生物制乙醇
- 格式:ppt
- 大小:956.50 KB
- 文档页数:14
生物质生产乙醇的方法及其工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!生物质生产乙醇:方法与工艺流程解析生物质生产乙醇作为一种可持续的能源解决方案,已经在全球范围内引起了广泛的关注。
生物乙醇
生物乙醇是一种可再生能源,被广泛用于代替传统燃料,具有环保、可持续等
优势。
本文将探讨生物乙醇的生产原理、应用领域及未来发展趋势。
生产原理
生物乙醇是通过发酵法制备的。
主要原料包括玉米、甜菜、小麦、红甜菜等含
糖作物,首先将这些原料破碎、蒸煮后加入酵母菌进行发酵,酵母菌分解原料中的糖分,产生乙醇和二氧化碳,最后通过蒸馏提取出纯净的乙醇。
应用领域
生物乙醇作为一种清洁能源广泛应用于交通运输领域。
混合使用生物乙醇的汽
油能有效降低尾气排放,减少对环境的污染。
此外,生物乙醇还可以用作工业原料,如溶剂、酯类化合物等。
未来发展趋势
随着人们对环境保护的重视以及对石油资源的逐渐枯竭,生物乙醇作为可再生
资源将会更受重视。
未来生物乙醇的生产技术将不断完善,生产成本降低,产量增加,推动其在能源替代领域的广泛应用。
总之,生物乙醇作为可再生能源,在环保、可持续发展等方面具有重要意义,
未来的发展将为人类社会带来更加清洁、可持续的能源解决方案。
生物乙醇概述生物乙醇是以富含淀粉,糖分的生物质为原料通过发酵和蒸馏提纯制得的乙醇,属于可再生资源。
生物质原料包括玉米,高粱,小麦,大麦,甘蔗,甜菜,土豆等含糖类和淀粉的农作物。
此外城市垃圾,甘蔗渣,小树干,木片碎屑等纤维质原料也可用来生产生物乙醇。
目前生物乙醇主要来自于谷物粮食发酵,该工艺生产技术已经相当成熟,但生产成本较高,且受到粮食安全等社会因素的制约。
生物乙醇最廉价的智取途径是废弃的农作物秸秆发酵。
生物乙醇可以单独或与汽油混配制成乙醇汽油作为汽车燃料。
汽油掺乙醇有两个作用:一是乙醇辛烷值高达115,可以取代污染环境的含铅添加剂来改善汽油的防爆性能;二是乙醇含氧量高,可以改善燃烧,减少发动机内的碳沉淀和-氧化碳等不完全燃烧污染物排放。
同体积的生物乙醇汽油和汽油相比,燃烧热值低30%左右,但因为只掺入10%,热值减少不显著,而且不需要改造发动机就可以使用。
全球现在使用生物乙醇做成ETBE(乙基叔丁基醚--一种性能优良的高辛烷值汽油调和组分)替代MTBE(甲基叔丁基醚),通常以5~15%的混合量在不需要修改/替换现有汽车引擎的状况下加入;有些时候ETBE也以替代铅的方式加入汽油中,以提高辛烷值而得到较洁净的汽油;也可以完全替代汽油使用为输送燃料。
目前世界上使用乙醇汽油的国家主要是美国、巴西等国。
在美国使用的是E85乙醇汽油,即85%的乙醇和15%的汽油混合作为燃料,而美国是用甘蔗和玉米来生产乙醇的,这种E85汽油的价格与性能与常规汽油相似。
我国化石资源相对缺乏,必须大力发展生物乙醇燃料。
一方面,我国面临能源短缺的压力。
2009年中国的石油对外依存度突破51.2%,到2020年中国石油需求量将高达4.5亿吨,其中2.5亿吨来自进口。
近年国际油价大幅飙升,对中国经济造成了影响,利用可再生资源发展生物乙醇,可以部分替代常规能源,有效缓解能源短缺。
另一方面,发展燃料乙醇是调整我国农业结构,提高农民收入的有效手段。
