PCB布板阻抗匹配概念
- 格式:pdf
- 大小:390.04 KB
- 文档页数:8
谈谈嵌入式系统PCB 设计中的阻抗般配与0 欧电阻1、阻抗般配阻抗般配是指信号源也许传输线跟负载之间的一种合适的搭配方式。
依照接入方式阻抗般配有串行和并行两种方式;依照信号源频率阻抗般配可分为低频和高频两种。
〔1〕高频信号一般使用串行阻抗般配。
串行电阻的阻值为20~75Ω,阻值大小与信号频率成正比,与PCB 走线宽度和长度成反比。
在嵌入式系统中,一般频率大于20M 的信号PCB走线长度大于5cm时都要加串行般配电阻,比方系统中的时钟信号、数据和地址总线信号等。
串行般配电阻的作用有两个:◆ 减少高频噪声以及边沿过冲。
若是一个信号的边沿特别陡峭,那么含有大量的高频成分,将会辐射搅乱,其他,也简单产生过冲。
串通电阻与信号线的分布电容以及负载输入电容等形成一个 RC电路,这样就会降低信号边沿的陡峭程度。
◆ 减少高频反射以及自激振荡。
当信号的频率很高时,那么信号的波长就很短,当波长短得跟传输线长度可以比较时,反射信号叠加在原信号大将会改变原信号的形状。
若是传输线的特色阻抗跟负载阻抗不相等〔即不般配〕时,在负载端就会产生反射,造成自激振荡。
PCB板内走线的低频信号直接连通即可,一般不需要加串行匹配电阻。
〔 2〕并行阻抗般配又叫“终端阻抗般配〞,一般用在输入 / 输出接口端,主要指与传输电缆的阻抗般配。
比方, LVDS与 RS422/485 使用 5 类双绞线的输入端般配电阻为 100~120Ω;视频信号使用同轴电缆的般配电阻为 75Ω或 50Ω、使用篇平电缆为 300Ω。
并行般配电阻的阻值与传输电缆的介质有关,与长度没关,其主要作用也是防范信号反射、减少自激振荡。
值得一提的是,阻抗般配可以提高系统的 EMI 性能。
其他,解决阻抗般配除了使用串 / 并联电阻外,还可使用变压器来做阻抗变换,典型的例子如以太网接口、 CAN总线等。
2、0 欧电阻的作用(1〕最简单的是做跳线用,若是某段线路不用,直接不焊接该电阻即可〔不影响外观〕。
阻抗匹配概念阻抗匹配概念阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。
对于不同特性的电路,匹配条件是不一样的。
在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。
当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份只数值相等而符号相反。
这种匹配条件称为共扼匹配。
阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。
大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。
要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。
改变阻抗力把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。
如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。
重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。
调整传输线由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。
最大功率传输定理,如果是高频的话,就是无反射波。
对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。
阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了.反之则在传输中有能量损失。
高速电路设计中的阻抗匹配技术研究近年来,随着电子技术的高速发展,高速电路的设计变得越来越重要。
在高速电路设计中,阻抗匹配技术扮演着至关重要的角色。
阻抗匹配能够在电路中提供最优的信号传输,减少信号的反射和损耗,从而增加电路的性能和稳定性。
本文将探讨高速电路设计中的阻抗匹配技术的研究进展和应用。
一、阻抗匹配技术的基础原理阻抗是指电流和电压之间的比值,用于描述电路对信号的响应。
在高速电路设计中,阻抗匹配技术可以通过调整传输线和装配件的阻抗来使其与信号源和负载的阻抗匹配,以减少信号的反射和损耗。
阻抗匹配技术的基础原理包括特性阻抗、传输线理论和阻抗转换。
特性阻抗是指传输线上单位长度的电阻和电抗的比值,用来描述传输线的特性。
在高速电路设计中,特性阻抗的选择对信号传输有着重要的影响。
传输线理论是指通过传输线的波动传播现象,例如电压波和电流波在传输线上的行为。
通过合理地选择传输线的特性阻抗,可以使信号在传输线上传播时最大限度地减少反射和损耗。
阻抗转换是指在不同特性阻抗之间进行阻抗匹配的过程,例如通过使用阻抗匹配装配件或变压器。
二、阻抗匹配技术的研究进展随着高速电路设计的要求日益严格,阻抗匹配技术也在不断发展和改进。
