解二元一次方程组典型例题解析
- 格式:doc
- 大小:654.15 KB
- 文档页数:10
初一数学二元一次方程组试题答案及解析1.方程组的解满足方程x+y-a=0,那么a的值是A.5B.-5C.3D.-3【答案】A.【解析】把①代入②得:y=-5,把y=-5代入①得:x=0,把y=-5,x=0代入x+y+a=0得:a=5;故选A.【考点】1.二元一次方程组的解;2.二元一次方程的解.2.解方程组(1)(2)【答案】(1);(2).【解析】分别把所给方程组进行变形,然后再求解即可.试题解析:(1)由①得:x="3y-7" ③把③代入②得:6y-14=5y整理解得:y=14把y=14代入①得:x=35所以方程组的解为:;(2)方程组可变形为:由①得:x="300-y" ③把③代入②得:1500-5y+53y=7500整理解得:x=125.把x=125代入①得:y=175.所以方程组的解为:.【考点】解二元一次方程组.3.为庆祝“六·一”国际儿童节,鸡冠区某小学组织师生共360 人参加公园游园活动,有A 、B 两种型号客车可供租用,两种客车载客量分别为45 人、30 人,要求每辆车必须满载,则师生一次性全部到达公园的租车方案有种。
【答案】5【解析】分析:可设租用A型号客车x辆,B型号客车Y辆,根据共360人参加公园游园活动可列方程,再根据车辆数为非负整数求解即可.解答:解:设租用A型号客车x辆,B型号客车Y辆,则45x+30y=360,即3x+2y=24,当x=0时,y=12,符合题意;当x=2时,y=9,符合题意;当x=4时,y=6,符合题意;当x=6时,y=3,符合题意;当x=8时,y=0,符合题意.故师生一次性全部到达公园的租车方案有5种.故选C.【考点】二元一次方程的应用.4.已知3x-2y+6=0,用含x的代数式表示y得:y= .【答案】.【解析】要把方程3x-2y+6=0写成用含x的式子表示y的形式,需要把含有y的项移到等号一边,其他的项移到另一边,然后合并同类项,系数化1就可用含x的式子表示y的形式.试题解析:∵3x-2y+6=0∴2y=3x+6即:.【考点】解二元一次方程.5.若是二元一次方程组的解,求的值.【答案】3【解析】根据方程组解的定义,将代入得到关于的二元一次方程组,二式相减即可求得的值.把代入方程组得:,(1)(2),得.【考点】1.方程组的解;2.求代数式的值;3.整体思想的应用.6.方程mx-2y=x+5是二元一次方程时,m的取值范围为()A.m≠0B.m≠1C.m≠-1D.m≠2【答案】B【解析】原方程移项,得mx-x-2y=5,合并同类项,得(m-1)x-2y=5,根据二元一次方程的定义,得m-1≠0,即m≠1.故选B.【考点】二元一次方程的定义7.小明的爸爸骑着摩托车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数(单位:公里)如下:设小明12:00时看到的两位数的个位数字为x。
专题05 二元一次方程(组)的应用知识网络重难突破一. 二元一次方程的应用利用二元一次方程求方案数的一般方法:挖掘题目中的关系,找出等量关系,列出二元一次方程,然后根据未知数的实际意义求其整数解,整数解的个数即为方案数.典例1.(2018春•召陵区期末)“双11”促销活动中,小芳的妈妈计划用100元在唯品会购买价格分别为8元和12元的两种商品,则可供小芳妈妈选择的购买方案有()A.4种B.5种C.6种D.7种【答案】A【解析】解:设购买8元的商品数量为x,购买12元的商品数量为y,依题意得:8x+12y=100,整理,得y.因为x是正整数,所以当x=2时,y=7.当x=5时,y=5.当x=8时,y=3.当x=11时,y=1.即有4种购买方案.故选:A.典例2.(2018春•江油市期末)甲、乙两个公共汽车站相向发车,一人在街上行走,他发现每隔8分钟就迎面开来一辆公交车,每隔24分种从背后开来一辆公交车,如果车站发车的间隔时间相同,各车的速度相同,那两车站发车的间隔时间为()A.18分钟B.10分钟C.12分钟D.16分钟【答案】C【解析】解:设公交车的速度为x米/分钟,人步行速度为y米/分钟,根据题意得:8x+8y=24x﹣24y,解得:x=2y,∴12.故选:C.二. 二元一次方程组的应用1.常见的利用二元一次方程组解决实际问题的类型有:配套问题、分配问题、行程问题、销售问题、数字问题、几何问题、梯度收费问题、方案问题等.2.列二元一次方程组解应用题的一般步骤设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组);解:解方程组,求出未知数的值;验:检验求得的值是否正确和符合实际情形;答:写出答案.典例1.(2018春•思南县期末)某校举行研学旅行活动,车上准备了7箱矿泉水,每箱的瓶数相同,到达目的地后,先从车上搬下3箱,发给每位同学1瓶矿泉水,有9位同学未领到.接着又从车上搬下4箱,继续分发,最后每位同学都有2瓶矿泉水,还剩下6瓶.问:有多少人参加此次研学旅行活动?每箱矿泉水有多少瓶?【答案】见解析【解析】解:设有x人参加此次研学旅行活动,每箱矿泉水有y瓶,根据题意得:,解得:.答:有81人参加此次研学旅行活动,每箱矿泉水有24瓶.典例2.某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:(总利润=单件利润×销售量)商品价格 A B进价(元/件)1200 1000售价(元/件)1350 1200(1)该商场第1次购进A、B两种商品各多少件?(2)商场第2次以原价购进A、B两种商品,购进A商品的件数不变,而购进B商品的件数是第1次的2倍,A商品按原价销售,而B商品打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于54000元,则B种商品是打几折销售的?【答案】见解析【解析】解:(1)设第1次购进A商品x件,B商品y件.根据题意得:,解得:.答:商场第1次购进A商品200件,B商品150件.(2)设B商品打m折出售.根据题意得:200×(1350﹣1200)+150×2×(12001000)=54000,解得:m=9.答:B种商品打9折销售的.典例3.已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货18吨,某物流公司现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.【答案】见解析【解析】解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组得:,解方程组,得:,答:1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意和(1)得:3a+4b=35,∴a∵a、b都是正整数∴或或答:有3种租车方案:方案一:A型车9辆,B型车2辆;方案二:A型车5辆,B型车5辆;方案三:A型车1辆,B型车8辆.(3)∵A型车每辆需租金200元/次,B型车每辆需租金240元/次,∴方案一需租金:9×200+2×240=2280(元)方案二需租金:5×200+5×240=2200(元)方案三需租金:1×200+8×240=2120(元)∵2280>2200>2120∴最省钱的租车方案是方案三:A型车1辆,B型车8辆,最少租车费为2120元.三. 三元一次方程组的应用列三元一次方程组解应用题的一般步骤和列二元一次方程组解应用题的一般步骤类似,如下:①弄清题意和题目中的数量关系,用字母表示题目中的两个(或三个)未知数;②找出能够表达应用题全部含义的相等关系;③根据这些相等关系列出需要的代数式,从而列出方程并组成方程组;④解这个方程组,求出未知数的值;⑤写出答案.注意:一般来说,设几个未知数,就应列出几个方程并组成方程组.典例1.(2018春•无棣县期末)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密).安全员是数学爱好者,制定加密规则为:明文x,y,z对应密文x+y+z,x﹣y+z,x ﹣y﹣z.例如:明文1,2,3对应密文6,2,﹣4.当接收方收到密文12,4,﹣6时,则解密得到的明文为______________.【答案】3,4,5【解析】解:依题意得:,解得故答案是:3,4,5.典例2.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入3400元;营业员B:月销售件数300件,月总收入3700元;假设营业员的月基本工资为x元,销售每件服装奖动y元.(1)求x、y的值;(2)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲服装3件,乙服装2件,丙服装1件共需390元;如果购买甲服装1件,乙服装2件,丙服装3件共需370元.某顾客想购买甲、乙、丙服装各一件共需多少元?【答案】见解析【解析】解:(1)根据题意得:,解得:.(2)设购买一件甲服装需要a元,购买一件乙服装需要b元,购买一件丙服装需要c元,根据题意得:,(①+②)÷4,得:a+b+c=190.答:购买甲、乙、丙服装各一件共需190元.巩固练习1.(2018春•邢台期末)某山区有一种土特产品,若加工后出售,单价可提高20%,但重量会减少10%.现有该种土特产品300千克,全部加工后可以比不加工多卖240元,设加工前单价是x元/kg,加工后的单价是y元/kg,由题意,可列出关于x,y的方程组是()A.B.C.D.【答案】D【解析】解:由题意可得,,故选:D.2.(2018春•孝昌县期末)为推进课改,王老师把班级里60名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案()A.4 B.3 C.2 D.1【答案】B【解析】解:设5人一组的有x个,6人一组的有y个,根据题意可得:5x+6y=60,y,当x=0,y=6符合题意,当x=1,则y(不合题意);当x=2,则y;(不合题意);当x=3,则y(不合题意);当x=4,则y(不合题意);当x=5,则y(不合题意);当x=6,则y=5当x=7,则y(不合题意);当x=8,则y(不合题意);当x=9,则y(不合题意);当x=10,则y(不合题意);当x=11,则y(不合题意);当x=12,则y=0故有3种分组方案.故选:B.3.(2018春•泗洪县期末)甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需215元钱,购甲1件、乙2件、丙3件共需185元钱,那么购甲、乙、丙三种商品各一件共需()A.100元B.130元C.150元D.160元【答案】A【解析】解:设购买1件甲商品需要x元,购买1件乙商品需要y元,购买1件丙商品需要z元,根据题意得:,(①+②)÷4,得:x+y+z=100.故选:A.4.(2018春•丰台区期末)《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,可列方程组为_________.【答案】【解析】解:根据题意得:;故答案为:.【点睛】本题是二元一次方程组的应用,列方程组时要抓住题目中的一些关键性词语,找出等量关系;因为此类题要列二元一次方程组,因此要注意两句话;同时本题要注意绳子对折,即取绳子的二分之一.5.(2018春•卫辉市期末)小明在拼图时,发现8个大小一样的小长方形,恰好可以拼成一个大的长方形.