第十四章生物醇类燃料技术1生物醇类燃料背景1.1生物醇类燃料及其特性1.2生物醇类燃料发展现状2 生物燃料乙醇制备基础2.1微生物发酵法2.2乙醇发酵的有关微生物3生物燃料乙醇制备工艺3.1糖质原料的乙醇生产3.2淀粉质原料的乙醇生产3.3甜高粱茎秆制取乙醇3.4纤维素原料的乙醇生产3.5燃料乙醇制备新方法4 生物醇类燃料技术的应用与发展4.1糖质原料的乙醇生产案例4.2淀粉质原料的乙醇生产案例4.3甜高粱茎秆制取乙醇生产案例4.4纤维素乙醇生产案例4.5燃料乙醇生产经济性分析4.6其他生物醇类燃料的发展习题·1·1生物质制取乙醇1.1燃料乙醇技术的发展概况1.1.1 燃料乙醇的定义和性质1.1.1.1 燃料乙醇的定义乙醇(ethanol)又称为酒精,是由C、H、O三种元素组成的有机化合物。
中华人民共和国国家标准《变性燃料乙醇》和《车用乙醇汽油》规定,燃料乙醇是未加入变性剂的,可以作为燃料使用的无水乙醇。
1.1.1.2 乙醇的燃料性质乙醇分子由烃基和官能团羟基两部分构成,分子式为C2H5OH,相对分子质量为46.07,常温常压下是无色透明的液体,具有特殊的香味和刺激性,吸湿性很强,易挥发、易燃烧,可与水以任何比例混合并产生热量。
下图为乙醇的主要物理性质。
乙醇的主要物理性质项目数值项目数值冰点/K(℃) 159(-114.1) 混合气热值/(kJ/m3) 3.66常压下沸点/K(℃) 315.42(78.32) 爆炸极限(空气中)/%临界温度/K(℃) 541.2(243.1) 下限 4.3临界压力/kPa 6383.48 上限19.0临界体积/(L/mol) 0.167 自燃点/K(℃) 1066(793)临界压缩因子0.248 闪点/K(℃)密度0.7893 开杯法294.2(21.1)折射率 1.36143 闭皿法287.1(14.0)表面张力(25℃)/(mN/m) 231 热导率(20℃)/[W/(mK)] 0.170粘度(20℃)/(mPa/s) 17 磁化率(20℃) 7.34*10^-7水中溶解度(20℃) 可互溶饱和蒸汽压力(38℃)/kPa 17.33熔化热/(J/g) 104.6 十六烷值8汽化热(在沸点下)/(J/g) 839.31 辛烷值(RON) 111燃烧热(25℃)/(J/g) 29676.69 理论空燃比(质量) 8.98比热容(20℃)/[J/(gK)] 2.72乙醇蒸气与空气混合可以形成爆炸性气体,爆炸极限为4.3%~19.0%(体积分数)。
技术概况第二代生物乙醇是指相对于玉米乙醇(第一代生物乙醇)而言,以生物质(农林作物废料,即木质纤维素)为原料生产的生物乙醇,包括纤维素乙醇和纤维乙醇的制备 ------第二代生物乙醇素生物汽油两种产品。
技术原理1. 纤维素乙醇目前已经建有示范装置和工业装置的纤维素乙醇生产技术有以下4种: a. 硫酸/酶-水解发酵技术首先把生物质原料用酸分解为半纤维素糖浆(木糖和其他5碳糖)和纤维渣(纤维素和木质素),二者分离以后糖浆用专用的酵母发酵为稀乙醇,纤维素用工业酶分解并发酵为稀乙醇,最后通过蒸馏得到燃料级纤维素 乙醇。
生物质残渣用作锅炉燃料生产工艺用蒸汽。
b. 硫酸水解-发酵技术用浓硫酸作催化剂,把纤维素和半纤维素原料转化为葡萄糖和木糖,收率是用稀硫酸和酶水解的1.5-3.0倍。
首先把原料干燥到水分少于10%,然后与75%的浓硫酸接触,在85℃左右和常压下蒸煮30min,再把水解得到的6碳糖、5碳糖与酸和木质素及其他固体物分离。
木质素和其他固体物用作锅炉燃料生产工艺用蒸汽和工厂用电。
约98%的酸和100%的糖在模拟移动床色谱分离器中回收。
酸循环使用,糖通过酵母连续发酵转化为乙醇(6碳糖100%转化,5碳糖20%转化)。
该工艺的关键技术一是用浓硫酸进行水解,二是用色谱分离回收酸,而不是中和并处理废料。
c.酸水解-发酵-酯化-加氢技术1—生物质:硬木、软木、柳枝草、玉米秸秆;2—化学分级分离;3—糖液;4—发酵;5—乙酸;6—生产酯;7—乙酸乙酯;8—乙酸乙酯外销;9—加氢;10—乙醇外销;11—氢气;12—气化;13—残渣去气化以废木材等为原料,通过酸水解得到葡萄糖和木糖溶液,然后用乙酸菌发酵把糖转化为乙酸,接着再酯化得到乙酸乙酯,乙酸乙酯(全部或部分)加氢得到乙醇。