以下是几个阻抗匹配技术的研究进展:1. 传输线的特性阻抗选择在高速电路设计中,选择适当的传输线特性阻抗尤为重要。
一种常用的特性阻抗是50欧姆,适用于许多应用场景。
然而,在一些特殊应用中,如射频(RF)电路设计,特性阻抗可以选择为其他值,例如75欧姆或100欧姆。
选择适当的特性阻抗可以优化信号的传输效果。
2. 差分传输线技术差分传输线技术是一种常用的阻抗匹配技术,适用于高速信号传输。
差分传输线技术通过使用两条相互平行的传输线,将信号和其互补(反相)信号一起传输。
差分信号传输可以提高抗干扰能力,减少信号的互相干扰。
3. 阻抗匹配装配件阻抗匹配装配件是用于在不同特性阻抗之间实现阻抗匹配的器件,例如阻抗匹配器。
PCB的阻抗设计PCB(Printed Circuit Board,印刷电路板)是电子产品中最重要的组成部分之一,其设计和制造质量直接影响产品的性能和可靠性。
阻抗设计是PCB设计的一个重要方面,它涉及到电路板的层间耦合、反射和传播延迟等参数。
在本文中,我将详细介绍PCB阻抗设计的原理、方法和注意事项。
首先,我们需要了解阻抗的定义。
在电学中,阻抗是指电流和电压之间的比率。
对于PCB来说,阻抗特指信号的电流和电压在PCB导线上的传播特性。
设计阻抗是为了确保信号在PCB上以期望的速度传播,并减少信号的反射和干扰。
阻抗设计的首要目标是匹配信号源和负载的阻抗。
信号源的输出阻抗和负载的输入阻抗应该与PCB设计的阻抗相匹配。
这样,信号能够完全传输到负载端,减少信号的反射和失真。
PCB阻抗设计的方法主要包括以下几个方面:1.选择合适的PCB材料:PCB材料对阻抗有很大的影响。
不同的材料具有不同的介电常数和介电损耗因子,会导致不同的信号传播速度和阻抗特性。
因此,在PCB阻抗设计中,应选择合适的材料以满足要求的阻抗。
2.控制PCB线宽和线间距:PCB线宽和线间距的选择也会影响阻抗。
一般来说,线宽越宽,阻抗越低,线间距越宽,阻抗越高。
因此,在设计PCB时,需要根据要求的阻抗选择合适的线宽和线间距。
3.添加阻抗控制结构:为了实现特定的阻抗,可以在PCB设计中添加阻抗控制结构,如阻抗微带线、差分线和阻抗转换器等。
这些结构可以在特定位置和距离上调整阻抗。
4.使用阻抗计算工具:在PCB阻抗设计中,可以使用专门的阻抗计算工具来计算和模拟阻抗。
这些工具可以帮助设计师根据所选材料和几何参数来优化阻抗。
此外,在进行PCB阻抗设计时,还需要注意以下几个方面:1.阻抗的一致性:在整个PCB中,同一条信号线的阻抗应保持一致,以避免信号的干扰和失真。
这要求PCB上的线宽和线间距要一致,并且要控制好线的长度。
2.制造工艺影响:PCB阻抗设计并不仅仅是在设计阶段进行的,而且还需要考虑到制造工艺对阻抗的影响。
为什么要进行阻抗匹配电子行业的工程师经常会遇到阻抗匹配问题。
什么是阻抗匹配,为什么要进行阻抗匹配?本文带您一探究竟!一、什么是阻抗在电学中,常把对电路中电流所起的阻碍作用叫做阻抗。
阻抗单位为欧姆,常用Z表示,是一个复数Z= R+i( ωL–1/(ωC))。
具体说来阻抗可分为两个部分,电阻(实部)和电抗(虚部)。
其中电抗又包括容抗和感抗,由电容引起的电流阻碍称为容抗,由电感引起的电流阻碍称为感抗。
图1 复数表示方法二、阻抗匹配的重要性阻抗匹配是指信号源或者传输线跟负载之间达到一种适合的搭配。
阻抗匹配主要有两点作用,调整负载功率和抑制信号反射。
1、调整负载功率假定激励源已定,那么负载的功率由两者的阻抗匹配度决定。
对于一个理想化的纯电阻电路或者低频电路,由电感、电容引起的电抗值基本可以忽略,此时电路的阻抗来源主要为电阻。
如图2所示,电路中电流I=U/(r+R),负载功率P=I*I*R。
由以上两个方程可得当R=r时P取得最大值,Pmax=U*U/(4*r)。
图2 负载功率调整2、抑制信号反射当一束光从空气射向水中时会发生反射,这是因为光和水的光导特性不同。
同样,当信号传输中如果传输线上发生特性阻抗突变也会发生反射。
波长与频率成反比,低频信号的波长远远大于传输线的长度,因此一般不用考虑反射问题。
高频领域,当信号的波长与传输线长出于相同量级时反射的信号易与原信号混叠,影响信号质量。
通过阻抗匹配可有效减少、消除高频信号反射。
图3 正常信号图4 异常信号(反射引起超调)三、阻抗匹配的方法阻抗匹配的方法主要有两个,一是改变组抗力,二是调整传输线。
改变阻抗力就是通过电容、电感与负载的串并联调整负载阻抗值,以达到源和负载阻抗匹配。
调整传输线是加长源和负载间的距离,配合电容和电感把阻抗力调整为零。
此时信号不会发生发射,能量都能被负载吸收。
高速PCB布线中,一般把数字信号的走线阻抗设计为50欧姆。
一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线(差分)为85-100欧姆。
PCB的阻抗设计PCB的阻抗设计是指在PCB设计过程中,根据电路的特性和需求,合理地设计电路板的阻抗参数,以保证信号的传输质量和可靠性。
阻抗是指电流通过电路时所遭遇的电阻和电容的阻力。
阻抗的设计对于高速信号传输和高频电路非常重要,因为阻抗在一定程度上影响了电路的传输速度、信号完整性和稳定性。
