水利水电专业 外文翻译 外文文献 英文文献 填料的填筑和保护
- 格式:doc
- 大小:35.00 KB
- 文档页数:7
水工建筑物,29卷,9号,1995旋涡隧道溢洪道。
液压操作条件M . A .戈蓝,B. zhivotovskii,我·诺维科娃,V . B .罗季奥诺夫,和NN罗萨娜娃隧道式溢洪道,广泛应用于中、高压液压工程。
因此研究这类溢洪道这是一个重要的和紧迫的任务,帮助在水工建筑中使用这些类型的溢洪道可以帮助制定最佳的和可靠的溢洪道结构。
有鉴于此,我们希望引起读者的注意,基本上是新的概念(即,在配置和操作条件),利用旋涡流溢洪道[1,2,3,4 ]。
一方面,这些类型的溢洪道可能大规模的耗散的动能的流动的尾段。
因此,流量稍涡旋式和轴向流经溢洪道的尾端,不会产生汽蚀损害。
另一方面,在危险的影响下,高流量的流线型面下降超过长度时,最初的尾水管增加的压力在墙上所造成的离心力的影响。
一些结构性的研究隧道溢洪道液压等工程rogunskii,泰瑞,tel'mamskii,和tupolangskii液压工程的基础上存在的不同的经营原则现在已经完成了。
这些结构可能是分为以下基本组:-涡旋式(或所谓的single-vortex型)与光滑溢洪道水流的消能在隧道的长度时的研究的直径和高度的隧道;参看。
图1),而横截面的隧道是圆或近圆其整个长度。
涡旋式溢洪道-与越来越大的能量耗散的旋涡流在较短的长度- <(60——80)高温非圆断面导流洞(马蹄形,方形,三角形),连接到涡室或通过一个耗能(扩大)室(图2)[ 5,6 ]或手段顺利过渡断[ 7];-溢洪道两根或更多互动旋涡流动耗能放电室[ 8 ]或特殊耗能器,被称为“counter-vortex耗能”[ 2,4 ]。
终端部分尾水洞涡流溢洪道可以构造的形式,一个挑斗,消力池,或特殊结构取决于流量的出口从隧道和条件的下游航道。
液压系统用于的流量的尾管可能涉及可以使用overflowtype或自由落体式结构。
涡旋式溢洪道光滑或加速[ 7 ]能量耗散的整个长度的水管道是最简单和最有前途的各类液压结构。
Hand Move Irrigation SystemsSummaryThe ‘hand move’ irrigation system is a very simple pipe set which can be moved by hand. Two main factors-—positioning and moving scheme of the equipment both affect the work time. Here we develop a model to complete the irrigation of the whole field by the shortest time。
Firstly, we decide the certain number of sprinklers through the designated parameter。
Using enumerative geometry, we compare the irrigation area of the system with different number of sprinklers and work out the optimum number of sprinklers。
Secondly, we take the advantage of combinatorial geometry to decide the positioning and moving scheme of the irrigation system,in order that the model can be used to realize the irrigation task by the shortest work time.In the end we also introduce a new sprinkler with square area and compare its working efficiency with the traditional sprinkler if we use it on this field。
文献出自:Gimenes E, Fernández G. Hydromechanical analysis of flow behavior in concrete gravity dam foundations[J]. Canadian geotechnical journal, 2006, 43(3): 244-259.混凝土重力坝基础流体力学行为分析摘要:一个在新的和现有的混凝土重力坝的滑动稳定性评价的关键要求是对孔隙压力和基础关节和剪切强度不连续分布的预测。
本文列出评价建立在岩石节理上的混凝土重力坝流体力学行为的方法。
该方法包括通过水库典型周期建立一个观察大坝行为的数据库,并用离散元法(DEM)数值模式模拟该行为。
一旦模型进行验证,包括岩性主要参数的变化,地应力,和联合几何共同的特点都要纳入分析。
斯威土地,Albigna 大坝坐落在花岗岩上,进行了一个典型的水库周期的特定地点的模拟,来评估岩基上的水流体系的性质和评价滑动面相对于其他大坝岩界面的发展的潜力。
目前大坝基础内的各种不同几何的岩石的滑动因素,是用德国马克也评价模型与常规的分析方法的。
裂纹扩展模式和相应扬压力和抗滑安全系数的估计沿坝岩接口与数字高程模型进行了比较得出,由目前在工程实践中使用的简化程序。
结果发现,在岩石节理,估计裂缝发展后的基础隆起从目前所得到的设计准则过于保守以及导致的安全性过低,不符合观察到的行为因素。
关键词:流体力学,岩石节理,流量,水库设计。
简介:评估抗滑混凝土重力坝的安全要求的理解是,岩基和他们上面的结构是一个互动的系统,其行为是通过具体的材料和岩石基础的力学性能和液压控制。
大约一个世纪前,Boozy大坝的失败提示工程师开始考虑由内部产生渗漏大坝坝基系统的扬压力的影响,并探讨如何尽量减少其影响。
今天,随着现代计算资源和更多的先例,确定沿断面孔隙压力分布,以及评估相关的压力和评估安全系数仍然是最具挑战性的。
毕业设计(论文)外文翻译题目水库及电力系统简介专业水利水电工程班级2007级四班学生陈剑锋指导教师杨忠超重庆交通大学2011 年RESERVOIRSWhen a barrier is constructed across some river in the form of a dam, water gets stored up on the upstream side of the barrier, forming a pool of water, generally called a reservoir.Broadly speaking, any water collected in a pool or a lake may be termed as a reservoir. The water stored in reservoir may be used for various purposes. Depending upon the purposes served, the reservoirs may be classified as follows: Storage or Conservation Reservoirs.Flood Control Reservoirs.Distribution Reservoirs.Multipurpose reservoirs.(1) Storage or Conservation Reservoirs. A city water supply, irrigation water supply or a hydroelectric project drawing water directly from a river or a stream may fail to satisfy the consumers’ demands during extremely low flows, while during high flows; it may become difficult to carry out their operation due to devastating floods. A storage or a conservation reservoir can retain such excess supplies during periods of peak flows and can release them gradually during low flows as and when the need arise.Incidentally, in addition to conserving water for later use, the storage of flood water may also reduce flood damage below the reservoir. Hence, a reservoir can be used for controlling floods either solely or in addition to other purposes. In the former case, it is known as ‘Flood Control Reservoir’or ‘Single Purpose Flood Control Reservoir’, and in the later case, it is called a ‘Multipurpose Reservoir’.(2) Flood Control Reservoirs A flood control reservoir or generally called flood-mitigation reservoir, stores a portion of the flood flows in such a way as to minimize the flood peaks at the areas to be protected downstream. To accomplish this, the entire inflow entering the reservoir is discharge till the outflow reaches the safe capacity of the channel downstream. The inflow in excess of this rate is stored in stored in the reservoir, which is then gradually released so as to recover the storage capacity for next flood.The flood peaks at the points just downstream of the reservoir are thus reduced by an amount AB. A flood control reservoir differs from a conservation reservoir only in its need for a large sluice-way capacity to permit rapid drawdown before or after a flood.Types of flood control reservoirs. There are tow basic types of flood-mitigation reservoir.Storage Reservoir or Detention basins.Retarding basins or retarding reservoirs.A reservoir with gates and valves installation at the spillway and at the sluice outlets is known as a storage-reservoir, while on the other hand, a reservoir with ungated outlet is known as a retarding basin.Functioning and advantages of a retarding basin:A retarding basin is usually provided with an uncontrolled spillway and anuncontrolled orifice type sluiceway. The automatic regulation of outflow depending upon the availability of water takes place from such a reservoir. The maximum discharging capacity of such a reservoir should be equal to the maximum safe carrying capacity of the channel downstream. As flood occurs, the reservoir gets filled and discharges through sluiceways. As the reservoir elevation increases, outflow discharge increases. The water level goes on rising until the flood has subsided and the inflow becomes equal to or less than the outflow. After this, water gets automatically withdrawn from the reservoir until the stored water is completely discharged. The advantages of a retarding basin over a gate controlled detention basin are:①Cost of gate installations is save.②There are no fates and hence, the possibility of human error and negligence in their operation is eliminated.Since such a reservoir is not always filled, much of land below the maximum reservoir level will be submerged only temporarily and occasionally and can be successfully used for agriculture, although no permanent habitation can be allowed on this land.Functioning and advantages of a storage reservoir:A storage reservoir with gated spillway and gated sluiceway, provides more flexibility of operation, and thus gives us better control and increased usefulness of the reservoir. Storage reservoirs are, therefore, preferred on large rivers which require batter controlled and regulated properly so as not to cause their coincidence. This is the biggest advantage of such a reservoir and outweighs its disadvantages of being costly and involving risk of human error in installation and operation of gates.(3) Distribution Reservoirs A distribution reservoir is a small storage reservoir constructed within a city water supply system. Such a reservoir can be filled by pumping water at a certain rate and can be used to supply water even at rates higher than the inflow rate during periods of maximum demands (called critical periods of demand). Such reservoirs are, therefore, helpful in permitting the pumps or water treatment plants to work at a uniform rate, and they store water during the hours of no demand or less demand and supply water from their ‘storage’ during the critical periods of maximum demand.(4) Multipurpose Reservoirs A reservoir planned and constructed to serve not only one purpose but various purposes together is called a multipurpose reservoir. Reservoir, designed for one purpose, incidentally serving other purpose, shall not be called a multipurpose reservoir, but will be called so, only if designed to serve those purposes also in addition to its main purpose. Hence, a reservoir designed to protect the downstream areas from floods and also to conserve water for water supply, irrigation, industrial needs, hydroelectric purposes, etc. shall be called a multipurpose reservoir.水库拦河筑一条像坝的障碍时,水就被拦蓄在障碍物的上游并形成水塘.通常称之为水库。
英语原文:Methods and procedures for EIAEIA is the strategic for the active environmental management of basin development and the construction items. For water resources and power development, during basin-wide planning and feasibility study stage of projects environmental impact assessment should be prepared. Forbasin-wide planning document a chapter on environmental impacts assessment is necessary while for feasibility study of projects the environmental impact statement should be prepared.1 purposes of the assessmentThe purpose of EIA is to assess the environmental effects due to river basin development playing or proposed hydroelectric project .For the purpose of rationally utilizing natural resources, protecting the environment, improving environmental quality, and maintaining the ecological balance, the optimum plan can be screened out through the comparison of the technical, economical and environmental indices of the alternative plans of the project. Besides, the corresponding mitigation measures for the adverse effects and the improvement measures for the beneficial effects should be put forwards during various stages, such as planning, design, construction, and management. The work of EIA is very important, as EIA (s) is the fundamental document for decision making and policy arrangement for the project. The development of EIA makes it possible to changethe work of environmental protection from a status of passive control into a status of active prevention In addition, the most important point is that through the work of EIA the project could develop more comprehensive benefits and eliminate the adverse effect.2 The classification of the assessmentAccording to the temporal and spatial dimensions the environmental impact assessment can be classified into two categories. From temporal dimension it can be further classified as the retrospective environmental impact assessment for exiting projects, the present environmental impact assessment for project under construction and the prospective environmental impact assessment for projects under planning. Generally speaking, the environmental impact assessment refers almost all to the prospective EIA. From spatial dimension it can be classified as assessment for individual project, for a system of projects, and even for all the projects included in the river basin planning. The depth of work for environmental assessment should be compatible with stage of planning and design. In the river basin planning stage, the environmental assessment should be made for the whole basin, and a preliminary suggestion for mitigation measures of the adverse effects should be proposed. If necessary, reports on special topics should be provided for significant impacts. In the feasibility study stage, the environmental assessment for each of important parameters and comprehensive chapter of environmental protection should beprovided o give a detailed description for demonstration the environmental effect of project and implementing the mitigation and improvement measures for the adverse effects,. In technical design stage, an additional study should be made for the remaining key problems. In the stage of construction, the environmental prot6ection planning and the practicing schedule for the construction area and the reservoir region should be included.3 Methods and proceduresIn practice, methods are closely interconnected with procedures. According to the process of EIA. The methods used can be divided into two categories. One is for assessing the environmental change and impact of each individual parameter, and the other is for assessing the impact of the whole project. After assessment, appropriate mitigation measures can be established, and comprehensive indices and indicators for the whole project can be derived so as to facilitate the comparison of alternative project designs. The assessment procedures consist of five main steps:Impact identification, impact prediction, impact evaluation, mitigation and protective measures, and monitoring programs. Among the five steps the impact identification, impact prediction and impact evaluation are most important. For each step there are different methods and considerations.Impact identificationThe steps taken to identify environmental parameters likely to have impacts are as follows:? Understanding the characteristics of the project, such as backwater curve, change of hydraulic and hydrological regime (such as change of discharge and silt distribution).? Selection of an existing similar project and carrying out retrospective environmental assessment for reference.? Investigation and description of the status of the existing environmental setting and base line.? Use of checklists of interaction matrices for impact identification. ? Proposing the parameters with likely impacts or the unknown parameters for further impact prediction.The purposes of this are to identify the significant environmental modification, and to estimate the probability that the impact will occur. Impact prediction begins with quality identification, then simple methods are used for quantification and finally multi-factor modeling is used for detailed quantification. Some of the methods might be classified as follows:1 Mathematical modeling of empirical formula (such as the reservoir and so on).2 Investigation and measurement (such as through investigation of the scope of distribution of terrestrial flora and fauna within the inundated zone to predict the impact on them, the same method is used for prediction of the impact on historic and archaeological sites).3 An alysis of the effects of changes in the hydraulic and hydrological regime (such as through the study of change of flow and silt patterns to predict the areas influenced or affected by flood, water-logging and salinity downstream, or through the change of habitats of flora and fauna to predict the future condition of the different species).4 Analogy or comparison with existing projects (such as the use of comparison to identify the change in water temperature qualitatively).Impact evaluation1. Environmental impact of each individual environmental parameter. One mustinvestigate the change in environmental quality, propose the remedial measures for adverse effects, calculate the relationship between benefits and costs, and see whether the environmental change is beneficial and acceptable. The methods consist