氧化铈在催化剂中的作用
- 格式:docx
- 大小:21.52 KB
- 文档页数:3
氧化铈在催化剂中的作用氧化铈是一种常用的催化剂,在许多重要的化学反应中具有重要的作用。
它通常在与其他金属氧化物混合的形式出现,以增强催化活性和选择性。
以下将详细介绍氧化铈在催化剂中的作用。
1.氧存储:氧化铈具有优异的氧存储性能。
在氧化还原循环过程中,氧化铈可以吸收和释放氧气。
这一特性使得氧化铈成为二氧化碳生物质燃烧和汽车尾气净化等重要反应中的关键催化剂。
当氧气供应充足时,氧化铈可以从其他氧化物中吸收氧气,形成CeO2-x,当氧气供应不足时,氧化铈可以释放氧气以维持反应的正常进行。
因此,氧化铈在催化剂中的氧存储能力有助于提高催化剂的氧化和还原活性。
2.氧离子传导:氧化铈具有良好的氧离子传导性能。
在高温条件下,氧化铈可以通过氧离子传导来促进氧气的输运。
这使得氧化铈在高温氧化反应中具有优异的催化活性,例如氧化甲烷制合成气、气体分部氧化反应等。
氧化铈的氧离子传导性能是由其晶体结构和离子扩散能力所决定的。
氧离子可以通过铈离子空位和氧空位之间的扩散来传输。
因此,优化氧化铈的晶体结构和氧空位浓度可以进一步提高催化剂的氧离子传导性能。
3.氧化还原能力:氧化铈具有良好的氧化还原能力。
它可以在不同氧化态之间实现可逆的氧化还原反应。
这使得氧化铈在氧化和还原反应中具有较高的催化活性。
氧化铈能够在还原条件下将氧气和氧化剂吸附并转化为活性物种,然后在氧化条件下将活性物种转化回氧气。
这一特性使得氧化铈成为重要的氧化剂和还原剂,用于许多有机合成和环境保护反应中,例如氧化甲烷制合成气、催化燃烧、脱氮等。
4.表面氧化物物种生成:氧化铈的表面具有丰富的氧化物物种,如含有Ce3+和Ce4+的氧化物物种。
这些表面氧化物物种在许多催化反应中发挥着重要的作用。
例如,Ce3+和Ce4+可以作为活性位点吸附反应物并催化它们的转化。
此外,氧化铈表面的氧化物物种还可以在催化反应中参与反应中间体的生成和转化,从而对反应过程起到调节和促进作用。
综上所述,氧化铈在催化剂中具有诸多作用。
氧化铈的晶体结构氧化铈是一种重要的功能性材料,其晶体结构对其性质和应用具有重要影响。
本文将介绍氧化铈的晶体结构以及其在材料科学领域的应用。
氧化铈的晶体结构属于立方晶系,具体来说是面心立方晶体结构。
在晶体中,每个氧化铈分子由一个铈离子和六个氧离子组成。
铈离子的价态可以是Ce3+或Ce4+,这取决于氧化铈的氧化程度。
在氧化铈中,氧离子和铈离子之间通过离子键相互结合,形成稳定的晶体结构。
氧化铈的晶体结构具有许多特殊的物理和化学性质。
首先,氧化铈具有良好的氧存储和释放能力。
由于氧离子在晶格中的移动能力,氧化铈可以在不同氧分压下吸收和释放氧气,使其在储能和催化反应中具有重要应用价值。
其次,氧化铈还具有优异的热稳定性和化学惰性,使其成为高温材料和电子元件的理想选择。
在材料科学领域,氧化铈的晶体结构对其应用具有重要影响。
首先,氧化铈的晶体结构可以通过控制合成条件来实现调控。
例如,通过调节反应温度、反应时间和添加剂等因素,可以合成不同晶体结构和形貌的氧化铈纳米材料。
这种定向合成可以优化氧化铈的性能,使其在能源储存、催化剂和传感器等领域具有更广泛的应用。
氧化铈的晶体结构也影响其光学和电学性质。
由于晶体结构的影响,氧化铈具有丰富的光学性质,如荧光和吸收光谱。
这使得氧化铈在光电子学和光催化领域具有广泛应用。
此外,氧化铈的晶体结构还决定了其电学性质,如电导率和介电常数。
这些性质使得氧化铈在电子元件和传感器等领域有着重要应用。
除了在材料科学领域的应用外,氧化铈的晶体结构还在其他领域有着重要作用。
例如,在环境保护领域,氧化铈可以作为催化剂用于净化废气和水处理。
其晶体结构提供了活性位点和催化活性,使得氧化铈在有机污染物降解和废气净化中具有良好的效果。
氧化铈的晶体结构是其性质和应用的关键。
通过对晶体结构的研究和调控,可以实现氧化铈材料性能的优化和应用的拓展。
随着对氧化铈晶体结构的深入理解,相信氧化铈将在更多领域展现其巨大潜力。
介孔二氧化铈介孔二氧化铈是一种具有特殊孔结构的氧化铈材料。
它的孔径大小通常在2-50纳米之间,具有较大的比表面积和丰富的孔道结构。
这种特殊的结构使得介孔二氧化铈在催化、吸附、电化学、传感等领域具有广泛的应用前景。
在催化领域中,介孔二氧化铈常被用作催化剂的载体。
其高比表面积和丰富的孔道结构使得催化剂得以均匀地分散在其上,从而提高了催化活性和选择性。
此外,介孔二氧化铈还可以通过调控其孔径和孔道结构,定向合成特定催化剂,以满足不同反应的需求。
例如,通过调节孔径可以实现对不同大小分子的选择吸附,从而提高催化反应的效率。