如图(1)所示,小红看见了,说“我来试一试”,结果小红七拼八凑,拼成如图(2)那样的正方形,可中间还留下一个边长为6cm的小正方形.请你求出这些小长方形长和宽.【答案】见解析【解析】解:设小长方形的长为xcm,宽为ycm,根据题意得:,解得:.答:小长方形的长为30cm,宽为18cm.6.(2018春•江海区期末)列方程组解应用题:新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法.王丽答对7道题,答错3道题共获得50分;李强答对8道题,答错1道题,共获得62分.问答对一题得多少分,答错一题扣多少分?【答案】见解析【解析】解:设答对道题得x分,答错一道题扣y分,由题意可得:,解得:.答:答对道题得8分,答错一道题扣2分.7.某加工厂有工人60名,生产某种一个螺栓套两个螺母的配套产品,每人每天平均生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,能使生产出的螺栓和螺母刚好配套?【答案】见解析【解析】解:设应安排x人生产螺栓,有y人生产螺母.由题意,得,解这个方程组得:,答:应安排25人生产螺栓,35人生产螺母,才能使生产出的螺栓和螺母刚好配套.8、(2017秋•安庆期末)某天,一蔬菜经营户用60元钱从蔬菜批发市场批发了萝卜和白菜共40kg到菜市场去卖,萝卜和白菜这天每千克的批发价与零售价如下表所示:品名萝卜白菜批发价/元 1.6 1.2零售价/元 2.5 1.8问:他当天卖完这些萝卜和白菜共能赚多少钱?【答案】见解析【解析】解:设白菜的重量是xkg,萝卜的重量是ykg,依题意有解得:,10×(1.8﹣1.2)+30×(2.5﹣1.6)=33(元)答:他当天卖完这些白菜和萝卜能赚33元.9.列方程(组),解应用题甲、乙两人在400米的环形跑道上同一起点同时背向起跑,40秒后相遇,若甲先从起跑点出发,半分钟后,乙也从该点同向出发追赶甲,再过3分钟后乙追上甲,求甲、乙两人的速度.【答案】见解析【解析】解:设甲、乙二人的速度分别为xm/s,ym/s,根据题意列方程为:,解得:,答:甲的速度分别为m/s,乙的速度分别为m/s.。
消元——二元一次方程组的解法教学建议及例题分析教学建议二元一次方程组在生活中经常应用.它不仅是研究其它代数的基础,在解决实际问题中也有着广泛的应用.因此,探索和掌握解二元一次方程对学生更好地认识现实世界是非常重要的.本节课主要内容为二元一次方程组的解法:代入法和加减法.“消元”是解二元一次方程组的基本思路.所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元方程再解出未知数.因此本节课是从实际问题开始,介绍了代入和加减两种消元法解二元一次方程组.本节共包括两部分内容代入法和加减法.可分为四个课时完成. 解二元一次方程组是本节课的重点.根据本节课的教学目标、教材内容以及学生的认知特点,建议采用以引导发现法为主,并与讨论法相结合的教学策略.具体建议如下:1.学法在本节课的学习过程中,要注重培养学生自主、合作、探索的学习方式,充分发挥其主体作用,锻炼运算能力.采取让学生自己观察,大胆猜想、积极参与小组讨论交流及利用课件自主探索等学习方式.使学生在实际应用中获取知识,并通过讨论来深化对知识的理解.多创造条件和机会让学生发表见解,展示自我.在学习中,让学生能在具体的情境中列出二元一次方程组并求出方程组的解;了解“消元”的思想和步骤;通过应用题,使学生理解二元一次方程组的问题.2.教法本节课采用多媒体辅助教学,利用动画对等式性质进行直观演示,通过消元法的演示,直观、生动地反映消元的思想;此外还可利用实际问题,列二元一次方程组,同时给学生积极参与的机会,让学生自主探索二元一次方程组的实际问题,激发学生的学习兴趣.3. 突出问题的应用意识.教师首先用一个学生感兴趣的实际问题引人课题,然后运用二元一次方程组给出解答.在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论,进行学习.4.体现学生的主体意识.教师始终把学生放在主体的地位:让学生通过对二元一次方程组和一元一次方程的比较,分别归纳出它们的特点,从而感受到利用二元一次方程组解实际问题是数学的进步;让学生通过合作与交流,得出问题的不同解答方法;让学生对一节课的学习内容、方法、注意点等进行归纳.5.体现学生思维的层次性.教师首先引导学生尝试用一元一次方程方法解决问题,然后再逐步引导学生列出含两个未知数的方程,寻找它们之间的特点,归纳出代入消元法的思想和步骤.在寻找相等关系、设未知数及作业的布置等环节中,教师都注意了学生思维的层次性.6.渗透建模的思想.把实际问题中的数量关系用方程形式表示出来,就是建立一种数学模型,教师有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出方程模型的能力.7.重视方程的应用价值的同时关注其文化内涵.在《九章算术》中记载了很多利用二元一次方程组解决的问题.向学生介绍古今中外的数学,使学生在数学知识和能力得到提高的同时能够感受到数学文化的熏陶.典型例题例1.用代入法解方程组:①X+4y=13 ②分析:这一例题是代入法解二元一次方程组的典型例题,学生能解答,但是部分学生可能对于用含有一个未知数的式子表示另一个未知数还不太熟悉,因此教师要铺垫:用哪个方程表示哪个未知数好一些.技巧:熟练掌握用含有一个未知数的式子来表示另一个未知数即可.例2.根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量(按瓶计算)比2:5.某厂每天生产这种消毒液22.5吨.这些消毒液应该分装大、小瓶两种产品各多少瓶?分析:抓住问题中的两个等量关系.规律:由实际问题,设未知数,找等量关系,列一元一次方程.例3:用加减法解方程组: 3x+5y=21 ①2x-5y=-11 ②分析:从绝对值是否相等来判断是否可以用加减法,再利用符号判断是用加法还是用减法.例4. 解方程组: 3x+4y=16 ①5x-6y=33 ②分析:这两个方程中没有同一个未知数的系数相反或相同,直接加减这两个方程不能消元.对方程进行适当的变形,使得这两个方程中某个未知数的系数相同或相反.。
二元一次方程组20道例题及答案1.解方程组:$$ \\begin{cases} 2x + y = 5 \\\\ x - 3y = -2 \\end{cases} $$2.答案:x=1,y=33.解方程组:$$ \\begin{cases} 3x - 2y = 8 \\\\ 5x + y = 19 \\end{cases} $$4.答案:x=3,y=45.解方程组:$$ \\begin{cases} 4x + 3y = 10 \\\\ 2x - y = 5 \\end{cases} $$6.答案:x=2,y=17.解方程组:$$ \\begin{cases} x + y = 7 \\\\ 3x - 2y = 5 \\end{cases} $$8.答案:x=3,y=49.解方程组:$$ \\begin{cases} 2x - 3y = 4 \\\\ x + 2y = -1 \\end{cases} $$10.答案:x=−2,y=111.解方程组:$$ \\begin{cases} x - y = 3 \\\\ 3x + 2y = 9 \\end{cases} $$12.答案:x=4,y=113.解方程组:$$ \\begin{cases} 2x + y = 6 \\\\ x + 3y = 9 \\end{cases} $$14.答案:x=3,y=015.解方程组:$$ \\begin{cases} 3x + y = 11 \\\\ x - 2y = 4 \\end{cases} $$16.答案:x=3,y=217.解方程组:$$ \\begin{cases} x + y = 4 \\\\ 2x - 3y = 5 \\end{cases} $$18.答案:x=3,y=119.解方程组:$$ \\begin{cases} 2x - y = 1 \\\\ x + 4y = 5 \\end{cases} $$20.答案:x=2,y=021.解方程组:$$ \\begin{cases} x + y = 2 \\\\ x - y = 0 \\end{cases} $$22.答案:x=1,y=123.解方程组:$$ \\begin{cases} 3x + 2y = 8 \\\\ 2x + 3y = 7 \\end{cases} $$24.答案:x=1,y=225.解方程组:$$ \\begin{cases} x - 2y = 3 \\\\ 2x + y = 4 \\end{cases} $$26.答案:x=2,y=−127.解方程组:$$ \\begin{cases} 4x - y = 9 \\\\ x + 2y = 4 \\end{cases} $$28.答案:x=2,y=129.解方程组:$$ \\begin{cases} 2x + y = 5 \\\\ x + y = 3 \\end{cases} $$30.答案:x=2,y=131.解方程组:$$ \\begin{cases} x + 2y = 5 \\\\ 3x - y = 9 \\end{cases} $$32.答案:x=3,y=133.解方程组:$$ \\begin{cases} 3x + y = 8 \\\\ x + y = 4 \\end{cases} $$34.答案:x=2,y=235.解方程组:$$ \\begin{cases} 2x + y = 6 \\\\ x - y = 1 \\end{cases} $$36.答案:x=2,y=037.解方程组:$$ \\begin{cases} x + y = 3 \\\\ x - y = 1 \\end{cases} $$38.答案:x=2,y=139.解方程组:$$ \\begin{cases} 3x - y = 5 \\\\ 2x + y = 7 \\end{cases} $$40.答案:x=2,y=1。
高中数学解二元一次方程组的方法及相关题目解析二元一次方程组是高中数学中常见的题型之一,解题时需要灵活运用代数方法,通过变量的消元或代入等方式求解未知数的值。
本文将介绍二元一次方程组的解法,并通过具体题目的解析来说明解题的关键点和技巧。
一、代数法解二元一次方程组代数法是解二元一次方程组的常用方法,通过变量的消元或代入等方式求解未知数的值。
下面通过一个例子来说明代数法的具体步骤:例题1:解方程组{ 2x + 3y = 7{ 3x - 2y = 4解析:步骤1:通过乘法消元法消去x的系数,使两个方程的x的系数相等或互为相反数。
将第一个方程乘以3,第二个方程乘以2,得到:{ 6x + 9y = 21{ 6x - 4y = 8步骤2:将两个方程相减,消去x的变量,得到一个只含有y的方程。
(6x + 9y) - (6x - 4y) = 21 - 813y = 13y = 1步骤3:将求得的y的值代入其中一个方程,求解x的值。
2x + 3(1) = 72x + 3 = 72x = 4x = 2解答:方程组的解为x = 2,y = 1。
二、几何解法解二元一次方程组几何解法是解二元一次方程组的另一种常用方法,通过图形的相交点来求解方程组的解。