在PCB的阻抗设计中,首先要考虑的是电路的工作频率。
不同的频率下,电路的特性和要求也不同。
例如,在高频电路中,电流会在导线中产生较大的感应阻抗,因此需要将导线做成平面形状,以减小感应阻抗的影响,提高电路的工作效率。
其次,要考虑电路板的材料。
PCB的材料通常是介电常数较小的玻璃纤维增强有机物(FR-4)或高频率介电常数材料。
不同材料的介电常数会导致不同的阻抗特性,因此在选择材料时要根据需求进行合理的选择。
在设计PCB的过程中,还需要注意电路的布局和走线。
布局和走线的合理设计可以减小电路的串扰和干扰,提高信号的传输质量。
一般来说,要尽量避免信号线与辅助信号线或电源线交叉走线,以减小串扰的影响。
此外,还需要注意信号线的长度和形状,合理选择信号线的宽度和间距,以保证阻抗的稳定性和一致性。
针对特定的电路,还可以采取一些特殊的阻抗匹配技术。
例如,使用微带线或同轴线来匹配阻抗,以减小信号的反射和传输损耗。
另外,还可以采用平面波导结构来实现阻抗匹配,以提高高频电路的阻抗稳定性和传输效率。
总之,PCB的阻抗设计对于电路的传输质量和可靠性非常重要。
通过合理选择材料、考虑布局和走线、采取适当的阻抗匹配技术,可以有效降低信号的传输损耗和串扰,提高电路的工作效率和稳定性。
因此,在PCB 设计过程中,应当充分考虑阻抗的设计要求,以保证电路的正常工作和性能的稳定。
pcb制作过程中阻抗的调整方法在PCB制作过程中,阻抗的调整是非常重要的一步。
阻抗是指电路中电流和电压之间的比值,是电路中的重要参数之一。
如果阻抗调整不好,就会导致信号的失真和干扰,从而影响电路的性能。
那么,在PCB制作过程中,如何进行阻抗的调整呢?下面我们来详细介绍一下。
一、了解阻抗的基本概念在进行阻抗调整之前,首先需要了解阻抗的基本概念和特性。
阻抗是指电路中电流和电压之间的比值,通常用欧姆(Ω)表示。
在PCB设计中,阻抗主要分为传输线阻抗和全局阻抗两种。
传输线阻抗是指在高速信号传输线上的阻抗,通常是50Ω或75Ω。
全局阻抗是指PCB的整体阻抗,主要是指电源、地面和信号层之间的阻抗匹配。
二、确定阻抗规格在进行阻抗调整之前,需要先确定阻抗规格。
这需要根据电路板的设计要求和信号传输的速度来确定。
一般来说,高速信号需要更严格的阻抗控制,而低速信号则可以放宽要求。
在确定阻抗规格时,需要考虑以下几个方面:1. PCB板材的介电常数和厚度;2. 信号层的线宽和线距;3. 信号层之间的层间距离;4. 电路板的尺寸和形状。
根据以上要素计算出所需的阻抗,然后设定合适的阻抗规格。
三、调整阻抗在确定阻抗规格后,就可以进行阻抗调整了。
阻抗调整的方法主要有以下几种:1. 改变PCB板材的厚度和介电常数,以达到所需要的阻抗值;2. 改变信号层的线宽和线距,以调整阻抗值;3. 增加或减少地面层的铜箔,以达到所需要的阻抗值;4. 在信号线的两侧增加贴片电容,以降低阻抗;5. 在信号线和地面层之间加入分布式电容,以降低阻抗。
需要注意的是,以上方法并不是每种情况都适用。
在具体操作时,需要根据具体情况进行选择和调整。
四、验证阻抗在进行阻抗调整后,需要进行阻抗验证。
验证阻抗的方法主要有两种:1. 使用阻抗测试仪进行测试,以检查阻抗是否符合设计要求;2. 在实际测试中,通过观察信号波形和频谱图等方法来验证阻抗。
需要注意的是,阻抗的验证需要在PCB制作过程中的不同阶段进行,以确保阻抗的准确性和稳定性。
pcb阻抗匹配总结
PCB阻抗匹配总结。
在PCB设计中,阻抗匹配是一个非常重要的概念。
阻抗匹配是指在电路中确保信号传输的阻抗与信号源和负载的阻抗相匹配,以最大限度地减少信号的反射和损耗。
在PCB设计中,阻抗匹配通常是为了确保高速信号的稳定传输,以及减少信号串扰和电磁干扰。
为了实现阻抗匹配,设计师通常需要考虑以下几个方面:
1. PCB材料的选择,PCB的材料会直接影响信号的传输速度和阻抗。
选择合适的PCB材料可以帮助设计师实现所需的阻抗匹配。
2. 线宽和间距,在PCB设计中,线宽和间距对于阻抗匹配至关重要。
设计师需要根据所需的阻抗值来确定线宽和间距的大小,以确保信号传输的稳定性。
3. 差分信号的阻抗匹配,在差分信号传输中,确保差分对的阻抗匹配也是非常重要的。
设计师需要特别关注差分对的布线和阻抗匹配,以减少信号的串扰和失真。
4. 地线的设计,良好的地线设计可以帮助减少信号的回流和电
磁干扰,从而提高阻抗匹配的稳定性。
总之,PCB阻抗匹配在高速电路设计中扮演着非常重要的角色。
设计师需要综合考虑材料选择、线宽和间距、差分信号和地线设计
等因素,来确保信号传输的稳定性和可靠性。
只有在阻抗匹配得当
的情况下,才能有效地减少信号的反射和损耗,从而提高电路的性
能和可靠性。
印制电路板阻抗匹配印制电路板阻抗匹配在线路板中,若有信号传送时,期望由电源的宣告端起,在能量扔掉最小的景象下,能顺畅的传送到承受端,并且承受端将其彻底吸收而不作任何反射。
要抵达这种传输,线路中的阻抗有必要和宣告端内部的阻抗持平才行称为阻抗匹配。
在方案高速PCB电路时,阻抗匹配是方案的要素之一。