氢气由酸水解得到的木质素气化生产。
由于用乙酸菌发酵把所有糖都转化为乙酸,不产生CO和其他副产物,因此碳没有2损失。
常规工艺是通过酵母发酵生产乙醇,每生产1个分子乙醇放出1个分子CO。
生物乙醇技术现状与进展生物乙醇是一种以植物或其他生物质材料为原料,通过发酵和蒸馏等工艺生产的乙醇燃料。
相比石油燃料,生物乙醇具有可再生、低碳排放、清洁燃烧等优势,因此在可持续能源发展和减排方面有着重要的地位和巨大潜力。
2020年全球生物乙醇产量约为1050亿升,其中美国、巴西、中国等国家是全球生物乙醇生产的主要国家。
浏览生物乙醇技术的现状与进展,以下几个方面是值得关注的:1.原料选择与开发:生物乙醇的原料主要包括玉米、甘蔗、小麦、木材等。
目前,以玉米和甘蔗为主要原料的生物乙醇工业化生产在全球范围内得到广泛应用,但存在着对粮食资源的竞争以及对土壤和环境的影响。
因此,开发新的生物质资源成为迫切需要解决的问题,例如废弃物、农林剩余物、微藻等都有潜力成为生物乙醇原料。
2.发酵技术改进:发酵是生物乙醇生产的核心步骤,对于提高产量和降低成本具有重要意义。
目前,常见的生物乙醇发酵菌主要包括酿酒酵母,但其对废弃物和木质纤维素等复杂底物的利用能力有限。
因此,研究人员通过基因工程、杂交育种等手段,改进发酵菌的抗性能力和底物适应性,提高发酵效率。
3.技术集成与共生发酵:采用共生发酵技术可以利用底物的多种组分,生产多种附加产品,提高资源利用效率。
例如,将生物乙醇生产与生物氢、生物丁醇等其他生物质燃料生产相结合,能够提高资源的综合利用效率,促进循环经济发展。
4.生物乙醇纯化技术改进:生物乙醇的纯化是保证其质量和燃烧效率的重要环节。
传统的蒸馏和萃取等方法需要大量的能量和化学试剂,对环境造成一定的压力。
因此,研究人员致力于开发低能耗、低成本的纯化技术,例如膜分离、离子液体等新技术,以实现生物乙醇快速高效纯化。
5.生物乙醇与燃料电池的结合:生物乙醇是一种燃料电池的理想燃料,可以通过与燃料电池技术的结合,实现乙醇的直接转换为电能,从而提高能源利用效率和减少碳排放。
近年来,研究人员不断改进生物乙醇燃料电池的催化剂和电极材料,提高其效率和稳定性。
第1篇一、实验目的1. 了解生物法制备乙醇的原理和方法。
2. 掌握微生物发酵法制备乙醇的操作步骤和注意事项。
3. 学习乙醇的提取和纯化方法。
二、实验原理生物法制备乙醇主要采用微生物发酵法,即利用微生物(如酵母菌)在无氧条件下,将含有糖分的原料(如玉米、高粱、甘蔗等)转化为乙醇和二氧化碳。
反应式如下:C6H12O6 → 2C2H5OH + 2CO2三、实验材料与仪器1. 实验材料:- 玉米淀粉- 高粱淀粉- 甘蔗汁- 酵母菌- 蒸馏水- 碱性酒石酸铜溶液- 酒精计- 碘液- 滤纸- 烧杯- 烧瓶- 漏斗- 滤网- 烧杯架- 温度计- 烧杯夹- 玻璃棒2. 实验仪器:- 烧杯(500mL)- 烧瓶(1000mL)- 漏斗- 滤网- 烧杯架- 温度计- 烧杯夹- 玻璃棒四、实验步骤1. 准备原料:称取一定量的玉米淀粉、高粱淀粉或甘蔗汁,加入适量的蒸馏水,搅拌均匀。
2. 预处理:将原料煮沸,煮沸过程中不断搅拌,使淀粉充分溶解。
煮沸时间为10-15分钟。
3. 冷却:将煮沸后的原料冷却至室温。
4. 接种:将冷却后的原料加入装有酵母菌的培养液,搅拌均匀。
5. 发酵:将接种后的原料放入发酵瓶中,密封,置于恒温培养箱中,发酵温度控制在28-30℃,发酵时间为48-72小时。
