关系代数表达式
- 格式:pdf
- 大小:2.56 MB
- 文档页数:28
mysql关系代数表达式
MySQL并不直接支持关系代数表达式,而是通过SQL语言来管理和查询数据库。
不过你可以用SQL语言来实现很多关系代数的操作。
例如,以下是一些常见的关系代数操作及其对应的SQL语句:
1. 选择(Selection)操作:
- 关系代数:σ(条件)(关系)
- SQL语句:SELECT * FROM 表名WHERE 条件
2. 投影(Projection)操作:
- 关系代数:π(属性列表)(关系)
- SQL语句:SELECT 属性列表FROM 表名
3. 交(Intersection)操作:
- 关系代数:r ∩s
- SQL语句:SELECT * FROM r INTERSECT SELECT * FROM s
4. 并(Union)操作:
- 关系代数:r ∪s
- SQL语句:SELECT * FROM r UNION SELECT * FROM s
5. 差(Difference)操作:
- 关系代数:r - s
- SQL语句:SELECT * FROM r EXCEPT SELECT * FROM s
6. 笛卡尔积(Cartesian Product)操作:
- 关系代数:r ×s
- SQL语句:SELECT * FROM r, s
7. 连接(Join)操作:
- 关系代数:r ⨝(条件)s
- SQL语句:SELECT * FROM r JOIN s ON r.属性= s.属性
这些只是一些示例,实际上在SQL中还有很多其他的操作和函数可以用来进行各种关系代数的操作。
关系代数表达式总结一、并例1 求选修了课程号为1或2的课程的学生学号。
分析:可以先求出选修了课程号为1的课程的学生学号,再求出选修了课程号为2的课程的学生学号,最后使用并运算的方法求出选修课程号为1或2的课程的学生学号。
本例也可以使用或条件来表示。
πSno(σCno=’1’(SC))∪πSno(σCno=’2’(SC)) 或πSno(σCno=’1’∨Cno=’2’(SC))二、交例2 检索至少选修课程号为2和3的课程的学生学号。
分析:方法一:只涉及到一个表,但不能直接用∧(为什么?)特别注意,本例不能写为:πSno(σCno=’2’∧Cno=’3’(SC))因为选择运算为行运算,在同一行中Cno不可能既为2,又为3。
第一步:转换(SC×SC)笛卡尔积将垂直的条件展开为水平的条件。
选修课程号为2和3的学生:σ1=4∧2=’2’∧5=’3’(SC×SC)最后取出学生的学号:π1(σ1=4∧2=’2’∧5=’3’(SC×SC))方法二:πSno(σCno=’2’(SC))∩πSno(σCno=’3’(SC))三、差例3 将学生信息(‘95001’,’李勇’,‘男’,20,‘CS’)从Student表删除。
分析:可以将这行数据看成由一个元组构成的表,将Student表与该表进行差运算。
因此,该删除操作可表示为:Student-{‘95001’,’李勇’,‘男’,20,‘CS’}注意:但是当查询涉及到否定或全部值时,上述形式就不能表达了,就要用到差操作或除操作。
例4 求没有选修课程号为2的课程的学生学号。
分析:可以认为是在全部学号中去掉选修课程号为2的课程的学生学号,就得出没有选修课程号为2的学生学号。
由于在并、交、差运算中,参加运算的关系要求是兼容的,故应当先投影,再进行差运算。
πSno(Student)- πSno(σCno=’2’(SC))特别注意,本题不能写为:πSno(σCno≠’2’(SC))。
学号:182018010 姓名:叶健行专业:18电子班级:4班成绩:
三、综合题
2.设有如图2-9所示的关系R和S,计算:
R
S
(4)R
4=π
A,B
(σ
B=b1
(R))
3.设有如图2-10所示的三个关系S、C和SC。
请用关系代数表达式表示出下面的查询。
(1)检索籍贯为上海的学生的姓名、学号和选修的课程号。
(2)检索选修操作系统的学生姓名、课程号和成绩。
(3)检索选修了全部课程的学生姓名和年龄。
S
C
学号:182018010 姓名:叶健行 专业:18电子 班级:4班 成绩:
SC
图2-10 综合题3
(1) ))((上海’
‘籍贯姓名,学号,课程号SC S =∏σ (2) )))(((操作系统’‘课程名学号,课程号,成绩学号,课程号,成绩SC C S =∏∏σ (3) ))()(((课程号学号,课程号姓名,年龄C SC ∏÷∏∏S。