下面通过一个例子来说明几何解法的具体步骤:例题2:解方程组{ x + y = 5{ x - y = 1解析:步骤1:将两个方程表示为直线的方程。
方程1:x + y = 5,可表示为直线L1。
方程2:x - y = 1,可表示为直线L2。
步骤2:求解直线L1和L2的交点,即为方程组的解。
解方程组可得:x = 3,y = 2。
解答:方程组的解为x = 3,y = 2。
三、一元一次方程代入法解二元一次方程组一元一次方程代入法是解二元一次方程组的另一种常用方法,通过将一个方程的一元一次方程解代入另一个方程,从而求解另一个未知数的值。
下面通过一个例子来说明一元一次方程代入法的具体步骤:例题3:解方程组{ 2x + y = 7{ x - 3y = 1解析:步骤1:将第一个方程解为y的一元一次方程。
一、路程问题1、公式:路程=时间×速度(s=v×t,s:路程、v:速度、t:时间)公式变形:时间=路程÷速度(t=s/v)速度=路程÷时间(v=s/t)2、模型:相遇模型:两者所走的路程之和=两者原相距路程追击问题:快者所行路程-慢者所行路程=两者原相距路程3、例题:例1、某站有甲、乙两辆汽车,若甲车先出发1h后乙车出发,则乙车出发后5h追上甲车;若甲车先开出30km后乙车出发,则乙车出发4h后乙车所走的路程比甲车所走路程多10km.求两车速度?答案:解:设甲乙两车的速度分别为 x km/h、y km/h根据题意,得5y=6x x=50(km/h)4y=4x+30+10 y=60(km/h)解析:若甲车先出发1h后乙车出发,则乙车出发后5h追上甲车 6x=5y若甲车先开出30km后乙车出发,则乙车出发4h后乙车所走的路程比甲车所走路程多10km. 4y=4x+30+10例2、甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?答案:解:设汽车、拖拉机两车的速度分别为 x km/h 、y km/h根据题意,得(x+y )*34=160 x=90 (km/h ) 21x=23y y=30 (km/h )汽车行驶的路程:(2134+)*90=165 km 拖拉机行驶的路程:(2334+)*30=85 km 解析:汽车、拖拉机同时由甲、乙两地相向而行,1小时20分相遇,即汽车、拖拉机同时出发行驶1小时20分钟两车行驶的路程相加为160km 。
(x+y )*34=160相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机。
即拖拉机行驶23小时的路程,同汽车行驶21小时的路程相同。
初一数学下册知识点《解二元一次方程组--代入消元法》150例题及解析副标题题号一二三四总分得分一、选择题(本大题共35小题,共105.0分)1.若关于x,y的二元一次方程组无解,则a的值为A. B. 1 C. D. 3【答案】A【解析】解:由②得:x=3+3y,③把③代入①得:a(3+3y)-y=4,整理得:(3a-1)y=4-3a,∵方程组无解,∴3a-1=0,且4-3a≠0,∴a=.故选:A.把第二个方程整理得到x=3+3y,然后利用代入消元法消掉未知数x得到关于y的一元一次方程,再根据方程组无解,未知数的系数等于0列式计算即可得解.本题考查了二元一次方程组的解,消元得到关于y的方程是解题的关键,难点在于明确方程组无解,未知数的系数等于0.2.由方程组,可得x与y的关系是()A. 2x+y=-4B. 2x-y=-4C. 2x+y=4D. 2x-y=4【答案】C【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法,方程组消元m即可得到x与y的关系式.【解答】解:,把②代入①得:2x+y-3=1,整理得:2x+y=4,故选C.3.若方程组中x与y互为相反数,则m的值是A. 1B. D. 36【答案】C【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.根据x与y互为相反数,得到x+y=0,即y=-x,代入方程组求出m的值即可.【解答】解:,根据题意得:x+y=0,即y=-x③,把③代入②得:-2x=8,即x=-4,y=4,把x=-4,y=4代入①得:-20-16=m,解得:m=-36,故C正确.故选C.4.把方程2x-y=3改写成用含x的式子表示y的形式正确的是()A. 2x=y+3B. x=C. y=2x-3D. y=3-2x【答案】C【解析】解:由2x-y=3知2x-3=y,即y=2x-3,故选:C.将x看做常数移项求出y即可得.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.5.用代入法解方程组时,用①代入②得()A. 2-x(x-7)=1B. 2x-1-7=1C. 2x-3(x-7)=1D. 2x-3x-7=1【答案】C【解析】【分析】本题考查了解二元一次方程组,主要考查了代入法的思想,比较简单.根据代入法的思想,把②中的y换为(x-7)即可.【解答】解:①代入②既是把②中的y替换成(x-7),得:2x-3(x-7)=1.故选C.6.用“代入消元法”解方程组时,把①代入②正确的是()A. 3x﹣2x+4=7B. 3x﹣2x﹣4=7C. 3x﹣2x+2=7D. 3x﹣2x﹣2=7【答案】A【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.观察方程组,可知①式可直接代入②式中,再去括号,即可得到结果.【解答】解:用“代入消元法”解方程组时,把①代入②得,去括号得:故选:A.7.解方程组时,把①代入②,得()A. B.C. D.【答案】D【解析】【分析】本题主要考查二元一次方程组的解法.根据把①代入②,得到的结果即可.【解答】解:解方程组时,把①代入②,得2y-5(3y-2)=10.故选D.8.解方程组①,②,比较简便的方法是A. 都用代入法B. 都用加减法C. ①用代入法,②用加减法D. ①用加减法,②用代入法【答案】C【解析】略.9.在等式y=kx+b中,当x=1时,y=5,当x=-2时,y=11,则k、b的值为()A. B. C. D.【答案】D【解析】解:由题意得,解得.故选D.根据已知条件可以列出关于k、b的二元一次方程组,通过解该方程组得到.本题考查二元一次方程组,有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.10.已知,,用只含的代数式表示正确的是()A. B. C. D.【答案】A【解析】【分析】此题主要考查了解二元一次方程组,消去t表示出y是解本题的关键.由x=2-t移项可得t=2-x,将此代入计算即可求解.【解答】解:由x=2-t得t=2-x,∴y=3+2(2-x)=3+4-2x=-2x+7.故选A.11.由方程组,可得出x与y的关系式是()A. B. C. D.【答案】A【解析】【分析】本题考查了代入消元法解方程组,是一个基础题.【解答】解:由①得m=6-x,代入方程②,即可消去m得到关于x,y的关系式.∴6-x=y-3∴x+y=9.故选A.12.如果2m9-x n y和-3m2y n3x+1是同类项,则2m9-x n y+(-3m2y n3x+1)=()A. -m8n4B. mn4C. -m9nD. 5m3n2【答案】A【解析】解:由题意,得9-x=2y且y=3x+1,解得x=1,y=4,当x=1,y=4时,2m9-x n y+(-3m2y n3x+1)=2m8n4+(-3m8n4)=-m8n4,故选:A.根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.本题考查了同类项,利用同类项得出9-x=2y且y=3x+1是解题关键,又考查了二元一次方程组.13.在关于x、y的二元一次方程组的下列说法中,正确的是①当a=3时,方程的两根互为相反数;②当且仅当a=-4时,解得x与y相等;③x,y满足关系式;④若,则a=10.A. ①③B. ①②C. ①②③D. ①②③④【答案】D【解析】【分析】本题考查三元一次方程组的解法,方程组的解.把a=3 代入原方程,求解即可判定①;把a=-4代入原方程求解,即可判定②;把原方程中第一个方程乘以2,两式相减即可得x+5y的值,即可判定③;由9x×27y=81,得32x+3y=34,所以2x+3y=4,将原方程中第二方程-第一方程,即可得2x+3y=a-6,所以有a-6=4,即可求出a值,从而可判定④.继而得出答案.【解答】解:∵,把a=3代入方程组得解得:,∴x、y互为相反数,故①正确;把a=-4代入方程组得,解得:,∴x=y,故②正确;②-①×2得x+5y=-12,故③正确;②-①得2x+3y=a-6,又∵9x×27y=81,∴32x+3y=34,∴2x+3y=4,∴a-6=4,解得:a=10,故④正确∴正确的有①②③④.故选D.14.方程组消去y后所得的方程是()A. 3x-4x+10=8B. 3x-4x+5=8C. 3x-4x-5=8D. 3x-4x-10=8【答案】A【解析】【分析】本题主要考查代入消元法解方程组.把方程中的未知数换为另一个未知数的代数式即可,比较简单.根据代入消元法,把①代入②,把②中的y换成2x-5即可.【解答】解:,把①代入②,得3x-2(2x-5)=8,即3x-4x+10=8.故选A.15.用代入法解方程组时,代入正确的是( )A. x-2-x=4B. x-2-2x=4C. x-2+2x=4D. x-2+x=4【答案】C【解析】【分析】本题考查了用代入法解二元一次方程组,是基础知识要熟练掌握.将①代入②整理即可得出答案.【解答】解:,把①代入②得,x-2(1-x)=4,去括号得,x-2+2x=4.故选C.16.解二元一次方程组时,用代入消元法整体消去4,得到的方程是()A. 2=﹣2B. 2=﹣36C. 12=﹣36D. 12=﹣2【答案】B【解析】解:由①得:4x=17-5y③,把③代入②得:17-5y+7y=-19,2y=-36,故选:B.由①得出4x=17-5y③,把③代入②即可.本题考查了解二元一次方程组,能够正确代入是解此题的关键.17.若方程组的解满足x+y=3,则a的值是()A. 6B. 7C. 8D. 9【答案】C【解析】【分析】本题主要考查加减消元法解二元一次方程组和一元一次方程组的解法,先运用加减消元法求出,再将转化为,解出a的值即可.【解答】解:得,,∵,∴解得.故选C.18.如果方程组的解与方程组的解相同,则a+b的值为()A. -1B. 2C. 1D. 0【答案】C【解析】略19.二元一次方程2x+y=5的正整数解有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】解:方程2x+y=5,解得:y=-2x+5,当x=1时,y=3;x=2时,y=1,则方程的正整数解有2个.故选:B.方程变形后表示出y,确定出正整数解的个数即可.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.20.如果方程组的解为那么被“★”“■”遮住的两个数分别为( )A. 10,4B. 4,10C. 3,10D. 10,3【答案】A【解析】【分析】本题考查的是二元一次方程组的解有关知识,把方程组的解代入2x+y=16先求出■,再代入x+y求★.【解答】解:把代入2x+y=16得12+■,解得:■=4再把代入x+y=★得★=6+4=10故选A.21.