((x f �=n ,若P =C ,则n = .;若P =R ,则n = ; 若P =Q ,则n = . 2.若整系数多项式)(x f 不存在素数p 满足艾氏判别法的条件,则)(x f 的Q 上. 3.1221334���x xx 所有可能的有理数根是 . 二、 判断题 1. 若不存在素数p 能整除整系数多项式)(x f 的所有系数,则)(x f 是本原的 2. 任何一个有理系数多项式都能表示成一个有理数与本原多项式之积. 3. 若)(x f 是次数�1的整系数多项式,则)(x f 在Q 上可约�)(x f 能分解成两个次数较低的整系数多项式的乘积. 4. )(x f �Q ][x 有无理根,则)(x f 在Q 上不可约. 三、 解答题 1. 把下列多项式表示成一个有理数与本原多项式的乘积.)(i ;46223��x x )(i i .271313�x x2. 证明下列多项式在Q 上不可约. )(i 13)(1)(;6423234234���������x x i i i x x x x i i x x x 3. 用试根法求4323��x x 的有理根. 4. 证明32是无理数. B组 1. 5次有理系数多项式)(x f在Q 上可约,则下类断言正确的是. (A ))(x f 至少有一个有理根; (B ))(x f 不一定有有理根; (C ))(x f 恰有一个有理根; (D ))(x f 含有一个2次不可约因式. 2.证明)(x f =!!212pxxx p����在有理数域Q 上不可约(p是素数) .3.求3212252345�����x x xx x的有理根. 4.设)(x f 是次数为n 的有理系数多项式,(i )当n >1时,说明)(x f是否有有理根与其可约性的关系;(i i ) n =3时,上述关系如何? (i i i ) n =4时,给出一个无有理根,但)(x f 可约的例子. 5.整系数多项式)(x f 对某一整数m 有)(m f 和)1(�m f 都是奇数,证明)(x f 无整数根.§9 有理数域上多项式 [达标训练题答案] A组 一、 填空题 1�1�1或2�任意正整数�2.可能可约也可能不可约�3.31,1��二、判断题 1�T �2.F �若是非零多项式正确��3.T . 三、解答题 1�解�)(i )23(24622323�����x x x x � )(i i )4237(21127131233�����x x xx2�解�)(i 642234���x x x �取2�p �利用E i s e n s t i e n 判别法即得不可约�1)234����x x x x ii �令1��x y �则 )(5101051234234y g y y y y x x x x����������� 取5�p �利用E i s e n s t i e n 判别法即得)(y g 不可约�从而1234����x x x x 不可约�13)(3��x x i i i �令1��x y �则)(63613233y h x y y x x ��������取3�p利用E i s e n s t i e n 判别法即得)(y h 不可约�从而133��x x 不可约. 3. 解�4323��x x 的所有可能根是�4,2,1����因为4323��x x 的各项系数之和不等于0�奇次项系数之和等于0�所以-1是根�1不是根.容易利用综合除法验证4,2��都不是根. 4� 证明�因为2)(3��x x f 无有理根�而32是2)(3��x x f 的根�因此它不是有理数�从而是无理数. B组 1.�B � 2�证明�)(x f= )3)1(!!(!1!!21122pppx p x x p p x p p P pxxx ��������������对多项式)3)1(!!(12ppx p x x p p x p p ���������利用E i s e n s t i e n 判别法即得在有理数域Q 上不可约(p 是素数). .3. 解� )64522(2132122523452345�����������x x x x x xx xx x�而 645222345�����x x x x x 的所有可能有理根为23,21,6,3,2,1�������然后可用试根法得出全部有理根为�-1�2,21. 4.. 解 设)(x f 是次数为n 的有理系数多项式,(i )当n =2、n =3时, )(x f 有有理根是可约的充要条件.当3�n 时,)(x f 有有理根是可约充分条件,但不是必要条件. n=4时,例如22)1()(��x x f 无有理根,但)(x f 可约. 5. 证明: 设�是多项式)(x f 的整数根,则 )()()(x g x x f���,)(x g是整系数多项式. 从而)()()(m g m m f���)()1()1(x g m m f �����都是奇数.这是不可能的. §10 多元多项式[达标训练题] 一、填空题 1.多项式),,(4321x x x x f =2322141221232212x x x x x x x x x ����是 元 次多项式,首项是 , 是同类项. 2.设g),,(321x x x =23221x x x+221x x+21x+322x x-212x x ,按字典排列,),,(321x x x g = .按齐次成分),,(321x x x g 排列成 , 按2x 的降幂排列�),,(321x x x g = . 