of: ? A comparison of environmental indices or indications between the situations with and without the project.? Establishing the value function graphs for each individual parameter and seeing whether the environmental quality is improved or not (0-10 can be used to show the degree of the environmental quality, where 0 that indicates the environment quality is the worst, and 10 the best).? Proposing remedial measures for adverse effects and calculating costs. ? Reassessing the environment quality after the remedialmeasure is taken. ? Estimating the differences in adverse effect between the situations with and without mitigation measures.? Calaculating the benefits of measures? Anaktzing the relationship between benefits and costs, to see whether the impact on the parameter is acceptable, and to see effectiveness of measures. Comprehensive assessment of the project The purpose of comprehensive assessment is to evaluate the index of impact of the whole project to compare all the options and to select the optimum plan. Cost- benefit and adverse effects of the project are calculated to conclusion for every project. Methods of environmental evaluation system, multi-criteria analysis or cost-benefit analysis might be used. Just like ad hoc methods, checklists, matrices, overlays, networks, cost-benefit analysis, simulation modeling, and system analysis, etc. The superiorities and deficiencies of all the main can be assessed by six indices. The procedures for basin environmental impact assessment are same as those for a water resources project, but the methods are not so perfect now. A method is based on the quantified indices of environmental impacts, subject to satisfying of the multipurpose of development as its constraints and the minimum of total adverse impact (as people displaced) as objectives, by the dynamic programming technique and the matrixapproach etc., to layout the plan and determine the scale of each water project. For example, Dongjiang River Basin (in Guandong Province) planning, the weighted region controlling approach and keyelements controlling approach have been used for fuzzy assessment. Another approach used by individual organization is: ? Considering all projects or components of components of the whole basin as a unit or several suitable units to assess the whole environmental impacts on the upper part (above the lowest cascade) of the basin.? Computing the total indices of the conjunctive operation of all projects of the basin such as the changing of hydrologic and sedimentation regime, etc. to assess the whole environmental impacts on the middle, lower reaches, and the estuary. ? Preparing the EIA of single key project or its coordination with other projects in order to prevent the negation of the key project by environmental impacts to influence the feasibility of the whole plan. Research of the important points for EIA 1 Levels of the environmental systems.The environment is a complicated system. For EIA the totality of environment should be divided into several levels of sub-systems. Usually under the totality of environment it is divided into four levels of sysrt4ema, namely environmental categories, environmental components, environmental parameters, and environmental measurements. In China the environmental categories are further classified as natural environment and social environment. Under the item of natural environment it is again subdivided into many environmental components such as local climate of reservoir area, which again consists of the environmental parameters such as precipitation. Wind and fog as their sublevel. For evaluation of thechange of precipitation many values of environmental measurements such as internal moisture, external moisture, and their relationships to precipitations are utilized. 2 Geographic study areasThe area affected by a project is determined on the scale, character, and location of the project. In addition to the regions directly affected by the project, effects on certain neighboring regions, on the whole basin, on a neighboring basin, and even on the estuary should be considered. The affected area is not the same for each plan and for each environmental factor, but the affected areas for all alternative plans should be coordinated. In other words, the area of study should include the whole area affected as well as some additional area for putting the effects into perspective. In the case of a water quality parameter, such as temperature, the area affects into perspective. In the area and the reaches downstream, where the temperature of the water is estimated to change at least 1.0 .3 Time frame for comparisonsIn a planning investigation, the time frame for making comparisons of environmental effects should be the same as the time frame for makingeconomic evaluations. Ordinarily, projections are made based on the future with and without project conditions for the time levels of under construction, completion and in operation (25 years after completion).外文译文:水利工程环境影响评价环境影响评价是评价由于人类的活动(如兴建大坝工程等)所引起的环境改变及其影响,它是区域开发和建谈项目环境管理的一种战略防御手段。
水利水电工程专业土石坝的评估和修复毕业论文外文文献翻译及原文毕业设计(论文)外文文献翻译文献、资料中文题目:土石坝的评估和修复文献、资料英文题目:文献、资料来源:文献、资料发表(出版)日期:院(部):专业:班级:姓名:学号:指导教师:翻译日期: 2017.02.14附录一外文翻译英文原文Assessment and Rehabilitation of Embankment DamsNasim Uddin, P.E., M.ASCE1Abstract:A series of observations, studies, and analyses to be made in the field and in the office are presented to gain a proper understanding of how an embankment dam fits into its geologic setting and how it interacts with the presence of the reservoir it impounds. It is intended to provide an introduction to the engineering challenges of assessment and rehabilitation of embankments, with particular reference to a Croton Dam embankment.DOI: 10.1061/(ASCE)0887-3828(2002)16:4(176)CE Database keywords: Rehabilitation; Dams, embankment; Assessment.IntroductionMany major facilities, hydraulic or otherwise, have become very old and badly deteriorated; more and more owners are coming to realize that the cost of restoring their facilities is taking up a significant fraction of their operating budgets. Rehabilitation is, therefore, becoming a major growth industry for the future. In embankment dam engineering, neither the foundation nor the fills arepremanufactured to standards or codes, and their performance correspondingly is never 100% predictable. Dam engineering—in particular, that related to earth structures—has evolved on many fronts and continues to do so, particularly in the context of the economical use of resources and the determination of acceptable levels of risk. Because of this, therefore, there remains a wide variety of opinion and practice among engineers working in the field. Many aspects of designing and constructing dams will probably always fall within that group of engineering problems for which there are no universally accepted or uniquely correct procedures.In spite of advances in related technologies, however, it is likely that the building of embankments and therefore their maintenance, monitoring, and assessment will remain an empirical process. It is, therefore, difficult to conceive of a set of rigorous assessment procedures for existing dams, if there are no design codes. Many agencies (the U.S. Army Corps of Engineers, USBR, Tennessee Valley Authority, FERC, etc.) have developed checklists for field inspections, for example, and suggested formats and topics for assessment reporting. However, these cannot be taken as procedures; they serve as guidelines, reminders, and examples of what to look for and report on, butthey serve as no substitute for an experienced, interested, and observant engineering eye. Several key factors should be examined by the engineer in the context of the mandate agreed upon with the dam owner, and these together with relevant and appropriate computations of static and dynamic stability form the basis of the assessment. It is only sensible for an engineer to commit to the evaluation of the condition of, or the assessment of, an existing and operating dam if he/she is familiar and comfortable with the design and construction of such things and furthermore has demonstrated his/her understanding and experience.Rehabilitation MeasuresThe main factors affecting the performance of an embankment dam are (1)seepage; (2)stability; and (3) freeboard. For an embankment dam, all of these factors are interrelated. Seepage may cause erosion and piping, which may lead to instability. Instability may cause cracking, which, in turn, may cause piping and erosion failures. The measures taken to improve the stability of an existing dam against seepage and piping will depend on the location of the seepage (foundation or embankment), the seepage volume, and its criticality. Embankment slope stability is usually improved by ?attening the slopes or providing a toe berm. This slope stabilization is usually combined with drainage measures at the downstream toe. If the stability of the upstream slope under rapid drawdown conditions is of concern, then further analysis and/or monitoring of resulting pore pressures or modi?cations of reservoir operations may eliminate or reduce these concerns. Finally, raising an earth ?ll dam is usually a relatively straightforward ?ll placement operation, especi ally if the extent of the raising is relatively small.The interface between the old and new ?lls must be given close attention both in design and construction to ensure the continuity of the impervious element and associated filters. Relatively new materials, such as the impervious geomembranes and reinforced earth, have been used with success in raising embankment dams. Rehabilitation of an embankment dam, however, is rarely achieved by a single measure. Usually a combination of measures, such as the installation of a cutoff plus a pressure relief system, is used. In rehabilitation work, the effectiveness of the repairs is difficult to predict; often, a phased approach to the work is necessary, with monitoring and instrumentation evaluated as the work proceeds. In the rehabilitation of dams, the security of the existing dam must be an overriding concern. It is not uncommon for the dam to have suffered significantdistress—often due to the deficiencies that the rehabilitation measures are to address.The dam may be in poor condition at the outset and may possibly be in a marginally stable condition. Therefore, how the rehabilitation work may change the present conditions, both during construction and in the long term, must be assessed, to ensure that it does not adversely affect the safety of the dam. In the following text, a case study is presented as an introduction to the engineering challenges of embankment rehabilitation, with particular reference to the Croton Dam Project.Case StudyThe Croton Dam Project is located on the Muskegon River in Michigan. The project is owned and operated by the Consumer Power Company. The project structures include two earth embankments, a gated spillway, and a concrete and masonrypowerhouse. The earth embankments of this project were constructed of sand with concrete core walls. The embankments were built using a modified hydraulic fill method. This method consisted of dumping the sand and then sluicing the sand into the desired location. Croton Dam is classified as a ??h igh-hazard‘‘ dam and is in earthqu ake zone 1. As part of the FERC Part 12 Inspection (FERC 1993), an evaluation of the seismic stability was performed for the downstream slope of the left embankment at Croton Dam. The Croton Dam embankment was analyzed in the following manner. Soil parameters were chosen based on standard penetration (N) values and laboratory tests, and a seismic study was carried out to obtain the design earthquake. Using the chosen soil properties, a static finite-element study was conducted to evaluate the existing state of stress in the embankment. Then a one-dimensional dynamic analysis was conducted to determine the stress induced by the design earthquake shaking. The available strength was compared with。
水利水电工程专业外文翻译、英汉互译、中英对照毕业设计,论文,外文翻译题目姚家河水电站溢流坝及消能工优化设计专业水利水电工程使用CFD模型分析规模和粗糙度对反弧泄洪洞的影响12 作者 Dae Geun Kimand Jae Hyun Park摘要在这项研究中,利用CFD模型、FLOW-3D模型详细调查流量特性如流量、水面、反弧溢洪道上的峰值压力,并考虑到模型规模和表面粗糙度对速度和压力的垂直分布特征的影响,因此,在领域中被广泛验证和使用。
由于表面粗糙度数值的误差是微不足道的,对于流量,水面平稳,波峰压力影响较小。
但是我们只是使用长度比例小于100或200在可接受的误差范围的建筑材料一般粗糙度高度和规模效应的模型,最大速度在垂直的坐标堰发生更严重的粗糙度和规模效应。
原型的速度比缩尺比模型的更大,但现却相反1的。
在任何一节的最大速度略有降低或者表面粗糙度和长度的比例增加。
最大速度出现在上游水头的增加几乎呈线性增加溢洪道前的距离和位置较低的垂直位置位上。
关键词:FLOW-3D,反弧溢洪道,粗糙度效应,规模效应1.简介工程师在大多数情况下都选着设计建造具有过流高效、安全地反弧溢洪道,并且它在使用过程中具有良好的测量能力。
反弧溢洪道的形状是从较高顶堰的直线段流到半径R的网弧形段,在反弧附近的大气压力超过设计水头。
在低于设计水头时波峰阻力减少。
在高水头的时候,顶堰的大气压较高产生负压使水流变得更缓。
虽然这是关于一般反弧从上游流量条件下的变化、修改的波峰形状或改变航的形状和其流动特性的理解,但是道由于局部几何性质等的标准设计参数的偏差都会改变的水流的流动性,影响的分析结果。
物理模型被广泛的用来确定溢洪道非常重要的大坝安全。
物理模型的缺点是成本高,它可能需要相当长的时间得到的结果。
此外,由于规模效应的误差的严重程度增加原型模型的大小比例。
因此在指导以正确的模型细节时,计算成本相对较低物理建模、数值模拟,即使它不能被用于为最终确定的设计也是非常宝贵的资料。
中英文对照外文翻译文献(文档含英文原文和中文翻译)译文:研究钢弧形闸门的动态稳定性摘要由于钢弧形闸门的结构特征和弹力,调查对参数共振的弧形闸门的臂一直是研究领域的热点话题弧形弧形闸门的动力稳定性。
在这个论文中,简化空间框架作为分析模型,根据弹性体薄壁结构的扰动方程和梁单元模型和薄壁结构的梁单元模型,动态不稳定区域的弧形闸门可以通过有限元的方法,应用有限元的方法计算动态不稳定性的主要区域的弧形弧形闸门工作。
此外,结合物理和数值模型,对识别新方法的参数共振钢弧形闸门提出了调查,本文不仅是重要的改进弧形闸门的参数振动的计算方法,但也为进一步研究弧形弧形闸门结构的动态稳定性打下了坚实的基础。
简介低举升力,没有门槽,好流型,和操作方便等优点,使钢弧形闸门已经广泛应用于水工建筑物。
弧形闸门的结构特点是液压完全作用于弧形闸门,通过门叶和主大梁,所以弧形闸门臂是主要的组件确保弧形闸门安全操作。
如果周期性轴向载荷作用于手臂,手臂的不稳定是在一定条件下可能发生。
调查指出:在弧形闸门的20次事故中,除了极特殊的破坏情况下,弧形闸门的破坏的原因是弧形闸门臂的不稳定;此外,明显的动态作用下发生破坏。
例如:张山闸,位于中国的江苏省,包括36个弧形闸门。
当一个弧形闸门打开放水时,门被破坏了,而其他弧形闸门则关闭,受到静态静水压力仍然是一样的,很明显,一个动态的加载是造成的弧形闸门破坏一个主要因素。
因此弧形闸门臂的动态不稳定是造成弧形闸门(特别是低水头的弧形闸门)破坏的主要原是毫无疑问。
基于弧形闸门结构和作用力的特点,研究钢弧形闸门专注于研究弧形闸门臂的动态不稳定。
在1980年的,教授闫世武,教授张继光公认的参数振动引起的弧形闸门臂动态不稳定的是原因之一。
他们提出了一个简单的分析方法,近年来,在一些文献中广泛地被引用进来调查。
然而,这些调查的得到都基于模型,弧形闸门臂被视为平面简单的梁,由于弧形弧形闸门是一个复杂的空间结构,三维效果非常明显,平面简单的梁的模型无法揭示这个空间效果,并不能精确的体现弧形闸门臂的动态不稳定性,本文提出一种计算方法用于分析弧形闸门的动态不稳定。