在吸附领域中,介孔二氧化铈具有优异的吸附性能。
其孔道结构和孔径大小可调控,可以实现对不同分子的选择吸附。
这使得介孔二氧化铈在环境污染治理、气体分离、储氢等方面有着广泛的应用。
例如,介孔二氧化铈可以作为催化剂的载体,用于吸附和降解有害气体,如甲醛、苯等有机污染物。
此外,介孔二氧化铈还可以用于气体分离,如二氧化碳的吸附分离和储氢材料的制备等。
在电化学领域中,介孔二氧化铈也展示出了良好的应用潜力。
其高比表面积和丰富的孔道结构使得其成为优秀的电极材料。
例如,介孔二氧化铈可以作为电容器电极材料,用于储能和电力传输。
此外,介孔二氧化铈还可以用于锂离子电池、燃料电池等能源转换和储存领域。
在传感领域中,介孔二氧化铈可以作为传感器的敏感材料。
其孔道结构和孔径大小可调控,可以实现对特定分子的选择性识别。
例如,介孔二氧化铈可以用于气体传感器,通过吸附不同气体分子,改变其电学性质,从而实现对气体的检测和识别。
介孔二氧化铈作为一种具有特殊孔结构的氧化铈材料,在催化、吸附、电化学、传感等领域具有广泛的应用前景。
通过调控其孔径和孔道结构,可以实现对不同分子的选择性吸附和识别,从而提高催化活性、吸附性能、电化学性能和传感性能。
随着材料科学和纳米技术的不断发展,相信介孔二氧化铈将在更多领域展示其独特的应用价值。
化学与生物工程Chemistry &Bioengineering2005,No.2综述专论1 基金项目:广东省科技计划资助项目(2002C1030408)收稿日期:2004-11-11作者简介:孔祥晋(1980-),男,山东聊城人,研究生,主要研究方向:材料化学及光电催化的研究;指导老师:潘湛昌(1962-),博士,副教授。
纳米氧化铈催化作用研究探讨孔祥晋,潘湛昌,肖楚民,张环华(广东工业大学轻工化工学院,广东广州510090) 摘 要:总结了氧化铈在催化中的作用,指出了纳米粒子的表面效应及氧化铈自身特性对其催化性能的影响,分别从CeO 2作为催化剂、助剂、载体等方面对CeO 2在催化中的应用加以综述,介绍了制备纳米CeO 2超细粉体的常见方法,并结合有关研究结果提出了今后的研究方向。
关键词:氧化铈;催化;纳米粒子中图分类号:O 611161 O 63413 文献标识码:A 文章编号:1672-5425(2005)02-0001-03 由于表面效应的影响,纳米粒子的比表面积很大、表面活性中心多、选择性好,可以显著增进催化效率。
国际上已经把纳米粒子作为第四代催化剂[1],在本世纪可能成为催化反应的主要角色。
铈是一种镧系元素,具有很好的氧化还原性能[2,3]。
氧化铈是稀土氧化物系列中活性最高的一个氧化物催化剂,具有较为独特的晶体结构、较高的储氧能力(OSC )和释放氧的能力、较强的氧化-还原性能(Ce 3+/Ce 4+),因而受到了人们极大关注,一些研究成果已经应用于工业催化领域。
1 纳米二氧化铈的制备及其结构特点目前,制备纳米CeO 2超细粉体的常见方法主要有沉淀法[4]、溶胶2凝胶法[5]、微乳液法[6]等。
CeO 2属于萤石型的氧化物[7](如图1)。
图1 萤石结构的C eO 2面心晶胞Fig.1 F ace 2centered crystal cell of C eO 2w ith flu arite structu re这样的结构中有许多八面体空位允许离子快速扩散。
氧化铈变价氧化铈的变价性质使其在许多领域都有重要的应用,包括催化剂、燃料电池、氧化还原反应和红外吸收剂等方面。
这篇文章将介绍氧化铈的变价性质及其在不同领域的应用。
一、氧化铈的变价性质氧化铈由于铈的变价性质,可以存在CeO2和Ce2O3两种不同的氧化态。
在CeO2中,铈的氧化态为+4,而在Ce2O3中,铈的氧化态为+3。
这两种不同的氧化态使氧化铈具有特殊的化学性质和应用价值。
1. CeO2的氧化性和催化性CeO2是一种常见的氧化铈化合物,在工业上被广泛用作氧化剂和催化剂。
由于CeO2具有可逆的氧离子存储/释放能力,可以通过吸收和释放氧气来调节氧化还原反应的速率和平衡。
此外,CeO2还具有良好的表面氧化性能,可以在催化反应中起到促进氧化还原反应的作用,因此被广泛应用于汽车尾气净化、有机废气处理、甲醇转化等催化反应中。
2. Ce2O3的氧化还原性Ce2O3是氧化铈的另一种常见形式,在Ce2O3中,铈的氧化态为+3。
由于Ce2O3具有较高的氧化还原性,可以用作氧化还原反应的催化剂。
此外,Ce2O3还可以用作稀土金属的还原剂,广泛应用于钢铁冶炼、贵金属提取、合金制备等工艺中。
二、氧化铈在催化剂领域的应用1. 汽车尾气净化催化剂在汽车尾气净化系统中,氧化铈被广泛用作催化剂的活性组分。
由于CeO2具有良好的氧化性能和氧离子存储/释放能力,可以有效地氧化有害气体(如一氧化碳、氮氧化物等)为无害气体,从而净化汽车尾气排放。