3�设�),,(321x x x f 32221122x x x x x ����),,(321x x x g 32121x x x x x �则),,(321x x x f�),,(321x x x g �),,(321x x x f ),,(321x x x g 的首项是�),,(321x x x f +�),,(321x x x g �)0,1,1(�x f��)0,1,1(g�)0,1,1(�x f+��)0,1,1(g . 二、解答题 1�写出数域P 上三元三次多项式的一般形式. 2�两个n 元多项式首项的和是不是首项�为什么� 3�证明�若n 元数组),,,(),,(2121n n b b b a a a ����且),,,(),,(2121n n b b b a a a ����则),,2,1(n i b ai i ���.此时记),,,(),,(2121n n b b b a a a ���. 4.举反例说明�当2�n 时�类似于一元多项式的带余除法定理不成立. §10 多元多项式[达标训练题答案] 一、 填空题 1.4�5�221x x ,无同类项�2.g),,(321x x x =221x x+21x+23221x x x-212x x +322x x�g ),,(321x x x =23221x x x +�221x x +322x x �-212x x +21x �g ),,(321x x x =23221x x x +322x x +221x x -212x x+21x.3.332232213221332212213231x x x x x x x x x x x x x x x x������3231x x x�2322132122121x x x x x x x x x x�����-2�1. 二、 解答题 1� 解�数域P 上三元三次多项式的一般形式是� 300123002201032011220201100311012111021200x a x a x a x x a x a x a x x a x x a x a��������. 2� 解�两个n 元多项式首项的和不一定是首项 �例如3212131,x x x g x x x f����的首项分别是121,x x �显然121x x �不是g f �的首项. 3� 证明是简单的从略 例如�212131,x x g x x x f ���显然对任意的q �r q g f ��中r 中必包含单项式31x�因此0,����r g r 都不成立 §11 对称多项式[达标训练题] 一、填空题 1.二元多形式的一般形式是 �二元二次对称多项式的一般形式是 �二元二次齐次多项式的一般形式是�二元二次齐次对称多项式的一般形式是.2�4321,,,x x x x 的初等对称多项式是��1� ; �2� � �3� ;�4� . 若4321,,,x x x x 是4322314)(a x a x a x a x x f�����的四个根�则�1� ; �2� � �3�;�4� . 3.三元对称多项式232221x x x ��可以由初等对称多项式 来表示. 二、解答题 1.将下列多项式初等化� �1�))()((133221x x x x x x ���; �2�322121),,,(x x x x x x fn ���.2.设n a a a ,,21是数域P 上的多项式在复数域K 上的根�证明n a a a ,,21的每一个对称多项式都可以表示成P 上关于1a 的多项式. §11 对称多项式[达标训练题解答] 一、填空题 1�201220211021112120x a x a x a x x a x a ����� )2,1,)((���j i a a x x a j i i j ij j i i j �)()(21212221x x c x b x x x a ����. 2.4321x x x x ���,)323121x x x x x x ��� 432431421321x x x x x x x x x x x x����4321x x x x �4321,,,a a a a ��� 3. 3213133������. 二、解答题 解��1� 因为 2312213213212211332212))()((x x x x x x x x x x x x x x x x x f���������232322x x x x ���它的首项是221x x 对应的有序数组是�2�1�0��因此作多项式332103012121�����������x x x f .所以3321������f . �2�由于 2322132213221322121),,,(x x x x x x x x x x x x x x x f n �������其首项是3221x x x �当3�n �令0),,(313211�����x x x f f �所以�3121),,,(���n x x x f �.当3�n 时�根据首相为3221x x x�则可设43121),,,(���a x x x fn ����令0,154321�������n x x x x x x�代入即得4��a . 2�证明�设),,,(21n a a a f �为关于n a a a ,,21的任意对称多形式�则由基本定律 知),,(),,,(1121����n n g a a a f �����其中11,,���n ���关于n a a a ,,21的全部初等对称多项式.显然n n nx x a ��������111122111,,,�������������再由根与系数的关系 得出上式中的i ��是关于1a 的多项式.。