外文翻译Stability of Slopes1.1 Introduction Gravitational and seepage forces tend to cause instability in natural slopes, in slopes of embankments and earth dams. The most important types of slope failure arc illustrated in Fig.1.1. In rotational slips the shape of the failure surface in section may be a circular are or a non-circular curve. In general, circular slips are associated with homogeneous soil conditions and non-circular slips with non- homogeneous conditions. Translational and compound slips occur where the form of failure surface is influenced by the presence of an adjacent stratum is at a relatively shallow depth bellow the surface of the slope: the failure surface tends to be plane and roughly parallel to the slope. Compound slips usually occur where the adjacent stratum is at greater depth, the failure surface consisting of curved and plane sections.Figure 1.1 Type of slope failureIn practice, limiting equilibrium methods are used in the analysis of slope stability. It is considered that failure is on the point of occurring along an assumed or a known failure surface. The shear strength required to maintain a condition of the limiting equilibrium is compared with the available shear strength of the soil, giving the average factor safety along the failure surface. The problem is considered in two dimensions, conditions of plane strain being assumed. It has been shown that two-dimensional analysis gives a conservative result for a failure on a three-dimensional (dish-shaped) surface.Figure 1. 2 The φu =0 analysis1.2 Analysis for the Case of φu =0The analysis, in term of total stress ,covers the case of a fully-saturated clay under undrained conditions, i.e. for the condition immediately after construction. Only moment equilibrium is considered in the analysis. In section, the potential failure surface is assumed to be a circle arc. A trial failure surface (centre O, radius and length L a ) is shown in Fig 1.2.Potential instability is due to the total weight of the soil mass(W per unit length) above the failure surface. For equilibrium the shear strength which must be mobilized along the failure surface is expressed as: τm =f F τ=Cu Fwhere F is the factor of safety with respect to shear strength. Equation momentabout O:Wd=Cu FL a r F=u a C L r Wd (1.1) The moments of any additional forces must be taken into account. In the event of a tension crack developing, as shown in Fig1.2,the arc length L a is shortened and a hydrostatic force will act normal to the crack if the crack fills with water. It is necessary to analyze the slope for a number of trial failure surfaces in order that the minimum factor of safety can be determined.Example 1.1A 45°slope is excavated to a depth of 8m in a deep layer of unit weight 19kN/m 3: the relevant shear strength parameters are c u =65kN/m 3 and φu =0.Determine the factor of safety for the trial surface specified in Fig1.3.In Fig1.3, the cross-sectional area ABCD is 70m 2.The weight of the soil mass=70×19=1330m 2.The cent roid of ABCD is 4.5m from O.The angle AOC is 89.5°and radius OC is 12.1m.The arc length ABC is calculated as 18.9m.The factor of safety is given by:F=u a C L r Wd=6518.912.11330 4.5⨯⨯⨯6518.912.11330 4.5⨯⨯⨯ =2.48This is the factor of safety for the trial failure surface selected and is not necessarily the minimum factor of safety.Figure 1.3 example 1.11.3 The φ-Circle MethodThe analysis is in terms of total stress. A trial failure surface , a circular arc (centre o, radius r) is selected as shown in Fig 1.4.If the shear strength parameters are c u and φu ,the shear strength which must be mobilized for equilibrium is:τm =f Fτ=l ∑ =c m +tan m σφ Figure 1.4 The φ-circle methodWhere F is the factor of safety with respect to shear strength .For convenience the following notation is introduced:c m =u cc F (1.2) tan m φ=tan u F φφ (1.3) it being a requirement that:F C =F φ=FAn element ab, of length l, of the failure surface is considered, the element being short enough to be approximated to a straight line. The forces acting on ab (per unit dimension normal to the section) are as follows:(1) the total normal force 1σ;(2) the component of shearing resistance c m l;(3) the component of shearing resistance 1σtan m φ.If each force c m l along the failure surface is split into components perpendicular and parallel to the chord AB, the perpendicular components sum to zero and the sum of the parallel components is given by:C=c m L c (1.4) where L c is the chord length AB. The force C is thus the resultant, acting parallel to the chord c m l. The line of application of the resultant force C can be determined by taking moments about the centre O, then:C r c =r m c l ∑i.e.c m L c r c =rc m L awhere La=l ∑ is the arc length AB.Thus,r c =a CL L r (1.5) The resultant of the forces 1σ and 1σtan m φ on the element ab acts at angle m φ to the normal and is the force tangential to a circle, centre O, of radius r sin m φ: this circle is referred to as the φ-circle. The same technique was used in Chapter 5.The overallresult (R) for the arc AB is assumed to be tangential to the φ-circle. Strictly, the resultant R is tangential to a circle of radius slightly greater than r sin m φ but the error involved in the above assumption is generally insignificant.The soil mass above the trial failure surface is in equilibrium under its totalweight (W) and the shear resultants C and R. The force W is known in magnitude and direction; the direction only of the resultant C is known. Initially a trial value of F φ is selected and the corresponding value of m φ is calculated from equation1.3.For equilibrium the line of application of the resultant R must be tangential to the φ-circle and pass though the point of intersection of the forces W and C. The force diagram can then be drawn, from which the value of C can be obtained .Then:c m =CC L andF C =Cu Cm It is necessary to repeat the analysis at least three times, starting with different values of F φ.If the calculated values of F C are plotted against the corresponding values of F φ,the factor of safety corresponding to the requirement F C =F φ can be determined .The whole procedure must be repeated for a series of trial failure surfaces in order that the minimum factor of safety is obtained.For an effective stress analysis the total weight W is combined with the resultant boundary water force on the failure mass and the effective stress parameters c ′and φ′used.Based on the principle of geometric similarity, Taylo r (1.13)published stability coefficients for the analysis of homogeneous slopes in terms of total stress. For a slope of height H the stability coefficients for the analysis of homogeneous slopes in terms of total stress. For a slope of height H the stability coefficient (N s ) for the failure surface along which the factor of safety is a minimum is:N s =u C F Hγ (1.6) Values of N s , which is a function of the slope angle β and the shear strength parameter u φ,can be obtained from Fig 1.5.For u φ=0,the value of N s also depends on the depth factor D, where DH is the depth to a firm stratum.Firm stratumFigure 1.5 Taylo r ′s coefficients.In example 1.1, β=45°, u φ=0,and assuming D is large, the value of N s is 0.18.Then from equation 1.6:F=s Cu N H γ = 650.18198⨯⨯ =2.37Gibson and Morgenste r n 〔1.4〕published stability coefficients for slopes in normally-consolidated clays in which the untrained strength c u (u φ=0) varies linearly with depth.Figure 1.6 Example 1.2Example 1.2An embankment slope is detailed in Figure 1.6.Fir the given failure surface. Determine the factor of safety in terms of total stress using the φ-circle method. The appropriate shear strength parameters are c u =15kN/m 2 and u φ=15°: the unit weight of soil is 20 kN/m 2.The area ABCD is 68 m 2 and the centroid (G) is 0.60m from the vertical through D. The radius of the failure arc is 11.10m.The arc length AC is 19.15 m and the chord length AC is 16.85m.The weight of the soil mass is:W=68×20=1360 k N/mThe position of the resultant C is given by:r c =a CL L r = 19.1516.85×11.10 Now:m φ=tan -1(tan15F φ) Trial value of F φ are chosen, the corresponding values of r sin m φ are calculated and the φ-circle drawn shown in Fig.1.6.The resultant C(for any value of F φ) acts in a directions parallel to the chord AC and at distance r c from O. The resultant C(for any value F φ) acts in a direction parallel to the chord AC and at distance r c from O. The forces C and W intersect at point E. The resultant R, corresponding to each value of F φ, passes through E is tangential to the appropriate φ-circle. The force diagrams are drawn and the values of C determined.The results are tabulated below.If F c is plotted against F φ(Fig.1.6) it is apparent that:F=F C =F φ=1.431.4 The Method of SlicesIn this method the potential failure surface, in section, is against assumed to be a circle arc with centre O radius r. The soil mass (ABCD) above a trial failure surface(AC) is divided by vertical planes into series of slices of width b, as shown in Fig.1.7. The base of each slice is assumed to be a straight line. For any slice the inclination of the base to the horizontal is α and the height, measured on the centerline, is h. The factor of safety is defined as the ratio of the available shear strength (f τ) to the shear strength (m τ) which must be mobilized to maintain a condition of limiting equilibrium. i.e.F=f mττ The factor of safety is taken to be the same for each slice, implying that there must be mutual support between the slice. i.e. forces must act between the slices.The forces (per unit dimension normal to the section) acting on a slice are listed below.(1) The total weight of slice, W=γbh (γsat where appropriate)(2) The total normal force on the base, N. In general this force has two components.The effective normal force N′ (equal to σ′l ) and the boundary water force ul, where u is the pore water pressure at the center of the base and l is the length of the base.(3) The shear force on the sides, T=m τl.(4) The total normal forces on the sides,E 1 and E 2.(5) The shear forces on the sides, X 1 and X 2.Any external forces must also be included in the analysis.The problem is statically indeterminate and in order to obtain a solution assumptions must be made regarding the inter-slice forces E and X: the resulting solution for factor of safety is not exact.Considering moments about O, the sum of the moments of the shear forces T on the failure arc AC must equal the moment of the weight of the soil mass ABCD. For any slice the lever arm of w is r sin α, therefore:Tr ∑=sin rW α∑Figure 1.7 The method of slices.Now,T=m τl=f l F τ ∵ f l F τ∑=sin W α∑∴ F=sin fl W τα∑∑ For an analysis in terms of effective stress:F=(tan )sin c l W σφα'''+∑∑ or, F= tan sin c La N W φα'''+∑∑ (1.7) where L a is the arc length AC. Equation 1.7 is exact but approximations are introduced in determining the forces N′. For a given failure arc the value of F will depend on the way in which the forces N′ are estimated.The Fellenius SolutionIn the solution it is assumed that for each slice the resultant of the inter-slice forces is zero. The solution involves resolving the forces on each slice normal to the base, i.e.:cos N W ul α'=-Hence the factor of safety in terms of effective stress ( equation 1.7 ) is given by: F=tan (cos )sin c La W ul W φαα''+-∑∑ (1.8)The components cos W α and sin W α can be determined graphically for each slice. Alternatively, the value of α can be measured or calculated. Again, a series of trial failure surfaces must be chosen in order to obtain the minimum factor of safety. This solution underestimates the factor of safety :the error, compared with more accurate methods of analysis, is usually within the range of 5-20﹪.For an analysis in terms of total stress the parameters c u and φu are used and the value of u in equation 1.8 is zero. If φu =0 the factor of safety is given by:F=sin u a c L W α∑(1.9)As N ′does not appear in equation 1.9 an exact value of F is obtained.The Bishop Simplified SolutionIn this solution it is assumed that the resultant forces on the sides of the slices are horizontal, i.e.X 1-X 2=0For equilibrium the shear force on the base of any slice is:T= 1(tan )c l N Fφ'''+ Resolving forces in the vertical direction:cos cos sin tan sin c l N W N ul F Fαααφα''''=+++ ∴ tan sin (sin cos )/(cos )c l N W ul F F φαααα'''=--+ (1.10) It is convenient to substitute:l= sec b αFrom equation 1.7, after some rearrangement:1sec [{()tan }]tan tan sin 1F c b W ub W Fαφαφα''=+-'+∑∑ (1.11) The pore water press can be related to the tota l ‘fill pressure ’ at any point by means of the dimensionless pore press ratio , defined as:u u r hγ= (1.12) (sat γ where appropriate )For any slice,/u u r W b =Hence equation 1.11 can be written: 1sec [{(1)tan }]tan tan sin 1u F c b W r W Fαφαφα''=+-'+∑∑ (1.13) As the factor of safety occurs on both sides of equation 1.13 a process of successive approximation must be used to obtain a solution but convergence is rapid. The method is very suitable for solution on the computer. In the computer program the slope geometry can be made more come complex, with soil strata having different properties and pore pressure conditions being introduced.In most problems the value of the pore pressure ratio u r is not constant overthe whole failure surface but, unless there are isolates regions of high pore pressure, an average value (weighted on an area basis) is normally used in design. Again, the factor of safety determined by this method is an underestimate but the error is unlikely to exceed 7﹪ and in most cases is less than 2﹪.Spencer [1.12] proposed a method of analysis in which the resultant inter-slice forces are parallel and in which both force and moment equilibrium are satisfied.Spencer showed that the accuracy of the Bishop simplified method, in which only moment equilibrium is satisfied, is due to the insensitivity of the moment equation to the slope of the inter-slice forces.Dimensionless stability coefficients for homogeneous slopes, based on equation 1.13, have been published by Bishop and Morgenstern[1.3]. It can be shown that for a given slope angle and given soil properties the factor of safety varies linearly with u r and can thus be expressed as:u F m nr =- (1.14)where m and n are the stability coefficients m and n are functions of β,φ', the dimensionless number /c h γ' and the depth factor D.Example 1.3Using the Fellenius method of slices, determined the factor of safety in terms of effective stress of the slope shown in Fig.1.8 for the given failure surface. The distribution of pore water pressure along the failure surface is given in the figure. The unit weight of the soil is 20 kN/m 3 and the relevant shear strength parameters are c '=10kN/m 2 and φ'=29°.The factor of safety is given by equation 9.8. The soil mass is divided into slices 1.5m wide. The weight(W) of each slice is given by:20 1.530/W bh h hkN m γ==⨯⨯=The height h for each slice is set off bellow the centre of the base and the normal and tangential components cos h α and sin h α respectively are determined graphically, as shown in Fig.1.8.Then:cos 30cos W h αα=andsin 30sin W h αα=Figure 1.8 Example 1.3.The arc length (L a ) is calculated as 14.35m. The results are tabulated below:cos 3017.50525/W kN m α=⨯=∑sin 308.45254/W kN m α=⨯=∑(cos )525132.8392.2/W ul kN m α-=-=∑tan (cos )sin ac L W ul F W φαα''+-=∑∑ (1014.35)(0.554393.2)254⨯+⨯= 1.5 Analysis of a Plane Translational SlipIt is assumed that potential failure surface is parallel to the surface of the slope and is at a depth that is small compared with the length of the slope. The slope can then be considered as being of infinite length, with end effects being ignored. The slope is inclined at angle β