而阻抗值与走线办法有必定的联络。
例如,是走在外表层(Microstrip)仍是内层(Stripline/DoubleStripline)、与参看的电源层或地层的间隔、走线宽度、PCB材料等均会影响走线的特性阻抗值。
也即是说,要在布线后才华断定阻抗值,一同纷歧样PCB出产厂家出产出来的特性阻抗也有纤细的纷歧样。
通常仿真软件会因线路模型或所运用的数学算法的束缚而无法思考到一些阻抗不接连的布线状况,这时分在原理图上只能预留一些端接(Temninators),如串联电阻等,来峻峭走线阻抗不接连的效应。
真实底子处理疑问的办法仍是布线时尽量留神防止阻抗不接连的发作。
界说:特性阻抗的界说:在某一频率下,电子器材传输信号线中,相对某一参看层,其高频信号或电磁波在传达进程中所受的阻力称之为特性阻抗,它是电阻抗,电感抗,电容抗的一个矢量总和。
特性阻抗的分类:如今多见的特性阻抗分为:单端(线)阻抗、差分(动)阻抗、共面阻抗等。
单端(线)阻抗:英文singleendedimpedance,指单根信号线测得的阻抗。
差分(动)阻抗:英文differentialimpedance,指差分驱动时在两条等宽等间隔的传输线中查验到的阻抗。
共面阻抗:英文coplanarimpedance,指信号线在其周围GND/VCC(信号线到其两头GND/VCC间隔持平)之间传输时所查验到的阻抗。
阻抗操控需要的抉择条件:当信号在PCB导线中传输时,若导线的长度挨近信号波长的1/7,此刻的导线便变成信号传输线,通常信号传输线均需做阻抗操控。
PCB制造时,依客户央求抉择是不是需管控阻抗,若客户央求某一线宽需做阻抗操控,出产时则需管控该线宽的阻抗。
什么是阻抗?什么是阻抗匹配?为什么要阻抗匹配?什么是阻抗?具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。
阻抗常用Z表示。
阻抗由电阻、感抗和容抗三者组成,但不是三者简单相加。
如果三者是串联的,又知道交流电的频率f、电阻R、电感L和电容C,那么串联电路的阻抗阻抗的单位是欧。
对于一个具体电路,阻抗不是不变的,而是随着频率变化而变化。
在电阻、电感和电容串联电路中,电路的阻抗一般来说比电阻大。
也就是阻抗减小到最小值。
在电感和电容并联电路中,谐振的时候阻抗增加到最大值,这和串联电路相反。
阻抗匹配在高频设计中是一个常用的概念,这篇文章对这个“阻抗匹配”进行了比较好的解析。
回答了什么是阻抗匹配。
阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。
大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。
要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。
改变阻抗力把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。
如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。
重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。
调整传输线由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配。
阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。
最大功率传输定理,如果是高频的话,就是无反射波。
两层板嘉立创阻抗匹配计算在PCB设计中,阻抗匹配是一个非常重要的问题。
阻抗匹配的目的是为了确保信号在传输过程中的稳定性和可靠性。
在设计两层板时,嘉立创是一个非常常用的PCB制造商,他们提供了方便的阻抗匹配计算工具。
我们需要明确什么是阻抗匹配。
阻抗匹配是指信号源和负载之间的阻抗在一定范围内保持一致,以确保信号的传输效果。
在PCB设计中,阻抗匹配通常用于高速信号线,如DDR总线、PCIe总线等。
嘉立创提供了一个在线阻抗匹配计算工具,可以帮助设计师快速准确地计算出所需的阻抗值。
在使用该工具之前,我们需要了解一些基本的参数,如PCB板材的介电常数、板厚、铜箔厚度等。
这些参数将直接影响到阻抗的计算结果。
计算阻抗匹配的过程比较复杂,但使用嘉立创的工具可以大大简化这个过程。
首先,我们需要选择所使用的板材类型,嘉立创提供了常见的FR4板材选项。
然后,输入板材的厚度和铜箔厚度,这些参数可以在PCB设计软件中找到。
接下来,我们需要输入所需的阻抗值,一般情况下,DDR总线的阻抗要求为50欧姆,PCIe总线的阻抗要求为85欧姆。
在输入完这些参数后,嘉立创的工具会自动计算出所需的走线宽度和间距。
这些参数将作为PCB设计的输入,设计师可以直接在设计软件中使用这些参数进行布线。
嘉立创的计算结果可靠准确,可以帮助设计师避免因阻抗不匹配而导致的信号完整性问题。
除了阻抗匹配计算工具,嘉立创还提供了其他一些辅助工具,如阻抗测试板和仿真分析服务。