2010高等代数1(A 卷)参考答案一、填空题 1.n <; 2. 0; 3. 1627-; 4. 0λ≠且3λ≠-; 5. 6,16a b =-= 二、判断题 6.⨯7.⨯8.√9.⨯ 10. √三、单项选择11. (D) 12. (B) 13. (A) 14. (B) 15 (B)四、解答题 16. 解: x+1∴ (f(x),g(x))=x-3 (7分)17. 解:(4分)2131415143r r r r r r r r ---+−−−→3242523r r r r r r +-+−−−→1234511231111133542563157A ααααα⎛⎫⎪- ⎪⎪= ⎪- ⎪⎪----⎝⎭1213141511123021202120636402123ααααααααα⎛⎫ ⎪---- ⎪ ⎪- ⎪---- ⎪ ⎪+⎝⎭12132142152111230212000020000300002αααααααααααα⎛⎫⎪---- ⎪⎪+- ⎪-- ⎪ ⎪++⎝⎭∴12345()2,r α,α,α,α,α=12α,α是它的一个极大无关组, (6分) 且3124125123α=2α-α,α=α+α,α=-2α-α (7分) 18.解:方程组的系数行列式为 (1分)(1) 当2k ≠-且1k ≠ 时,方程组有唯一解; (2分)(2)2k =-时,(3)()3()2R A R A =≠=,此时,方程组无解; (4分)(3)1k =,此时方程组有无穷多解, (6分)通解为 :1212111010,,001k k k k k R --⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=++∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭。
(7分)19.解:因为A = , 所以A 可逆, (2分)则(3分) 21111(2)(1)11k k k k k=+-111111111111A ⎛⎫ ⎪= ⎪⎪⎝⎭111100000000⎛⎫⎪ ⎪ ⎪⎝⎭2131r r r r --−−−→()()13R A R A n ==<=015153522321≠=1123123x x A x -⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭211112121124A -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭13112412122111r r ↔-⎛⎫ ⎪→-- ⎪ ⎪-⎝⎭21212112403360339r r r r -+-⎛⎫ ⎪→-- ⎪ ⎪-⎝⎭2132112403360003r r r r -+-⎛⎫ ⎪→-- ⎪⎪⎝⎭()123100123100123100123100225010021210018301018301351001018301021210001541211221201005551381010151515412001151515A ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪∣E =→---→---→--- ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪-------⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫--⎪⎪ ⎪→---→ ⎪⎪ ⎪-⎪⎝⎭31341515151381010151515412001151515⎛⎫⎪⎪ ⎪-⎪⎪ ⎪- ⎪⎝⎭即 1231341515151381151515412151515A -⎛⎫- ⎪⎪ ⎪=- ⎪⎪ ⎪- ⎪⎝⎭(6分) 则(7分)20.解: 二次型的矩阵为 (1分)()21311212213113111221122400110110100221100112240211002110042211011201010201010010022110001210001200001r r r r r r c c c c c c r r c A -+++-+←−→←→--⎛⎫- ⎪⎛⎫---⎛⎫⎛⎫⎪⎪ ⎪ ⎪ ⎪⎪∣E =-−−−→-−−−→-−−−→ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪⎝⎭3111110011001222211110100010022220041111001022c −----⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪−−−−→→⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭123231341515151113812015151530412151515x x x ⎛⎫- ⎪⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎪=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪- ⎪⎝⎭021201110A -⎛⎫ ⎪=- ⎪⎪⎝⎭则非退化线性变换X CY == (6分) 把二次型()123,,f x x x 化222123x x x +- 。
高等代数试卷一一、填空题(每小题2分,共10分)1.多项式22009320101()(2)()2f x x x =+-的常数项为 。
2.设,,a b c 是方程30x px q ++=的三个根,则a bcb c a c a b = 。
3.线性方程组m n A x b ⨯=有无穷多解的充要条件是______________________。
4.设矩阵123012001A ---⎛⎫ ⎪-- ⎪ ⎪-⎝⎭=,则1A -的秩为 。