to the horizontal and the depth of the failure plane z, as shown in section in Fig.1.9. The water table is taken to be parallel to the slope at a height of mz(0<m <1)above the failure plane. Steady seepage is assumed to be taking place in a direction parallel to the slope. The forces on the sides of any vertical slice are equal and opposite and the stress conditions are the same at every point on the failure plane.Figure 1.9 Plane translational slip.In terms of effective stress, the shear strength of the soil along the failure plane is:()tan f c u τσφ''=+-and the factor of safety is:f F ττ= The expressions for σ, τ and u are as follows:2{(1)}cos sat m m z σγγβ=-+{(1)}sin cos sat m m z τγγββ=-+2cos w u mz γβ=The following special cases are of interest. If c '=0 and m=0(i.e. the soil between the surface and the surface plane is not fully saturated), then:tan tan F φβ'= (1.15) If c '=0 and m=1(i.e. the water table conditions with the surface of the slope),then: sat tan tan F γφγβ''==If should be noted that when c '=0 the factor of safety is independent of the depth z. If c ' is greater to zero, the factor of safety is a function of z, and β may exceed φ' provided z is less than a critical value.For a total stress analysis the shear strength parameters u c and u φ are used and the value of u is zero.A long natural slope in fissured overconsolidated clay is inclined at 12° to the horizontal. The water table is at the surface and seepage is roughly parallel to the slope. A slip has developed on a plane parallel to the surface at a depth of 5m.The saturated unit weight of the clay is 20 kN/m 3. The peak strength parameters arec '=10kN/m 2 and φ'=26°; the residual strength parameters are r c '=0 and r φ'=18°. Determine the factor of safety along the slip plane(a) in terms of the peak strength parameters, (b) in terms of the residual strength parameters.With the water table at the surface (m=1), at any point on the slip plane:2cos sat z σγβ=22205cos 1295.5/kN m =⨯⨯=sin cos sat z τγββ=2205sin12cos1220.3/kN m =⨯⨯⨯=2cos w u z γβ=229.85cos 1246.8/kN m =⨯⨯=Using the peak strength parameters:()tan f c u τσφ''=+-210(48.7tan 26)33.8/kN m =+⨯=Then the factor of safety is given by:33.8 1.6620.3f F ττ=== Using the residual strength parameters, the factor of safety can be obtained from equation 1.16:tan tan r sat F γφγβ''=10.2tan180.7820tan12=⨯= 1.6 General Methods of AnalysisMorgenstern and Price[1.8] developed a general analysis in which all boundary and equilibrium conditions are satisfied and in which the failure surfacemay be any shape, circle ,non-circle and compound. The soil mass above the failure plane is divided into sections by a number of vertical planes and the problem is rendered statically determinate by assuming a relationship between the forces E and X on the vertical boundaries between each section. This assumption is of the form:()X f x E λ= (1.17)where f(x) is an arbitrary function describing the pattern in which the ratio X/E varies across the soil mass and λ is obtained as part of the solution along with the factor of safety F. The values of the forces E and X and the point of application of E can be determined at each vertical boundary. For any assuming function f(x) it is necessary to examine the solution in detail to ensure that it is physically reasonable (i.e. no shear failure or tension must be implied within the soil mass above the failure surface). The choice of the function f(x) does not appear to influence the computed value of F by more than about 5﹪ and f(x)=1 is a common assumption.The analysis involves a complex process of iteration for the value of λand F, described by Morgenstern and Price [1.9], and the use of a computer is essential.Bell [1.15] proposed a method of analysis in which all the conditions of equilibrium are satisfied and the assumed failure surface may be of any shape. The soil mass is divided into a number of vertical slices and statical determinacy is obtained by means of an assumed distribution of normal stress along the failure surface. Thus the soil mass is considered as a free body as is the case in the φ-circle method.Sarma [1.16] developed a method, based on the method of slices, in which the critical earthquale accelaration required to produce a condition of limiting equilibrium is determined. An assumed distribution of vertical inter-slice forces is used in the analysis. Again, all the conditions of equilibrium are satisfied and the assumed failure surface may be of any shape. The static factor of safety is the factor by which the shear strength of the soil must be reduced such that the critical acceleration if zero.The use of a computer is also essential for the Bell and Sarma methods and all solutions must be checked to ensure that they are physically acceptable.1.7 End-of-Construction and Long-Term StabilityWhen a slope is formed either by excavation or by the construction of an embankment the changes in total stress result in changes in pore water pressure in the vicinity of the slope and, in particular, along a potential failure surface. Prior toconstruction the initial pore water pressure(u 0) at any point is governed either by a static water table level or by a flow net for conditions of steady seepage. The change in pore water pressure at any point is is given theoretically by equation 4.17 or 4.18. The final pore water pressure, after dissipation of the excess pore water pressure, is governed by the static water table level or the steady seepage flow net for the final conditions after construction.If the permeability of the soil is low, a considerable time will elapse before any significant dissipation of excess pore water pressure will have taken place. At the end of construction the soil will be virtually in the undrained condition and a total stress analysis will be relevant. In principle an effective stress analysis is also possible for the end of construction condition using the pore water pressure (u) for this condition, where :o u u u =+∆However, because of its greater simplicity, a total stress analysis is generally used. It should be realised that the same factor of safety will not generally be obtained from a total stress and an effective stress analysis of the end-of-construction condition. In a total stress and an effective stress analysis of the end-of-construction condition. In a total stress analysis it is implied that the pore water pressures are those for a failure condition: in an effective stress analysis the pore water pressures used are those predicted for a non-failure condition. In the long-term, the fully-drained condition will be reached and only an effective stress analysis will be appropriate.If, on the other hand, the permeability of the soil is high, dissipation of excess pore water pressure will be largely complete by the end of construction. An effective stress analysis is relevant for all conditions with values of pore water pressure being obtained from the static water table level or the appropriate flow net.Pore water pressure may thus be an independent variable, determined from the static water table level or from the flow net for conditions of steady seepage, or may be dependent on the total stress changes tending to cause failure.It is important to identify the most dangerous condition in any practical problem in order that the appropriate shear strength parameters are used in design. Excavated and Natural Slopes in Saturated ClaysEquation 4.17, with B=1 for a fully-saturated clay, can be rearranged as follows:131311()()()22u A σσσσ∆=∆+∆+-∆-∆ (1.18) For a typical point P on a potential failure surface(Fig.9.10) the first term in equation 1.18 is negative and the second term will also be negative if the value ofA is less than 0.5. Overall, the pore water pressure change u ∆ is negative. The effect of the rotation of principal stress directions is neglected. As dissipation proceeds the pore pressure increases to the final value as shown in Fig.1.10. The factor of safety will therefore have a lower value in the long-term, when dissipation is complete, than at the end of construction.Figure 1.10 Pore press pressure dissipation and factor of safety (AfterBishop and [1.2])Residual shear strength is relevant to the long-term stability of slopes in over consolidated fissured clays. A number of cases are on record in which failures in this type of clay have occurred long after dissipation of excess pore water pressure hade been completed. Analysis of these failures showed that the average shear strength at failure was bellow the peak value. In clays of this type it is suspected that large strains can occur locally due to the presence of fissures, resulting in the peak strength being reached, followed by a gradual decrease towards the residual value. The development of large local strains can lead eventually to a progressive slope failure. Fissures may not be the only cause of progressive failures: there is considerable nonuniformity of shear stress along a potential failure surface and local overstressing may initiate progressive failure. It should be realised, however, that the residual strength is reached only after a considerable slip movement has taken place and the strength relevant to first-time ′ slips lies between the peak and residual values. Analysis of failures in natural slopes in overconsolidated fissured clays has indicated that the residual shear strength is ultimately attained, probably as a result of successive slipping.1.8 Stability of Earth DamsIn the design of earth dams the factor of safety of both slopes must be determined as possible for the most critical conditions. For economic reasons an unduly conservative design must be avoided. In the case of the upstream slope the most critical stages are at the end of construction and during rapid drawdown of the reservoir level. The critical stages for the downstream slope are at the end of construction and during steady seepage when the reservior is full. The pore water pressure distribution at any stage has a dominant influence on the factor of safetyand in large earth dams it is common practice to install a piezometer system so that the actual pore water pressures can be measured at any stage and compared with the predicted values used in design(provided an effective stress analysis has been used) . Remedial action can then be taken if the factor of safety , based on the measured values, is considered too bellow.(a) End of ConstructionThe construction Period of an earth dam is likely to be long enough to allow partial dissipation of excess pore water pressure before the end of construction, especially in a dam with internal drainage. A total stress analysis, therefore, would result in too conservative a design. An effective stress analysis is preferable, using predicted values of r u .The pore pressure (u) at any point can be written as:0u u u =+∆where 0u is the initial value and u ∆ is the change in pore water pressure undrained conditions. In terms of the change in total major principal stress:01u u B σ=+∆Then:01u u r B h hσγγ∆=+ If it is assumed that the increase in total major principal stress is approximately equal to the fill pressure along a potential failure surface, then:0u u r B hγ=+ (1.19) The soil is partially saturated when compacted, therefore the initial pore water pressure (u 0) is negative. The actual value of u 0 depends on the placement water content, the higher the water content, the closer the value of u 0 to zero. The value of B also depends on the placement water content, the higher the water content, the higher the value of B . Thus for an upper bound:u r B = (1.20) The value of B must correspond to the stress conditions in the dam. Equations1.19 and 1.20 assume no dissipation during construction. A factor of safety as low as 1.3 may be acceptable at the end of construction provided there is reasonable confidence in the design data.If high values of u r are anticipated, dissipation of excess pore water pressure。
The roller-compacted concrete gravity dam(1)The synopsis of the roller—compacted concrete gravity damThe concrete gravity dam shares with the embankment the central attributes of simplicity of concept and adaptability, but conventional mass concrete construction rates, unlike those for embankment construction ,remain essentially as they were m the 1950s. the volume instability of mass concrete due to thermal effects imposes severe limitations on the size and rate of concret pour, causing delay and disruption through the need to provide contraction joints and similar design features. Progressive reductions in cement content and partial replacement of cement with PFA have served only to contain the problem. Mass concrete construction remains a semi-continuous and labour- intensive operation of low overall productivity and efficiency.In some circumstances the technical merits of the gravity dam and the embankment may be evenly balanced. selection resting on estimated construction cost. Economic advantage will almost invariably favour the embankment. particularly if constructed in compacted rockfill. In some instances ,however, factors such as locating a spillway of sufficient capacity etc. may indicate the concrete gravity dam as being a preferable design solution. provided that the cost differential lies within acceptable limits.Despite advances in embankment dam engineering, therefore, there remains a strong incentive to develop a cheaper concrete gravity dam.The problem of optimizing concrete dam construction and reducing costs can be approached in several ways. In the absence of progress towards an ideal cement and a dimensionally stable concrete the most promising lines of approach may be classified as follows:1. A reappraisal of design criteria, particularly with regard to accepting modest tensile stresses;2.The development of improved mass concretes through the use ofadmixtures to enhance tensile strength and to modify stress-strain response. and/or the use of modified cements with reduced thermal activity;3. The development of rapid continuous construction techniques based on the use of special concrete.Neither of the first two approaches is capable of offering other than a token reduction in cost. the third option offers the greatest potential through financial benefits associated with a shortening of construction period by up to 35% combined with a lower-cost variant of concrete.The concept of dam construction using roller-compacted concrete (RCC), first developed in the 1970s, is based primarily on approach 3.Several variants of RCC have now been developed and offer the prospect of significantly faster and cheaper construction. particularly for large.gravity dams.