随机信号分析复习题
- 格式:docx
- 大小:17.82 KB
- 文档页数:4
CH11. 设随机试验X求X 的概率密度和分布函数,并给出图形。
解:()()()()0.210.520.33f x xx x δδδ=-+-+-()()()()0.210.520.33F x u x u x u x =-+-+-2. 设随机变量X 的概率密度函数为()xf x ae -=,求:(1)系数a ;(2)其分布函数。
解:(1)由()1f x dx ∞-∞=⎰()()2xx x f x dx ae dx ae dx e dx a ∞∞∞---∞-∞-∞==+=⎰⎰⎰⎰所以12a =(2)()1()2xxtF x f t dt e dt --∞-∞==⎰⎰所以X 的分布函数为()1,0211,02xx e x F x e x -⎧<⎪⎪=⎨⎪-≥⎪⎩3.求:(1)X 与Y 的联合分布函数与密度函数;(2)X 与Y 的边缘分布律;(3)Z XY =的分布律;(4)X 与Y 的相关系数。
解:(1)()()()()()()(),0.07,10.18,0.15,10.081,10.321,0.201,1F x y u x y u x y u x y u x y u x y u x y =+++-+-++-+--()()()()()()(),0.07,10.18,0.15,10.081,10.321,0.201,1f x y x y x y x y x y x y x y δδδδδδ=+++-+-++-+--(2) X 的分布律为()()00.070.180.150.4010.080.320.200.60P X P X ==++===++=Y 的分布律为()()()10.070.080.1500.180.320.5010.150.200.35P Y P Y P Y =-=+===+===+= (3)Z XY =的分布律为()()()()()()()()()()111,10.080001,00.400.320.72111,10.20P Z P XY P X Y P Z P XY P X P X Y P Z P XY P X Y =-==-===-======+===+======== (4)因为()()()00.4010.600.6010.1500.5010.350.20E X E Y =⨯+⨯==-⨯+⨯+⨯=()()10.0800.7210.200.12E XY =-⨯+⨯+⨯=则()()()()ov ,0.120.600.200C X Y E XY E X E Y =-=-⨯=4. 设随机变量()~0,1X N ,()~0,1Y N 且相互独立,U X YV X Y =+⎧⎨=-⎩。
姓名年级学院专业学号密封线内不答题一.填空题(每空3分共33分) 1.随机变量X ,Y 独立的条件是 。
2.若窄带信号()X t 通过一个幅度为A 的宽带系统输出()Y t ,则二者的关系为 。
3.白噪声通过理想带通系统后,其输出功率谱密度为 分布。
4.实信号)(t x 的解析信号是 。
5.随机变量X 服从0,1分布(P x p ==)1()的特征函数()X φυ= 。
6.若信号()X t 与()Y t 恒有12(,)0R t t =,则()X t 与()Y t 彼此 。
7.若信号()X t 与()Y t 无关, 如果 则 ()X t 与()Y t 独立。
8.若信号()X t 与()Y t 都是高斯信号,则()X t 与()Y t 独立的充要条件是 。
9.随机信号的平稳性包括 。
10.白噪声信号的()R τ= 。
11.随机信号()X t 均值各态历经表示 。
二、(12分)设正态分布随机变量),(~2σμN X 的特征函数。
姓名年级学院专业学号密封线内不答题三、(12分)假定三维随机变量),(~),,(321x x C X X X μ⎪⎪⎪⎭⎫ ⎝⎛=321x μ, ⎪⎪⎪⎭⎫ ⎝⎛=820242024x C 求(1)1X 的密度函数;(2)),(21X X 的密度函数;(3)31X X +的密度函数。
姓名年级学院专业学号密封线内不答题四、(14分)已知)()cos()()()(0t N t a t N t S t X ++=+=θω,其中θω,,0a 为常数,白噪声)(t N 的功率谱为2/0N 。
求此RC 电路输入前、后的信噪比?姓名年级学院专业学号密封线内不答题五、(15分) 1. 给出严格平稳随机过程和广义平稳随机过程的定义。