若二元一次方程组的解中x,y互为相反数,则m的值为()A. 10B. -7C. -10D. -12【答案】C【解析】【分析】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 由x与y互为相反数,得到x+y=0,即x=-y,代入方程组求出m的值即可.【解答】解:由x与y互为相反数,得到x+y=0,即x=-y,代入方程组得:,消去x得:3m+9=2m-1,解得:m=-10.故选C.22.如果方程组的解与方程组的解相同,则a,b的值是( )A. B. C. D.【答案】A【解析】【分析】本题考查了同解方程组的知识,解答此题的关键是熟知方程组有公共解的含义,考查了学生对题意的理解能力.因为方程组有相同的解,所以只需求出一组解代入另一组,即可求出未知数的值.【解答】解:由题意得:是的解,故可得:,解得:.故选A.23.方程组的解也是方程3x+ky=10的解,则k的值是()A. 4B. 10C. 9D.【答案】A【解析】【分析】此题考查二元一次方程解的定义和解法,解二元一次方程组首先要消元,然后再求解,同时也考查的方程的同解,比较简单.解方程组求出x、y的值,再代入方程得出关于k 的方程,解之可得.【解答】解:解方程组,①×2-②,得:3x=6,解得:x=2,将x=2代入①得:3×2+y=7,解得:y=1,∴方程组的解为,代入方程3x+ky=10得6+k=10,解得k=4,故选A.24.若点A(-4,0)、B(0,5)、C(m,-5)在同一条直线上,则m的值是( )A. 8B. 4C. -6D. -8【答案】D【解析】【分析】本题考查用待定系数法求一次函数解析式,要注意利用一次函数的特点,列出方程组,求出未知数,写出解析式,是解题的关键,已知点A(-4,0)、B(0,5)在同一条直线上,用待定系数法可求出函数关系式.再把C(m,-5)代入求出m的值.【解答】解:设直线y=kx+b,已知A(-4,0)、B(0,5)的坐标,可列出方程组,解得,写出解析式y=x+5,因为点A(-4,0)、B(0,5)、C(m,-5)在同一条直线上,则得到-5=m+5,解得:m=-8.故选D.25.二元一次方程组的解是()A. B. C. D.【答案】C【解析】【分析】此题主要考查二元一次方程组的解法.用代入消元法解二元一次方程组即可.【解答】解:,把②代入①,得x+2×2x=10,解得x=2,把x=2代入②中,得y=4,所以方程组的解为,故选C.26.已知是关于x,y的二元一次方程组的解,则a+b的值是( )A. 1B. 3C. 6D. 8【答案】D【解析】【分析】本题考查了二元一次方程组的解和解二元一次方程组,熟练掌握解方程组的方法是解题的关键,所谓“方程组”的解,指的是该数值满足方程组中的每一方程的值,只需将方程的解代入方程组,就可得到关于a、b的二元一次方程组,解得a、b的值,即可得到答案.【解答】解:把代入方程组得,,即,则a+b==8,故选D.27.已知-3a x+y b2与-a3b x是同类项,则x、y的值分别为( )A. 3、3B. -1、1C. 2、3D. 2、1【答案】D【解析】【分析】本题考查了同类项的定义,属于基础题.根据同类项的定义可得,解出x,y即可.【解答】解:因为-3a x+y b2与-a3b x是同类项,所以,解得.故选D.28.已知方程组的解是,则2m+n的值为( )A. 1B. 2C. 3D. 0【答案】C【解析】【分析】此题主要考查了二元一次方程组解的定义以及解二元一次方程组的基本方法.所谓“方程组”的解,指的是该数值满足方程组中的每一方程的值,只需将方程的解代入方程组,就可得到关于m,n的二元一次方程组,解得m,n的值,即可求2m+n的值.【解答】解:根据定义把代入方程组,得,解得.∴2m+n=2×2-1=3.故选C.29.已知关于a,b的方程组的解是,则直线y=mx+n不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】本题考查的知识点是二元一次方程的解,解二元一次方程组,一次函数的性质,首先由方程组的解是求出m,n的值,代入得到一次函数解析式,再根据一次函数的性质,即可得到答案.【解答】解:∵关于a,b的方程组的解是,∴,∴,∴直线y=mx+n的解析式为,∵k=-2,b=-3,∴过第二、三、四象限,故选A.30.已知和都是方程mx+ny=8的解,则m、n的值分别为()A. 1,﹣4B. ﹣1,4C. ﹣1,﹣4D. 1,4【答案】D把x与y的值代入方程计算即可求出m与n的值.此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.【解答】解:把和代入方程得:,解得:,故选:D.31.方程组的解是()A. B. C. D.【答案】B【解析】解:,把②代入①得:7x+5(x+3)=9,解得:x=-,把x=-代入②得:y=.所以原方程组的解是.故选:B.方程组利用代入消元法求出解即可.此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.32.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数,的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是在图2所示的算筹图中有一个图形被墨水覆盖了,如果图2所表示的方程组中的值为,则被墨水所覆盖的图形为( )A. B. C. D.【答案】C此题是一道材料分析题,先要读懂材料所给出的用算筹表示二元一次方程组的方法,再解方程组,设被墨水所覆盖的图形表示的数据为a,根据题意列出方程组,把x=3代入,求得a的值便可.【解答】解:设被墨水所覆盖的图形表示的数据为a,根据题意得,,把x=3代入得,,由③得,y=5,把y=5代入④得,12+5a=27,∴a=3,故选C.33.二元一次方程组的解是()A. B. C. D.【答案】C【解析】【分析】本题考查的二元一次方程组的解法有关知识,首先把y=2x代入x+2y=10中,解出x,然后把x代入y=2x中即可解答.【解答】解:把②代入①可得:x+4x=10,解得:x=2,把x=5代入②可得:y=4.原方程组的解为.故选C.34.若方程,则A,B的值分别为A. 2,1B. 1,2C. 1,1D. ,【答案】C【解析】【分析】本题考查了分式的加减,利用相等项的系数相等得出关于A、B的方程组是解题关键.根据通分,可得相等分式,根据相等项的系数相等,可得关于A、B的方程组,根据解方程组,可得答案.【解答】解:通分,得:,化简:由相等项的系数相等,得:解得:故选:C.35.若﹣2a m b4与5a n+2b2m+n和为单项式,则m n的值是()A. 2B. 0C. ﹣1D. 1【答案】D【解析】【分析】本题考查了合并同类项以及二元一次方程组的解法,根据同类项是字母相同且相同字母的指数也相同,可得关于m、n的二元一次方程组,解出m、n的值,再根据有理数的乘方运算,可求得答案.【解答】解:由可以合并一项,得:,解得,∴故选D.二、填空题(本大题共20小题,共60.0分)36.二元一次方程7x+y=15的正整数解为______.【答案】或【解析】解:方程7x+y=15,解得:y=-7x+15,x=1,y=8;x=2,y=1,则方程的正整数解为或.故答案为:或把x看做已知数表示出y,即可求出正整数解.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.37.已知方程5x+2y=10,如果用含x的代数式表示y,则y=______.【答案】【解析】解:方程5x+2y=10,解得:y=,故答案为:把x看做已知数求出y即可.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.38.若a+2b=8,3a+4b=18,则a+b的值为______.【答案】5【解析】解:法一:∵a+2b=8,3a+4b=18,则a=8-2b,代入3a+4b=18,解得:b=3,则a=2,故a+b=5.法二:a+2b=8 ①,3a+4b=18 ②,②-①,得2a+2b=10,因此,a+b=5.故答案为:5.直接利用已知条件,解方程组或者根据所需条件对原式进行变形都可得出答案.此题主要考查了解二元一次方程组和代数式求值,正确选用解题方法是解题关键.39.若-2x+y=5,则y=______(用含x的式子表示).【答案】2x+5【解析】解:方程-2x+y=5,解得:y=2x+5.故答案为:2x+5.将x看做已知数求出y即可.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.40.已知x,y满足方程组,则无论k取何值,x,y恒有关系式是______.【答案】x+y=1【解析】【分析】本题主要考查二元一次方程组,解二元一次方程组的基本思想是“消元”,基本方法是代入法和加减法,此题实际是消元法的考核,由方程组消去k,得到一个关于x,y的方程,化简这个方程即可.【解答】解:由x+k=y+2得k=-x+y+2,代入到x+3y=k可得:x+3y=-x+y+2,整理可得2x+2y=2,即x+y=1,故答案为:x+y=1.41.如果单项式与是同类项,则这两个单项式的积为_______________【答案】【解析】【分析】本题考查了同类项、二元一次方程组的解法、单项式乘单项式的知识点,根据同类项的定义列出方程组是解题的关键.根据同类项的定义列出关于a、b的二元一次方程组,求解得到a、b的值,再根据单项式的乘法进行计算即可得解.【解答】解:根据题意得,,由①得,a=-2b③,③代入②得,5×(-2b)+8b=2,解得b=-1,把b=-1代入③得,a=-2×(-1)=2,∴两单项式分别为-3x5y2、x5y2,它们的积为-3x5y2•x5y2=-x10y4.故答案为.42.已知x.y,t满足方程组,则x和y之间应满足的关系式是________.【答案】x=15y-6【解析】【分析】本题主要考查了代入法解二元一次方程组,掌握代入法解二元一次方程组的步骤是解题的关键.由第一个方程可得,把t代入第二个方程即可求得答案.【解答】解:由第一个方程,得,把代入3y-2t=x,得,整理得:x=15y-6,即x和y之间的关系式为x=15y-6.43.甲、乙两名同学参加户外拓展活动,过程如下:甲、乙分别从直线赛道A、B两端同时出发,匀速相向而行.相遇时,甲将出发时在A地抽取的任务单递给乙后继续向B地前行,乙原地执行任务,用时14分钟,再继续向A地前行,此时甲尚未到达B地.当甲和乙分别到达B地和A地后立即以原路原速返回并交换角色,即由乙在A地抽取任务单,与甲相遇时交给甲,由甲原地执行任务,乙继续向B地前行.抽取和递交任务单的时间忽略不计.甲、乙两名同学之间的距离y(米)与运动时间x(分)之间的关系如图所示.已知甲的速度为60米/分,且甲的速度小于乙的速度,则甲在出发后第______分钟时开始执行任务.【答案】44【解析】【分析】本题考查了一次函数的应用,关键是把条件表述的几个过程对应图象理解清楚,再找出对应x和y表示的数量关系.函数图象可看作是线段CD、DE、EF、FH、HI构成:CD对应两人从出发到第一次相遇,其中5分钟时,两人相距980米;DE对应乙在原地执行任务,甲继续前进;EF对应甲继续向B地走,乙继续向A地走;FH对应甲到达B地返回走,乙继续向A地走,其中x=31时,两人相距1180米;HI对应两人都返回走到第二次相遇.设乙的速度为v 米/分,AB两地距离为s米,根据两个确定的x和y值找等量关系列方程.