(2) developments in roller-compacted concrete dam constructionThe RCC dam has developed rapidly since construction of the earliest examples in the early 1980s. and in excess of 200 large dams had been completed in RCC by 2000.the majority of RCC dams have Been gravity structures, but the RCC technique has been extended to a number of archgravity and thick arch dams As confidence has grown RCC has been used for progressively larger dams, and RCC is being employed for the major part of the 7. 6 x 106m3 volume and 217m high longtan gravity dam, under construction in China. In a number of recent instances the RCC gravity dam option has been selected in preference to initial proposals for the construction of a rockfill embankment.The early RCC dam were noted for problems associated with relatively high seepage and leakage through the more permeable RCC. and for a degree of uncontrolled cracking (Hollingworth and Geringer. 1992). A rela -tively low interlayer bond strength also prompted some concern. particularly in the context of seismic loading .the philosophy of RCC dam design has inconsequence evolved. with emphasis being placed on optimizing design anddetailing to construction in RCC rather than using RCC to construct a con- ventional gravity dam .This trend has led to the common provision ofan”impermeable” upstream element or barrier, e. g. by a slip-formed facing (Fig 3.22 and also New Victoria dam.Australia (Ward and Mann ,1992)).An alternative is the use of a PVC or similar synthetic membrane placed against or Just downstream of a high-quality concrete upstream face In the case of the 68m high Concepcion gravity dam, Honduras. a 3 .2mm PVC geomembrane backed by a supporting geotextile drainage layer was applied to the upstream face of the RCC (Giovagnoli, schrader and Ercoli ,1992). Recent practice has also moved towards control of cracking by sawn transverse Joints, or by the cutting of a regular series of slots to act as crack Inducers.The very considerable cost savings attaching to RCC construction are dependent upon plant and RCC mix optimization ,and hence continuity of the RCC placing operation. This in turn requires that design features which interfere continuous unobstructed end-to-end placing of the RCC, egg. galleries. internal pipework, etc.. Must be kept to the minimum and simplified. Experiments with retrospectively excavating gallerries by trenching and by driving a heading in the placed RCC fill at Riou, France. have proved successful (goubet and guerinet, 1992).Vertical rates of raising of 2.0-2.5 m week-1 are attainable for RDLC and high-paste RCCs compared with 1. 0-1.5m week-1 for RCD con- struction As one example, the Conception dam, Honduras, referred to earlier was raised in seven months. A lean RCC mix (cement content 80-95kgm-3) was employedfor the 290 x 103m3 of RCC fill, and a continuous mixing plant was used In conjunction with a high-speed belt conveyor system. Placing rates of up to 4000m3 days-1 were ultimately attained (Gio vagnoli, Schraderand Ercoli, 1992).The employment of RCC fill has also been extended to the upgrading of existing dams, e.g. by placing a downstream shoulder where stability is deficient (Section 3. 2. 9) .RCC has also Been applied to general remedialworks and to raising or rebuilding older dams. the benefits of RCC con- struction have also been appropriate. in special circumstances. to the con- struction of smaller dams, e.g. Holbeam wood and New Mills in the UK (Iffla, Millmore and Dunstan. 1992).ICOLD Bulletin 75 (ICOLD,1989) provides a comprehensive over- view of the use of RCC for dam construction. Recent US developments are discussed in Hansen (1994). Design options with respect to upstream face construction have Been reviewed in some detail by Schrader (1993).Construction in RCC is recognized as providing the way forward in concrete dam engineering .An extensive review of current issues in RCC dam design and construction is presented within Li (1998) .Major issues discussed include the need. or otherwise, for a conventional concrete upstream face, and the question of resistance to high seismic Ioading.where dynamic tensile strength of the interlayer bond between successive layers of RCC will be critical.The recently completed 95m high RCC gravity dam. at P1atanovryssi, Greece, located in a seismic zone is described in Stefanakos and Dunston (1999). the design peak ground acceleration corresponding to the MCE at Platanovryssi was determined as 0.385g, equating to a maximum dynamic crack inducers vibrated into the RCC. the “joints” were subsequently sealed by a 600mm wide external waterstop bonded to the face. Seepage through the dam body diminished to a satisfactory 10-12l/s over the first 12 months' operational service.The first use of RCC in Turkey, for the 124m high by 290m long Cine gravity dam (originally planned as a rockfill embankment with a clay core) is presented in Ozdogan (1999). the low-paste RCC used for cine has a cement content of 70kg/m3. with 90kg/m3 of PFA and 88 l/m3 of water. Target 180 day compressive strength was specified as 24MN/m2.碾压混凝土重力坝(1)碾压混凝土坝的简介混凝土重力坝和土石坝样具有概念简单和适用性强的特性,但常规大体积混凝土施工速度不象土石坝施工提高那样快,还维持在1950年代的水平。
外文文献:hydraulicturbines and hydro-electric powerAbstractPower may be developed from water by three fundamental processes : by action of its weight, of its pressure, or of its velocity, or by a combination of any or all three. In modern practice the Pelton or impulse wheel is the only type which obtains power by a single process the action of one or more high-velocity jets. This type of wheel is usually found in high-head developments. Faraday had shown that when a coil is rotated in a magnetic field electricity is generated. Thus, in order to produce electrical energy, it is necessary that we should produce mechanical energy, which can be used to rotate the ‘coil’. The mechanical energy is produced by running a prime mover (known as turbine ) by the energy of fuels or flowing water. This mechanical power is converted into electrical power by electric generator which is directly coupled to the shaft of turbine and is thus run by turbine. The electrical power, which is consequently obtained at the terminals of the generator, is then transited to the area where it is to be used for doing work.he plant or machinery which is required to produce electricity (i.e. prime mover +electric generator) is collectively known as power plant. The building, in which the entire machinery along with other auxiliary units is installed, is known as power house.Keywords hydraulic turbines hydro-electric power classification of hydel plants head schemeThere has been practically no increase in the efficiency of hydraulic turbines since about 1925, when maximum efficiencies reached 93% or more. As far as maximum efficiency is concerned, the hydraulic turbine has about reached the practicable limit of development. Nevertheless, in recent years, there has been a rapid and marked increase in the physical size and horsepower capacity of individual units.In addition, there has been considerable research into the cause and prevention of cavitation, which allows the advantages of higher specific speeds to be obtained at higher heads than formerly were considered advisable. The net effect of this progress with larger units, higher specific speed, and simplification and improvements in design has been to retain for the hydraulic turbine the important place which it haslong held at one of the most important prime movers.1. types of hydraulic turbinesHydraulic turbines may be grouped in two general classes: the impulse type which utilizes the kinetic energy of a high-velocity jet which acts upon only a small part of the circumference at any instant, and the reaction type which develops power from the combined action of pressure and velocity of the water that completely fills the runner and water passages. The reaction group is divided into two general types: the Francis, sometimes called the reaction type, and the propeller type. The propeller class is also further subdivided into the fixed-blade propeller type, and the adjustable-blade type of which the Kaplan is representative.1.1 impulse wheelsWith the impulse wheel the potential energy of the water in the penstock is transformed into kinetic energy in a jet issuing from the orifice of a nozzle. This jet discharge freely into the atmosphere inside the wheel housing and strikes against the bowl-shaped buckets of the runner. At each revolution the bucket enters, passes through, and passes out of the jet, during which time it receives the full impact force of the jet. This produces a rapid hammer blow upon the bucket. At the same time the bucket is subjected to the centrifugal force tending to separate the bucket from its disk. On account of the stresses so produced and also the scouring effects of the water flowing over the working surface of the bowl, material of high quality of resistance against hydraulic wear and fatigue is required. Only for very low heads can cast iron be employed. Bronze and annealed cast steel are normally used.1.2 Francis runnersWith the Francis type the water enters from a casing or flume with a relatively low velocity, passes through guide vanes or gates located around the circumstance, and flows through the runner, from which it discharges into a draft tube sealed below the tail-water level. All the runner passages are completely filled with water, which acts upon the whole circumference of the runner. Only a portion of the power is derived from the dynamic action due to the velocity of the water, a large part of the power being obtained from the difference in pressure acting on the front and back of the runner buckets. The draft tube allows maximum utilization of the available head, both because of the suction created below the runner by the vertical column of water and because the outlet of he draft tube is larger than the throat just below the runner, thus utilizing a part of the kinetic energy of the water leaving the runner blades.1.3 propeller runnersnherently suitable for low-head developments, the propeller-type unit has effected marked economics within the range of head to which it is adapted. The higher speed of this type of turbine results in a lower-cost generator and somewhat smaller powerhouse substructure and superstructure. Propeller-type runners for low heads andsmall outputs are sometimes constructed of cast iron. For heads above 20 ft, they are made of cast steel, a much more reliable material. Large-diameter propellers may have individual blades fastened to the hub.1.4 adjustable-blade runnersThe adjustable-blade propeller type is a development from the fixed-blade propeller wheel. One of the best-known units of this type is the Kaplan unit, in which the blades may be rotated to the most efficient angle by a hydraulic servomotor. A cam on the governor is used to cause the blade angle to change with the gate position so that high efficiency is always obtained at almost any percentage of full load.By reason of its high efficiency at all gate openings, the adjustable-blade propeller-type unit is particularly applicable to low-head developments where conditions are such that the units must be operated at varying load and varying head. Capital cost and maintenance for such units are necessarily higher than for fixed-blade propeller-type units operated at the point of maximum efficiency.2. thermal and hydropowerAs stated earlier, the turbine blades can be made to run by the energy of fuels or flowing water. When fuel is used to produce steam for running the steam turbine, then the power generated is known as thermal power. The fuel which is to be used for generating steam may either be an ordinary fuel such as coal, fuel oil, etc., or atomic fuel or nuclear fuel. Coal is simply burnt to produce steam from water and is the simplest and oldest type of fuel. Diesel oil, etc. may also be used as fuels for producing steam. Atomic fuels such as uranium or thorium may also be used to produce steam. When conventional type of fuels such s coal, oil, etc. (called fossils ) is used to produce steam for running the turbines, the power house is generally called an Ordinary thermal power station or Thermal power station. But when atomic fuel is used to produce steam, the power station, which is essentially a thermal power station, is called an atomic power station or nuclear power station. In an ordinary thermal power station, steam is produced in a water boiler, while in the atomic power station; the boiler is replaced y a nuclear reactor and steam generator for raising steam. The electric power generated in both these cases is known as thermal power and the scheme is called thermal power scheme.But, when the energy of the flowing water is used to run the turbines, then the electricity generated is called hydroelectric power. This scheme is known as hydro scheme, and the power house is known as hydel power station or hydroelectric power station. In a hydro scheme, a certain quantity of water at a certain potential head is essentially made to flow through the turbines. The head causing flow runs the turbine blades, and thus producing electricity from the generator coupled to turbine. In this chapter, we are concerned with hydel scheme only.3.classification of hydel plantsHydro-plants may be classified on the basis of hydraulic characteristics as follow: ①run-off river plants .②storage plants.③pumped storage plants.④tidal plants. they are described below.(1)Run-off river plants.These plants are those which utilize the minimum flow in a river having no appreciable pondage on its upstream side. A weir or a barrage is sometimes constructed across a river simply to raise and maintain the water level at a pre-determined level within narrow limits of fluctuations, either solely for the power plants or for some other purpose where the power plant may be incidental. Such a scheme is essentially a low head scheme and may be suitable only on a perennial river having sufficient dry weather flow of such a magnitude as to make the development worthwhile.Run-off river plants generally have a very limited storage capacity, and can use water only when it comes. This small storage capacity is provided for meeting the hourly fluctuations of load. When the available discharge at site is more than the demand (during off-peak hours ) the excess water is temporarily stored in the pond on the upstream side of the barrage, which is then utilized during the peak hours.he various examples of run-off the river pant are: Ganguwal and Kolta power houses located on Nangal Hydel Channel, Mohammad Pur and Pathri power houses on Ganga Canal and Sarda power house on Sarda Canal.The various stations constructed on irrigation channels at the sites of falls, also fall under this category of plants.