2. 有机废气处理催化剂在工业生产中,有机废气排放是一个常见的环境污染问题。
氧化铈可以作为催化剂的活性组分,用于有机废气的氧化燃烧和净化处理,将有机废气中的有机物质氧化为无害物质,从而实现废气的净化处理。
3. 甲醇、乙醇转化催化剂在新能源领域,甲醇和乙醇是常见的可再生能源,可以用作燃料电池和乙醇发动机的燃料。
氧化铈可以作为催化剂的活性组分,用于甲醇和乙醇的氧化还原反应,促进燃料的高效转化和利用。
铈的化工原理及应用1. 铈的概述铈是一种化学元素,符号为Ce,原子序数为58,属于稀土元素。
它是一种银白色的金属,具有良好的可塑性、热稳定性和化学稳定性。
铈在自然界中以多种矿石的形式存在,常见的矿物包括铈矾石和氧化铈矿。
由于其化学性质的特殊性,铈在化工领域中有着重要的应用。
本文将介绍铈的化工原理及其在不同领域的应用。
2. 铈的化学性质铈是一种活泼的金属,易与氧、硫等元素反应,具有较强的氧化还原性。
铈常见的氧化态有Ce(III)和Ce(IV),其中Ce(III)是最常见的氧化态。
铈的氧化还原反应可以用以下两个半反应来表示:Ce(III) -> Ce(IV) + e-Ce(IV) + e- -> Ce(III)铈还具有良好的催化性能,可以参与多种化学反应。
此外,铈还具有良好的光学性能,可以应用于光学玻璃、荧光材料等方面。
3. 铈的应用领域3.1 催化剂铈化合物在催化剂领域中有着广泛的应用。
由于铈的氧化还原能力和催化活性,它常被用作汽车废气净化催化剂中的活性组分。
铈氧化物可以氧化一氧化碳和氮氧化物等有害物质,将其转化为无害的二氧化碳和氮气。
铈还可以用于氧化甲烷制取甲醛、氧化苯制取对苯二酚等重要化工反应中。
3.2 金属材料铈在金属材料领域也有着广泛的应用。
由于其良好的可塑性和热稳定性,铈可以用来制备高温合金、耐热材料等。
此外,由于铈的氧化还原性,它还可以用来改善金属材料的耐腐蚀性能。
3.3 光学材料由于铈具有良好的光学性能,它在光学材料领域也有着广泛的应用。
铈离子可以在玻璃中形成不同的色心,赋予光学玻璃不同的颜色和光学效果。
此外,铈还可以用于制备荧光材料,提供特定的发光性能。
3.4 化妆品铈也可以用于化妆品中,被用作颜料和着色剂。
铈颜料可以赋予化妆品艳丽的颜色,同时由于其化学稳定性,可以提高化妆品的稳定性和耐用性。
4. 实验室制备铈化合物的方法铈化合物的制备方法多样,以下是实验室中常用的几种方法: - 4.1 氧化法:将金属铈暴露在空气中氧化,生成铈氧化物。
稀土材料在化学催化领域的应用研究1. 引言稀土元素是指地球化学系列中的镧系元素和锶、铯、铕、钷五种元素。
由于稀土元素具有特殊的电子壳层结构和独特的磁性、光学和催化活性,因此在化学催化领域具有广泛的应用前景。
本文将综述稀土材料在化学催化领域的应用研究,并探讨其优势、挑战及未来发展方向。
2. 稀土材料在催化反应中的应用稀土材料在催化反应中扮演着重要的角色,可以用于加速反应速率、提高产物选择性、改善催化剂的稳定性等方面。
以下是几个常见的稀土材料在化学催化领域的应用案例:2.1 氧化镨催化剂在汽车尾气净化中的应用氧化镨是一种常见的稀土材料,具有良好的氧存储和还原性能。
在汽车尾气净化中,氧化镨可以作为催化剂的组成部分,协助将有害气体如一氧化碳和氮氧化物转化为无害的二氧化碳和氮气。
研究表明,氧化镨催化剂不仅具有高的催化活性和选择性,而且具有较好的耐高温性能,因此被广泛应用于汽车尾气净化系统中。
2.2 稀土金属催化剂在石油加工中的应用稀土金属催化剂在石油加工中具有重要作用。
例如,氧化铈、钐等稀土金属可以作为触媒组分应用于液相催化裂化、加氢处理和脱硫反应等重要反应中。
这些催化剂具有较高的活性和选择性,能够有效地促使石油加工过程中的化学反应进行,从而提高产率和改善产品质量。
2.3 稀土增强型催化剂在化学合成中的应用稀土元素的引入可以显著改变催化剂的活性和选择性。
稀土增强型催化剂已被广泛应用于化学合成领域,例如氧化锆-稀土复合催化剂在酸碱催化和酯化反应中的应用。
通过合理设计催化剂的组成和结构,可以提高反应速率、改善产物选择性,从而有效地促进化学合成过程的进行。
3. 稀土材料在化学催化领域的优势和挑战稀土材料在化学催化领域具有诸多优势。
首先,稀土元素具有独特的电子壳层结构,使得稀土材料具有特殊的催化活性和选择性。
其次,稀土材料的化学性质可以通过控制合成方法和条件进行调节,具有较高的可控性。
此外,稀土材料具有优异的热稳定性和机械强度,适用于高温、高压的工业催化反应。