5.设实二次型123(,,)f x x x 的矩阵是111t ⎛⎫⎪⎝⎭,则123(,,)f x x x 是正定二次型的充要条件是 。
二、单选题(每小题2分,共10分)1.实数域上次数大于1的多项式()f x 有一实根是()f x 在实数域上可约的( )。
a) 必要非充分条件 b) 充分必要条件 c) 充分非必要条件 d) 既非充分又非必要条件2.行列式111213212223313233a a a a a a d a a a =,则332313322212312111a a a a a a a a a =( )。
a) d - b) d c) 0 d) 不确定3.λ=( ),非齐次线性方程组12323232132(3)(4)(2)x x x x x x x λλλλλλ+-=-⎧⎪-=-⎨⎪-=--+-⎩有无穷多解。
a) 1 b) 2 c) 3 d) 4 4.若矩阵A 满足20A A E ++=,则9A =( )。
a) A b) A - c) E d) 05.矩阵( )合同与200010005-⎛⎫⎪⎪ ⎪⎝⎭。
a) 4000100010⎛⎫ ⎪⎪ ⎪⎝⎭ b) 300020005⎛⎫⎪ ⎪ ⎪-⎝⎭ c) 100010001-⎛⎫⎪- ⎪ ⎪⎝⎭ d) 200020001⎛⎫⎪ ⎪ ⎪⎝⎭三、判断题(每小题2分,共10分)1.若()()()h x f x g x ,则()()h x f x 或()()h x g x 。
墨达哥州易旺市菲翔学校高级二零二零—二零二壹高一数学上学期10月月考试题〔含解析〕一、选择题:本大题一一共10小题,一共40分{}|11A x x =-<<,集合(){}|10B x x x =-≥,那么A B ⋂=〔〕A.[)0,1B.[)1,+∞C.(1,0)-D.(]1,0-【答案】D 【解析】 试题分析:因为(){}{}|10|10B x x x x x x =-≥=≥≤或,所以A B ⋂=(]1,0-.考点:集合的交集运算.2.以下函数中在定义域上既是奇函数又是增函数的为〔〕 A.y =x +1 B.y =-x 2C.y =x 3D.1y x=-【答案】C 【解析】 【分析】根据奇偶性和单调性依次判断每个选项即可. 【详解】y =x +1是非奇非偶函数,y =-x 2是偶函数,y =x 3由幂函数的性质,是定义在R 上的奇函数,且为单调递增,1y x=-在在定义域为(,0)(0,)-∞+∞,不是定义域上的单调增函数, 应选:C【点睛】此题考察函数奇偶性单调性的判断,要求对奇偶性和单调性的判断方式纯熟掌握,是简单题目.3.以下各组表示同一函数的是〔〕A.()()21,1x f x x g x x=-=-B.()1f x =,()0g x x =C.()()f x g x == D.()(),0,,0x x f x x g x x x ≥⎧==⎨-<⎩【答案】D 【解析】 【分析】假设两个函数是同一个函数,那么两个函数必须具有一样的定义域、值域、对应关系,由此依次判断选项即可【详解】解:函数()1f x x =-的定义域为R ,而函数()21x g x x=-的定义域为{}|0x x ≠,故它们不是同一个函数,故排除A ; 函数()1f x =的定义域为R ,()0g x x =的定义域为{}|0x x ≠,故它们不是同一个函数,故排除B ;函数()f x =[)0,+∞,函数()g x =R ,故它们不是同一个函数,故排除C ; 函数()f x x =,0,0x x x x ≥⎧=⎨-<⎩与函数(),0,0x x g x x x ≥⎧=⎨-<⎩,具有一样的定义域、值域、对应关系,故它们是同一个函数, 应选D【点睛】此题考察同一函数问题,应用函数的三要素即为解题关键 4.()311f x x -=+,那么()7f 的值是〔〕-1 1C.3D.2【答案】C 【解析】 【分析】令312x -=得2x =,代入即可求解.【详解】由题()311f x x -=+,令317x -=得2x =,所以()()3721213f f =-=+=.应选:C【点睛】此题考察根据函数解析式求值,需注意根据解析式求出x 的取值方可求解. 5.156a=,23b =,32c =,那么a ,b ,c 的大小关系是〔〕 A.a <b <c B.a <c <bC.b <a <cD.c <a <b【答案】B 【解析】 【分析】将三个指数转化为对数形式,结合对数函数性质利用0,1作为中间值进展比较即可求解. 【详解】由题:51log 06a =<,2log 31b =>,33log 2,0log 21,01c c =<<<<, 所以a c b <<. 应选:B【点睛】此题考察指数与对数的转化和对数的大小比较,关键在于准确将指数转化成对数形式,结合对数函数的单调性利用特殊值1,0进展比较. 6.()f x 是定义在[]1,2a a -上的偶函数,且当0x ≥时,()f x 单调递增,那么关于x 的不等式()()1f x f a ->的解集是〔〕A.45,33⎡⎫⎪⎢⎣⎭B.1245,,3333⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦C.2112,,3333⎛⎤⎛⎤--⋃ ⎥⎥⎝⎦⎝⎦ D.随a 的值变化而变化 【答案】B 【解析】【分析】 函数定义在[]1,2a a -上的偶函数,可求出a ,当0x ≥时,()f x 单调递增,根据偶函数得出0x <的单调性即可求解. 