第三章关系代数与关系运算关系数据语言有三类:1.关系代数语言2.关系演算语言(元组关系演算语言、域关系演算语言)3.具有关系代数和关系演算双重特点的语言如SQL一.关系代数关系代数:一种抽象的查询语言,是关系数据操纵语言的一种传统表达方式。
用对关系的运算来表达查询。
运算:将一定的运算符作用于一定的运算对象上,得到预期的运算结果运算三要素:运算符、运算对象、运算结果关系代数的运算对象和结果都是:关系关系代数运算符(四类):集合运算符、专门的关系运算符、算术比较符和逻辑运算符集合运算符:并(U)、差(—)、交(∩)传统的集合运算符——从关系的“水平“方向即行的角度来进行专门的关系运算符:广义笛卡尔积(ⅹ)、选择(σ)、投影(π)、连接、除专门关系运算符不仅涉及行而且涉及列比较运算符:>、<、=、≥、≤、≠逻辑运算符:¬∧∨用来辅助专门的关系运算符二.传统的集合运算符传统集合运算符是二目运算符设关系R和S具有相同的目n(即n个属性),且相应的属性取自同一个域1.并(Union)记作:RUS={t|t∈R∨t∈S}结果仍是n目关系,由属于R或S的元组组成。
例:(a)(b)2.差关系R与S的差记作:R-S={t|t∈R∧t∈S} 结果仍是n目,由属于R而不属于S的所有元组组成。
如图E3.交关系R与S的交记作:R∩S = { t | t∈R∧t∈S }结果仍是n目,由即属于R又属于S的所有元组组成。
如图D 可以用差来表示R∩S=R-(R-S)4.广义笛卡尔积两个分别为n目和m目的关系R和S的广义笛卡尔积是一个(m+n)列的元组的集合。
元组的前n列是关系R的一个元组,后m列是关系S的一个元组。
若R有k1个元组,S有k2个元组,那么关系R与S的广义笛卡尔积有k1 x k2个元组,记作R×S = { t r t s | t r∈R∧t s∈S } 结果是m+n目如图例总结:集合运算符主要研究的是元组,即对表中的行进行研究、操作。
2.4 关系代数--------------------------------------------------------------------- 关系代数是一组施加于关系上的高级运算,每个运算都以一个或多个关系作为它的运算对象,并生成另一个关系作为该运算的结果。
由于它的运算直接施加于关系之上而且其运算结果也是关系,所以也可以说它是对关系的操作;从数据操作的观点来看,也可以说关系代数是一种查询语言。
---------------------------------------------------------------------关系代数是一种抽象的查询语言,是关系数据操纵语言的一种传统表达方式,它是用对关系的运算来表达查询的。
任何一种运算都是将一定的运算符作用于一定的运算对象上,得到预期的运算结果。
所以运算对象、运算符、运算结果是运算的三大要素。
关系代数的运算对象是关系,运算结果亦为关系。
关系代数用到的运算符包括四类:集合运算符、专门的关系运算符、算术比较符和逻辑运算符,如表2·4所示。
关系代数的运算按运算符的不同可分为传统的集合运算和专门的关系运算两类。
其中传统的集合运算将关系看成元组的集合,其运算是从关系的"水平"方向即行的角度来进行。
而专门的关系运算不仅涉及行而且涉及列。
比较运算符和逻辑运算符是用来辅助专门的关系运算符进行操作的。
2.4.1 传统的集合运算传统的集合运算是二目运算,包括并、差、交、广义笛卡尔积四种运算。
设关系R和关系S具有相同的目n(即两个关系都有n个属性),且相应的属性取自同一个域,则可以定义并、差、交运算如下:1.并 (Union)关系R与关系S的并记作:R ∪ S = {t|t∈R ∨ t∈S}其结果仍为n目关系,由属于R或属于S的元组组成。
(注:等式右边大括号中的t是一个元组变量,表示结果集合由元组t构成。
竖线“|”右边是对t约束条件,或者说是对t的解释。
数据库关系代数表达式学习关系代数是关系数据库系统查询语言的理论基础一、关系代数的9种操作:关系代数中包括了:并、交、差、乘、选择、投影、联接、除、自然联接等操作。
五个基本操作:并(∪)、差(-)、笛卡尔积(×)、投影(σ)、选择(π)四个组合操作:交(∩)、联接(等值联接)、自然联接(R S)、除法(÷)注2:等值连接表示先做笛卡尔积(×)之后,对相应列进行选择或等值关联后的结果(仅筛选行、不筛选列) 注2:自然连接表示两个关系中若有相同名称的属性,则自动作为关联条件,且仅列出一列二、关系代数表达式:由关系代数运算经有限次复合而成的式子称为关系代数表达式。