【解答】解:甲的速度为60米/分,设乙的速度为v米/分,AB两地距离为s米,∵x=5时,y=980,此时两人相距980米,列方程得:5(60+v)+980=s①当x=31时,甲走的路程为:60×31=1860(米)图象中,x=31时,y=1180,即此时甲乙两人相距1180米,甲已经到达B地并返回,乙还在前往A地列方程得:1860-s+1180=(31-14)v②①②联立方程组解得:设甲出发t分钟时开始执行任务,此时甲乙第二次相遇,两人走的总路程和为3s,列方程得:60t+80(t-14)=3×1680解得:t=44故答案为:4444.二元一次方程组的解为_______.【答案】【解析】略45.已知,则=____.【答案】-3【解析】【分析】此题考查了加减消元法解二元一次方程组,代数式的值,①﹣②得:x+3y=0,即x=-3y,将x=-3y代入中计算,即可得到答案.【解答】解:,①﹣②得:x+3y=0,即x=-3y,∴=-3,故答案为-3.46.设是一个等腰三角形的两边长,且满足,则该三角形的周长是____【答案】22【解析】【分析】本题考查了等腰三角形的性质,非负数的性质,难点在于分情况讨论并利用三角形的三边关系进行判断.根据非负数的性质列式求出a、b的值,再分a是腰长与底边两种情况讨论求解.【解答】解:根据题意得,,解得a=4,b=9,当①a=4是腰长时,三角形的三边分别为4、4、9,但4、4、9不能组成三角形,②a=4是底长时,三角形的三边分别为4、9、9,4、9、9能组成三角形,∴三角形的周长为4+9+9=22.综上所述,三角形的周长为22.故答案为22.47.若是二元一次方程,则a =________ ,b = ___________【答案】1;0【解析】【分析】本题主要考查二元一次方程的定义,根据二元一次方程的定义可知3a-2b-2=1,a+b=1,据此可解出a,b,根据未知数的次数为1,可以列出方程组求解.【解答】解:依题意,得,解得,故答案为:1,0.48.(1)的算术平方根为________.的平方根是________.(2)若,则(a+2)2的平方根是________.(3)已知一个正数的平方根是3x-2和5x+6,则这个数是________.(4)已知,则x y=________.(5)若a是(-8)2的平方根,则等于________.【答案】(1)2;;(2);(3);(4)1;(5)8.【解析】(1)【分析】本题考查算术平方根,平方根和立方根的定义,根据算术平方根,平方根和立方根的定义即可解答,关键是注意.【解答】解:∵,∴的算术平方根为2.的平方根是.故答案为2;.(2)【分析】本题考查算术平方根和平方根定义,有理数的乘方,根据算术平方根和平方根定义即可解答,关键是由得a+2=16.【解答】解:∵,∴a+2=16,∴(a+2)2=162=256,∴(a+2)2的平方根是.故答案为.(3)【分析】本题考查平方根定义,一元一次方程的解法,根据平方根的定义可知:一个正数的平方根有两个,它们互为相反数得方程3x-2+5x+6=0,解方程求出x,再求出5x+6或3x-2的值即可解答.【解答】解:∵一个正数的两个平方根分别是3x−2 和5x+6 ,∴3x−2+5x+6=0 ,解得:x =,∴5x+6=,∴这个数是.故答案为.(4)【分析】本题考查算术平方根和偶次方的非负性,求代数式的值,关键是先根据算术平方根和偶次方的非负性得方程组,解方程组求得x,y的值,再代入计算即可.【解答】解:由题意得,解得,∴故答案为1.(5)【分析】本题考查算术平方根,平方根的定义,有理数的乘方,关键是先由a是(-8)2的平方根求得a的值,再代入计算即可解答.【解答】解:∵(-8)2=64,a是(-8)2的平方根,∴a=,∴.故答案为8.综上所述答案为:(1)2;;(2);(3);(4)1;(5)8.49.当多项式取得最小值时,_______________。
初三数学二元一次方程组试题答案及解析1.某班组织班团活动,班委会准备用15元钱全部用来购买笔记本和中性笔两种奖品,已知笔记本2元/本,中性笔1元/支,且每种奖品至少买1件.(1)若设购买笔记本x本,中性笔y支,写出y与x之间的关系式;(2)有多少种购买方案?请列举所有可能的结果;(3)从上述方案中任选一种方案购买,求买到的中性笔与笔记本数量相等的概率.【答案】(1)y=15﹣2x.;(2)共有7种购买方案:x=1,y=13;x=2,y=11;x=3,y=9;x=4,y=7;x=5,y=5;x=6,y=3,x=7,y=1;(3).【解析】(1)首先由题意可得:2x+y=15,继而求得y与x之间的关系式.(2)根据每种奖品至少买1件,即可求得所有可能的结果.(3)由买到的中性笔与笔记本数量相等的只有1种情况,直接利用概率公式求解即可求得答案.试题解析:解:(1)根据题意得:2x+y=15,∴y与x之间的关系式为y=15﹣2x.(2)购买方案:x=1,y=13;x=2,y=11;x=3,y=9;x=4,y=7;x=5,y=5;x=6,y=3,x=7,y=1;∴共有7种购买方案.(3)∵买到的中性笔与笔记本数量相等的只有1种情况,∴买到的中性笔与笔记本数量相等的概率为:.【考点】1.一次函数的应用;2.概率.2.方程组的解是()A.B.C.D.【答案】C.【解析】利用加减消元法求出方程组的解即可作出判断:,①﹣②得:3y=30,即y=10,将y=10代入①得:x+10=60,即x=50,则方程组的解为.故选C.【考点】解二元一次方程组.3.如果单项式与是同类项,那么的值为.【答案】-4.【解析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程组,求出x,y的值,再代入代数式计算即可.根据题意得:解得:∴.【考点】同类项.4.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案()A.5种B.4种C.3种D.2种【答案】C【解析】设住3人间的需要有x间,住2人间的需要有y间,3x+2y=17,因为,2y是偶数,17是奇数,所以,3x只能是奇数,即x必须是奇数,当x=1时,y=7,当x=3时,y=4,当x=5时,y=1,综合以上得知,第一种是:1间住3人的,7间住2人的,第二种是:3间住3人的,4间住2人的,第三种是:5间住3人的,1间住2人的,答:有3种不同的安排.【考点】二元一次方程的应用.5.列方程或方程组解应用题某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:利润=售价-进价)若商店计划销售完这批商品后能使利润达到1100元,问甲、乙两种商品应分别购进多少件?【答案】100,60.【解析】方程(组)的应用解题关键是找出等量关系,列出方程(组)求解.本题等量关系为:进甲、乙两种商品共160件;销售完这批商品后能使利润达到1100元.设甲种商品应购进x件,乙种商品应购进y件.根据题意,得,解得.答:甲种商品购进100件,乙种商品购进60件.【考点】二元一次方程组的应用(销售问题).6.阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=﹣,x1•x2=.根据该材料填空:已知x1,x2是方程x2+6x+3=0的两实数根,则的值为.【答案】10【解析】根据一元二次方程根与系数的关系,可以求得两根之积或两根之和,根据=,代入数值计算即可.解:由题意知,x1+x2=﹣=﹣6,x1x2=3,所以===10.7.由方程组可得出x与y的关系是()A.2x+y=4B.2x﹣y=4C.2x+y=﹣4D.2x﹣y=﹣4【答案】A【解析】本题考查的是解二元一次方程组,熟知解二元一次方程组的代入消元法是解答此题的关键.把②中m的值代入①即可求出x与y的关系式.解:,把(2)代入(1)得2x+y﹣3=1,即2x+y=4.故选A.8.已知是二元一次方程组的解,则a-b的值为()A.-1B.1C.2D.3【答案】A【解析】∵是二元一次方程组的解,∴解得∴a-b=-1.9.已知(x-y+3)2+=0.则x+y=________.【答案】1【解析】由题意,得解得∴x+y=-1+2=1.10.已知是二元一次方程组的解,则2m-n的算术平方根为 ()A.4B.2C.D.±2【答案】B【解析】把代入方程组,得解得∴==2,故选B.11.若关于x、y的二元一次方程组的解满足x+y>1,则k的取值范围是________.【答案】k>2【解析】①+②,得3x+3y=3k-3,x+y=k-1∵x+y>1,∴k-1>1,k>2.∴k的取值范围是k>2.12.把下图折成正方体后,如果相对面所对应的值相等,那么xy的值为_________。
解方程组50题配完整解析1.解下列方程组.(1)(2).【解答】解:(1)方程组整理得:,②﹣①×2得:y=8,把y=8代入①得:x=17,则方程组的解为;(2)方程组整理得:,①×3﹣②×2得:5y=5,即y=1,把y=1代入①得:x=8,则方程组的解为.2.解方程组:①;②.【解答】解:①,①×3+②×2得:13x=52,解得:x=4,则y=3,故方程组的解为:;②,①+12×②得:x=3,则3+4y=14,解得:y=,故方程组的解为:.3.解方程组.(1).(2).【解答】解:(1),②﹣①得:x=1,把x=1代入①得:y=9,∴原方程组的解为:;(2),①×3得:6a+9b=6③,②+③得:10a=5,a=,把a=代入①得:b=,∴方程组的解为:.4.计算:(1)(2)【解答】解:(1),①×2﹣②得:5x=5,解得:x=1,把x=1代入②得:y=﹣2,所以方程组的解为:;(2),①﹣②×2得:y=1,把y=1代入①得:x=﹣3,所以方程组的解为:.5.解下列方程组:(1)(2).【解答】解:(1),①×5,得15x﹣20y=50,③②×3,得15x+18y=126,④④﹣③,得38y=76,解得y=2.把y=2代入①,得3x﹣4×2=10,x=6.所以原方程组的解为(2)原方程组变形为,由②,得x=9y﹣2,③把③代入①,得5(9y﹣2)+y=6,所以y=.把y=代入③,得x=9×﹣2=.所以原方程组的解是6.解方程组:【解答】解:由①得﹣x+7y=6③,由②得2x+y=3④,③×2+④,得:14y+y=15,解得:y=1,把y=1代入④,得:﹣x+7=6,解得:x=1,所以方程组的解为.7.解方程组:.【解答】解:原方程组可化为,①+②得:y=,把y的值代入①得:x=.所以此方程组的解是.或解:①代入②得到,2(5x+2)=2x+8,解得x=,把x=代入①可得y=,∴.8.解方程组:(1)(2)【解答】解:(1)①代入②,得:2(2y+7)+5y=﹣4,解得:y=﹣2,将y=﹣2代入①,得:x=﹣4+7=3,所以方程组的解为;(2)①×2+②,得:11x=11,解得:x=1,将x=1代入②,得:5+4y=3,解得:y=﹣,所以方程组的解为.9.解方程组(1)(2).【解答】解:(1),②﹣①得:8y=﹣8,解得:y=﹣1,把y=﹣1代入①得:x=1,则方程组的解为;(2)方程组整理得:,①﹣②得:4y=26,解得:y=,把y=代入①得:x=,则方程组的解为.10.计算:(1)(2).【解答】解:(1),把①代入②得:5x+4x﹣10=8,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为;(2),②×2﹣①得:7y=21,解得:y=3,把y=3代入②得:x=﹣14,则方程组的解为.11.