(2) Storage plantsA storage plant is essentially having an upstream storage reservoir of sufficient size so as to permit, sufficient carryover storage from the monsoon season to the dry summer season, and thus to develop a firm flow substantially more than minimum natural flow. In this scheme, a dam is constructed across the river and the power house may be located at the foot of the dam such as in Bhakra, Hirakud, Rihand projects etc. the power house may sometimes be located much away from the dam (on the downstream side). In such a case, the power house is located at the end of tunnels which carry water from the reservoir. The tunnels are connected to the power house machines by means of pressure pen-stocks which may either be underground (as in Mainthon and Koyna projects) or may be kept exposed (as in Kundah project).When the power house is located near the dam, as is generally done in the low head installations ; it is known as concentrated fall hydroelectric development. But when the water is carried to the power house at a considerable distance from the dam through a canal, tunnel, or pen-stock; it is known as a divided fall development.(3) Pumped storage plants.A pumped storage plant generates power during peak hours, but during theoff-peak hours, water is pumped back from the tail water pool to the headwater pool for future use. The pumps are run by some secondary power from some other plant in the system. The plant is thus primarily meant for assisting an existing thermal plant or some other hydel plant.During peak hours, the water flows from the reservoir to the turbine and electricity is generated. During off-peak hours, the excess power is available from some other plant, and is utilized for pumping water from the tail pool to the head pool, this minor plant thus supplements the power of another major plant. In such a scheme, the same water is utilized again and again and no water is wasted.For heads varying between 15m to 90m, reservoir pump turbines have been devised, which can function both as a turbine as well as a pump. Such reversible turbines can work at relatively high efficiencies and can help in reducing the cost of such a plant. Similarly, the same electrical machine can be used both as a generator as well as a motor by reversing the poles. The provision of such a scheme helps considerably in improving the load factor of the power system.(4) Tidal plantsTidal plants for generation of electric power are the recent and modern advancements, and essentially work on the principle that there is a rise in seawater during high tide period and a fall during the low ebb period. The water rises and falls twice a day; each fall cycle occupying about 12 hours and 25 minutes. The advantage of this rise and fall of water is taken in a tidal plant. In other words, the tidal range, i.e. the difference between high and low tide levels is utilized to generate power. This is accomplished by constructing a basin separated from the ocean by a partition wall and installing turbines in opening through this wall.Water passes from the ocean to the basin during high tides, and thus running the turbines and generating electric power. During low tide,the water from the basin runs back to ocean, which can also be utilized to generate electric power, provided special turbines which can generate power for either direction of flow are installed. Such plants are useful at places where tidal range is high. Rance power station in France is an example of this type of power station. The tidal range at this place is of the order of 11 meters. This power house contains 9 units of 38,000 kW.4.Hydro-plants or hydroelectric schemes may be classified on the basis of operating head on turbines as follows: ①low head scheme (head<15m),②medium head scheme (head varies between 15m to 60 m) ,③high head scheme (head>60m). They are described below:(1) Low head scheme.A low head scheme is one which uses water head of less than 15 meters or so. A run off river plant is essentially a low head scheme, a weir or a barrage is constructed to raise the water level, and the power house is constructed either in continuation withthe barrage or at some distance downstream of the barrage, where water is taken to the power house through an intake canal.(2) Medium head schemeA medium head scheme is one which used water head varying between 15 to 60 meters or so. This scheme is thus essentially a dam reservoir scheme, although the dam height is mediocre. This scheme is having features somewhere between low had scheme and high head scheme.(3) High head scheme.A high head scheme is one which uses water head of more than 60m or so. A dam of sufficient height is, therefore, required to be constructed, so as to store water on the upstream side and to utilize this water throughout the year. High head schemes up to heights of 1,800 meters have been developed. The common examples of such a scheme are: Bhakra dam in (Punjab), Rihand dam in (U.P.), and Hoover dam in (U.S.A), etc.The naturally available high falls can also be developed for generating electric power. The common examples of such power developments are: Jog Falls in India, and Niagara Falls in U.S.A.水轮机和水力发电摘要水的能量可以通过三种基本方法来获得:利用水的重力作用、水的压力作用或水的流速作用,或者其中任意两种或全部三种作用的组合。
DamThe first dam for which there are reliable records was build or the Nile River sometime before 4000 . It was used to divert the Nile and provide a site for the ancient city of Memphis .The oldest dam still in use is the Almanza Dam in Spain, which was constructed in the sixteenth century. With the passage of time,materials and methods of construction have improved. Making possible the erection of such large dams as the Nurek Dam, which is being constructed in the . on the vaksh River near the border of Afghanistan. This dam will be 1017ft(333m) high, of earth and rock fill. The failure of a dam may cause serious loss of life and property; consequently, the design and maintenance of dams are commonly under government surveillance. In the United States over 30,000 dams are under the control of state authorities. The 1972 Federal Dams Safety Act (PL92-367)requires periodic inspections of dams by qualified experts. The failure of the Teton Dam in Idaho in June 1976 added to the concern for dam safety in the United States.1 Type of DamsDams are classified on the type and materials of construction, as gravity, arch, buttress ,and earth .The first three types are usually constructed of concrete. A gravity dam depends on its own weight for stability and it usually straight in plan although sometimes slightly curved.Arch dams transmit most of the horizontal thrust of the water behind them to the abutments by arch action and have thinner cross sections than comparable gravity dams. Arch dams can be used only in narrow canyons where the walls are capable of withstanding the thrust produced by the arch action. The simplest of the many types of buttress dams is the slab type, which consists of sloping flat slabs supported at intervals by buttresses. Earth dams are embankments of rock or earth with provision for controlling seepage by means of dam may be included in a single structure. Curved dams may combine both gravity and arch action to achieve stability. Long dams often have a concrete river section containing spillway and sluice gates and earth or rock-fill wing dams for the remainder of their length.The selection of the best type of dam for a given site is a problem in both engineering feasibility and cost. Feasibility is governed by topography, geology and climate. For example, because concrete spalls when subjected to alternate freezing and thawing, arch and buttress dams with thin concrete section are sometimes avoided in areas subject to extreme cold. The relative cost of the various types of dams depends mainly on the availability of construction materials near the site and the accessibility of transportation facilities. Dams are sometimes built in stages with the second or late stages constructed a decade or longer after the first stage.The height of a dam is defined as the difference in elevation between the roadway, or spillway crest, and the lowest part of the excavated foundation. However, figures quoted for heights of dams are often determined in other ways. Frequently the height is taken as the net height is taken as the net height above the old riverbed.on damsA dam must be relatively impervious to water and capable of resisting the forces acting on it. The most important of these forces are gravity (weight of dam) , hydrostatic pressure, uplift, ice pressure, and earthquake forces are transmitted to the foundation and abutments of the dam, which react against the dam with an equal and opposite force, the foundation reaction. The effect of hydrostatic forces caused by water flowing over the dam may require consideration in special cases.The weight of a dam is the product of its volume and the specific weight of the material. The line of action of dynamic force passes through the center of mass of the cross section. Hydrostatic force may act on both the upstream and downstream faces of the dam. The horizontal componentH of the hydrostatic force is the force or unit width of damhit is2/2HrhhWhere r is the specific weight of water and h is the depth of water .The line of action of this force is h/3 above the base of thedam .The vertical component of the hydrostatic force is equal to the weigh of water vertically above the face of the dam and passes through the center of gravity of this volume of water.Water under pressure inevitably finds its way between the dam And its foundation and creates uplift pressures. The magnitude of the uplift force depends on the character of the foundation and the construction methods. It is often assumed that the uplift pressure varies linearly from full hydrostatic pressure at the upstream face (heel)to full tail-water pressure at the downstream face (toe).For this assumption the uplift force U isU=r(h1+h2)t/2Where t is the base thickness of the dam and h1and h2 are the water depths at the heel and toe of the dam,respectively. The uplift force will act through the center of area of the pressure trapezoid.Actual measurements on dams indicate that the uplift force is much less than that given by Eq.(2)Various assumption have been made regarding the distribution of uplift of Reclamation sometimes assumes that the uplift pressure on gravity dams varies linearly from two-thirds of full uplift at the heel to zero at the toe. Drains are usually provided near the heel of the dam to permit the escape of seepage water and relieve uplift.译文:坝据可靠记载,世界上第一座坝是公元前4000年以前在尼罗河上修建的。
英文原文:Water Resources and Hydropower Engineering ConstructionDesign Layout[Key words] construction layout Fuzzy multiple attribute decisionmaking Water Resources and Hydropower Construction[Abstract] Analysis of affecting factors of the construction layout program characteristics that people value in identifying these indicators fuzzy constraints are difficult to give exact values, while decision-making process has been one of psychological, subjective will and the work experience and other aspects influence decision-making process and therefore there is certainly ambiguity.1, Water Resources and Hydropower Engineering Construction Layout FactorsConstruction advantages and disadvantages of the general layout scheme, involving many factors, from different angles to evaluate the evaluation factors generally have two categories, qualitative factors, and quantitative factors of a class. Qualitative factors are mainly: 1. Favorable production, easy to administer, facilitate the degree of life; 2. During the construction process, the degree of co-ordination; 3. The principal impact of construction and operation; 4. Meet the security, fire, flood prevention, environmental protection requirements; 5. Temporary Works and the combination of permanent works and so on. Indicators are mainly quantitative factors;1. Site preparation earthwork quantity and cost;2. The extent of use of earth excavation;3. Temporary works of construction work quantity and cost;4. Workload and a variety of materials, transport costs;5. Size and cost of land acquisition;6. Made to the area to field, the recovery or recycling construction fees.As the construction is construction planning layout content, is that people under work experience, combined with engineering data on the occurrence of a future prediction about. Therefore, both qualitative factors, and the quantitative factors, there is uncertainty. We know that the uncertainty of two different forms; one is uncertain whether the incident occurred in 11 random, the event itself the state of uncertainty 11 ambiguity. Randomness is an external cause in general uncertain, but ambiguity is an inherent uncertainty of the structure. From the information point of view, therandomness involves only the amount of information, while the ambiguity is related to the meaning of information. We can say that ambiguity is more profound than the randomness, the uncertainty more generally, especially in the subjective understanding of areas of role ambiguity is much more important than the role of randomness. Random people for a lot of research has been carried out, achieved fruitful results; while ambiguity was ongoing and in-depth knowledge and research in the. All people involved in the system, carried out by people planning, feasibility studies, evaluation of decision-making, design and management, and therefore, can not ignore the objective world of things in the human brain, one by one to reflect the uncertainty of ambiguity, it is an objective difference intermediate division caused by the transition of a kind of uncertainty. Construction Layout Design is no exception, in the arrangement of construction there are a large number of objective fuzzy factors. For example, the construction of facilities, coordination between the levels of "good" and "general" is an accurate value can not be described. Therefore, the arrangement can not ignore or avoid the construction of the fuzziness existing in the process, but should be objective and deal with ambiguity of this objective, understand the rules for people planning, demonstration, evaluation and decision, design and management to provide a scientific basis and methods.As the construction layout of the content involved in more programs fuzzy factors exist, the traditional construction arrangement he considered the existence of ambiguity, but in decision-making process has fuzzy information precision, not a real fuzzy optimization. Therefore, the program should focus on optimization of fuzzy factors into account, the ambiguity should be reflected in the decision-making on the index, index