6. 检测发酵程度:用碱性酒石酸铜溶液检测发酵液中的酒精含量。
若呈蓝色,则说明酒精含量较低;若呈绿色,则说明酒精含量较高。
7. 提取乙醇:将发酵液过滤,收集滤液。
8. 纯化乙醇:将滤液进行蒸馏,收集蒸馏出的乙醇。
9. 测定乙醇含量:用酒精计测定蒸馏出的乙醇含量。
五、实验结果与分析1. 发酵过程中,原料中的淀粉被酵母菌分解为葡萄糖,葡萄糖在无氧条件下转化为乙醇和二氧化碳。
2. 通过碱性酒石酸铜溶液检测,发酵液中的酒精含量较高,说明发酵过程进行得较好。
3. 经过蒸馏,收集到的乙醇含量较高,说明乙醇的提取和纯化过程较为成功。
六、实验结论1. 生物法制备乙醇是一种可行的方法,具有原料来源丰富、生产成本低、环境友好等优点。
专题实验5——乙醇的生物合成及其应用乙醇是无色、透明、易挥发的液体,与水可以混溶,也是非常好的有机溶剂,在染料,香料,医药等工业中应用广泛,可用作溶剂、防腐剂、消毒剂(70%~75%的乙醇)、燃料等。
乙醇是酒的主要成分,可以饮用。
少量乙醇有兴奋神经的作用,大量乙醇有麻醉作用,可使人体中毒,甚至死亡。
早在我国古代就已发明了从淀粉发酵制酒的方法,直到现在仍然是生产乙醇的重要方法。
淀粉发酵后的发酵液经蒸馏可制得白酒;经分馏可得到95.5%的工业乙醇;经简单加工可制成固体酒精;无水乙醇可以用其它方法连续处理得到;无水乙醇的纯度可用测折光率鉴定;以无水乙醇为原料可合成乙酸乙酯;进一步可合成乙酰乙酸乙酯。
实验72 白酒的酿造和工业酒精的制备一、实验目的1. 了解酿酒的原理,学习酿酒的方法,掌握白酒酒精度的测定方法;2. 掌握用白酒制工业酒精的原理和方法;3. 巩固蒸馏、分馏、测密度和酒精度等多种基本操作。
二、实验原理1. 酿酒原理主反应淀粉(米)曲或酒饼nC 6H 12O 6(糖化)nC 6H 12O 6酵母菌2C 2H 5OH CO 22+(发酵) 发酵最适宜温度为28-30℃.主要副反应 C 6H 12O 6酵母菌有氧时+6O 26CO 26H 2O+酒药,也称(曲,酒饼),是一种保存微生物的固体培养基。
在干燥条件下微生物处于休眠状态,活性可保持不变,制曲酿酒技术是我国独特的创举和发明。
我国的曲药是糖化和发酵同时进行的,曲药中富含曲霉、酵母菌和少量细菌等多种微生物。
曲霉能分泌大量淀粉酶,使淀粉糖化和液化,为下一步的发酵作好物质准备;酵母菌产生酒化酶,使糖发酵产酒;发酵条件控制得好、消毒严格,可避免细菌的大量繁殖,防止酒酸败。
造成酸败的主要菌是乳酸菌和醋酸菌。
由于酵母菌在高浓度酒精下不能继续发酵,所得到的酒醪或酒液酒精浓度一般不会超过20%。
发酵成熟的酒醅经蒸馏,把酒醅中的酒精、水、高级醇、酸类等有效成分蒸发为酒汽,酒汽经冷凝,收集即得一定浓度的白酒(实际中酒头部分往往单独贮存,用于勾兑)。
第二章乙醇生产工艺总结按原料分类,乙醇的生产工艺可分为生物法和化学合成法两类,各生产工艺分析如下。
2.1 生物法制乙醇技术生物法制乙醇,俗称酿酒,以淀粉质或糖质为原料,经发酵、蒸馏及脱水等工序后制得乙醇。
此技术由最初提倡消化陈化粮(以玉米、小麦等陈粮为原料生产乙醇)的第1代技术,由于国家政策的影响,新增粮食制乙醇项目被叫停,逐步发展至以木薯为原料的第1.5代技术,目前已发展至以纤维素(秸秆、玉米芯等)为原料的第2代技术。
国家乙醇汽油全部采用生物法乙醇,并且由10家企业定点生产燃料乙醇。
2.2化学合成制乙醇技术化学合成乙醇技术主要分为六种技术路线,分别是①合成气直接催化法、②甲醇羰基化法、③醋酸加氢、④醋酸酯加氢、⑤二甲醚羰基化、⑥微生物发酵,如下图所示。
煤(合成气)制乙醇不同艺路线图2.2.1 直接催化法以煤气化制取合成气(CO+H2),再由合成气通过催化作用一步直接合成乙醇。