【详解】由题:函数定义在[]1,2a a -上的偶函数,所以1120,3a a a -+==, 当0x ≥时,()f x 单调递增,所以当0x ≤时,()f x 单调递减,关于x 的不等式()()1f x f a ->即()113f x f ⎛⎫-> ⎪⎝⎭,且()f x 定义在22,33⎡⎤-⎢⎥⎣⎦上,所以21133x -≤-<-或者12133x <-≤, 解得:1233x ≤<或者4533x <≤, 所以原不等式解集为:1245,,3333⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦. 应选:B【点睛】此题考察根据函数奇偶性和单调性解抽象函数相关不等式,需注意偶函数定义域关于0对称,转化成单调性求解不等式时注意考虑函数定义域,易产生考虑不全发生遗漏出错. 7.()f x 是定义在R 上的函数且()2f x +是偶函数,当2x ≤时,()2x f x -=,那么〔〕A.f 〔3〕<f 〔4〕<f 〔-1〕B.f 〔4〕<f 〔-1〕<f 〔3〕C.f 〔-1〕<f 〔3〕<f 〔4〕D.f 〔3〕<f 〔-1〕<f 〔4〕【答案】A 【解析】 【分析】()f x 定义在R 上的函数,()2f x +是偶函数关于直线0x =对称,通过平移那么()f x 关于2x =对称,结合当2x ≤时,()2x f x -=分析单调性即可求解.【详解】()f x 定义在R 上的函数,()2f x +是偶函数,即关于直线0x =对称,所以()f x 关于2x =对称,()1(5)f f -=当2x ≤时,()2x f x -=,函数单调递减,所以当2x >时,函数单调递增,(3)(4)(5)(1)f f f f <<=-.应选:A【点睛】此题考察函数单调性奇偶性,利用单调性和对称性比较函数值的大小,表达转化与化归思想.x 的不等式()()10x x a --<的解集中,恰有3个整数,那么a 的取值范围是〔〕A.{a |4<a <5}B.{a |4<a <5或者-3<a <-2}C.{a |4<a ≤5}D.{a |4<a ≤5或者-3≤a <-2}【答案】D 【解析】 【分析】分别讨论1a <和1a >两种情况的解集中,恰有3个整数即可得出a 的范围. 【详解】由题当1a =时,无解; 当1a <时,不等式的解集为(),1a ,解集内恰有三个整数,即0,1,2--,所以32a -≤<-; 当1a >时,不等式的解集为()1,a ,解集内恰有三个整数,即2,3,4,所以45a <≤, 综上所述,a 的取值范围是32{a a -≤<-或者45}a <≤.应选:D【点睛】此题考察解二次不等式,讨论解集里面整数的个数,需要分类讨论尤其注意端点讨论.()31,1{2,1x x x f x x -<=≥,那么满足()()()2f a f f a =的a 的取值范围是〔〕A.2,13⎡⎤⎢⎥⎣⎦ B.0,1C.2,3⎡⎫+∞⎪⎢⎣⎭D.[)1,+∞【答案】C 【解析】【详解】试题分析:令()f a t =,那么()2t f t =,当1t <时,312t t --,由()312t g t t =--的导数为()32ln 2t g t =-',当1t <时,在(,1)-∞递增,即有()()10gt g <=,那么方程无解;当1t≥时,22t t =成立,由()1f a ≥,即311a -≥,解得23a ≥且1a <;或者1,21a a ≥≥解得0a ≥,即为1a ≥,综上所述实数a 的取值范围是2,3⎡⎫+∞⎪⎢⎣⎭,应选C.考点:分段函数的综合应用.【方法点晴】此题主要考察了分段函数的综合应用,其中解答中涉及到函数的单调性、利用导数研究函数的单调性、函数的最值等知识点的综合考察,注重考察了分类讨论思想和转化与化归思想,以及学生分析问题和解答问题的才能,试题有一定的难度,属于难题,此题的解答中构造新的函数()312t g t t =--,利用新函数的性质是解答的关键.()242tx t f x x --+=+在区间[-1,2]上的最大值为2,那么t 的值等于〔〕A.2或者3B.-1或者3C.1D.3【答案】A 【解析】 【分析】函数()24422tx t f x t x x --+==-+++,4[1,2],[1,4]2x t t t x ∈--+∈--+,根据绝对值的最大值为2进展分类讨论检验即可. 【详解】由题函数()24422tx t f x t x x --+==-+++,4[1,2],[1,4]2x t t t x ∈--+∈--+, ()24422tx t f x t x x --+==-+++的最大值为4t -,或者1t -当41t t -≥-时,即52t ≤时,最大值42t -=解得:2t =; 当41t t -<-时,即52t >时,最大值12t -=解得:3t = 综上所述:t 的值等于2或者3. 应选:A【点睛】此题考察绝对值函数值域问题,重在分类讨论,先求出绝对值内函数值域,再根据绝对值的性质分析最大值的取值.二、填空题:本大题一一共6小题,一共30分11.计算:10628=___________.假设102x=,103y =,那么3210x y -=________________.【答案】(1).0(2).3【解析】 【分析】1;②对3210x y -进展恰当的拆分成10x 和10y 进展计算.【详解】①()11036628112110=+-==;②3132210(10)x y x y --=====故答案为:0,33210x y -变形代换不准确导致错误,没能用好102x=,103y =的整体关系.(20x y a a -=>且)1a ≠恒经过定点A ,那么点A 的坐标是___________,假设点A 在函数()21f x x bx =--上,那么()f x 的单调递增区间是_____________.【答案】(1).