解方程组:【解答】解:方程组整理得:,①×4﹣②×3得:7x=42,解得:x=6,把x=6代入①得:y=4,则方程组的解为.12.解方程组:(1)(2)【解答】解:(1),①代入②,得:5x﹣3(2x﹣1)=7,解得:x=﹣4,将x=﹣4代入②,得:y=﹣8﹣1=﹣9,所以方程组的解为;(2),①×2+②,得:15x=3,解得:x=,将x=代入②,得:+6y=13,解得:y=,所以方程组的解为.13.解方程组(1)(2)【解答】解:(1),①+②,得:3x=3,解得:x=1,将x=1代入①,得:1+y=2,解得:y=1,则方程组的解为;(2),①×8﹣②,得:y=17,解得:y=3,将y=3代入②,得:4x﹣9=﹣1,解得:x=2,则方程组的解为.14.解方程组(1)(2)【解答】解:(1),①×3+②得:10x=25,解得:x=2.5,把x=2.5代入②得:y=0.5,则方程组的解为;(2)方程组整理得:,①×4+②×11得:42x=15,解得:x=,把x=代入②得:y=﹣,则方程组的解为.15.解方程组:【解答】解:①+②得:9x﹣33=0x=把x=代入①,得y=∴方程组的解是16.解方程组【解答】解:方程组整理得:,①×3﹣②×2得:x=1,把x=1代入①得:y=﹣2,则方程组的解为.17.用适当方法解下列方程组.(1)(2)【解答】解:(1),①×2,得:6s﹣2t=10③,②+③,得:11s=22,解得:s=2,将s=2代入②,得:10+2t=12,解得:t=1,则方程组的解为;(2)原方程组整理可得,①×2,得:8x﹣2y=10③,②+③,得:11x=22,解得:x=2,将x=2代入②,得:6+2y=12,解得:y=3,则方程组的解为.18.解方程组:(1)(2)【解答】解:(1),②﹣①,得:3y=6,解得:y=2,将y=2代入①,得:x﹣2=﹣2,解得:x=0,则方程组的解为;(2)方程组整理可得,①+②,得:6x=18,解得:x=3,将x=3代入②,得:9+2y=10,解得:y=,则方程组的解为.19.解方程组:【解答】解:方程组整理成一般式可得:,①+②,得:﹣3x=3,解得:x=﹣1,将x=﹣1代入①,得:﹣5+y=0,解得:y=5,所以方程组的解为.20.用适当的方法解下列方程组:(1)(2)【解答】解:(1),①代入②,得:7x﹣6x=2,解得:x=2,将x=2代入①,得:y=6,所以方程组的解为;(2)方程组整理可得,②﹣①,得:y=2,将y=2代入①,得:3x﹣4=2,解得:x=2,所以方程组的解为.21.解二元一次方程组:(1)(2)【解答】解:(1),②×3﹣①,得:13y=﹣13,解得:y=﹣1,将y=﹣1代入①,得:3x+4=10,解得:x=2,∴方程组的解为;(2)原方程组整理可得,①﹣②,得:y=10,将y=10代入①,得:3x﹣10=8,解得:x=6,∴方程组的解为.22.解方程组:(1)(2)【解答】解:(1),①×2+②得:7x=14,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为;(2)方程组整理得:,①+②得:3x=7,解得:x=,把x=代入①得:y=﹣,则方程组的解为.23.解下列方程组:(1)(2)【解答】解:(1)整理,得:,②﹣①×6,得:19y=114,解得:y=6,将y=6代入①,得:x﹣12=﹣19,解得:x=﹣7,所以方程组的解为;(2)方程整理为,②×4﹣①×3,得:11y=﹣33,解得:y=﹣3,将y=﹣3代入①,得:4x﹣9=3,解得:x=3,所以方程组的解为.24.解方程组(1)(2)【解答】解:(1),①×2,得:2x﹣4y=2③,②﹣③,得:7y=14,解得:y=2,将y=2代入①,得:x﹣4=1,解得:x=5,所以方程组的解为;(2)方程组整理可得,②×4,得:24x+4y=60③,③﹣①,得:23x=46,解得:x=2,将x=2代入②,得:12+y=15,解得:y=3,所以方程组的解为.25.(1)(2)【解答】解:(1)方程组整理得:,①×2﹣②×3得:﹣m=﹣162,解得:m=162,把m=162代入①得:n=204,则方程组的解为;(2)方程组整理得:,①﹣②×6得:﹣11x=﹣55,解得:x=5,把x=5代入①得:y=1,则方程组的解为.26.解方程(1)(代入法)(2)【解答】解:(1),由②,得:y=3x+1③,将③代入①,得:x+2(3x+1)=9,解得:x=1,将x=1代入②,得:y=4,所以方程组的解为;(2)原方程组整理可得,①+②,得:4x=12,解得:x=3,将x=3代入①,得:3+4y=14,解得:y=,则方程组的解为.27.解方程:(1)(2)【解答】解:(1),①×2,得:2x+4y=0③,②﹣③,得:x=6,将x=6代入①,得:6+2y=0,解得:y=﹣3,所以方程组的解为;(2)方程组整理可得,①+②,得:10x=30,解得:x=3,①﹣②,得:6y=0,解得:y=0,则方程组的解为.28.解下列二元一次方程组(1)(2)【解答】解:(1),①+②得:5x=10,解得:x=2,把x=2代入①得:y=3,则方程组的解为;(2),①×3+②得:10a=5,解得:a=,把a=代入①得:b=,则方程组的解为.29.解下列方程组:(1)(2)【解答】解:(1),由②得:x=y+4③代入①得3(y+4)+4y=19,解得:y=1,把y=1代入③得x=5,则方程组的解为;(2)方程组整理得:,①+②×4得:﹣37y=74,解得:y=﹣2,把y=﹣2代入①得:x=﹣,则方程组的解为.30.解下列方程组:(1)用代入消元法解;(2)用加减消元法解.【解答】解:(1),由①,得:a=b+1③,把③代入②,得:3(b+1)+2b=8,解得:b=1,则a=b+1=2,∴方程组的解为;(2),①×3,得:9m+12n=48③,②×2,得:10m﹣12n=66④,③+④,得:19m=114,解得:m=6,将m=6代入①,得:18+4n=16,解得:n=﹣,所以方程组的解为.31.解方程组:.【解答】解:方程组整理得:,①+②得:8x=24,解得:x=3,把x=3代入②得:y=﹣5,则方程组的解为.32.解下列方程组①;②.【解答】解:①化简方程组得:,(1)×3﹣(2)×2得:11m=55,m=5.将m=5代入(1)式得:25﹣2n=11,n=7.故方程组的解为;②化简方程组得:,(1)×4+(2)化简得:30y=22,y=.将y=代入第一个方程中得:﹣x+7×=4,x=.故方程组的解为.33.解下列方程组:(1);(2);(3);(4).【解答】解:(1)由①得x=y③,把③代入②,得y﹣3y=1,解得y=3,把y=3代入③,得x=5.即方程组的解为;(2)把①代入②,得4(y﹣1)+y﹣1=5,解得y=2,把y=2代入①,得x=4.即方程组的解为;(3)原方程组整理得,把②代入①,得x=,把x=代入②,得y=,即方程组的解为;(4)原方程组整理得,把①代入②,得﹣14n﹣6﹣5n=13,解得n=﹣1,把n=﹣1代入①,得m=4.即方程组的解为.34.用合适的方法解下列方程组(1)(2)(3)(4)==4.【解答】解:(1)把①代入②得,3x+2(40﹣2x)=22,解得x=58,把x=58代入①得,y=40﹣2×58=﹣76,故原方程组的解为;(2)①×2﹣②得,8y=9,解得y=,把y=代入①得,2x+3×=5,解得,x=,故原方程组的解为;(3)①+②×5得,21x=0,解得,x=0,把x=0代入①得,5y=15,解得y=3,故原方程组的解为;(4)原方程可化成方程组,①+②×3得,﹣7y=56,解得,y=﹣8,把y=﹣8代入②得,﹣x+24=12,解得,x=12.故原方程组的解为.35.计算解下列方程组(1)(2)(3).【解答】解:(1)①×2﹣②,得3y=15,解得y=5,将y=5代入①,得x=0.5,故原方程组的解是;(2)化简①,得﹣4x+3y=5③②+③,得﹣2x=6,得x=﹣3,将x=﹣3代入②,得y=﹣,故原方程组的解是;(3)将③代入①,得5y+z=12④将③代入②,得6y+5z=22⑤④×5﹣⑤,得19y=38,解得,y=2,将y=2代入③,得x=8,将x=8,y=2代入①,得z=2,故原方程组的解是.36.解下列方程组(1)(2)(3)【解答】解:(1),由①得:x=﹣2y③,将③代入②,得:3(﹣2y)+4y=6,解得:y=﹣3,将y=﹣3代入③得:x=6.所以方程组的解为;(2),①×2得:2x﹣4y=10③,②﹣③得:7y=﹣14.解得:y=﹣2,把y=﹣2代入①,得x+4=5,解得:x=1.所以原方程组的解是;(3),①+②得2y=16,即y=8,①+③得2x=12,即x=6,②+③得2z=6,即z=3.故原方程组的解为.37.解方程组:(1)(2).【解答】解:(1)把①代入②得:3(3+2y)﹣8y=13,解得:y=﹣2,把y=﹣2代入①得:x=3﹣4=﹣1,所以原方程组的解为;(2)①+②得:2x+3y=21④,③﹣①得:2x﹣2y=﹣2⑤,由④和⑤组成一元二元一次方程组,解得:,把代入①得:++z=12,解得:z=,所以原方程组的解为.38.解下列方程组:(1);(2);(3);(4).【解答】解:(1)将①代入②,得5x+2x﹣3=11解得,x=2将x=2代入②,得y=1故原方程组的解是;(2)②×3﹣①,得11y=22解得,y=2将y=2代入①,得x=1故原方程组的解是;(3)整理,得①+②×5,得14y=14解得,y=1将y=1代入②,得x=2故原方程组的解是;(4)①+②×2,得3x+8y=13④①×2+②,得4x+3y=25⑤④×4﹣⑤×3,得23y=﹣23解得,y=﹣1将y=﹣1代入④,得x=7将x=7,y=﹣1代入①,得z=3故原方程组的解是.39.解方程(1)(2)(3)(4).【解答】解:(1),①﹣②得y=1,把y=1代入②得x+2=1,解得x=﹣1.故方程组的解为.(2),①×4+②×3得17x=34,解得x=2,把x=2代入②得6+4y=2,解得y=﹣1.故方程组的解为.(3),②﹣①得x=2,把x=2代入②得12+0.25y=13,解得y=4.故方程组的解为.(4),①+②+③得2(x+y+z)=38,解得x+y+z=19④,④﹣①得z=3,④﹣②得x=7,④﹣③得y=9.故方程组的解为.40.解下列方程组:(1)(2)(3)(4).【解答】解:(1)可化为①﹣②得3y=4,y=;代入①得﹣y=4,y=;∴方程组的解为:;(2)方程组可化为,①×3﹣②×2得m=18,代入①得3×18+2n=78,n=12;方程组的解为:;(3)方程组可化为,把①变形代入②得9(36﹣5x)﹣x=2,x=7;代入①得35+y=36,y=1;方程组的解为:;(4)原方程组可化为,①﹣②得﹣6y=3,y=﹣;③﹣①×2得﹣6y﹣7z=﹣4,即﹣6×(﹣)﹣7z=﹣4,z=1;代入①得x+2×(﹣)+1=2,x=2.方程组的解为:.41.解方程组:(1)(2)(3).【解答】解:(1)由得,①﹣②得2x=4,∴x=2,把x=2代入①得,3×2﹣2y=0,∴y=3,∴;(2),原方程组可化为,①×6﹣②×2得,4y=8,∴y=2,把y=2代入①得,8x+9×2=6,∴x=﹣,∴;(3),①+②得,4x+y=16④,②×2+③得,3x+5y=29⑤,④×5﹣⑤得,17x=51,∴x=3,把x=3代入④得,y=4,把x=3和y=4代入①得,3×3﹣4+z=10,∴z=5,∴.42.