2.给出严格各态历经和广义各态历经的定义。
姓名 年级 学院 专业 学号 密封线内不答题 3.解释等效噪声带宽。
六、(14分)设随机过程()cos()X t A t ωϕ=+,其中ϕ是在(−π, π)中均匀分布的随机变量,A 、ω为常数。
1-9 已知随机变量X 的分布函数为20,0(),011,1X x F x kx x x <⎧⎪=≤≤⎨⎪>⎩求:①系数k ; ②X 落在区间(0.3,0.7)内的概率; ③随机变量X 的概率密度。
解:第①问 利用()X F x 右连续的性质 k =1第②问{}{}{}()()0.30.70.30.70.70.30.7P X P X F P X F =<<=<≤-=-第③问 201()()0X X xx d F x f x elsedx ≤<⎧==⎨⎩1-10已知随机变量X 的概率密度为()()xX f x kex -=-∞<<+∞(拉普拉斯分布),求:①系数k ②X 落在区间(0,1)内的概率 ③随机变量X 的分布函数 解: 第①问 ()112f xd x k ∞-∞==⎰ 第②问{}()()()211221x x P x X x F x F xfx d x<≤=-=⎰ 随机变量X 落在区间12(,]x x 的概率12{}P x X x <≤就是曲线()y f x =下的曲边梯形的面积。
{}{}()()1010101112P X P X f x dxe -<<=<≤==-⎰第③问()102102xx e x f x e x -⎧≤⎪⎪=⎨⎪>⎪⎩()00()110022111010222xx xxx x x x F x f x dxe dx x ex e dx e dxx e x -∞-∞---∞=⎧⎧≤≤⎪⎪⎪⎪==⎨⎨⎪⎪+>->⎪⎪⎩⎩⎰⎰⎰⎰1-11 某繁忙的汽车站,每天有大量的汽车进出。
设每辆汽车在一天内出事故的概率为0.0001,若每天有1000辆汽车进出汽车站,问汽车站出事故的次数不小于2的概率是多少?,(01)p q λ→∞→→∞→−−−−−−−−→−−−−−−−−→−−−−−−−−→n=1n ,p 0,np=n 成立,0不成立-分布二项分布泊松分布高斯分布汽车站出事故的次数不小于2的概率()()P(2)101k P k P k ≥=-=-= 答案0.1P(2)1 1.1k e -≥=-100.1n p ≥≤实际计算中,只需满足,二项分布就趋近于泊松分布()np!k e P X k k λλλ-===1-12 已知随机变量(,)X Y 的概率密度为(34)0,0(,)0x y XY kex y f x y -+⎧>>⎪=⎨⎪⎩,,其它求:①系数k ?②(,)X Y 的分布函数?③{01,02}P X X <≤<≤?第③问 方法一:联合分布函数(,)XY F x y 性质:若任意四个实数1212,,,a a b b ,满足1212,a a b b ≤≤,则121222111221{,}(,)(,)(,)(,)XY XY XY XY P a X a b Y b F a b F a b F a b F a b <≤<≤=+--{01,02}(1,2)(0,0)(1,0)(0,2)XY XY XY XY P X Y F F F F ⇒<≤<≤=+--方法二:利用(){(,)},XY DP x y D f u v dudv∈∈⎰⎰)(210{01,02},XY P X Y f x y dxdy <≤<≤=⎰⎰1-13 已知随机变量(,)X Y 的概率密度为101,(,)0x y xf x y ⎧<<<=⎨⎩,,其它 ①求条件概率密度(|)X f x y 和(|)Y f y x ?②判断X 和Y 是否独立?给出理由。
第 1 页(试卷共 1 页)2007年秋季学期《随机信号分析 》课程考试 A 卷适用于:信息学院 05级电子信息工程、通信工程专业 卷面总分100分一、填空题(每2分,共20分)1. 数学期望是描述随机变量的( ),方差是用来度量随机变量偏离其( )的程度2. 随机变量的X 特征函数是( )第二特征函数是( )它们之间的关系是( )3. 两个随机变量统计,它们必然是( )相关的4. 设有实信号,)(t x 它的希尔伯特换定义是( ),反变换定义为( )5. 各态历经过程必须是( ),但平稳过程 ( )都具有各态历经性。
6. 按照随机过程的时间和状态,可以将随机过程分为( )、( )、( )和( )7. 对于高斯过程,不相关和( )是等价的,狭义平稳和( )是等价。