第48卷第12期2019年12月应㊀用㊀化㊀工AppliedChemicalIndustryVol.48No.12Dec.2019收稿日期:2019 ̄02 ̄28㊀㊀修改稿日期:2019 ̄03 ̄20基金项目:国家自然科学基金(21406153)ꎻ山西省国际科技合作计划项目(201703D421037)ꎻ山西省高等学校优秀青年学术带头人支持计划(154010146 ̄s)ꎻ山西省高等学校科技创新项目(173030116 ̄s)作者简介:王丁(1993-)ꎬ男ꎬ江西抚州人ꎬ在读硕士研究生ꎬ师从李瑞丰教授ꎬ主要从事负载型镍基催化剂的制备以及性能研究ꎮ电话:13934585914ꎬE-mail:1515738986@qq.com通讯联系人:闫晓亮(1985-)ꎬ男ꎬ副教授ꎮE-mail:yanxiaoliang@tyut.edu.cnꎻ李瑞丰(1962-)ꎬ男ꎬ教授ꎮE-mail:rfli@tyut.edu.cn氧化铈上负载不同金属(铁㊁钴㊁镍㊁钯)复合催化剂对甲烷完全氧化的性能研究王丁ꎬ朱淑英ꎬ闫晓亮ꎬ李瑞丰(太原理工大学化学化工学院ꎬ山西太原㊀030024)摘㊀要:以氧化铈为载体ꎬ借助沉积沉淀法负载不同金属(铁㊁钴㊁镍㊁钯)ꎬ继而研究其甲烷燃烧的反应性能ꎮ结果表明ꎬ负载金属钯的催化剂效果最佳ꎬ其在反应温度为350~600ħ表现出极佳的催化活性ꎮ金属氧化物与氧化铈载体间的协同作用在该催化反应中有着很大的影响ꎮ进一步通过氢气程序升温还原手段对比不同催化剂中交界面处的晶格氧在反应中起到的作用ꎮ关键词:沉积沉淀法ꎻ氧化铈ꎻ甲烷燃烧ꎻ金属钯中图分类号:TQ426.81㊀㊀文献标识码:A㊀㊀文章编号:1671-3206(2019)12-2867-05Completeoxidationofmethaneondifferentmetals(ironꎬcobaltꎬnickelꎬpalladium)supportedonCeO2WANGDingꎬZHUShu ̄yingꎬYANXiao ̄liangꎬLIRui ̄feng(CollegeofChemistry&ChemicalEngineeringꎬTaiyuanUniversityofTechnologyꎬTaiyuan030024ꎬChina)Abstract:Theunburnedmethanefromenginewhichsupplywithgasorliquefiedpetroleumgaswillex ̄hausttoairꎬcompleteoxidationofmethaneunderlowtemperaturemakesabigdifference.Thisstudyin ̄troducesacatalystwiththesupportofCeO2and4differentmetaloxidesasthecatalyticphasewhichpre ̄paredbythedepositionprecipitationmethod.Thecatalystsupportedwithpalladiumexhibitexcellentcata ̄lyticactivityinthetemperaturerangeof350~600ħinspiresnewdirectionforcompleteoxidationofmethane.ThesynergisticeffectbetweentheCeO2andthesupportedpalladiumoxidenanoclustersplaysacrucialroleinthereaction.Theresultsoftemperature ̄programmedreductionofH2alsoconfirmthesignif ̄icanteffectoflatticeoxygenatoms.Keywords:depositionprecipitationmethodꎻCeO2ꎻmethanecombustionꎻpalladium㊀㊀甲烷ꎬ是天然气中的主要成分ꎬ也是导致温室效应的气体ꎬ其危害程度是二氧化碳的20倍以上[1 ̄6]ꎮ在完全氧化甲烷的过程中ꎬ含有晶格氧的氧化铈(CeO2)可以激活分子氧[7 ̄8]ꎬ金属原子或离子可以有效地激活碳氢化合物中的C H键ꎬ合成纳米复合材料的MOx/CeO2将有望结合两者的优点ꎬ实现甲烷在低温条件下的完全氧化ꎮ作为同一周期内的铁㊁钴㊁镍三种元素ꎬ其金属性逐渐减弱ꎬ非金属性逐渐增强ꎬ是诸多催化反应的活性成分ꎮ金属钯作为金属镍同一族的贵金属元素ꎬ被认为是甲烷完全氧化反应最有效的活性成分[9 ̄10]ꎮ本文将4种不同的金属负载到氧化铈上ꎬ探究其对甲烷完全氧化反应的影响ꎮ1㊀实验部分1.1㊀试剂与仪器硝酸铁[Fe(NO3)3 9H2Oꎬ25g阿拉丁ꎬ99.999%]㊁硝酸钴[Co(NO3)2 6H2Oꎬ500g阿拉丁ꎬ99%]㊁硝酸镍[Ni(NO3)2 