此工艺工艺流程短,原子利用率高,是一种最为简单的乙醇合成工艺,采用铑基、Cu-Co基、Zn-Cr基或者MoS2基催化剂都不能得到单独的甚至以乙醇为主的产物,产物中存在大量的烷烃、醛、酮、酯等副产物,乙醇收率低,设备容易腐蚀,一直难以实现大型工业化。
国内在这方面主要的研究机构有中科院大连化物所和中科院山西煤化所。
大连物化所研发的贵金属铑基催化剂对C2+醇的选择性只有50%,工业化运行不理想。
目前大化所与江苏索普集团正在进行1万吨/年中试项目。
2.2.2甲醇羰基化法合成气通过净化和变换合成甲醇,然后与CO羰基化制得醋酸甲酯,醋酸甲酯加氢制乙醇。
此工艺流程短、反应温和、对设备腐蚀小、投资低、部分采用贵金属催化剂,成本有所降低。
2.2.3醋酸加氢路线合成气通过净化和变换合成甲醇,然后与CO羰基化制得醋酸,醋酸通过催化剂直接加氢制乙醇。
此工艺流程短、能耗低,但需要采用钌基贵金属催化剂,碘甲烷与醋酸对设备的腐蚀等问题,投资较大。
目前塞拉尼斯27.5万吨/年乙醇项目投产,大化所与江苏索普集团进行3万吨/年中试。
生物乙醇的一种制备方法
生物乙醇是通过生物质发酵或生物化学反应制备的。
以下是常见的生物乙醇制备方法之一:
1. 生物质发酵法:
- 原料准备:选择含有高糖分和淀粉的植物生物质(如玉米、甘蔗等)作为发酵原料。
- 糖化过程:将生物质材料研磨成细粉,加入水中进行糖化过程,糖化酶可加速糖分解过程。
- 发酵过程:将糖化液添加酵母菌,将糖转化为乙醇和二氧化碳。
发酵一般在恒温条件下进行,通过控制发酵时间和温度,可以控制乙醇生成量。
- 分离提纯:通过蒸馏、脱水等工艺将乙醇从发酵液中分离出来,并进行精馏、除水、除杂等步骤提纯。
值得注意的是,生物乙醇的制备方法还有其他多种,如生物化学反应法、气相合成法等,每种方法的实施过程和原理都有所不同。
选择合适的制备方法需要根据实际情况和经济效益进行综合考虑。
生物质制燃料乙醇工艺流程英文回答:The process of biomass-to-ethanol production involves several steps. Here is a general overview of the process:1. Feedstock Preparation: The first step is to prepare the biomass feedstock, which can include agricultural residues, energy crops, or forestry residues. The feedstock is usually dried and ground to a suitable size for further processing.2. Pretreatment: The pretreatment step aims to break down the complex structure of biomass and make it more accessible to enzymatic hydrolysis. Common pretreatment methods include steam explosion, acid hydrolysis, and ammonia fiber expansion.3. Enzymatic Hydrolysis: In this step, enzymes are added to the pretreated biomass to convert the complexcarbohydrates into simple sugars. These