(2,1)(2).1[,)2+∞ 【解析】 【分析】 ①函数(20x y a a -=>且)1a ≠恒经过定点即2x =时对应点;②根据第一问(2,1)A ,求得b ,即可得出()f x 的单调递增区间.【详解】①函数(20x y a a -=>且)1a ≠恒经过定点,即2x =时,1y =,所以定点(2,1)A ;②根据第一问(2,1)A 在函数()21f x x bx =--上,即1421b =--,1b =,所以()21f x x x =--其单调递增区间为:1[,)2+∞ 故答案为:(2,1),1[,)2+∞ 【点睛】此题考察指数型函数过定点问题,二次函数的单调区间的判别,关键在于弄清定点的本质,不因参数变化而变化.()2213x xf x -⎛⎫= ⎪⎝⎭,那么()f x 的单调递增区间是__________,值域是____________.【答案】(1).(,1]-∞(2).(0,3] 【解析】 【分析】①根据同增异减法那么求出函数的单调区间;②通过换元法求出函数值域. 【详解】1()3t y=是减函数,22t x x =-在(,1]-∞单调递减,在[1,)+∞单调递增,根据同增异减法那么,函数()2213x xf x -⎛⎫= ⎪⎝⎭在(,1]-∞单调递增,在[1,)+∞单调递减,令22,[1,)t x x t =-∈-+∞,()2213x xf x -⎛⎫= ⎪⎝⎭的值域即求:1())3[1,,t t y ∈-+∞=的值域,根据指数函数图像性质1())3[1,,t t y ∈-+∞=是减函数,其值域为(0,3].故答案为:(,1]-∞,(0,3]【点睛】此题考察复合函数的单调性和求值域问题,单调性根据复合关系按同增异减法那么,值域问题可以根据单调性求,也可以换元法求值域.()()()241,11,1xx a x x f x a x ⎧-+-+≤⎪=⎨+>⎪⎩,当1a =时,()()1f f =___________,假设()f x 在R 上单调递增,那么a 的取值范围是______________.【答案】(1).8(2).322a ≤≤ 【解析】 【分析】①当1a =时,先求出()1f ,再求()()1f f ;②分段函数()f x 在R 上单调递增,必须满足两段函数递增,且在1x =处附近满足()1f 小于等于右极限.【详解】①当1a =时,()231,12,1x x x x f x x ⎧-++≤=⎨>⎩,()13,((1))(3)8f f f f ===;②()f x 在R 上单调递增,那么4121141aa a a --⎧≥⎪⎪⎨>≤++⎪⎪⎩,解得322a ≤≤.故答案为:8,322a ≤≤ 【点睛】此题考察分段函数求值和根据分段函数的单调性求参数取值范围,求值应该注意自变量的取值范围,分段函数单调递增必须满足两段函数分别递增,且在“接点〞处的函数取值仍然满足关系. 15.()f x 是定义在R 上的奇函数,当0x >时,()2x f x x =+,那么()f x 在R 上的解析式为_______________.【答案】()2,00,01,02x x x x f x x x x ⎧⎪+>⎪==⎨⎪⎪-+<⎩【解析】 【分析】 根据奇函数的性质()00f =,当0x <时,0x ->,()()f x f x =--补齐解析式.【详解】由题:()f x 是定义在R 上的奇函数,()00f =,当0x>时,()2xf x x =+,所以当0x <时,0x ->,()1()(2)2x xf f x x x x ---=--=-+=, 所以()2,00,01,02x x x x f x x x x ⎧⎪+>⎪==⎨⎪⎪-+<⎩.故答案为:()2,00,01,02x x x x f x x x x ⎧⎪+>⎪==⎨⎪⎪-+<⎩【点睛】此题考察根据奇偶性补齐函数解析式,易错点在于此题要求()f x 在R 上的解析式,容易漏掉()00f =.()f x 3,2⎛⎫-∞ ⎪⎝⎭单调递减,那么a 的取值范围是___________. 【答案】932a ≤≤ 【解析】【分析】 函数()f x =3,2⎛⎫-∞ ⎪⎝⎭单调递减,2y x ax a =-+必满足两个条件,一是单调递减,二是20x ax a -+≥在3,2⎛⎫-∞ ⎪⎝⎭恒成立. 【详解】由题:函数()f x =3,2⎛⎫-∞ ⎪⎝⎭单调递减,考虑函数2y x ax a =-+在3,2⎛⎫-∞ ⎪⎝⎭单调递减,即322a ≥所以3a ≥; 且20x ax a -+≥在3,2⎛⎫-∞ ⎪⎝⎭恒成立,已得3a ≥, 只需233()022a a -+≥,即92a ≤ 综上所述:932a ≤≤. 故答案为:932a ≤≤ 【点睛】此题考察通过函数单调性求参数范围,既要考虑函数单调性,还应考虑单调区间必须是定义域内的子区间,易错点在于漏掉考虑单调区间是定义域的子集.()122x x f x =+,假设()()312f m f m -<,那么m 的取值范围是___________. 【答案】115m << 【解析】【分析】()122x x f x =+是偶函数且在[0,)+∞单调递增,根据单调性求解不等式. 【详解】由题()122x x f x =+是偶函数,考虑复合函数1,[1,)y t t t=+∈+∞单调递增, 2x t =在[0,)+∞单调递增,且[1,)t ∈+∞,所以()122x x f x =+在[0,)+∞单调递增,在(,0]-∞单调递减,解不等式()()312f m f m -<,即312m m -<,229614m m m -+<,25610,(51)(1)0m m m m -+<--<,解得:115m << 故答案为:115m << 【点睛】此题考察复合函数单调性的判断,根据奇偶性单调性解不等式,表达了数形结合和转化与化归思想,对函数性质综合应用要求较高.