这种表达式的运算结果仍然是一个关系。
可以用关系代数表达式表示对数据库的查询和更新操作。
三、举例说明:设教学数据库中有3个关系:学生关系S(SNO, SNAME,AGE,SEX)学习关系SC(SNO,CNO,GRADE)课程关系C(CNO,CNAME,TEACHER)(1) 检索学习课程号为C2的学生学号与成绩------------------------------------SELECT SNO,GRADEFROM SCWHERE CNO='C2'------------------------------------π SNO, GRADE (σ CNO='C2' (SC))************************************(2) 检索学习课程号为C2的学生学号与姓名------------------------------------SELECT SC.SNO,S.SNAMEFROM SC,SWHERE SC.SNO=S.SNOAND O='C2'------------------------------------π SNO,SNAME (σ CNO='C2' (S SC))此查询涉及S和SC,先进行自然连接,然后再执行选择投影操作。
数据库系统原理第四章关系运算课后习题答案4.1 名词解释(1)关系模型:用二维表格结构表示实体集,外键表示实体间联系的数据模型称为关系模型。
(2)关系模式:关系模式实际上就是记录类型。
它的定义包括:模式名,属性名,值域名以及模式的主键。
关系模式不涉及到物理存储方面的描述,仅仅是对数据特性的描述。
(3)关系实例:元组的集合称为关系和实例,一个关系即一张二维表格。
(4)属性:实体的一个特征。
在关系模型中,字段称为属性。
(5)域:在关系中,每一个属性都有一个取值范围,称为属性的值域,简称域。
(6)元组:在关系中,记录称为元组。
元组对应表中的一行;表示一个实体。
(7)超键:在关系中能唯一标识元组的属性集称为关系模式的超键。
(8)候选键:不含有多余属性的超键称为候选键。
(9)主键:用户选作元组标识的一个候选键为主键。
(单独出现,要先解释“候选键”)(10)外键:某个关系的主键相应的属性在另一关系中出现,此时该主键在就是另一关系的外键,如有两个关系S和SC,其中S#是关系S的主键,相应的属性S#在关系SC中也出现,此时S#就是关系SC的外键。
(11)实体完整性规则:这条规则要求关系中元组在组成主键的属性上不能有空值。
如果出现空值,那么主键值就起不了唯一标识元组的作用。
(12)参照完整性规则:这条规则要求“不引用不存在的实体”。
其形式定义如下:如果属性集K是关系模式R1的主键,K也是关系模式R2的外键,那么R2的关系中, K的取值只允许有两种可能,或者为空值,或者等于R1关系中某个主键值。
这条规则在使用时有三点应注意: 1)外键和相应的主键可以不同名,只要定义在相同值域上即可。
2)R1和R2也可以是同一个关系模式,表示了属性之间的联系。
3)外键值是否允许空应视具体问题而定。
(13)过程性语言:在编程时必须给出获得结果的操作步骤,即“干什么”和“怎么干”。
如Pascal和C语言等。
(14)非过程性语言:编程时只须指出需要什么信息,不必给出具体的操作步骤。
自考数据库系统原理第四章关系运算课后习题答案2009-09-15 10:454.1 名词解释(1)关系模型:用二维表格结构表示实体集,外键表示实体间联系的数据模型称为关系模型。
(2)关系模式:关系模式实际上就是记录类型。
它的定义包括:模式名,属性名,值域名以及模式的主键。
关系模式不涉及到物理存储方面拿枋觯 鼋鍪嵌允 萏匦缘拿枋觥?(3)关系实例:元组的集合称为关系和实例,一个关系即一张二维表格。
(4)属性:实体的一个特征。
在关系模型中,字段称为属性。
(5)域:在关系中,每一个属性都有一个取值范围,称为属性的值域,简称域。
(6)元组:在关系中,记录称为元组。
元组对应表中的一行;表示一个实体。
(7)超键:在关系中能唯一标识元组的属性集称为关系模式的超键。
(8)候选键:不含有多余属性的超键称为候选键。
(9)主键:用户选作元组标识的一个候选键为主键。