阻抗测试板可以用于验证设计的阻抗是否符合要求,而仿真分析服务可以帮助设计师更好地理解信号传输过程中的各种影响因素。
阻抗匹配在PCB设计中非常重要,特别是在高速信号线的设计中。
嘉立创提供了方便快捷的阻抗匹配计算工具,可以帮助设计师准确地计算出所需的阻抗值,并提供了其他辅助工具来验证和分析设计的阻抗情况。
设计师在进行PCB设计时可以考虑使用嘉立创的工具和服务,以提高设计的可靠性和稳定性。
高速PCB设计中的阻抗匹配1、阻抗匹配阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这说明全部能量都被负载吸收了。
反之则在传输中有能量损失。
在高速PCB设计中,阻抗的匹配与否关系到信号的质量优劣。
PCB走线什么时候需要做阻抗匹配?不主要看频率,而关键是看信号的边沿陡峭程度,即信号的上升/下降时间,一般认为假如信号的上升/下降时间〔按10%〜90%计〕小于6倍导线延时,就是高速信号,必需留意阻抗匹配的问题。
导线延时一般取值为150ps/inch。
特征阻抗信号沿传输线传播过程当中,假如传输线上各处具有一致的信号传播速度,并且单位长度上的电容也一样,那么信号在传播过程中总是看到完全一致的瞬间阻抗。
由于在整个传输线上阻抗维持恒定不变,我们给出一个特定的名称,来2、表示特定的传输线的这种特征或者是特性,称之为该传输线的特征阻抗。
特征阻抗是指信号沿传输线传播时,信号看到的瞬间阻抗的值。
特征阻抗与PCB导线所在的板层、PCB所用的材质〔介电常数〕、走线宽度、导线与平面的距离等因素有关,与走线长度无关。
特征阻抗可以使用软件计算。
高速PCB布线中,一般把数字信号的走线阻抗设计为50欧姆,这是个大约的数字。
一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线〔差分〕为100欧姆。
常见阻抗匹配的方式1、串联终端匹配在信号源端阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间串接一个电阻R,使源端的输出阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射。
匹配电阻选择原则:匹配电阻值与驱动器的输出阻抗之和等于传输线的特3、征阻抗。
常见的CMOS和TTL驱动器,其输出阻抗会随信号的电平大小改变而改变。
因此,对TTL或CMOS电路来说,不行能有十分正确的匹配电阻,只能折中考虑。
链状拓扑结构的信号网路不适合使用串联终端匹配,全部的负载必需接到传输线的末端。
串联匹配是最常用的终端匹配方法。
PCB设计中的层叠阻抗匹配技术PCB设计中的层叠阻抗匹配技术是一种在多层PCB中实现信号传输时需考虑的重要技术。
在高频信号传输中,为了确保信号在PCB中能够稳定传输且不受干扰,需要进行阻抗匹配以保证信号的传输质量。
层叠PCB通常由内层和外层构成,不同层之间通过介质层隔离。
在设计过程中,我们需要考虑每一层的阻抗匹配,以确保信号在传输过程中不会出现反射、损耗等问题。
层叠阻抗匹配技术主要包括以下几个方面:1. 层间阻抗匹配:在层叠PCB中,内层和外层之间的阻抗匹配是非常关键的。
通过调整不同层之间的介质厚度和介电常数,可以实现目标阻抗值的匹配。
同时,还需要考虑不同层之间的引线长度,以避免信号传输过程中的干扰。
2. 差分信号阻抗匹配:差分信号在高速传输中具有较好的抗干扰性能,但在设计过程中需要确保差分信号对的阻抗匹配。
通过调整差分线的宽度、间距等参数,可以实现差分信号对的阻抗匹配,提高信号传输的质量。
3. 端口阻抗匹配:在PCB设计中,信号源和负载的阻抗匹配也是非常重要的。
通过设计匹配网络或使用阻抗变换器等方法,可以实现信号源和负载的阻抗匹配,减小信号反射和损耗。
在实际的PCB设计中,可采用仿真软件进行阻抗匹配的设计和分析。
通过仿真模拟不同参数的调整,可以找到最佳的阻抗匹配方案,提高PCB设计的成功率。
总的来说,PCB设计中的层叠阻抗匹配技术是实现高速信号传输和抗干扰的关键技术之一。
设计人员需要充分了解不同阻抗匹配技术的原理和方法,灵活运用在实际的项目中,以确保PCB设计的性能和稳定性。
通过不断的实践和优化,可以提高PCB设计的质量和效率,满足不同应用场景的需求。
PCB堆栈设计中的阻抗匹配技术在PCB(Printed Circuit Board)堆栈设计中,阻抗匹配技术是非常重要的一环。
阻抗匹配指的是将信号线的特征阻抗与传输线上的特性阻抗匹配,以确保信号的有效传输和减少信号反射。
正确的阻抗匹配可以提高信号的传输速率和可靠性,降低噪声,减少串扰,提高整体系统的性能。
首先,要了解信号线的特性阻抗和传输线的特性阻抗。
在PCB设计中,信号线通常采用微带线或者同轴电缆,这两种传输线的特性阻抗是通过线宽、线距和介质常数等参数决定的。
而信号线的特性阻抗是为了匹配传输线的特性阻抗而设计的,通常通过控制线宽、线距和堆叠层厚度等参数来实现。
其次,在PCB堆栈设计中,需要考虑不同信号线之间的阻抗匹配。
在设计多层PCB时,不同信号线可能会通过相同的地层或者电源层,这样就会造成信号线之间的相互影响。