6H2Oꎬ500g阿拉丁ꎬ98%]㊁硝酸钯[Pd(NO3)2 2H2Oꎬ1g阿拉丁ꎬPd>39%]㊁硝酸铈[Ni(NO3)3 6H2Oꎬ100g阿拉应用化工第48卷丁ꎬ99.95%]ꎻ蒸馏水(H2Oꎬ自制)ꎻ无水乙醇(EtOHꎬ500mL科密欧ꎬ>99.7%)ꎬ分析纯ꎮRigakuD/Max ̄2500型全自动旋转靶X ̄射线衍射仪ꎻAutoChemⅡ29020型化学吸附仪ꎮ1.2㊀催化剂的制备通过水热合成法[11 ̄12]制备纯的CeO2ꎮ将10mL的0.4mol/L的硝酸铈溶液混合到70mL的6.0mol/L的氢氧化钠溶液当中ꎬ在室温条件下继续搅拌0.5hꎮ搅拌结束后ꎬ将混合溶液装入不锈钢反应釜(内衬材料为聚四氟乙烯)当中ꎬ随后将反应釜密封ꎬ放入120ħ烘箱ꎬ水热合成时间为24hꎮ合成结束后ꎬ取出反应釜ꎬ待反应釜冷却至室温后ꎬ对合成物进行洗涤㊁离心(如此反复多次)ꎬ随后将合成物放入70ħ烘箱内干燥8hꎮ干燥结束后ꎬ将合成物转移至马弗炉ꎬ按照升温的速率2ħ/min升温至450ħꎬ保持3hꎬ从而得到纯的CeO2ꎮ通过沉积沉淀法将纳米簇状的MOx负载到CeO2上ꎮ将1gCeO2与100mLH2O混合ꎬ搅拌(转速360r/min)ꎬ从而形成黄色悬浮状溶液ꎮ随后向黄色悬浮状溶液中加入10mL金属硝酸盐溶液ꎬ在室温下搅拌2hꎮ搅拌结束后ꎬ通过1mol/L的NaOH溶液(逐滴加入)调节溶液pHꎬ使得混合液的pH=10ꎮ调节pH结束后继续搅拌8hꎮ搅拌结束后ꎬ离心ꎬ洗涤ꎬ70ħ烘箱进行干燥(8h)ꎬ最终得到催化剂前体样品ꎮ将催化剂前体样品放置于5%H2/95%N2氛围下ꎬ温度400ħꎬ还原1hꎮ随后在5%O2/95%N2氛围下ꎬ温度500ħꎬ氧化1hꎬ从而得到催化剂ꎮ1.3㊀催化剂反应性能的评价催化剂的评价在固定床反应器上进行ꎬ催化剂用量0.1gꎬ混合0.3g石英砂ꎬ装填到石英管中ꎮ20mL/min的10%CH4/Ar混合10mL/min的纯氧ꎬ空速为18000mL/(g h)ꎮ出口气体用配有TCD的气相色谱仪(SRI8610#3ꎬ配有HayeSepD以及MolecularSieve5A色谱柱)在线分析ꎮ反应起始温度为200ħꎬ按照每40min1次的序列进样方法ꎬ在反应温度为200~600ħ间进行产物检测ꎮ1.4㊀催化剂的表征在LabXXRD ̄6000型全自动旋转靶X射线衍射仪上进行结构分析ꎬCu ̄Kα射线ꎬNi滤波ꎬ40kVꎬ30mAꎬ8(ʎ)/min的扫描速度ꎬ步长0.01ʎꎬ扫描范围为5~35ʎꎮH2 ̄TPR表征在多功能TP ̄5000吸附仪上进行ꎮ样品装量50mg(40~60目)ꎬ300ħHe吹扫1hꎬ然后在流量40mL/min的含7%H2的氮气流中以10ħ/min从室温到1000ħ进行程序升温还原ꎬ热导池(TCD)检测ꎮ2㊀结果与讨论2.1㊀表征分析2.1.1㊀XRD表征㊀通过改进的水热合成法ꎬ在碱性条件下合成纯的氧化铈ꎮ随后ꎬ通过沉积沉淀法形成以催化剂前体ꎬ之后在氧气氛围下进行煅烧(煅烧温度为500ħ)形成以氧化铈为载体的金属氧化物催化剂ꎮ通过XRD表征结果可以发现ꎬ纯的氧化铈载体分别在28.5ꎬ33.0ꎬ47.4ꎬ56.3ʎ以及59 0ʎ位置出峰ꎬ这与氧化铈的面心立方体结构(JCPDS43 ̄1002)相吻合ꎬ其出峰位置分别对应(111)ꎬ(200)ꎬ(220)ꎬ(311)以及(222)晶面[13]ꎮ图1㊀氧化铈的XRD谱图Fig.1㊀XRDpatternofpureCeO2㊀㊀通过沉积沉淀法引入金属后ꎬ对催化剂进行XRD表征ꎬ样品出峰位置与之前表征的氧化铈相同ꎬ表明金属的引入并没有破坏氧化铈的结构ꎮ由于载体的负载量低ꎬ未能在谱图上观察到金属或金属氧化物的特征峰ꎮ8682第12期王丁等:氧化铈上负载不同金属(铁㊁钴㊁镍㊁钯)复合催化剂对甲烷完全氧化的性能研究图2㊀不同催化剂的XRD谱图Fig.2㊀XRDpatternsofdifferentcatalysts㊀㊀(1)a.1.0%FeOx/CeO2ꎻb.2.0%FeOx/CeO2ꎻc.5.0%FeOx/CeO2ꎻd.10.0%FeOx/CeO2ꎻ(2)e.1.0%CoOx/CeO2ꎻf.2.0%CoOx/CeO2ꎻg.5.0%CoOx/CeO2ꎻh.10.0%CoOx/CeO2ꎻ(3)i.1.0%NiOx/CeO2ꎻj.2.0%NiOx/CeO2ꎻk.5.0%NiOx/CeO2ꎻl.10.0%NiOx/CeO2ꎻ(4)m.0.1%PdOx/CeO2ꎻn.0.2%PdOx/CeO2ꎻo.0.5%PdOx/CeO2ꎻp.1.0%PdOx/CeO2ꎻq.5.0%PdOx/CeO22.1.2㊀H2 ̄TPR表征㊀通过H2 ̄TPR实验ꎬ在温度较高时(900ħ)ꎬCeO2被还原为Ce2O3ꎮ4种不同的复合型金属氧化物催化剂中ꎬ都在还原温度区间内出现了不同的还原峰ꎬ表明金属在氧化铈上所形成的氧化物状态非唯一ꎮ负载在氧化铈上的钯的氧化物ꎬ在更低温度下(125ħ)被氢气还原ꎬ该还原峰所对应的钯的氧化态为PdOꎬ从而能够在低温的条件下提供反应所需要的激发态的氧原子ꎬ相对于铁(325ħ)㊁钴(250ħ)以及镍(275ꎬ330ħ)所需的还原温度更低[14 ̄15]ꎮ图3㊀四种催化剂以及载体H2 ̄TPR结果Fig.3㊀H2 ̄TPRresultsfor4catalystsandCeO2a.CeO2ꎻb.5.0%FeOx/CeO2ꎻc.5.0%CoOx/CeO2ꎻd.5.0%NiOx/CeO2ꎻe.5.0%PdOx/CeO2㊀㊀并且ꎬ通过对比4种催化剂H2 ̄TPR还原峰位置ꎬ位于还原温度中间的还原峰(由实线标记)ꎬ其还原温度在4种不同的催化剂的还原过程中依次降低ꎮ分别为5.0%FeOx/CeO2>5.0%CoOx/CeO2>5.0%NiOx/CeO2>5.0%PdOx/CeO2ꎬ而5.0%FeOx/CeO2对应的还原温度与氧化铈载体对应的还原温度一致(都是690ħ)ꎬ证明负载不同的金属可能会改变载体的部分相的还原温度[16]ꎬ继而证明了钯的氧化物相对于其他3种金属氧化物来说ꎬ能在更低的温度下利用氧空位并促进甲烷完全燃烧反应中活性氧的使用ꎮ2.2㊀催化性能分析为探究不同金属与CeO2载体之间的可能存在的协同作用ꎬ在相同反应条件下对FeOx/CeO2㊁CoOx/CeO2㊁NiOx/CeO2㊁PdOx/CeO2催化剂的催化性能进行分析ꎮ通过在不同的反应温度下进行反应ꎬ改变金属的负载量ꎬ从而得出以下几个方面的对比分析ꎮ2.2.1㊀催化效果随温度的变化㊀金属镍ꎬ作为廉价的过渡金属ꎬ在较为温和的条件下即可从高价态还原为低价态ꎬ因此被广泛应用到诸多的反应当中[17 ̄18]ꎮ并且ꎬ金属镍与金属钯属于同一族元素ꎬ其催化活性与金属钯接近ꎮ本小节以金属镍为例ꎬ当反应温度从200ħ上升到600ħ时ꎬ甲烷在温度较低的阶段(200~400ħ)转化率几乎为0ꎬ这表明该催化剂在该阶段反应活性很低或者没有参加反应ꎮ当反应温度达到400ħ以上ꎬ甲烷的转化率随着温度上升而逐渐增加ꎮ对于不同负载量的催化剂ꎬ镍的负载量为5.0%时ꎬ其催化效果显著高于其他负载量的催化剂(1 0%ꎬ2.0%ꎬ10.0%)ꎬ甲烷的转化率在反应温度为400ħ时达到1.26%ꎬ反应温度为500ħ时达到67 42%ꎬ在反应温度为600ħ时达到96.58%ꎮ同比单独载体的CeO2ꎬ其400ꎬ500ꎬ600ħ所对应的甲烷转化率分别为0ꎬ7 86%ꎬ77 25%ꎬ充分说明了负载了金属镍的CeO2ꎬ其催化效果显著提高ꎬ这也就表明ꎬ在甲烷的完全氧化反应过程中ꎬ通过沉积沉淀法引入的金属Ni起到了重要的作用ꎮ图4㊀不同负载量的NiOx/CeO2以及CeO2催化性能Fig.4㊀CatalyticperformanceofpureCeO2anddifferentloadofNiOx/CeO2反应空速为18000mL/(g h)ꎬ催化剂用量为100mg9682应用化工第48卷2.2.2㊀催化效果随不同负载金属的变化㊀通过对比实验结果发现ꎬ当金属的负载量为5.0%时ꎬ其催化效果最佳ꎮ于是ꎬ选择相同负载量(5.0%)不同负载金属的催化剂进行对比ꎮ实验结果表明ꎬ5.0%NiOx/CeO2和5.0%FeOx/CeO2催化效果很接近ꎬ相对于5.0%CoOx/CeO2其催化效果有着明显的提高ꎮ图5㊀相同负载量不同负载金属的MOx/CeO2催化性能Fig.5㊀Catalyticperformanceof100mgofsameloadMOx/CeO2forcompleteoxidationofmethane反应空速为18000mL/(g h)ꎬ催化剂用量为100mg㊀㊀当负载金属为Pd时ꎬ在反应温度为250ħ时ꎬ甲烷的转化率为4.56%ꎬ相对于其他3种催化剂ꎬ5.0%FeOx/CeO2在400ħ的甲烷转化率为2.11%ꎬ5.0%CoOx/CeO2在450ħ的甲烷转化率为2.58%ꎬ5.0%NiOx/CeO2在400ħ的甲烷转化率为2.11%ꎬ其反应温度大大降低ꎮ表1㊀不同催化剂下甲烷完全氧化反应的起始反应温度Table1㊀Startingreactiontemperatureforcompleteoxidationofmethaneoverdifferentcatalysts㊀㊀催化剂CH4转化率/%温度/ħ5.0%PdOx/CeO24.652505.0%FeOx/CeO22.114005.0%CoOx/CeO22.584505.0%NiOx/CeO22.11400㊀㊀进一步比较甲烷转化率为50%所对应的反应温度ꎬ发现5.0%