weights. For quantitative indicators, mainly the amount and cost of the project issues, its value can be found in engineering materials and design documents to determine by calculation, the results are the values of the parameters and experience. As every engineer's understanding of things is not the same experience in a certain range of parameter changes, the results also in a certain range. For qualitative indicators, according to experts, engineering experience, through expert scoring method, set the value of statistics to determine. Such subjective factors, the knowledge structure and decision-making preferences play a major role. But in practice, due to the complexity of objective things and the people's thinking on the use of fuzzy concept, to describe with precision the number becomes very difficult, but with "some", "left"and the like get fuzzy concept to describe the more reasonable. Determine the weights of evaluation indexes, there are many mathematical ways to determine the accurate calculation. We know, for different projects, in the same factors, their importance is not the same, then the mathematical model is difficult to fully reflect the actual situation, the help of experts in engineering experience must be judged.Since the existence of the above ambiguity, avoid or ignore the ambiguity is unscientific, incomplete. Previous index value that decision-making, decision weights for programs for determining the value of the preferred method, there is bound to sidedness and limitations. As technology develops, people are increasingly demanding of precision, the object of study become more complicated, as complicated to some degree after the meaning of the precise cognitive declines and the appropriate fuzzy but accurate. Here, the introduction of fuzzy mathematical tools, the use of modern fuzzy multiple attribute decision making theory, Fuzzy multiple attribute decision making model, can exist for people to consider the ambiguity of the objective, to provide strong support for rational decision-making.2, Water Resources and Hydropower Engineering Construction Design LayoutConstruction Layout as a focus of the system around the concrete layout of the temporary structures. There are 1. All kinds of storage, stockpile and Spoil; 2. Mechanical repair system; 3. Metal structure, mechanical and electrical equipment and construction equipment installed base; 4. Wind, water and electricity supply systems; 5. Other construction plant, such as steel processing, wood processing, prefabricated factory; 6. Office and living space, such as offices, laboratories, dormitories, hospitals, schools, etc.; 7. Fire safety facilities and other, such as fire stations, guard, and security cordon so. At this time, various types of temporary structures should be put forward, the construction of facilities furnished a list of partial pressure, their area, building area and volume of construction and installation; on fertilization with an estimate of land acquisition, land area and the proposed land use plan, the study to reclaiming land in the use of the measures, site preparation earthwork volume calculations, the integrated cut and fill balance of the proposed excavation of the use of effective planning.Construction of facilities in order to avoid conflict between the layouts, construction of facilities in the analysis of adjacency relations, is to analyze the relationship between the construction of facilities, strength of correlation andrelationship. Usually based on the adjacency relationship, consider the construction schedule, construction strength, facilities operation and logistics. Analysis of the size and layout of the construction of facilities present at the location of the ground between the site controlled the indicators are: 1. The scale of construction facilities layout, the main considerations to meet the construction requirements of the case, the construction of facilities, capacity and layout area. 2. Foundation bearing capacity of the construction of facilities to consider geology, slope stability and so on. 3. Hydrological requirements and construction guide closure of the case, consider the different construction periods, flood, water table, water level changes in the construction site layout planning of construction restrictions and impact. 4. The height difference logistics constraints, considering logistics and vertical elevation gradient lines, logistics of import and export. 5. Construction of the distance between these facilities and restrictions, mainly refers to the construction of facilities necessary for running the minimum operating radius, the minimum limit transportation question, minimum import and export logistics, construction and facilities, the safety distance between. 6. Construction site area of internal and external traffic conditions, construction equipment, consider the minimum safe height and width of the transport, building materials inside the transport requirements.To be concrete system facilities arranged in a prominent position, so that interference by the other facilities as small as possible, the need for construction of facilities at this time analysis of the relationship between the adjacent, as many facilities for Hydropower Construction, different facilities have a clear focus on functionality, such as depots, gas stations, etc., if not for the neighbor relations analysis, because the construction of facilities for the inter-functional conflict, construction and project management to bring incalculable damage and safety hazards buried.References:[1] Lu Yu Mei editor of the Three Gorges Dam Construction [M]. Beijing: China Electric Power Press, 2003[2] Wei-Jun Zhu, Zhang Xiaojun and so the overall layout design of the Three Gorges Project Construction [J]. The people of the Yangtze River, 2001.32 (10) :4-5.译文:水利水电工程施工的布置方案设计[关键词]施工布置模糊多属性决策水利水电施工[论文摘要]分析施工布置方案的影响因素特点,指出人们在确定这些指标值时受到模糊性因素的限制很难给出精确值,同时决策过程还受到人们心理、主观意愿和工作经验等多方面的影响,因而决策过程也必然存在模糊性。
Shimen DamProfession: Hydraulic and Hydroelectric Engineering Class & Grade: 091Student Name: Wang FuStudent Number: 200916056110Architecture and Engineering DepartmentFor the district in New Taipei City, see Shimen District.Shimen Dam is an embankment dam crossing the Dahan River in Taoyuan County, Taiwan. Serving mainly for municipal water supply and flood control, the dam creates Shimen Reservoir in the mountains south of Longtan. The construction plan was created in 1938 under Japanese rule, but was not implemented immediately because of the start of World War II. The dam was the largest in Taiwan when construction ended in 1964.Each day, Shimen supplies 1.4 million tonnes of water to residences and industry and 1.8 million tonnes of water to agriculture in Taoyuan County, Taiwan|Taoyuan County and New Taipei City. It is integral to the water supply/regulation system of northern Taiwan. The dam cost NT $4.85 billion to construct.History and siteThe dam site lies in a steep canyon of the Dahan River near the aboriginal town of Fusing, at the head of a 763 km2 catchment area. The canyon, with walls up to 500 metres high, was formerly home to the summer villa of Chiang K'ai-shek. The historic arched Amuping Stone Bridge and a nearby Earth God shrine, among other landmarks, were also covered by the Shimen Reservoir as it filled. Before the dam was built in the 1950s, the flow of到了新北市区,就能看到石门区。
专业英语词汇水利水电工程专业施工总平面布置(施工总体布置) construction general layout施工组织Consruction Programming施工组织设计construction planning施工坐标系(建筑坐标系)construction coordinate system湿化变形soaking deformation湿润比percentage of wetted area湿润灌溉wetting irrigation湿室型泵房wet-pit type pump house湿陷变形系数soaking deformation coefficient湿陷起始压力initial collapse pressure湿陷系数(湿陷变形系数) coefficient of collapsibility湿周wetted perimeter十字板剪切试验vane shear test石袋honeycomb时均流速time average velocity时均能量time average energy时效硬化(老化) age hardening (ageing)时针式喷灌系统(中心支轴自走式系统) central pivot sprinkler system 实测放大图surveyed amplification map实腹柱solid column实际材料图primitive data map实时接线分析real time connection analysis实时控制real-time control实时数据和实时信息real time data and real time information实体坝solid dike实体重力坝solid gravity dam实物工程量real work quantity实验站experimental station实用堰practical weir示流信号器liquid-flow annunciator示坡线slope indication line示误三角形error triangle示踪模型tracer model事故failure (accident)事故备用容量reserve capacity for accident事故低油压tripping lower oil pressure事故音响信号emergency signal (alarmsignal)事故运行方式accident operation mode事故闸门emergency gate事故照明accident lighting事故照明切换屏accident lighting change-over panel势波potential wave势流potential flow势能potential energy势涡(自由涡) potential vortex视差parallax视差法测距(基线横尺视差法)subtense method with horizontal staff 视差角parallactic angle视准线法collimation line method视准轴(照准轴)coolimation axis试验处理treatment of experiment试验端子test terminal试验项目Testing item试验小区experimental block试运行test run试运行test run收敛测量convergence measurement收敛约束法convergence-confinement method收缩断面vena-contracta收缩缝(温度缝) contraction joint (temperature joint)收缩水深contracted depth手动[自动]复归manual [automatic] reset手动[自动]准同期manual [automatic] precise synchronization手动调节manual regulation手动控制manual control手动运行manual operation手工电弧焊manual arc welding首曲线(基本等高线)standard contour首子午线(本初子午线,起始子午线)prime meridian受油器oil head枢纽布置layout of hydroproject疏浚dredging输电系统transmission system输电线transmission line输入功率试验input test输沙量sediment runoff输沙率sediment discharge输水钢管steel pipe for water conveyance输水沟conveyance ditch输水建筑物water conveyance structure输水渠道water conveyance canal鼠道mole drains鼠道犁mole plough鼠笼型感应电动机squirrel cage induction motor竖井定向测量shaft orientation survey竖井贯流式水轮机pit turbine竖井联系测量shaft connection survey竖井排水drainage well竖井式进水口shaf tintake竖轴弧形闸门radial gate with vertic alaxes数字地面模型digital terrain model(DTM)数字化测图digitized mapping数字通信digital communication数字图像处理digital image processing数字仪表digital instrument甩负荷load dump (load rejection,load shutdown)甩负荷试验load-rejection test (load-shutdowntest)双层布置double storey layout双调节调速器dual-regulation governor双扉闸门double-leaf gate双回线double-circuit line双击式水轮机cross flow turbine,Banki turbine双极高压直流系统bipolar HVDC system双金属标bimetal bench mark双列布置double row layout双母线接线double-bus connection双曲拱坝double curvature arch dam双曲拱渡槽double curvature arch aqueduct双室式调压室double-chamber surge shaft双吸式离心泵double-suction pump双向挡水人字闸门bidirectional retaining mitre gate水泵[水泵水轮机的水泵工况]的反向最大稳态飞逸转速steady state reverse runaway speed of pump水泵比转速specific speed of pump水泵并联扬程曲线head curve of parallel pumping system水泵参数与特性Parameters and characteristics of pump水泵串联扬程曲线head curve of series pumping system水泵的最大[最小]输入功率maximum[minimum] input power of pump 水泵电动机机组Motor-pump unit水泵反常运行pump abnormal operating水泵工况(抽水工况) pump operation水泵工作点(水泵工况点) pump operating point水泵供水water feed by pump水泵机械效率mechanical efficiency of pump水泵机组pump unit水泵类型Classification of pumps水泵零部件Components of pumps水泵流量pump discharge水泵容积效率volumetric efficiency of pump水泵输出功率output power of pump水泵输入功率(水泵轴功率) input power of pump水泵水力效率hydraulic efficiency of pump水泵水轮机Pump-turbine水泵无流量输入功率no-discharge power of pump水泵效率pump efficiency水泵扬程(水泵总扬程) total head of pump水泵站Pumping Station水泵装置pump system水锤(水击) water hammer水锤泵站hydrauli cram pump station水锤波(水击波) wave of water hammer水锤波波速wave velocity of water hammer水电站Hydroelectric Station水电站(水力发电站) Hydroelectric station (hydroelectric power station) 水电站保证出力firm power, firm output水电站厂房(发电厂房) power house水电站厂房的类型Types of power house of hydroelectric station水电站出力power output of hydropower station水电站出力和发电量Power and energy output of hydropower station水电站的水头、流量、水位Waterhead, discharge, water lever of hydropower station水电站发电成本generation cost of hydropower station水电站发电量energy output of hydropower station水电站建筑物hydroelectric station structure水电站经济指标Economie index of hydropower station水电站类型Types of hydroelectric station水电站引用流量quotative discharge of hydropower station水电站装机容量installed capacity of hydropower station水电站自动化automation of hydroelectric station水跌hydraulic drop水动力学Hydrodynamics水斗bucket水斗式水轮机(贝尔顿式水轮机) pelton turbine水工建筑物hydraulic structure水工建筑物的类别及荷载Classification and load of hydraulic structures水工建筑物级别grade of hydraulic structure水工金属结构及安装Metal Structures and Their Installation水工隧洞hydraulic tunnel水工隧洞Hydraulic tunnels水工隧洞构造Components of hydraulic tunnel水工隧洞类型Classification of hydraulic tunnels水管冷却pipe cooling水柜water pool水环真空泵liquid ring pump水灰比water-cement ratio水窖(旱井) water callar(dry wall)水静力学Hydrostatics水库并联运用operation of parallel-connected resertvoir水库测量reservoir survey水库串联运用operation of serial-connected reservoirs水库调度reservoir operation水库调度图graph of reservoir operation水库回水变动区fluctuating back water zone of reservoir水库浸没reservoir immersion水库控制缓洪controlled flood retarding水库库底清理cleaning of reservoir zone水库泥沙Reservoir sediment水库泥沙防治Prevention of sediment水库年限ultimate life of reservoir水库渗漏reservoir leakage水库水文测验reservoir hydrometry水库塌岸bank ruin of reservoir水库特征库容Characteristic capacity of reservoir水库特征水位Characteristic level of reservoir水库泄空排沙sediment releasing by emptying reservoir水库蓄清排浑clear water impounding and muddy flow releasing水库淹没补偿compensation for reservoir inundation水库淹没处理Treatment of reservoir inundation水库淹没处理范围treatment zone of reservoir inundation水库淹没界线测量reservoir inundation line survey水库淹没区zone of reservoir inundation水库淹没实物指标material index of reservoir inundation水库异重流density current in reservoir水库异重流排沙sediment releasing by density current水库诱发地震reservoir induced earthquake水库淤积Sediment deposition in reservoir水库淤积测量reservoir accretion survey水库淤积极限limit state of sediment deposition in reservoir水库淤积平衡比降equilibrium slope of sediment deposition in reservoir 水库淤积上延(翘尾巴) upward extension of reservoir deposition水库淤积纵剖面longitudinal profile of deposit in reservoir水库滞洪排沙flood retarding and sediment releasing水库自然滞洪free flood retarding水冷式空压机water-cooled compressor水力半径hydraulic radius水力冲填hydraulic excavation and filling水力冲填坝hydraulic fill dam水力冲洗式沉沙池hydraulic flushing sedimentation basin水力粗糙度hydraulic roughness水力粗糙区hydraulic roughness region水力共振hydraulic resonance水力光滑区hydraulic smooth水力机械Hydraulic Machinery水力机械与电气设备HYDRAULIC MACHINERY AND ELECTRIC EQUIPMENT 水力机组hydropower unit水力机组测试Measurement and test for hydropower unit水力机组的安装和试运行Installation and starting operation of hydropower unit水力机组调节系统Regulating system of hydropower unit水力机组辅助系统Auxiliary system for hydropower unit水力开挖hydraulic excavation水力坡降(水力比降) hydraulic slope (energy gradient)水力破裂法(水力致裂法) hydro fracturing method水力侵蚀(水蚀) water erosion水力学Hydraulics水力要素(水力参数) hydraulic elements水力指数hydraulic exponent水力自动闸门hydraulic operating gate水力最优断面optimal hydraulic cross section水利工程经营管理management and administration of water project水利计算Computation of water conservancy水利区划zoning of water conservancy水利枢纽hydroproject水利水电工程等别rank of hydroproject水利水电工程规划PLANNING OF HYDROENGINEERING水利水电工程技术术语标准Standard of Technical Terms on Hydroengineering水利水电工程勘测SURVEY AND INVESTIGATION