为了避免信号互相干扰或者交叉耦合,需要在PCB堆栈设计中合理安排信号线的走线路径和堆叠层顺序,以减小信号线之间的串扰影响。
此外,还需要考虑器件的布局和连接方式对阻抗匹配的影响。
在PCB设计中,布局合理的器件可以减少信号线的走线长度,降低信号传输过程中的损耗和信号衰减,有助于提高信号的稳定性和传输速率。
同时,正确选择连接方式(如差分传输线、屏蔽传输线等)也可以提升系统的抗干扰能力和抗串扰能力,改善系统的整体性能。
总的来说,在PCB堆栈设计中,阻抗匹配技术是至关重要的一环。
通过合理设计信号线的特性阻抗、匹配传输线的特性阻抗、考虑信号线之间的阻抗匹配、注意器件布局和连接方式等方面,可以有效提升整个系统的性能和可靠性,确保信号的正常传输和稳定工作。
通过不断学习和实践,工程师们可以不断提升自己的阻抗匹配技术水平,为PCB设计和电子系统的性能优化贡献自己的力量。
PCB的阻抗设计PCB(印刷电路板)的阻抗设计是指在电路板设计过程中,对于信号传输线的特性阻抗进行设计和控制,以确保电路板上的信号传输质量和稳定性。
阻抗匹配是一种基本的电路设计要求,特别是在高频和高速电路中更为重要。
本文将详细介绍PCB的阻抗设计。
PCB的阻抗设计的基本原理是通过控制信号传输线的几何尺寸和材料特性来实现。
在PCB设计中,常见的传输线类型包括微带线和同轴线。
微带线是在电路板表面上的一条带状导线,而同轴线是一种环绕在中心导体周围的导体层。
这两种传输线类型都可以用于高速信号传输和阻抗匹配。
首先,对于微带线的阻抗设计,几何尺寸是关键要素。
微带线的宽度、高度和介电常数决定了其阻抗值。
通常,通过调整微带线的宽度来控制阻抗值。
在设计过程中,可以使用一些计算工具,如阻抗计算器或PCB设计软件,来帮助确定所需的微带线宽度以实现所需的阻抗值。
此外,选择合适的基底材料也是必要的。
常用的基底材料有FR-4、RO4003C等,它们具有不同的介电常数和损耗因子,需要根据设计要求选择合适的材料。
其次,对于同轴线的阻抗设计,几何尺寸同样也是关键因素。
同轴线的内外导体尺寸和基底材料的介电常数是决定其阻抗值的主要因素。
与微带线不同的是,同轴线的阻抗设计更为复杂,需要考虑内外导体的尺寸比例以及基底材料的选择。
同样地,可以使用专门的工具和软件来计算和设计所需的同轴线阻抗。
除了几何尺寸和材料选择,PCB的阻抗设计还需要考虑布线规则和布局,以减少信号传输线之间的相互干扰和串扰。
对于高速和高频电路,常见的设计方法包括差分信号布线和层间叠加。
差分信号布线可以减少信号线之间的干扰,并提高抗干扰能力。
层间叠加则可以通过在信号和地线之间添加信号平面,降低信号线之间的串扰。
最后,阻抗设计还需要考虑信号的传输距离和数据速率。
对于高速信号传输和长距离传输,需要更精确地控制阻抗匹配。
此时,可以采用一些特殊的技术,如阻抗匹配微调器和电缆补偿器,以进一步优化阻抗匹配。
一、阻抗匹配概念定义:1、指信号源或者传输线跟负载之间的一种合适的搭配方式;阻抗匹配分为低频和高频两种情况讨论。
2、阻抗匹配(Impeda nee matchi ng是微波电子学里的一部分,主要用于负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。
我们以下例(软管送水浇花来感性认识一下阻抗匹配的功用A、一端于手握处加压使其射出水柱,另一端接在水龙头,。
当握管处所施压的力道恰好,而让水柱的射程正确洒落在目标区.如下图所示:B、然而一旦用力过度水注射程太远,不但腾空越过目标浪费水资源。
也有可能因强力水压无处宣泄,以致往来源反弹造成软管自龙头上的挣脱(阻抗太高;如下图所示:C、反之,当握处之挤压不足以致射程太近者,则照样得不到想要的结果。
(阻抗太低,如下图所示;唯有拿捏恰到好处才能符合实际需求的距离。
(阻抗匹配二、PCB走线的阻抗匹配与阻抗控制(1定义阻抗匹配是电路学里的重要议题,也是射频微波电路的重点。
一般的传输线都是一端接电源,另一端接负载,此负载可能是天线或任何具有等效阻抗ZL的电路<传输线阻抗和负载阻抗达到匹配的定义,简单说就是:ZO=ZL。
在阻抗匹配的环境中,负载端是不会反射电波的,换句话说,电磁能量完全被负载吸收。
因为传输线的主要功能就是传输能量和传送电子讯号或数字数据,一个阻抗匹配的负载和电路网络,将可确保传输到最终负载的电磁能量值能达到最大量。
(2 PCB走线作阻抗控制的原因1:针对目前高频高速的要求,及对信号失真状况越来越高的要求,在设计PCB时方波信号在多层板讯号线中,其特性阻抗值必须要和电子元件的内置电子阻抗相匹配,才能保证信号的完整的传输。
2:当特性阻抗值超出公差时,所传讯号的能量将出现反射、散失、衰减或延误等劣化现象,严重时会出现错误讯号。
3:由于元件的电子阻抗越高,其传输速率越快。
阻抗匹配概念阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。
对于不同特性的电路,匹配条件是不一样的。
在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。