(单独出现,要先解释“候选键”)(10)外键:某个关系的主键相应的属性在另一关系中出现,此时该主键在就是另一关系的外键,如有两个关系S和SC,其中S#是关系S的主键,相应的属性S#在关系SC中也出现,此时S#就是关系SC的外键。
(11)实体完整性规则:这条规则要求关系中元组在组成主键的属性上不能有空值。
如果出现空值,那么主键值就起不了唯一标识元组的作用。
(12)参照完整性规则:这条规则要求“不引用不存在的实体”。
其形式定义如下:如果属性集K是关系模式R1的主键,K也是关系模式R2的外键,那么R2的关系中, K的取值只允许有两种可能,或者为空值,或者等于R1关系中某个主键值。
这条规则在使用时有三点应注意: 1)外键和相应的主键可以不同名,只要定义在相同值域上即可。
2)R1和R2也可以是同一个关系模式,表示了属性之间的联系。
3)外键值是否允许空应视具体问题而定。
(13)过程性语言:在编程时必须给出获得结果的操作步骤,即“干什么”和“怎么干”。
如Pascal和C语言等。
关系代数5个基本运算
关系代数是一种数学表达式,用于描述关系数据库中的操作。
它包含五个基本运算:选择、投影、交、并和差。
这些基本运算可以用来创建新的关系表,也可以用于查询和修改现有的关系表。
1. 选择(Select)运算:从关系表中筛选出符合某一条件的元组,生成一个新的子关系表。
2. 投影(Project)运算:从关系表中选择出部分属性,生成一个新的关系表。
3. 交(Intersection)运算:对于两个关系表,找出相同的元组,生成一个新的关系表。
4. 并(Union)运算:对于两个关系表,将它们的元组合并成一个新的关系表。
5. 差(Difference)运算:对于两个关系表,找出只存在于一个关系表中的元组,生成一个新的关系表。
在关系数据库中,这些基本运算可以组合使用,生成更复杂的查询和修改操作。
因此,理解关系代数的基本运算是非常重要的。
- 1 -。
、4 关系代数关系代数就是一种抽象的查询语言,通过对关系的运算来表达查询。
关系代数的运算对象就是关系,运算结果也就是关系。
系代数运算可以分为四类:1.普通的集合运算: 并、交、差2.删除一部分关系的运算选择运算“σ”会删除某些行投影运算“π”会删除某些列3.合并两个关系的运算“笛卡儿积”运算把两个关系的元组以所有可能的方式组合起来、“连接”运算有选择地从两个关系取出元组组合在一起4.改名运算不改变关系的元组,只改变关系的模式:改变属性的名字或者关系本身的名字一、关系的集合运算三种最普通的集合运算:并、交与差:1、R∪S,R与S的并,它就是R中的元素与S中的元素共同组成的集合。
2、R∩S,R与S的交,它就是既出现在R中又出现在S中的元素组成的集合。
3、R―S,R与S的差,它就是只在R中出现,不在S中出现的元素组成的集合。
要想对两个关系R与S进行上述运算,R与S必须满足如下条件:R与S的模式具有相同的属性集在对R与S进行集合运算之前,要对R与S的属性列进行排序,保证两个关系的属性顺序相同1、并, R∪S ={ r | r∈R ∨ r∈S }关系R:关系SR∪S:2、交, R∩S ={ r | r∈R ∧ r∈S }R∩S:3、差, R-S ={ r | r∈R ∧ r?S }R-S:二、投影运算投影运算符就是π,该运算作用于关系R将产生一个新关系S,S只具有R的某几个属性列。
投影运算的一般表达式如下:S = πA1, A2, … , An(R)S就是投影运算产生的新关系,它只具有R的属性A1, A2, … , An所对应的列。
例:对于关系表:Student投影运算:πStudentNo, StudentName(Student) 结果为:三、选择运算(σ)选择运算符就是σ,该运算符作用于关系R也将产生一个新关系S,S的元组集合就是R的一个满足某条件C的子集。
选择运算的一般表达式为:S = σC(R)S的模式与R的模式完全相同。
并、差、笛卡儿积、投影、选择是关系代数的5种基本的运算,其他运算,即交、连接、除都可以通过基本的运算推导运算出。
1、并,设有两个关系R和S,它们具有相同的结构,R和S的并是由属于R或属于S的元组组成的集合;2、差,R和S的差是由属于R但不属于S的元组组成的集合;3、笛卡尔积,两个集合X和Y的笛卡尓积,又称直积,表示为X 与Y相乘,第一个对象是X的成员而第二个对象是Y的所有可能有序对的其中一个成员;4、选择,从关系中找出满足给定条件的那些元组称为选择;其中的条件是以逻辑表达式给出的,值为真的元组将被选取;5、投影,从关系模式中挑选若干属性组成新的关系称为投影。