FOR HYDROENGINEERING 水利水电工程施工CONSTRUCTION OF HYDRAULIC ENGINEERING水量分布曲线water distribution curve水流动力轴线(主流线) dynamic axis of flow水流连续方程continuity equation of flow水流流态State of flow水流阻力和能头损失Flow resistance and head loss水轮泵站turbine-pump station水轮发电机Hydraulic generator水轮发电机hydraulic turbine-driven synchronous generator(hydro-generator)水轮发电机组Hydraulic turbine-generator unit水轮发电机组hydraulic turbine-generator unit水轮机hydraulic turbine,water turbine水轮机[水泵]额定流量rated discharge of turbine[pump]水轮机安装Installation of hydraulic turbine水轮机安装高程setting of turbine水轮机保证出力guaranteed output of turbine水轮机比转速specific speed of turbine水轮机参数和特性Turbine parameters and turbine characteristics水轮机层turbine storey (turbine floor)水轮机的机械效率mechanical efficiency of turbine水轮机的容积效率volumetric efficiency of turbine水轮机的水力效率hydraulic efficiency of turbine水轮机调节系统turbine regulating system水轮机调节系统静特性试验static characteristic test of regulation system of hydraulic turbine水轮机调速器turbine governor水轮机额定输出功率(水轮机额定出力) rated output of turbine水轮机飞逸转速runaway speed of turbine水轮机工况(发电工况) turbine operation水轮机空载流量no-load discharge of turbine水轮机类型Classification of turbines水轮机零、部件Components of hydraulic turbine水轮机流量turbine discharge水轮机模型试验model test of turbine水轮机磨蚀与振动Erosion and vibration of hydraulic turbine水轮机气蚀系数cavitation factor of turbine,cavitation coefficient of turbine 水轮机设计水头design head of turbine水轮机试运行Test runof hydraulic turbine水轮机室turbine casing水轮机输出功率(水轮机出力) turbine output水轮机输入功率turbine input power水轮机水头(水轮机净水头) turbine net head水轮机吸出水头损失suction head loss of turbine水轮机效率turbine efficiency水轮机压力管道(高压管道) penstock水轮机引水室turbine flume水轮机主轴turbine main shaft水轮机最大输出功率(水轮机最大出力) maximum output of turbine水轮机最高效率maximum efficiency of turbine水面曲线water surface profile水面蒸发量evaporation from water surface水能waterpower, hydropower水能计算hydropower computation水能开发方式Types of hydropower development水能利用Water power utilization水能利用规划waterpower utilization planning水能资源(水力资源) waterpower resources, hydropower resources水泥比表面积specific surface of cement水泥罐cement silo水泥水化热hydration heat of cement水泥体积安定性soundness of cement水平底坡horizontal slope水平地质剖面图geological plan水平度levelness水平沟horizontal ditches水平阶地horizontal terraces水平位移工作点operative mark of horizontal displacement水平位移观测horizontal displacement observation水平位移基点datum mark of horizontal displacement水生态学hydrobiology水头water head水头损失head loss水头预想出力expected power, expected output水土保持soil and water conservation水土保持工程措施Soil and water conservation works水土保持规划Planning of soil and water conservation水土保持林业措施Afforestation measures for soil and water conservation 水土流失Soilandwaterloss水土流失(土壤侵蚀) soil erosion(soil and waterloss)水位water stage (water level)水位、流速、流量Water stage, flow velocity, flow discharge水位传导系数coefficient of water level conductivity水位调节装置water level regulator水位计water-level gauge水位流量关系曲线stage-discharge relation curve水位信号water-level indicating signal水位站water stage gauging station水文测验hydrometry水文测站hydrometrical station水文测站和站网Hydrometrical station and network水文地质Hydrogeology水文地质基础Basichydrogeology水文地质试验Hydrogeologicaltest水文地质图hydrogeological map水文调查hydrological investigation水文分析计算Hydrological analysis and computation水文观测hydrological observation水文观测Hydrological observation and measurement水文过程线hydrograph水文核技术nuclear technology in hydrology水文计算Hydrologic computation水文计算及水文预报Hydrological Computation and Forecasing水文空间技术space technology in hydrology水文模型hydrological model水文年鉴hydrological almanac(hydrological yearbook)水文频率曲线hydrological frequency curve水文手册hydrological handbook水文统计hydrological statistics水文图集hydrological atlas水文遥测技术hydrological telemetering technology水文要素hydrological data水文预报Hydrological forecast水文站hydrometrical station水文站网hydrological network水文资料整编hydrological data processing水系(河系,河网) hydrographic net(river system)水下爆破under water blasting水下地形测量underground topographic survey水下混凝土浇筑underwater concreting水下接地网under water earthed network水压力hydraulic pressure水跃hydraulic jump水跃长度length of hydraulic jump水跃高度height of hydraulic jump水跃函数hydraulic jump function水跃消能率coefficient of energy dissipation of hydraulic jump 水运动学Hydrokinematics水运动学及水动力学Hydrokinematics and hydrodynamics水闸sluice (barrage)水闸类型Classification of sluices水闸组成部分Components of sluice水质water quality水质标准water quality standard水质监测站water quality monitoring station水质评价water quality assessment水质污染Water quality pollution水质预报water quality forecast水中起动starting in water水中起动力矩starting torque in water水柱water column水坠坝sluicing siltation earth dam水准测量leveling水准点benchmark水准路线leveling line水准器分划值(水准器角值,水准器格值)scale value of level水准网平差adjustment of leveling network水准仪(水平仪)level水准仪与经纬仪Leveland theodolite水资源water resources水资源规划water resources planning水资源开发利用Development and utilization of water resources水资源开发利用water resources development税金tax顺坝longitudinal dike (training dike)顺坡(正坡) positive slope顺行波advancing downstream wave顺序控制系统sequential control system顺直型河流straight river瞬动电流instantaneous acting current瞬发雷管(即发雷管) instantaneous blasting cap瞬时沉降(弹性沉降,初始沉降,形变沉降) initial settlement瞬时单位线instantaneous unit hydrograph瞬时电流速断保护(无时限电流速断保护) instantaneous over current cut-off protection瞬时流速instantaneous velocity瞬态法finite increment method死库容(垫底库容) dead storage死区dead band死水位minimum pool level(dead water level)松动爆破loosening blasting (crumbling blasting)松方loose measure松散系数bulk factor素混凝土(无筋混凝土) plain concrete素图simple map速动时间常数promptitude time constant速度环量velocity circulation速度三角形velocity triangle速凝(瞬时凝结) quick set (flash set)速凝剂accelerator塑料导爆管(传爆管) plastic primacord tube塑限(塑性限度,塑性界限含水量) plastic limit塑性铰plastic hinge塑性指数plasticity index溯源冲刷[淤积] backward erosion[deposition]算术平均粒径arithmetic mean diameter算术平均水头arithmetic average head算术平均效率arithmetic average efficiency随动系统servo system随动系统不准确度inaccuracy of servosystem随机波random wave随机性水文模型(非确定性水文模型) stochastic hydrological model 碎部点(地形特征点)detail point碎裂结构clastic structure碎屑结构clastic texture隧洞衬砌tunnel lining隧洞导流tunnel diversion隧洞渐变段tunnel transition section隧洞开挖tunnel excavation隧洞排水tunnel drainage隧洞钻孔爆破法(隧洞钻爆法) drill-blast tunneling method损失容积(死容积) lost volume缩限(收缩界限) shrinkage limit锁坝closure dike锁定装置dog device (latch device,gate lock device)锁锭装置locking device (checking device)它励(它激) separate excitation塔式进水口tower intake踏面rolling face台车式启闭机platform hoist台阶结构面step structural plane台阶掘进法heading and bench method坍落度slump坍落拱collapse arch探槽exploratoryt rench探洞exploratory adit探井exploratory shaft探坑exploratory pit碳素钢(碳钢) carbon steel塘堰pond掏槽孔(掏槽眼) cut hole套管casing pipe套闸(双埝船闸) double dike lock特大暴雨extraordinary rainstorm特大洪水extraordinary flood特高压(特高电压) ultra-high voltage (U.H.V.)特类钢(C类钢) type C steel特殊地区施工增加费additional cost for special condition特殊荷载specia lload (unusual load)特殊荷载组合special load combination特性和参数Characteristics and parameters特性阻抗(波阻抗) characteristic impedance (wave impedance) 特征线法characteristics method特征斜率characteristic slope梯段爆破bench blasting梯级水电站cascade hydroelectric station梯形堰trapezoidal weir锑恩锑(三硝基甲苯) TNT (trinitroto luene)提升式升船机lifting type ship lift提水灌溉pumping irrigation提水排水pumping drainage体积模量bulk modulus体积压缩系数coefficient of volume compressibility天然骨料natural aggregate天然密度(天然容重) natural density(naturalunitweight)天文潮astronomical tide田间持水量field capacity田间工程farml and works田间排水沟(墒沟) field ditch田间排水试验experiment for farm land drainage田间渠系farm canal system田间水利用系数water efficiency in field田间需水量(田间耗水量) water consumption on farmland填埋式管(上埋式管) buried pipe line填石笼gabion填筑filling填筑含水量placement water content(placement moisture content) 挑坎(挑流鼻坎) flip bucket。
Placing and protecting fillFill shall be placed so that mo part of the final foundation surface remains exposed for more than 72 hours.Fill shall be placed in such methods as will prevent segregation of the material.Where the Contract requires the placing of different types of fill in separate zones,the Contractor shall carry out the work so as to prebent mixing of different types of fill.Shoud there be ,in the opinion of the Engineer, any excessive mixing of different types of fill , such mixed materials shall be removed to a spoil tip and replaced with fresh fill.Any undesirable material accumulated on the fill surface shall be removed before placeing the next layer of fill.No fill material shall be placed on a previous layer of that has dried out,become saturated or in any way deteriorated by exposure or by spilling of other material or disterbance by mechanical transport or by deposition of wind blown particles or by any other means. Before fresh fill material is placed aoo such deteriorated fill or foreign material shall be removed to a depth at which material of an acceptable standard is exposed. The surface of each layer is to be approved by the Engineer before the next layer is placed.Any fill shall be placed in uniform layers not greater than the approved thickness as specified hereafter and in an orderly sequence approximately horizontal along the centreline of the embankments.Except where specified of directed otherwise, no portion of any embankment shall be stepped more than 3 feet higher than any immediately adjacent portion except where permitted by the Engineer and the slope formed by such steps shall not exceed 1V:3H and not less than 1V:4H from one level to another.Except as shown on the Drawings or as otherwise directed, all fill placement surfaces shall be sloped at right angles to the centerline of the embankment in both the upstream and downstream direction from the downstream edge of the core so as to allow run-off and prevent the accumulation of water. The drainage slope on the temporary surface of anny zone shall not exceed 1 on 30 and the highest pointshall be de downstream edge of the core.Where,due to the specified geometry of the excavation into the top of the existing embankments, the surface slope is towards the downstream edge of the core, the Contractor shall take such measures an necessary to prevent erosion of fine material being washed into the filter zones downstream of the core. Any surface layer of filter material contaminated by such drainage or other cause shall be removed and replaced with fresh filter material before placing the next layer above.Construction of any one embankment shall be carried out over the maximum possible length,mo less than 1500 feet,of that embankment in such a manner that mo temporary construction slope crosses the axis of the embankment except as approved by the Engineer. Where a temporary constrction slope crossing the axis of the embankment is permitted by the Engineer it shall be formed at a gradient of 1V:5H. When subsequently placeing material against this slope it shall be cut back in steps equal to the layer thickness to avoid feather edges. The Contractor shall complete each layer of fill fully up to the abutment contacts and structures and against sloping foundations and ensure that the fill is compacted an specified throughout. The Contractor shall not allow the fill in those areas to lag behind or to get ahead of the normal fill placing operations and form feather edges, except where fill has been placed in advance to cover grouted surface.Where the Contractor is allowed to use either grvel fill and /or sandstone no intermixing of the two materials in a layer shall be allowed. The Constractor may place either of the materials in adjacent layers or sections of the embankment.The Constractor shall be responsible for protecting temporary fill surfaces against damage of erosion. At the end of each working day,or if it start to rain ,the surface of the fill shall be made smooth and compacted with a smooth drum roller with a drainage slope to induce runoff from the filled areas and leave no areas that can retain water. Where necessary, grips,drainage ditches and the like shall be formed to assist drainage and toprevent runoff from damaging placed material.Runoff from heavy rain shall be controlled to prevent gully erosion of the placed fill. Any gully erosion shall be repaired with material compacted in accordance with the Specification, and eroded surfaces shall be restored and graded to ensure a proper bond with new fill placed on them.Any eroded material other than gravel and any contaminated material shall be removed from the embankment and placed in designated spoil tips. In particular the Contractor shall ensure that no material is washed into filter or drain material.Where placing of the filter material of drain material is not continuous ,the Constractor shall protect such filter or drain materials by a 2 foot thick layer of course filter material or in such other manner approved by the Engineer,and the Contractor shall maintain the protective layer.The Contractor shall keep the work free from standing water to prevent damage to the fill material. When working below the surrounding level, the Contractor shall ensure that material from adjacent areas does not contaminate the fill material,and that runoff does not flow onto the fill.The Contractor shall arrange the timing and rate of placing fill material in sucn way that no part of the workes is over stressed,weakened or endangered. Any part of the fill that be comes saturated or attains excessive moisture content or that is rendered unsuitable due to poor surface drainage, uncontrolled traffic,or for any other reason, shall be excavated and removed to a spoil tip and replaced by fresh fill .If permitted by the Engineer, such fill may be scarified and re-compacted.Unless otherwise approved by the Engineer unrestrained edges of fill, whether for temporary or permanent slops, shall be overbuilt as necessary to allow full compaction to be achieved within defined limits of the fill. The excess material shall be trimmed and removed to leave a regular compacted surface.Slope exposed to view,including riprap and downstream protection slopes, shall be dressed to neatly appearing final surfaces matching the existing slopes.Temporary access ramps shall be removed when work in that area is completed. Any ramps or other areas within the limits of an embankment which, in the opinion of the Engineer have been over-compacted or damaged by the concentrated use by construction equipment,shall be reworked and re-compacted or,if the Engineer requires,shall be excavated, removed to spoil tip and replaced by the fresh fill.When necessary the surface of the layer of fine grained fill material(rolled clay,rolled silt Type A and B ,Rolled Sandstone Type A and B) shall be sprayed with water to prevent drying out and to maintain the correct uniform moisture content prior to placing the next layer.The Contractor shall ensure that a good bond is achieved between layers of filland unless otherwise directed, previously compacted layers of fine grain materials shall be harrowed, scarified or otherwise roughened to depth of at least 3 inches and made suitable for covering with future layer of fill.填料的填筑和保护大坝填筑的方式应做到:无论哪一部分的填料填筑后,最后的基础面暴露的时间不超过72小时。