8. 白噪声通过理想低通系统后,功率谱密度变( ),相关性由( )变为( )9. 如果一个随机过程的功率谱密度是常数,则称它为( )三 简答 (共10分)1 叙述一维随机变量概率密度函数的性质(本小题6分)2 白噪声通过理想低通系统后,有那些变化? (本小题4分)四、计算题(共50分)1 已知随机过程的自相关函数)cos 1(21)(0τωτ+=R ,求功率谱密度 2 设连续随机变量X 的概率分布函数为⎪⎩⎪⎨⎧≥<≤-+<=21201)](2πΑsin[0.500)(x x x x x F 求(1)系数A ;(2)X 取值在(0.5,1)内的概率)15.0(<<x P 。
3 判断随机过程)cos()(Φt A t X +=ω是否平稳?其中ω为常数,Φ、A 分别为均匀分布和瑞利分布的随机变量,且相互独立。
4 平稳高斯过程)(t X 的自相关函数为ττ-=e R X 2)(,求)(t X 的一维和二维概率密度。
5 功率谱密度为2/0N 的白噪声作用到1)0(=H 的低通网络,它的等效噪声带宽为2MHz 。
若在1欧姆电阻上噪声输出平均功率是0.1W ,0N 是多少?。
随机信号分析习题一1. 设函数⎩⎨⎧≤>-=-0 ,0 ,1)(x x e x F x ,试证明)(x F 是某个随机变量ξ的分布函数.并求下列概率:)1(<ξP ,)21(≤≤ξP 。
2. 设),(Y X 的联合密度函数为(), 0, 0(,)0 , otherx y XY e x y f x y -+⎧≥≥=⎨⎩, 求{}10,10<<<<Y X P 。
3. 设二维随机变量),(Y X 的联合密度函数为⎥⎦⎤⎢⎣⎡++-=)52(21exp 1),(22y xy x y x f XY π 求:(1)边沿密度)(x f X ,)(y f Y(2)条件概率密度|(|)Y X f y x ,|(|)X Y f x y4. 设离散型随机变量X 的可能取值为{}2,1,0,1-,取每个值的概率都为4/1,又设随机变量3()Y g X X X ==-。
(1)求Y 的可能取值 (2)确定Y 的分布. (3)求][Y E 。
5. 设两个离散随机变量X ,Y 的联合概率密度为:)()(31)1()3(31)1()2(31),(A y A x y x y x y x f XY --+--+--=δδδδδδ试求:(1)X 与Y 不相关时的所有A 值。
(2)X 与Y 统计独立时所有A 值。
6. 二维随机变量(X ,Y )满足:ϕϕsin cos ==Y Xϕ为在[0,2π]上均匀分布的随机变量,讨论X ,Y 的独立性与相关性。
7. 已知随机变量X 的概率密度为)(x f ,求2bX Y =的概率密度)(y f .8. 两个随机变量1X ,2X ,已知其联合概率密度为12(,)f x x ,求12X X +的概率密度?9. 设X 是零均值,单位方差的高斯随机变量,()y g x =如图,求()y g x =的概率密度()Y f y\10. 设随机变量W 和Z 是另两个随机变量X 和Y 的函数222W X Y Z X⎧=+⎨=⎩ 设X ,Y 是相互独立的高斯变量。
i 一.填空题(每空3分共18分):1.随机信号功率谱的物理意义是。
22.广义各态历经是指。
33.白噪声通过理想低通系统后,功率谱为。
号;4.希尔伯特变换中系统的冲激响应h(t)传递函数;H( ) 。
5 5.随机信号x(t)的解析函信号是。
二.判断题(每小题3分共15分)题小答1.随机变量X, Y独立,则有E(XY) E(X)E(Y)。
() 不内2.理想白噪声过程在不同时刻的两个状态独立。
()封3.一可以成为平稳过程的自相关函数。
曲密()4.功率谱密度S x()是实函数并且是偶函数。
()5.实平稳随机过程X(t)通过线性时不变系统的输出为Y(t),则有S x( )S Y( ) S XY()S YX() ( )三.(12分)若有一随机变量X,其概率密度函数为f(t) -e ax u(t)o2 求:(1) a的值;(2) X的特征函数X v ;第1页共4页(3)随机变量Y 2X 1,求Y的一阶概率密度函数。
.( 15 分) 已知随机相位正弦信号X(t) cos 0t , 0为常数,为在[0, 2兀]内均匀分布的随机变量。
试求:(1) X(t)的数学期望和自相关函数;(2)判定X(t)是否为平稳过程;(3)计算x(t)的功率谱密度。
五.(15分)若输入信号X(t) X。
cos( o t )作用于图XX所示RC电路,其中X。