解方程组(1)(2)(3).【解答】解:(1),由①得:x=3y+5③,把③代入②得:6y+10+5y=21,即y=1,把y=1代入③得:x=8,则方程组的解为;(2),①×3+②×2得:13x=52,即x=4,把x=4代入①得:y=3,则方程组的解为;(3),由①得:x=1,②+③得:x+2z=﹣1,把x=1代入得:z=﹣1,把x=1,z=﹣1代入③得:y=2,则方程组的解为.43.解方程组:(1)(2)(3).【解答】解:(1),由②得:x=2y+4③,将③代入①得:11y=﹣11,解得:y=﹣1,将y=﹣1代入③得:x=2,则原方程组的解是;(2),②﹣①×2得:13y=65,即y=5,将y=5代入①得:x=2,则原方程组的解是;(3),将①代入②得:4x﹣y=5④,将①代入③得:y=3,将y=3代入④得:x=2,将x=2,y=3代入①得:z=5,则原方程组的解是.44.解方程组:(1)(2)(3)(4).【解答】解:(1)①+②得:3x=3,解得:x=1,把x=1代入①得:1﹣y=1,解得:y=0,所以原方程组的解为:;(2)①×3+②×2得:13x=52,解得:x=4,把x=4代入①得:12﹣2y=6,解得:y=3,所以原方程组的解为:;(3)整理得:①﹣②得:﹣7y=﹣7,解得:y=1,把y=1代入①得:3x﹣2=﹣8,解得:x=﹣2,所以原方程组的解为:;(4)①+②得:3x+3y=15,x+y=5④,③﹣②得:x+3y=9⑤,由④和⑤组成一个二元一次方程组,解得:x=3,y=2,把x=3,y=2代入①得:z=1,所以原方程组的解为:.45.解方程组:(1);(2);(3).【解答】解:(1)①+②得:3x=9解得:x=3把x=3代入①得:y=﹣1所以;(2)原方程可化为①×4﹣②×3得:7x=42解得:x=6把x=6代入①得:y=4所以;(3)把③变为z=2﹣x把z代入上两式得:两式相加得:2y=4解得:y=2把y=2代入①得:x=﹣1,z=3所以.46.用合适的方法解下列方程组:(1)(2)(3)(4)(5)【解答】解:(1)把①代入②得,3x+2(40﹣2x)=22,解得x=58,把x=58代入①得,y=40﹣2×58=﹣76,故原方程组的解为;(2)①×2﹣②得,8y=9,解得y=,把y=代入①得,2x+3×=5,解得,x=,故原方程组的解为;(3)①+②×5得,21x=0,解得,x=0,把x=0代入①得,5y=15,解得y=3,故原方程组的解为;(4)原方程可化成方程组,①+②×3得,﹣7y=56,解得,y=﹣8,把y=﹣8代入②得,﹣x+24=12,解得,x=12.故原方程组的解为;(5)把②代入③得,5x+3(12x﹣10)+2z=17,即41x+2z=47…④,①+④×2得,85x=85,解得,x=1,把x=1代入①得,3﹣4z=﹣9,解得,z=3,把x=1代入②得,y=12﹣10=2,故原方程组的解为.47.解方程组:(1)(2)(3)(4).【解答】解:(1),①×3﹣②得:﹣16y=﹣160,解得:y=10,把y=10代入①得:x=10,则原方程组的解是:;(2),①+②得;x+y=③,①﹣③得:2008x=,解得:x=,把x=代入③得:y=,则原方程组的解是:;(3)①4x﹣6y=13③,②﹣③得:3y=﹣6,解得:y=﹣2,把y=﹣2代入②得:x=,则原方程组的解为:;(4)由①得,y=1﹣x把y=1﹣x代入②得,1﹣x+z=6④④+③得2z=10,解得z=5,把z=5代入②得,y=1,把y=1代入②得,x=0,则原方程组的解为.48.解下列方程组:(1)(2)(3)(4).【解答】解:(1)②﹣①×2,得3x=6,解得,x=2,将x=2代入①,得y=﹣1,故原方程组的解是;(2)①×9+②,得x=9,将x=9代入①,得y=6,故原方程组的解是;(3)②﹣①,得y=1,将y=1代入①,得x=1故原方程组的解是;(4)②+③×3,得5x﹣7y=19④①×5﹣④,得y=﹣2,将y=﹣2代入①,得x=1,将x=1,y=﹣2代入③,得z=﹣1故原方程组的解是.49.(1);(2);(3);(4).【解答】解:(1)把①变形后代入②得:5(3x﹣7)﹣x=7,x=3;代入①得:y=2;即方程组的解为;(2)原方程化简为①×5﹣②得:y=﹣988代入①得:x﹣988=600,x=1588.原方程组的解为;(3)在中,把两方程去分母、去括号得:①+②×5得:14y﹣28=0,y=2;代入②得:x=﹣2.原方程组的解为;(4)在③×3﹣②得:7x﹣y=35,代入①得:5x+3(7x﹣35)=25,x=5;代入①得:25+3y=25,y=0;代入②得:2×5﹣3z=19,z=﹣3.原方程组的解为.50.解方程组:①;②;③.【解答】解:①方程组整理得:,①+②×5得:7x=﹣7,解得:x=﹣1,把x=﹣1代入②得:y=3,则方程组的解为;②方程组整理得:得,①×6+②得:19y=114,解得:y=6,把y=6代入①得:x=﹣7,则方程组的解为;③,①+②得:x+z=1④,③+④得:2x=5,解得:x=2.5,把x=2.5代入④得:z=﹣1.5,把x=2.5,z=﹣1.5代入①得:y=1,则方程组的解为.。
新人教版数学七年级下册8.2消元——解二元一次方程组课时练习一、选择题1.把方程7215x y =-写成用含x 的代数式表示y 的形式,得( ) A .7512-=x yB .7215yx +=C .2157-=x y D .2715xy -=答案:C知识点:解二元一次方程 解析:解答:由7215x y =-移项得2715y x =-,化系数为1得7152x y -=. 分析:表示y 就该把y 放到等号的一边,其它项移到另一边,化系数为1就可用含x 的式子表示y 的形式. 方程组2.用代入法解二元一次方程组34225x y x y ⎧+=⎪⎨-=⎪⎩ ①②时,最好的变式是( )A .由①得243y x -=B .由①得234x y -=C .由②得52y x += D .由②得25y x =- 答案:D知识点:解二元一次方程组 解析:解答:用代入法解二元一次方程组最好的变式是由②中的x 表示y ,所以选择D .分析:用代入法解二元一次方程组第一步变形时应选择未知数系数的绝对值为1或较小的,并将系数的绝对值为1或较小的未知数用另一个未知数表示出来. 方程组3.由方程组63x m y m +=⎧⎨-=⎩可得出x 与y 的关系式是( )A .9x y +=B .3x y +=C .3x y +=-D .9x y +=-答案:A知识点:解二元一次方程组 解析:解答:在63x m y m ⎧+=⎪⎨-=⎪⎩②①中将②代入①得36x y +-=,即9x y +=,所以选择A .分析:在方程组中也可由①得6m x =-③,将③代入②得36y x -=-,整理得9x y +=. 方程组4.二元一次方程组⎩⎨⎧-=-=+13243y x y x 的解是( )⎩⎨⎧==11.y x A⎩⎨⎧-=-=11.y x B ⎩⎨⎧=-=22.y x C⎩⎨⎧-=-=12.y x D答案:A知识点:解二元一次方程组 解析:解答:将43=+y x 变形为y x 34-=代入第二个方程即可求出1=y ,再将1=y 代入y x 34-=,可求出1=x ,故选A .分析:实际上也可以将1y =代入方程组中的任一个方程中,一般代入容易计算的;也可以将选项中未知数的值代入所给方程组中进行计算. 方程组 5.若方程组31331x y ax y a+=+⎧⎨+=-⎩的解满足x +y =0,则a 的取值是( )A .a =−1B .a =1C .a =0D .不能确定答案:A知识点:解二元一次方程组 解析:解答:由题意得4422x y a +=+,则21a y x +=+,因为0=+y x ,所以021=+a,解得1a =-,故选A .分析:由题意把方程组⎩⎨⎧-=++=+a y x a y x 13313的两个方程相加可得a y x 2244+=+,则可得21ay x +=+,再结合0x y +=求解即可.方程组6.已知21x y =⎧⎨=⎩是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则2m n -的算术平方根为( ) A .2±BC .2D .4答案:C知识点:解二元一次方程组;算术平方根;代数式求值;二元一次方程组的解 解析:解答:将21x y =⎧⎨=⎩代入方程组中得2821m n n m +=⎧⎨-=⎩,解得32m n =⎧⎨=⎩,所以22324m n -=⨯-=,所以2m n -的算术平方根为2. 分析:解方程组2821m n n m +=⎧⎨-=⎩的过程为:在2821m n n m +=⎧⎨-=⎩①②中,由②×2得422n m -=③,由③+①得510n =即2n =,将2n =代入②得3m =,所以方程组的解为32m n =⎧⎨=⎩.7.若2425y x a b -与352x y a b +是同类项,则x 、y 的值为( ) A .21x y =⎧⎨=⎩ B .31x y =⎧⎨=⎩ C .12x y =⎧⎨=⎩D .21x y =⎧⎨=-⎩答案:D知识点:解二元一次方程组;同类项、合并同类项 解析:解答:由同类项的定义可得24325y x x y -=⎧⎨=+⎩,整理得34225x y y x ⎧+=⎪⎨=-⎪⎩②①,将②代入①得()34252x x +-=,解得2x =,将2x =代入②得1y =-,所以21x y =⎧⎨=-⎩.分析:也可以将选项中未知数的值代入所给的两个单项式中,根据同类项的定义完成题目. 方程组8.已知关于x ,y 的方程组343x y a x y a +=-⎧⎨-=⎩,给出下列结论:①51x y =⎧⎨=-⎩是方程组的一个解;②当2a =时,x ,y 的值互为相反数;③当1a =时,方程组的解也是方程23x y -=的解;④x ,y 间的数量关系是4x y a +=-,其中正确的是( ) A .②③B .①②③C .①③D .①③④答案:C知识点:二元一次方程组的解;相反数;二元一次方程的解 解析:解答:①中将51x y =⎧⎨=-⎩代入方程组得2a =,所以①正确;②中将2a =代入方程组中得326x y x y ⎧+=⎨-=⎩①②,将+①②得4x y +=,所以②错误;③中将1a =代入方程组得333x y x y +=⎧⎨-=⎩解得30x y =⎧⎨=⎩,将其代入23203x y -=-⨯=,所以③正确;④中,将方程组中的两个方程相加得22x y a +=+,所以④错误.分析:在解题的实际中,可以判断出①②时,将答案锁定在C 与D 之间,再对④进行判断即可选出C 选项. 方程组9.二元一次方程组320x y x y -=-⎧⎨+=⎩的解是( )A .12x y =-⎧⎨=⎩B .12x y =⎧⎨=-⎩C .12x y =-⎧⎨=-⎩D .21x y =-⎧⎨=⎩答案:A知识点:解二元一次方程组解答:将方程组中得两个方程相加得33x =-,解得1x =-,将1x =-代入方程组中得任意一个方程可得2y =,所以12x y =-=⎧⎨⎩.分析:也可以用代入法解这个方程组. 方程组 10.解方程组5210x y x y +=⎧⎨+=⎩①②,由①-②得正确的方程是( )A .310x =B .5x -=-C .35x =-D .5x =- 答案:B知识点:解二元一次方程组 解析:解答:由①-②得()2510x y x y +-+=-,去括号得25x y x y +--=-,合并同类项得5x -=-. 