enzymes break down cellulose and hemicellulose into glucose and other sugars.4. Fermentation: The hydrolyzed sugars are then fermented by adding yeast or bacteria. Yeast is commonly used for ethanol production. During fermentation, thesugars are converted into ethanol and carbon dioxide.5. Distillation: The fermented mixture is thensubjected to distillation to separate and concentrate the ethanol. Distillation involves heating the mixture to vaporize the ethanol, which is then condensed and collected.6. Dehydration: The concentrated ethanol obtained from distillation usually contains some water. Dehydration is carried out to remove the remaining water and increase the ethanol concentration. Common methods of dehydrationinclude molecular sieves or azeotropic distillation.7. Purification: The final step is to purify theethanol to meet the required quality standards. This can be done through processes like rectification or molecularsieve adsorption.The production of ethanol from biomass offers several advantages, including reducing greenhouse gas emissions and dependence on fossil fuels. However, it also faces challenges such as high production costs and competitionfor feedstock with other industries.中文回答:生物质制燃料乙醇的工艺流程包括以下几个步骤:1. 原料准备,首先需要准备生物质原料,包括农业废弃物、能源作物或林业废弃物。
生物乙醇生产工艺
生物乙醇生产工艺是通过微生物(如酵母菌)在发酵过程中将生物质(如玉米、稻谷、甘蔗等)中的糖类转化为乙醇的过程。
以下是一种常见的生物乙醇生产工艺。
1. 生物质预处理:将原料生物质进行粉碎和热处理,以提高酵母菌对糖的转化效率。
预处理可以包括压热处理、碱处理、酸处理等。
2. 糖化:将经过预处理的生物质与酶(如纤维素酶和淀粉酶)混合,并调节适宜的温度和pH值,使酶能够将生物质中的多
糖(如淀粉和纤维素)分解为单糖(如葡萄糖和木糖等)。
糖化过程一般需要持续几小时到几天。
3. 发酵:将糖化产生的碳水化合物溶液与酵母菌混合,继续调节适宜的温度和pH值,使酵母菌能够将糖类发酵产生乙醇。