为[0,1]上均匀分布的随机变量,为[0,2兀]上均匀分布的随机变量,并且X。
与彼此独立。
求输出信号Y(t) 的功率谱与相关函数。
题业答专才不内线密六.(15分)复随机过程Z(t) e j(0t),式中。
为常数,是在。
2):上均匀分布的随机变量。
求:(1)E[Z(t *(5和E[Z(t)Z(t)第3页共4页第4页共4页];:(2)信号的功率谱。
七.(15分)平稳随机过程x(t)作用到冲激响应分别为几代)和卜2代)的 串联系统。
用h i (t)、h 2(t)和X(t)的自相关函数R x ()表示的Y i (t)和丫2⑴ 的互相关函数,并计算丫(t)和Y 2(t)的功率谱。
《随机信号分析》练习题一、 概念题1.叙述随机试验的三个条件。
2.写出事件A 的概率P(A)所满足的三个条件。
3.何谓古典概型?其概率是如何计算的? 4.两个事件独立的充要条件。
5.两个随机变量独立的充要条件。
6.两个随机过程的独立是如何定义的?7.随机变量X 服从正态分布,写出其概率密度函数表达式,并说明其中各个参数的意义。
8.简述一维随机变量分布函数F (x )的性质。
9.已知连续型随机变量X 的分布特性,分别用分布函数)(x F X 和概率密度函数)(x f X 表示概率}{21x X x P ≤<。
10. 随机变量X 的特征函数)(μX C 是如何定义的?写出由)(μX C 计算k阶矩)(k X E 的公式。
11.设X 1,X 2,…,Xn 为相互独立的随机变量,其特征函数分别为C 1(μ),C 2(μ),…,Cn(μ),设∑==n i i X Y 1,则C Y (μ)=?12. 对于一般的复随机变量,其数学期望、方差、协方差各是实数还是复数?13. 写出随机过程X(t)的n 维分布函数定义式。
14. 简述随机过程宽平稳性与严平稳性的区别。
15. 平稳过程与各态历经过程有何关系?16. 设平稳随机过程X(t)的自相关函数为R X (τ),X(t)依均方意义连续的条件是?17. 已知平稳随机过程X(t)、Y(t)的相关时间分别为X τ和Y τ,若X τ>Y τ,说明X(t) 与Y(t)的起伏程度那个较大?18. 两个随机过程广义联合平稳的条件是什么?19. 平稳随机过程)(t X 的功率谱密度)(ωX G 的物理意义是什么?)(ωX G 与物理谱密度有何关系?20. 白噪声的功率谱密度和自相关函数有何特点? 21. 简述维纳-辛钦定理并写出其表达式。
22. 何为线性系统?23. 写出希尔伯特变换器的频率响应、幅频响应和相频响应表达式。
24. 写出窄带过程的准正弦表达式和莱斯表达式。
华侨大学《随机信号分析》考试试卷(09级A卷) 班级:_______________ 姓名:________________ 学号 _______________
第1页共3页
第2页共3页
(1) (5分)求 X(t)的均值函数、方差函数。
(2) (5分)当 —t 2|=T 时,丫(t)是否是广义平稳的?
(3) (5分)当
t2〔=1.5T 时,Y(t)是否是均值各态历经的?
【15分】
12
五、 设输入随机过程 X(t)的功率谱为S x
=2
2
,经过h(t)二e 」u(t)的系统 9 +国
试求:(1)输出Y(t)的均值;
(2) 输出Y(t)的功率谱密度 &和自相关函数R Y .; (3) 输出与输入间的互功率谱密度 S YX (
■)。
【10分】
六、 已知平稳随机噪声 N (t)的功率谱如图所示,
求窄带随机信号 X t 二N t cos ,r - N t sin •• r 的功率谱密度 SxQ i ,并画图表 示,其中「0
为常数,二服从0,2二上的均匀分布,且与 N(t)独立。
【10分】
A S N (灼)
2
7:1
‘1 --
忑°心)t 兰T
七、设线性滤波器的输入信号为x(t) =s(t) + n(t)。
其中s(tW 为指数脉冲信
[0 t A T
号,n(t)为平稳白噪声,功率谱为N°/2且与s(t)统计独立。
试求:
第3页共3页
(1)(10分)匹配滤波器的传输函数H(jJ并画出与之对应的电路图。
(2)(5分)输出的最大信噪比是多少?
八、设齐次马尔可夫链有4个状态01,2,3;,一步转移概率为;
(1)画出其状态转移图;
(2)如果该链在n时刻处于状态2,求在n亠2时刻处于各个状态的概率;
(3)对该链的状态进行分类;
_0 0 1 0 "
1 0 0 0
〔0.3 0.7 0 0
0.6 0.2 0.2 0 【15分】【12分】
第4页共3页。