三、解答题:本大题一一共4小题,一共50分21244x A x -⎧⎫=<<⎨⎬⎩⎭,集合{}2230B x x x =--≥,集合{}2131C x m x m =-<<+. 〔1〕求集合A B ,集合A B ;〔2〕假设集合A C C =,求m 的取值范围.【答案】〔1〕{34}A B x x =≤<,{1A B x x =≤-或者0}x >;〔2〕2m ≤-或者112m ≤≤ 【解析】【分析】〔1〕解不等式得出集合,A B ,即可求解; 〔2〕A C C =即C A ⊆,分类讨论结合数轴求解.【详解】〔1〕解不等式21244x -<<即222222,222,04x x x --<<-<-<<<, 所以{04}A x x =<<;解不等式2230,(3)(1)0x x x x --≥-+≥,1x ≤-或者3x ≥, 所以{1B x x =≤-或者3}x ≥;{34}A B x x =≤<,{1A B x x =≤-或者0}x >;〔2〕A C C =,即C A ⊆,{}2131C x m x m =-<<+,由第一问{04}A x x =<<, 当2131m m -≥+时,C =∅,即2m ≤-时,符合题意;当2m >-,C A ⊆,即2021314m m m >-⎧⎪≤-⎨⎪+≤⎩解得:112m ≤≤ 综上:2m ≤-或者112m ≤≤ 【点睛】此题考察集合交集并集的运算和通过集合包含关系求解参数取值范围,容易漏掉子集为空集的情况,考察细节.2()ax b f x x a +=+是定义在R 上的奇函数,且4(1)5f =. 〔1〕务实数a ,b 的值,并求函数()y f x =的值域; 〔2〕判断()f x 在区间[]22-,上的单调性,并用定义证明. 【答案】〔1〕4a=,0b =,值域为[1,1]-;〔2〕单调递增,证明见解析. 【解析】【分析】〔1〕定义在R 上的奇函数必有(0)0f =,且4(1)5f =,解方程组即可求解; 〔2〕根据定义作差法证明函数单调递增.【详解】〔1〕由题函数2()ax b f x x a +=+是定义在R 上的奇函数,(0)0,0b f b a===, 4(1),415a f a a ===+,24()4x f x x =+,当0x =时,(0)0f =,当0x ≠时,4()4f x x x=+,由对勾函数性质:设4,(,4][4,)t x t x =+∈-∞-⋃+∞, 所以当0x ≠时,4()4f x x x =+的值域即:求4,(,4][4,)y t t =∈-∞-⋃+∞的值域,根据反比例函数性质可得其值域为[1,0)(0,1]-⋃, 综上所述:24()4x f x x =+的值域为[1,1]- 〔2〕24()4x f x x =+在区间[]2,2-上单调递增, 证明:任取1222x x -≤<≤,124x x <,1240x x -<,210x x ->122122124(4)()0(4)(4)x x x x x x --=<++,12()()f x f x < 所以24()4x f x x =+在区间[]2,2-上单调递增. 【点睛】此题考察根据函数奇偶性求参数,利用换元法求值域,定义法证明函数单调性,其中求值域也可以考虑判别式法.()2()0f x ax bx c a =++≠满足(1)()2f x f x x +-=,且(0)1f =.〔1〕求函数()f x 的解析式;〔2〕讨论方程()f x m x =在1,42x ⎡⎤∈⎢⎥⎣⎦的解的个数. 【答案】〔1〕2()1f x x x =-+;〔2〕当134m >或者1m <时,无解;当31324m <≤或者1m =时,一个解;当312m <≤时,两个解 【解析】【分析】〔1〕(0)1f =求出c ,根据(1)()2f x f x x +-=求出,a b ;〔2〕根据对勾函数得1,4)121(,x g x x x ⎡⎤∈⎢⎥⎣+-⎦=的图象,数形结合得解. 【详解】〔1〕函数()2()0f x ax bx c a =++≠,(0)1f =,所以1c =,221112()()()()()f x f x a x b x c ax bx c ax a b +-=++++-++=++,(1)()2f x f x x +-=,即220a a b =⎧⎨+=⎩,11a b =⎧⎨=-⎩ 所以2()1f x x x =-+;〔2〕()11f x m x x x ==+-,令1,4)121(,x g x x x ⎡⎤∈⎢⎥⎣+-⎦=,根据对勾函数单调性可得 1,12x ⎡⎤∈⎢⎥⎣⎦单调递减,[]1,4x ∈单调递增,1313(),(1)1,(4)224g g g === 方程()f x m x =在1,42x ⎡⎤∈⎢⎥⎣⎦的解的个数,即函数y m =与1,4)121(,x g x x x ⎡⎤∈⎢⎥⎣+-⎦=公一共点的个数,1,4)121(,x g x x x ⎡⎤∈⎢⎥⎣+-⎦=函数图象: 当134m>或者1m <时,无解; 当31324m <≤或者1m =时,一个解; 当312m <≤时,两个解 【点睛】此题考察函数解析式的求法和方程的根的个数判断,关键在于数形结合,根据相关性质得出函数的图象即可求解.21.m R ∈,函数()f x x x m =-.〔1〕当3m =时,写出()f x 的单调递增区间; 〔2〕当0m >时,求()f x 在区间[]1,3上的最小值. 【答案】〔1〕3(,]2-∞,[3,)+∞;〔2〕当4m ≥时,最小值1m -,当34m <<,最小值3(3)m -,当13m ≤≤时,最小值为0,当01m <<时,最小值1m -.