发酵过程一般需要几天到几周。
4. 分离和纯化:将发酵液进行离心、过滤和蒸馏等操作,以分离和纯化乙醇。
分离和纯化过程可以使用多级蒸馏、萃取、吸附等技术。
5. 脱水:将分离和纯化得到的乙醇进行脱水,以提高乙醇的浓度。
脱水可以采用蒸馏、吸附剂吸附、分子筛吸附等方法。
6. 精馏和精制:对脱水后的乙醇进行精馏和精制处理,以得到符合工业标准的纯乙醇。
7. 储存和运输:将精制的乙醇按照规定的包装和储存条件进行保存,以便运输和使用。
生物乙醇生产工艺是一个较为复杂的过程,需要严格控制各个环节的条件和参数,以保证产量和质量。
同时,该工艺还需要合理利用废弃物和副产物,如利用废液进行污水处理、利用废渣生产饲料等,以降低生产成本和环境影响。
对于生物乙醇工业化生产来说,还需要考虑能源供应、废弃物处理、环境保护等问题,以推动可持续发展。
一、生物发酵法酿造酒精1。
1生物发酵法的地位由于化学合成法酒精有含有较多杂质等缺陷,其应用受到限制,因此我国酒精生产以发酵法为主,尤其是随着石油储量的锐减,发酵法酒精工业将日趋重要。
我国酒精年产量为300万吨,仅次于巴西、美国,列为世界第3位.其中发酵法酒精占绝对优势,80%左右的酒精用淀粉质原料生产、约有10%的酒精用废糖蜜生产、以亚硫酸盐纸浆废液等纤维原料生产的酒精约占2%左右,合成酒精占酒精总产量的3.5%左右。
1.2生产原料淀粉质原料是生产酒精的主要原料。
用于发酵法生产酒精的原料主要有:薯类(甘薯、马铃薯、木薯、山药等);粮谷类(高粱、玉米、大米、谷子、大麦、小麦、燕麦、黍等);糖质原料(甘蔗、甜菜、糖蜜等);野生植物(橡子仁,土茯苓、蕨根、石蒜等);农产品加工副产品(米糠饼、麸皮、高粱糠、淀粉渣等);纤维质原料(秸秆、甘蔗渣等);亚硫酸造纸废液等。
我国大多数工厂是采用红薯和玉米为原料生产酒精。
玉米化学成分:红薯化学成分:1。
3辅助物料辅助物料包括:酵母培养和糖化剂制备所需营养盐,调PH所用酸类、洗涤剂、消毒剂、脱水剂等。
酒母,就是将酵母菌扩大培养,获得足够数量酵母菌的酵母培养液,以供酒精发酵之用。
酒精生产用水,按水的用处不同,大体分为以下三种:(1)酿造用水:或称工艺用水,凡制曲时拌料,微生物培养,制曲原料的浸泡、糊化、稀释、设备及工具的清洗等因其与原料、半成品、成品的直接接触,故统称为工艺用水。
通常要求具有弱酸性,PH为4.0-5。
0。
(2)冷却用水:蒸煮醪和糖化醪的冷却,发酵温度的控制,需大量的冷却用水。
因其不与物料直接接触,故只需温度较低;硬度适中。
为节约用水,冷却水应尽可能予以回收利用.(3)锅炉用水:通常要求无固型悬浮物,总硬度和碱度应尽可能低,PH在25°时高于7,含油量及溶解物等越少越好。
1。
4淀粉性质1。
4。
1淀粉颗粒的形状淀粉颗粒呈白色,不溶于冷水和有机溶剂,颗粒内部呈复杂的结晶组织。
丙酮酸发酵生成乙醇的原理丙酮酸发酵生成乙醇是一种常见的微生物发酵过程。
这个过程中,首先通过一系列反应将丙酮酸转化为丙酮或丙醛,然后再经过还原反应将丙酮或丙醛转化为乙醇。
丙酮酸(CH3COCOOH)又称为α-酮丙酸,是一种含有酮基(二氧代双键)和羧酸基(一氧代双键)的有机酸。
在自然界中,丙酮酸是一种广泛存在的代谢产物,可以通过多种途径合成。
其中,最常见的途径是在生物体内由酮氧化酶或酸解酶催化丙酮(CH3COCH3)氧化生成。
丙酮酸发酵生成乙醇的完整反应方程式可以表示为:CH3COCOOH →CH3COCH3(丙酮)/ CH3CHO(丙醛)→CH3CH2OH (乙醇)这个发酵过程主要依赖于发酵菌群,常用的菌种包括酿酒酵母(Saccharomyces cerevisiae)、大肠杆菌(Escherichia coli)等。