PdOx/CeO2所对应的反应温度为295ħꎬ5.0%FeOx/CeO2所对应的反应温度为480ħꎬ5.0%CoOx/CeO2所对应的反应温度为530ħꎬ5.0%NiOx/CeO2所对应的反应温度为475ħꎮ表2㊀不同催化剂下甲烷转化率为50%的反应温度Table2㊀Reactiontemperatureforthe50%conversionofmethaneoverdifferentcatalysts㊀催化剂CH4转化率/%温度/ħ5.0%PdOx/CeO249.732955.0%FeOx/CeO250.914805.0%CoOx/CeO249.375305.0%NiOx/CeO250.88475㊀㊀通过对比实验数据ꎬ比较负载不同金属的催化剂在甲烷完全氧化反应中ꎬ甲烷完全氧化(甲烷转化率100%)所对应的反应温度ꎬ其中5.0%PdOx/CeO2所对应的反应温度为400ħꎬ5.0%FeOx/CeO2所对应的反应温度为600ħꎬ5.0%CoOx/CeO2所对应的反应温度大于600ħꎬ5.0%NiOx/CeO2所对应的反应温度为600ħꎮ表3㊀不同催化剂下甲烷转化率接近100%的反应温度Table3㊀Reactiontemperatureforthe100%conversionofmethaneoverdifferentcatalysts催化剂CH4转化率/%温度/ħ5.0%PdOx/CeO298.474005.0%FeOx/CeO295.326005.0%CoOx/CeO281.716005.0%NiOx/CeO296.586002.3㊀稳定性实验5.0%PdOx/CeO2催化剂的稳定性是在反应温度为400ħ的条件下进行的ꎬ反应空速为18000mL/(g h)ꎬ催化剂用量为100mg保持不变ꎮ如图6所示ꎬ甲烷的转化率在第1d(前24h)只发生了微小的变化ꎬ这就表明ꎬ该催化剂在高温处理下表现出极好的催化稳定性ꎮ当反应进行了48h后ꎬ甲烷的转化率降低了7.34%ꎮ当反应继续进行ꎬ甲烷的转化率在96h(4d)后降低了15.71%ꎮ分析甲烷转化率下降的可能原因:(1)反应进行中产生H2Oꎬ使得催化剂活性降低[2]ꎻ(2)高温下催化剂表面结构发生变化ꎬ催化剂的形态发生变化ꎮ虽然5.0%PdOx/CeO2催化剂在反应进行4d后ꎬ甲烷的转化率有所降低ꎬ但依旧能够保持74.19%之高ꎬ相对于其他催化剂在同等条件下甲烷转化率很低(5.0%NiOx/CeO2)或者未发生反应(5.0%CoOx/CeO2)来说ꎬ其转化率依旧很高ꎮ图6㊀5.0%PdOx/CeO2催化剂在400ħ下的稳定性测试Fig.6㊀Stabilitytestof5.0%PdOx/CeO2at400ħ反应空速为18000mL/(g h)3㊀结论通过比较4种负载不同金属(铁㊁钴㊁镍㊁钯)纳米复合催化剂对甲烷完全氧化反应的影响ꎬ得出了4种金属中金属钯更适合催化甲烷完全氧化反应的结论ꎮ并且催化剂5.0%PdOx/CeO2在反应温度为0782第12期王丁等:氧化铈上负载不同金属(铁㊁钴㊁镍㊁钯)复合催化剂对甲烷完全氧化的性能研究250ħ就能起活ꎬ在反应温度为295ħ时能够实现49.73%的甲烷转化率ꎬ并且在反应温度为400ħ时就能达到98.47%的甲烷转化率ꎮ对催化剂进行XRD表征ꎬ样品出峰位置与之前表征的氧化铈相同ꎬ表明金属的引入并没有破坏氧化铈的结构ꎮ通过H2 ̄TPR表征手段发现ꎬ4种不同的复合型金属氧化物催化剂中ꎬ负载在氧化铈上的钯的氧化物ꎬ在更低温度下(125ħ)被氢气还原ꎬ相对于铁(325ħ)㊁钴(250ħ)以及镍(275ꎬ330ħ)所需的还原温度更低ꎮ在稳定性实验中ꎬ该催化剂在高温处理下表现出极好的催化稳定性ꎮ当反应进行了48h后ꎬ甲烷的转化率降低了7.34%ꎮ当反应继续进行ꎬ甲烷的转化率在96h(4d)后降低了15.71%ꎬ但依旧能够保持74.19%之高ꎮ参考文献:[1]㊀CargnelloMꎬJaénJJDꎬGarridoJCHꎬetal.ExceptionalactivityformethanecombustionovermodularPd@CeO2subunitsonfunctionalizedAl2O3[J].Scienceꎬ2012ꎬ337(6095):713 ̄717.[2]MonaiMꎬMontiniTꎬChenCꎬetal.MethanecatalyticcombustionoverhierarchicalPd@CeO2/Si ̄Al2O3:Effectofthepresenceofwater[J].ChemCatChemꎬ2015ꎬ7(14):2038 ̄2046.