【解析】【分析】〔1〕当3m =时()223,333,3x x x f x x x x x x ⎧->=-=⎨-+≤⎩,即可写出单调递增区间;〔2〕当0m >时,()22,,x mx x m f x x x m x mx x m ⎧->=-=⎨-+≤⎩,分类讨论即可求出最小值.【详解】〔1〕当3m =时,()223,333,3x x x f x x x x x x ⎧->=-=⎨-+≤⎩, 作图:()f x 的单调递增区间为3(,]2-∞,[3,)+∞; 〔2〕当0m >时,()22,,x mx x m f x x x m x mx x m ⎧->=-=⎨-+≤⎩,作图如下: 当32m ≤,即6m ≥时,最小值()11f m =-; 当32m m <<,即36m <<时,3122m >>: 假设322m >≥,46m ≤<,最小值()11f m =- 假设3222m <<,34m <<,最小值()33(3)f m =-; 当13m ≤≤时,最小值为0;当01m <<时,最小值为()11f m =-综上所述,当4m ≥时,最小值1m -,当34m <<,最小值3(3)m -,当13m ≤≤时,最小值为0,当01m <<时,最小值1m -.【点睛】此题考察分段函数单调性及根据含参数的函数讨论函数最值问题,主要考察分类讨论的思想,分类讨论是一大难点,做到不重不漏方可正确解题.()()1x x f x a k a -=--〔0a >且1a ≠〕是定义在R 上的奇函数.〔1〕求k 的值;〔2〕假设()10f >,且()()2510f x f mx ++->对于任意[]1,5x ∈恒成立,求m 的取值范围.【答案】〔1〕2k=;〔2〕4m >-.【解析】【分析】 〔1〕定义在R 上的奇函数必有(0)0f =即可求解k 的值; 〔2〕根据()10f >,确定a 的范围,得出()f x 的单调性和奇偶性,()()2510f x f mx ++->对于任意[]1,5x ∈恒成立,根据奇偶性可转化变形求解m 的取值范围.【详解】〔1〕函数()()1x x f x a k a -=--〔0a >且1a ≠〕是定义在R 上的奇函数, (0)1(1)0,2f k k =--==;〔2〕因为0a>且1a ≠,()1,(1)0x x f x a a f a a -=-=->,解得:1a >, 所以()x x f x a a -=-在R 上单调递增,()()2510f x f mx ++->对于任意[]1,5x ∈恒成立,即()()251(1)f x f mx f mx +>--=-对于任意[]1,5x ∈恒成立,即251x mx +>-对于任意[]1,5x ∈恒成立, 即4x m x +>-对于任意[]1,5x ∈恒成立,根据对勾函数性质[]4,1,2y x x x=+∈单调递减,[]2,5x ∈单调递增,所以4x x +在[]1,5x ∈最小值为4, 4,4m m >->-,所以4m >-.【点睛】此题考察根据函数的奇偶性求参数值,根据函数的单调性奇偶性解不等式相关问题,通过单调性将问题转化为不等式恒成立求参数范围,表达了转化与化归思想.。
《高等代数》多项式月测试题
(2010年10月21日
胡付高命题)
一、填空题(每小题5分,共20分)
1.用g (x )=x 2−x +2除f (x )=x 4+2x +5,商式为
;余式为.2.多项式f (x )=[4(5x −4)2000x 2−2x −1]2010(8x 3−11x 2+2)2011的所有系数之和=
,常数项=.3.能被任一多项式整除的多项式是;能整除任意多项式的多项式一定是.4.已知(x −1)2|Ax 4+Bx 2+1,则A =,B =.二、判断题(对的打√,简述原因或证明;错的打×,并举反例.每小题4分,共20分)
1.若p (x )|f (x )g (x ),则p (x )|f (x )或p (x )|g (x ).
2.若整系数多项式在有理数域上可约,则它一定有有理根.
3.若整系数多项式有有理根,则它在有理数域上一定可约.
4.若p (x )在数域P 上不可约,且p (x )|f (x )g (x )以及p (x )|[f (x )+g (x )]成立,则p (x )|f (x )且p (x )|g (x ).
5.若两个多项式在复数域上不互素,则它们一定有公共的复根.
三、设f (x )=x 4+x 3−3x 2−4x −1,g (x )=x 3+x 2−x −1,求(f (x ),g (x )).(共10分)
四、设f (x )=x 5−x 3+4x 2−3x +2.
(1)判断f (x )在R 上有无重因式?如果有,求出所有的重因式及重数;
(2)求f (x )在R 上的标准分解式.(共15分)
五、设f (x )是一个整系数多项式.证明:若对某个整数m ,使得f (m )与f (m +1)都是奇数,则f (x )没有整数根.(共10分)
六、设f (x )与g (x )互素,证明:
(1)f (x )与f (x )−g (x )互素;
(2)f (x )g (x )与f (x )−g (x )互素.(共15分)
七、设p 是素数,a 是整数,f (x )=ax p +px +1,且p 2|a +1.证明:f (x )在有理数域上不可约.(共10分)
选做题:
1、设f (x ),g (x ),h (x )为实系数多项式,它们适合下列关系: (x 2+1)h (x )+(x −1)f (x )+(x −2)g (x )=0
(x 2+1)h (x )+(x +1)f (x )+(x +2)g (x )=0
证明:f (x ),g (x )都能被x 2+1整除.
2、已知f (x )是一个n 次多项式,对于k =0,1,2,···,n 时有f (k )=k k +1,试求f (n +1).提示:作ϕ(x )=(x +1)f (x )−x .。