第一步,丙酮酸脱羧酶将丙酮酸转化为丙酮或丙醛。
这个酶能够催化丙酮酸中羧酸基的脱离,生成相应的酮或醛。
例如,对于丙酮酸脱羧酶催化的丙酮酸,反应可以表示为:CH3COCOOH →CH3COCH3 + CO2 或CH3COCOOH →CH3CHO + CO2第二步,乙醇还原酶将丙酮/丙醛转化为乙醇。
这个酶能够催化酮或醛的还原反应,将酮或醛中的羰基(碳氧双键)还原为羟基(一氧代单键)。
例如,对于丙酮的还原反应,可以表示为:CH3COCH3 + NADH →CH3CHO + NAD+ 或CH3COCH3 + NADH →CH3CH2OH + NAD+发酵过程中,这些酶的活性与微生物的生长状态、环境条件(如温度、pH值和营养物质)等因素密切相关。
较高的温度和适宜的pH通常有利于这些酶的活性和微生物的生长。
此外,较高的浓度和较长的培养时间一般也会有助于产醇反应。
丙酮酸发酵生成乙醇的应用广泛,尤其是乙醇生产领域。
乙醇是一种重要的工业化学品,可以用于制备酒精饮料、溶剂、燃料等。
通过利用丙酮酸发酵技术,可以将廉价的丙酮酸转化为高价值的乙醇,提高资源利用效率。
生物乙醇技术现状与进展
生物乙醇技术是一种利用生物质资源生产乙醇燃料的技术。
目前,生物乙醇技术已经取得了显著的进展,并成为了全球范围内替代石油燃料的重要途径之一。
在技术现状方面,生物乙醇技术主要分为直接发酵法和酶法转化法两种。
直接发酵法是利用微生物将生物质中的糖类物质转化为乙醇,这种方法具有较高的生产效率,但受到原料种类和产率的限制。
酶法转化法是利用酶制剂将生物质中的纤维素转化为葡萄糖,再通过发酵将葡萄糖转化为乙醇,这种方法可以处理多种原料,但生产成本较高。
在进展方面,生物乙醇技术正在不断取得突破。
一方面,随着基因工程和代谢工程等生物技术的不断发展,可以更加精准地控制微生物的代谢过程,提高乙醇的产率。
另一方面,随着酶制剂技术的不断进步,纤维素酶的活性不断提高,可以更加高效地将纤维素转化为葡萄糖,进而转化为乙醇。
此外,生物乙醇技术还面临着一些挑战。
例如,生物质资源的收集和运输成本较高,发酵过程中产生的副产物也会影响乙醇的纯度和产量。
因此,需要进一步研究和改进生物乙醇技术,以降低生产成本和提高产品质量。
总之,生物乙醇技术是一种具有重要应用前景的生物技术,随着技术的不断进步和政策的支持,未来有望成为替代石油燃料的重要途径之一。
乙醇是一种重要的有机化合物,在生物体内通常通过特定的途径进行合成。
以下是乙醇的生物合成途径:
1. 糖分解:葡萄糖在酶的作用下分解为丙酮酸和二氧化碳。
这个过程称为糖分解。
2. 乙醇酸生成:丙酮酸在乳酸脱氢酶的催化下,接受一个NADH+H+的氢原子,并生成乙醇酸。
这个过程称为丙酮酸转化为乙醇酸。
3. 乙醇生成:乙醇酸在乙醇脱氢酶的催化下,接受一个NAD+的氢原子,并生成乙醇。
这个过程称为乙醇酸的还原。
这个过程需要一系列酶的参与,这些酶通常存在于微生物、植物和某些动物中。
这些酶将葡萄糖等糖分解为乙醇,以满足生物体对能源和代谢物的需求。
此外,植物和一些微生物还可以通过发酵过程从有机物中直接合成乙醇。
需要注意的是,乙醇的生物合成途径在不同的生物和不同的生长条件下可能有所不同。
此外,乙醇的合成还受到许多因素的影响,如环境条件、营养供应等。
总的来说,乙醇的生物合成是一种复杂的过程,涉及到糖分解、乙醇酸生成和乙醇生成等多个步骤。
这个过程需要一系列酶的参与,这些酶通常存在于微生物、植物和某些动物中。
乙醇的合成对于生物体的生长和代谢至关重要,可以满足生物体对能源和代谢物的需求。
在不同的生物和不同的生长条件下,乙醇的合成途径可能有所不同,受到许多因素的影响。