数据库系统(二)--关系型数据库之关系代数关系型数据库-关系操作集合1、基本的关系操作关系模型中常用的关系操作包括查询(Query)操作和插入(Insert)、删除(Delete)、修改(Update)操作两大部分。
查询操作分为:选择、投影、连接、除、并、差、交、笛卡尔积等;五种基本操作:选择、投影、并、差、笛卡尔积;关系操作的特点是集合操作方式,即操作的对象和结果都是集合、这种操作方式也称为一次一集合的方式。
2、关系数据语言的分类关系操作是通过关系语言来实现的。
关系语言的特点是高度非过程化,即:(1)用户不必请求数据库管理员为其建立特殊的存取路径,存取路径的选择由 DBMS 的优化机制来完成;(2)用户也不必求助于循环和递归来完成数据的重复操作。
关系操作的能力可以用两种方式来表示:代数方式和逻辑方式。
关系代数、元组关系演算和域关系演算均是抽象的查询语言。
结构化查询语言SQL充分体现了关系数据语言的特点和优点,是关于数据库的标准语言。
关系数据语言可以分为三类:关系代数语言、关系演算语言以及兼具两者双重特点的语言。
三类语言的共同特点是语言具有完备的表达能力,是非过程化的集合操作语言,功能强,能够独立使用也可以嵌入高级语言中使用。
3、关系代数操作包含三大要素:操作对象、操作符、操作结果。
关系代数表达式 3 个
并(Union):关系R与S具有相同的关系模式。
关系R与S 并由属于S的元组构成的集合。
记作RUS={t|t∈R∨t∈S} t为元组变量。
差(Differece):关系R与S具有相同的关系模式,关系R与S的差是由属于R但不属于S的元组构成的集合,记作R-S,其形式定义如下:R-S={t|t∈R∧t∉S}
广义笛卡尔积:关系R和S的广义笛卡尔积是一个(n+m)列的元组的集合。
记作R×S。
投影(Projection):投影运算是从关系的垂直方向进行运算,在关系R中选择出若干个属性列A组成新的关系,记作π(R)={t[A]|t∈R }。
可以理解为数据库查询某张表某几个列。
选择(Selection):选择运算是从关系的水平方向进行运算,是从关系R中选择满足给定条件的诸元组,记作∂(R)={t|t∈R∧F(t)=True}。
可以理解为查询语句后面加where查询条件。
数据库系统原理第四章关系运算课后习题答案4.1 名词解释(1) 关系模型:用二维表格结构表示实体集,外键表示实体间联系的数据模型称为关系模型。
(2) 关系模式:关系模式实际上就是记录类型。
它的定义包括:模式名,属性名,值域名以及模式的主键。
关系模式不涉及到物理存储方面的描述,仅仅是对数据特性的描述。
(3) 关系实例:元组的集合称为关系和实例,一个关系即一张二维表格。
(4) 属性:实体的一个特征。
在关系模型中,字段称为属性。
(5) 域:在关系中,每一个属性都有一个取值范围,称为属性的值域,简称域。
(6) 元组:在关系中,记录称为元组。
元组对应表中的一行;表示一个实体。
(7) 超键:在关系中能唯一标识元组的属性集称为关系模式的超键。
(8) 候选键:不含有多余属性的超键称为候选键。
(9) 主键:用户选作元组标识的一个候选键为主键。
( 单独出现,要先解释“候选键”)(10) 外键:某个关系的主键相应的属性在另一关系中出现,此时该主键在就是另一关系的外键,如有两个关系S和SC,其中S#是关系S的主键,相应的属性S#在关系SC中也出现,此时S#就是关系SC的外键。
(11) 实体完整性规则:这条规则要求关系中元组在组成主键的属性上不能有空值。
如果出现空值,那么主键值就起不了唯一标识元组的作用。
(12) 参照完整性规则:这条规则要求“不引用不存在的实体”。
其形式定义如下:如果属性集K是关系模式R1的主键,K也是关系模式R2的外键,那么R2 的关系中,K的取值只允许有两种可能,或者为空值,或者等于R1关系中某个主键值。
这条规则在使用时有三点应注意:1)外键和相应的主键可以不同名,只要定义在相同值域上即可。
2)R1和R2也可以是同一个关系模式,表示了属性之间的联系。
3)外键值是否允许空应视具体问题而定。
(13) 过程性语言:在编程时必须给出获得结果的操作步骤,即“干什么”和“怎么干”。
如Pascal和C语言等。
(14) 非过程性语言:编程时只须指出需要什么信息,不必给出具体的操作步骤。