当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份只数值相等而符号相反。
这种匹配条件称为共扼匹配。
阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。
大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。
要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。
改变阻抗力把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。
如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。
重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。
调整传输线由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。
最大功率传输定理,如果是高频的话,就是无反射波。
对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。
阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了.反之则在传输中有能量损失。
高速PCB布线时,为了防止信号的反射,要求是线路的阻抗为50欧姆。
这是个大约的数字,一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线则为100欧姆,只是取个整而已,为了匹配方便.阻抗从字面上看就与电阻不一样,其中只有一个阻字是相同的,而另一个抗字呢?简单地说,阻抗就是电阻加电抗,所以才叫阻抗;周延一点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。
在直流电的世界中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。
电阻小的物质称作良导体,电阻很大的物质称作非导体,而最近在高科技领域中称的超导体,则是一种电阻值几近于零的东西。
但是在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。
电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。
它们的计量单位与电阻一样是奥姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。
此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和。
阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。
对于不同特性的电路,匹配条件是不一样的。
在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。
当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份只数值相等而符号相反。
这种匹配条件称为共扼匹配。
一.阻抗匹配的研究在高速的设计中,阻抗的匹配与否关系到信号的质量优劣。
阻抗匹配的技术可以说是丰富多样,但是在具体的系统中怎样才能比较合理的应用,需要衡量多个方面的因素。
例如我们在系统中设计中,很多采用的都是源段的串连匹配。
对于什么情况下需要匹配,采用什么方式的匹配,为什么采用这种方式。
例如:差分的匹配多数采用终端的匹配;时钟采用源段匹配;1、串联终端匹配串联终端匹配的理论出发点是在信号源端阻抗低于传输线特征阻抗的条件下,在信号的源端和传输线之间串接一个电阻R,使源端的输出阻抗与传输线的特征阻抗相匹配,抑制从负载端反射回来的信号发生再次反射.串联终端匹配后的信号传输具有以下特点:A由于串联匹配电阻的作用,驱动信号传播时以其幅度的50%向负载端传播;B信号在负载端的反射系数接近+1,因此反射信号的幅度接近原始信号幅度的50%。
C反射信号与源端传播的信号叠加,使负载端接受到的信号与原始信号的幅度近似相同;D负载端反射信号向源端传播,到达源端后被匹配电阻吸收;?E反射信号到达源端后,源端驱动电流降为0,直到下一次信号传输。
相对并联匹配来说,串联匹配不要求信号驱动器具有很大的电流驱动能力。
选择串联终端匹配电阻值的原则很简单,就是要求匹配电阻值与驱动器的输出阻抗之和与传输线的特征阻抗相等。
理想的信号驱动器的输出阻抗为零,实际的驱动器总是有比较小的输出阻抗,而且在信号的电平发生变化时,输出阻抗可能不同。
比如电源电压为+4.5V的CMOS驱动器,在低电平时典型的输出阻抗为37Ω,在高电平时典型的输出阻抗为45Ω[4];TTL驱动器和CMOS驱动一样,其输出阻抗会随信号的电平大小变化而变化。
因此,对TTL或CMOS电路来说,不可能有十分正确的匹配电阻,只能折中考虑。