分析:方程组中两个方程相减的时候,要方程的左边减左边,右边减右边. 方程组11.解方程组:(1)⎩⎨⎧=+=-1023724y x y x ;(2)⎩⎨⎧=-=9532y x y x ;(3)⎩⎨⎧=-=+732954y x y x ;(4)7341x y x y +=⎧⎨-=⎩比较适宜的方法是( )A .(1)(2)用代入法,(3)(4)用加减法B .(1)(3)用代入法,(2)(4)用加减法C .(2)(3)用代入法,(1)(4)用加减法D .(2)(4)用代入法,(1)(3)用加减法 答案:D知识点:解二元一次方程组 解析:解答:当方程组中得某一个未知数的系数为1或-1时,用代入法较简便;当两个方程中,同一个未知数系数相等或相反时,用加减法较简便.应根据方程组的具体情况选择更适合它的解法.分析:对于(3)方程组中同一未知数既不相等也不互为相反数时,可先比较同一未知数系数的绝对值的最小公倍数,再将方程变形,使最小公倍数较小的未知数的系数的绝对值变为最小公倍数,最后相加或相减消去此未知数. 方程组12.已知23a b m -+=且24a b m +=-+,则a b -的值为( ) A .0 B .1 C .2 D .3 答案:B知识点:解二元一次方程组 解析:解答:由23a b m +=-得,23m a b --=+,将其代入24a b m +=-+得2234a b a b -+=++,整理得1a b -=. 分析:也可以将a ,b 用m 表示出来以后,再计算a −b 的值. 方程组13.已知关于x 、y 的二元一次方程组524x y kx y -=⎧⎨+=⎩,当4x =-时,则k 的值为( )A .-12B .12C .-3D .3 答案:C知识点:解二元一次方程组 解析:解答:将4x =-代入524x y -=中得12y =-,将4,12x y =-=-代入0kx y +=中得3k =-. 分析:解题时先根据题意求出方程组的解,然后再将方程组的解代入含有字母的方程中求得字母的值. 方程组14.已知方程组323()11x y y x y -=⎧⎨+-=⎩,那么代数式34x y -的值为( )A .1B .8C .-1D .-8 答案:B知识点:解二元一次方程组;代数式求值 解析:解答:将3x y -=代入方程()2311y x y +-=得2911y +=解得1y =,将1y =代入3x y -=得4x =,所以3434418x y -=⨯-⨯=.分析:观察方程组发现将(x-y )看作整体来解方程组比较简单,也可用加减法或消元法直接解方程组. 方程组15.解关于,x y 的方程组⎩⎨⎧=-=+m y x my x 932,得2x y +的值为( )A .12mB .0C .2m -D .7m 答案:A知识点:解二元一次方程组;代数式求值 解析:解答:将方程组中的两个方程相加得239x y x y m m ++-=+,合并同类项得212x y m +=. 分析:也可以解出关于x ,y 的方程组得72x my m=⎧⎨=-⎩,进而求得代数式2x +y 的值.方程组 二、填空题 1.方程组23328y x x y =-⎧⎨+=⎩的解是__________.答案:21x y =⎧⎨=⎩知识点:解二元一次方程组解析:解答:在方程组23328y x x y ⎧=-⎪⎨+=⎪⎩①②中,将①代入②得()32238x x +-=,去括号得3468x x +-=,移项得3486x x +=+,合并同类项得714x =,化系数为1得2x =,将2x =代入①得1y =,所以方程组的解为21x y =⎧⎨=⎩. 分析:方程①中的未知数y 已经用含x 的式子表示了,所以用代入法较简便. 方程组 2.若方程组7353x y x y +=⎧⎨-=-⎩,则()()335x y x y +-﹣的值是.答案:24知识点:解二元一次方程组;代数式求值 解析:解答:将方程组中得两个方程看作整体代入得()37324⨯--=.分析:将方程组中得两个方程看作整体代入所求的代数式中即可,整体思想是数学中一个可以简化计算的重要思想. 方程组3.已知:2(4)|2|0x y x y +-+--=则xy = . 答案:3知识点:解二元一次方程组;代数式求值;平方的非负性;绝对值的非负性 解析:解答:因为2(4)|2|0x y x y +-+--=,所以可得方程组4020x y x y +-=⎧⎨--=⎩,解得31x y =⎧⎨=⎩,所以3xy =.分析:平方的非负性与绝对值的非负性可以与多个知识点结合进行考察,所以要牢牢掌握. 方程组4.根据下图给出的信息,则每件T 恤价格和每瓶矿泉水的价格分别为 .答案:20元和2元知识点:二元一次方程组的应用 解析:解答:每件T 恤价格和每瓶矿泉水的价格分别为x 元和y 元,根据题意可列方程组2244326x y x y +=⎧⎨+=⎩,解得202x y =⎧⎨=⎩,所以每件T 恤价格和每瓶矿泉水的价格分别为20元和2元.分析:列二元一次方程组解应用题关键是挖掘出问题中的两个相等关系,根据这两个相等关系列方程组. 方程组解二元一次方程组典型例题解析5.小亮解方程组2212x y x y +=⎧⎨-=⎩•的解为5x y =⎧⎨=⎩,由于不小心,滴上了两滴墨水,刚好遮住了两个数•和▲,请你帮他找回▲这个数,▲= . 答案:-2知识点:二元一次方程组的解 解析:解答:将5x =代入212x y -=得2y =-,那么-2即为所求.分析:该题目的关键是已知方程组解中得x 的值求y 的值,只需知道方程组中的一个方程即可求得. 方程组 三、解答题1.解下列二元一次方程组 (1)33814x y x y -=⎧⎨-=⎩(2)254x y x y +=⎧⎨-=⎩(3)4518549x y x y +=⎧⎨+=⎩(4)73100202x y y x +=⎧⎨=-⎩答案:(1)21x y =⎧⎨=-⎩;(2)31x y =⎧⎨=-⎩;(3)36x y =-⎧⎨=⎩;(4)4060x y =⎧⎨=-⎩知识点:解二元一次方程组 解析: 解答:解:(1)33814x y x y ⎧-=⎪⎨-=⎪⎩ ①②,由①得3x y =+③,把③代入②得()33814y y +-=,解之得1y =-,把1y =-代入③得2x =,所以方程组的解为21x y =⎧⎨=-⎩;(2)254x y x y ⎧+=⎪⎨-=⎪⎩①②,由①+②得39x =,即3x =,将3x =代入②得1y =﹣,则方程组的解为31x y =⎧⎨=-⎩;(3)4518549x y x y ⎧+=⎪⎨+=⎪⎩①②,由①×5-②×4得()()54545418594x y x y +-+=⨯-⨯整理得954y =,所以6y =,将6y =代入①得3x =-,所以方程组的解为36x y =-⎧⎨=⎩;(4)20302710x y y x =+-⎧=⎪⎨⎪⎩①②,把②代入①得()73202100x x +-=,解得40x =,把40x =代入②得60y =﹣,方程组的解是4060x y =⎧⎨=-⎩.分析:根据加减消元法或代入消元法解这个二元一次方程组.方程组2.已知关于,x y 的方程组122x m y y x -⎧+=⎨=⎩① ②,(1)若用代入法求解,可由①得:x = ③,把③代入②解得y = ,将其代入③解得x = ,∴原方程组的解为 ;(2)若此方程组的解,x y 互为相反数,求这个方程组的解及m 的值.答案:(1)12x y =﹣;14m y -=;12m x +=;1214m x my +⎧=⎪⎪⎨-⎪=⎪⎩;(2)11x y =-⎧⎨=⎩;3m =﹣知识点:解二元一次方程组 解析:解答:(1)若用代入法求解,可由①得12x y =﹣③,把③代入②解得14m y -=,将其代入③解得12m x +=,∴原方程组的解为1214m x m y +⎧=⎪⎪⎨-⎪=⎪⎩ ;(2)解:∵方程组的解,x y 互为相反数,∴x y =﹣③,将③代入①得21y y +=﹣,∴1y = 1x =﹣,∴123m ==﹣﹣﹣,∴方程组的解是11x y =-⎧⎨=⎩,3m =﹣. 分析:解关于,x y 的方程组时可以将其它字母看作数字进行运算,如果,x y 的值用m 表示较简单时也可以利用,x y 互为相反数即0x y +=进行计算m 的值. 方程组3.方程()()()224268k x k x k y k -+++-=+是关于x ,y 的方程,试问当k 为何值时,(1)方程为一元一次方程?(2)方程为二元一次方程? 答案:(1)2k =-;(2)2k =知识点:二元一次方程的定义;一元一次方程的定义;平方根 解析:解答:解:∵二元一次方程与一元一次方程都是一次的,∴二次系数为0即240k -=,∴2k =±,∴当2k =-时方程为86x -=即此时方程为一元一次方程,当2k =时方程为4410x y -=即此时方程为二元一次方程. 分析:紧扣二元一次方程与一元一次方程的定义,同时要注意正数的平方根有两个. 方程组4.在“家电下乡”活动期间,凡购买指定家用电器的农村居民均可得到该商品售价13%的财政补贴.村民小李购买了一台A 型洗衣机,小王购买了一台B 型洗衣机,两人一共得到财政补贴351元,又知B 型洗衣机售价比A 型洗衣机售价多500元.求:(1)A 型洗衣机和B 型洗衣机的售价各是多少元?(2)小李和小王购买洗衣机除财政补贴外实际各付款多少元?答案:(1)A 型洗衣机的售价为1100元,B 型洗衣机的售价为1600元;(2)小李和小王实际各付款957元和1392元知识点:二元一次方程组的应用 解析:解答:解:(1)设A 型洗衣机和B 型洗衣机的售价分别是x 元和y 元,根据题意得()0013351500x y y x +=⎧⎪⎨-=⎪⎩,解得11001600x y =⎧⎨=⎩,所以A 型洗衣机和B 型洗衣机的售价分别是1100元和1600元; (2)小李购买洗衣机实际付款为()001100113957⨯-=(元); 小王购买洗衣机实际付款()0016001131392⨯-=(元); 答:小李和小王实际各付款957元和1392元 .分析:(1)可根据:“两人一共得到财政补贴351元;又知B 型洗衣机售价比A 型洗衣机售价多500元”来列出方程组求解;(2)根据(1)得出的A ,B 洗衣机的售价根据补贴的规定来求出两人实际的付款额. 方程组5.先阅读下列材料,再解决问题:解方程组191817171615x y x y +=⎧⎨+=⎩时,如果我们直接消元,那么会很麻烦,但若用下面的解法,则要简便得多. 解方程组191817171615x y x y +=⎧⎨+=⎩①②解:①-②得222x y +=,即1x y += ③ ③×16得161616x y += ④②-④得1x =-,将1x =-代入③得2y =,所以原方程组的解是12x y =-⎧⎨=⎩.根据上述材料,解答问题: 若x ,y 的值满足方程组201020092008200820072006x y x y +=⎧⎨+=⎩①②,试求代数式22x xy y ++的值. 答案:12x y =-⎧⎨=⎩;3 知识点:解二元一次方程组;代数式求值 解析:解答:解:①-②得222x y +=,即1x y +=③,③×2007得200720072007x y +=④,②-④得1x =-,将1x =-代入③得2y =,故原方程组的解是12x y =-⎧⎨=⎩;所以2222(1)(1)223x xy y ++=-+-⨯+=.分析:该题目是考察同学们的自主学习能力,关键是读懂题目所给的材料.方程组。