链状拓扑结构的信号网路不适合使用串联终端匹配,所有的负载必须接到传输线的末端。
否则,接到传输线中间的负载接受到的波形就会象图3.2.5中C点的电压波形一样。
可以看出,有一段时间负载端信号幅度为原始信号幅度的一半。
显然这时候信号处在不定逻辑状态,信号的噪声容限很低。
串联匹配是最常用的终端匹配方法。
它的优点是功耗小,不会给驱动器带来额外的直流负载,也不会在信号和地之间引入额外的阻抗;而且只需要一个电阻元件。
、并联终端匹配并联终端匹配的理论出发点是在信号源端阻抗很小的情况下,通过增加并联电阻使负载端输入阻抗与传输线的特征阻抗相匹配,达到消除负载端反射的目的。
实现形式分为单电阻和双电阻两种形式。
并联终端匹配后的信号传输具有以下特点:A驱动信号近似以满幅度沿传输线传播;B所有的反射都被匹配电阻吸收;C负载端接受到的信号幅度与源端发送的信号幅度近似相同。
在实际的电路系统中,芯片的输入阻抗很高,因此对单电阻形式来说,负载端的并联电阻值必须与传输线的特征阻抗相近或相等。
假定传输线的特征阻抗为50Ω,则R值为50Ω。
如果信号的高电平为5V,则信号的静态电流将达到100mA。
由于典型的TTL或CMOS电路的驱动能力很小,这种单电阻的并联匹配方式很少出现在这些电路中。
双电阻形式的并联匹配,也被称作戴维南终端匹配,要求的电流驱动能力比单电阻形式小。
这是因为两电阻的并联值与传输线的特征阻抗相匹配,每个电阻都比传输线的特征阻抗大。
考虑到芯片的驱动能力,两个电阻值的选择必须遵循三个原则:⑴.两电阻的并联值与传输线的特征阻抗相等;⑵.与电源连接的电阻值不能太小,以免信号为低电平时驱动电流过大;⑶.与地连接的电阻值不能太小,以免信号为高电平时驱动电流过大。
并联终端匹配优点是简单易行;显而易见的缺点是会带来直流功耗:单电阻方式的直流功耗与信号的占空比紧密相关?;双电阻方式则无论信号是高电平还是低电平都有直流功耗。
因而不适用于电池供电系统等对功耗要求高的系统。
另外,单电阻方式由于驱动能力问题在一般的TTL、CMOS系统中没有应用,而双电阻方式需要两个元件,这就对PCB的板面积提出了要求,因此不适合用于高密度印刷电路板。
当然还有:AC终端匹配;基于二极管的电压钳位等匹配方式。
二.将讯号的传输看成软管送水浇花2.1数位系统之多层板讯号线(Signal Line)中,当出现方波讯号的传输时,可将之假想成为软管(hose)送水浇花。
一端于手握处加压使其射出水柱,另一端接在水龙头。
当握管处所施压的力道恰好,而让水柱的射程正确洒落在目标区时,则施与受两者皆欢而顺利完成使命,岂非一种得心应手的小小成就?2.2然而一旦用力过度水注射程太远,不但腾空越过目标浪费水资源,甚至还可能因强力水压无处宣泄,以致往来源反弹造成软管自龙头上的挣脱!不仅任务失败横生挫折,而且还大捅纰漏满脸豆花呢!2.3反之,当握处之挤压不足以致射程太近者,则照样得不到想要的结果。
过犹不及皆非所欲,唯有恰到好处才能正中下怀皆大欢喜。
2.4上述简单的生活细节,正可用以说明方波(Square Wave)讯号(Signal)在多层板传输线(Transmission Line,系由讯号线、介质层、及接地层三者所共同组成)中所进行的快速传送。
此时可将传输线(常见者有同轴电缆Coaxial Cable,与微带线Microstrip Line或带线Strip Line等)看成软管,而握管处所施加的压力,就好比板面上“接受端”(Receiver)元件所并联到Gnd的电阻器一般,可用以调节其终点的特性阻抗(Characteristic Impedance),使匹配接受端元件内部的需求。
三.传输线之终端控管技术(Termination)3.1由上可知当“讯号”在传输线中飞驰旅行而到达终点,欲进入接受元件(如CPU或Meomery等大小不同的IC)中工作时,则该讯号线本身所具备的“特性阻抗”,必须要与终端元件内部的电子阻抗相互匹配才行,如此才不致任务失败白忙一场。
用术语说就是正确执行指令,减少杂讯干扰,避免错误动作”。
一旦彼此未能匹配时,则必将会有少许能量回头朝向“发送端”反弹,进而形成反射杂讯(Noise)的烦恼。
3.2当传输线本身的特性阻抗(Z0)被设计者订定为28ohm时,则终端控管的接地的电阻器(Zt)也必须是28ohm,如此才能协助传输线对Z0的保持,使整体得以稳定在28ohm的设计数值。
也唯有在此种Z0=Zt的匹配情形下,讯号的传输才会最具效率,其“讯号完整性”(Signal Integrity,为讯号品质之专用术语)也才最好。
四.特性阻抗(Characteristic Impedance)4.1当某讯号方波,在传输线组合体的讯号线中,以高准位(High Level)的正压讯号向前推进时,则距其最近的参考层(如接地层)中,理论上必有被该电场所感应出来的负压讯号伴随前行(等于正压讯号反向的回归路径Return Path),如此将可完成整体性的回路(Loop)系统。
该“讯号”前行中若将其飞行时间暂短加以冻结,即可想象其所遭受到来自讯号线、介质层与参考层等所共同呈现的瞬间阻抗值(Instantanious Impedance),此即所谓的“特性阻抗”。