[3]CamuzeauxJRꎬAlvarezRAꎬBrooksSAꎬetal.Influenceofmethaneemissionsandvehicleefficiencyontheclimateimplicationsofheavy ̄dutynaturalgastrucks[J].Environ ̄mentalScience&Technologyꎬ2015ꎬ49(11):6402 ̄6410. [4]LouYꎬMaJꎬHuWꎬetal.Low ̄temperaturemethanecom ̄bustionoverPd/H ̄ZSM ̄5:activePdsiteswithspecificelectronicpropertiesmodulatedbyacidicsitesofH ̄ZSM ̄5[J].AcsCatalysisꎬ2016ꎬ6(12):8127 ̄8139. [5]HouZꎬLiuYꎬDengJꎬetal.HighlyactiveandstablePd ̄GaOx/Al2O3catalystsderivedfromintermetallicPd5Ga3nanocrystalsformethanecombustion[J].ChemCatChemꎬ2018ꎬ10(24):5637 ̄5648.[6]WillisJJꎬGalloAꎬSokarasDꎬetal.Systematicstructure ̄propertyrelationshipstudiesinpalladium ̄catalyzedmeth ̄anecompletecombustion[J].ACSCatalysisꎬ2017ꎬ7(11):7810 ̄7821.[7]DanielisMꎬColussiSꎬLeitenburgCꎬetal.Outstandingmethaneoxidationperformanceofpalladium ̄embeddedceriacatalystspreparedbyaone ̄stepdryball ̄millingmethod[J].AngewandteChemieꎬ2018ꎬ130(32):10369 ̄10373.[8]EschFꎬFabrisSꎬZhouLꎬetal.Electronlocalizationde ̄terminesdefectformationonceriasubstrates[J].Scienceꎬ2005ꎬ309(5735):752 ̄755.[9]MayernickADꎬJanikMJ.MethaneactivationandoxygenvacancyformationoverCeO2andZrꎬPdsubstitutedCeO2surfaces[J].TheJournalofPhysicalChemistryCꎬ2008ꎬ112(38):14955 ̄14964.[10]李赫.载体及活性组分对甲烷低温燃烧催化性能的影响[J].应用化工ꎬ2007ꎬ36(8):795 ̄796.[11]XuQꎬLeiWꎬLiXꎬetal.Efficientremovalofformalde ̄hydebynanosizedgoldonwell ̄definedCeO2nanorodsatroomtemperature[J].EnvironmentalScience&Technolo ̄gyꎬ2014ꎬ48(16):9702 ̄9708.[12]LiuXꎬZhouKꎬWangLꎬetal.Oxygenvacancyclusterspromotingreducibilityandactivityofceriananorods[J].JournaloftheAmericanChemicalSocietyꎬ2009ꎬ131(9):3140 ̄3141.[13]XiaoLꎬSunKꎬXuXꎬetal.Low ̄temperaturecatalyticcombustionofmethaneoverPd/CeO2preparedbydeposi ̄tion ̄precipitationmethod[J].CatalysisCommunicationsꎬ2005ꎬ6(12):796 ̄801.[14]LeiYꎬLiWꎬLiuQꎬetal.TypicalcrystalfaceeffectsofdifferentmorphologyceriaontheactivityofPd/CeO2cat ̄alystsforleanmethanecombustion[J].Fuelꎬ2018ꎬ233:10 ̄20.[15]NakagawaKꎬOhshimaTꎬTezukaYꎬetal.MorphologicaleffectsofCeO2nanostructuresforcatalyticsootcombus ̄tionofCuO/CeO2[J].CatalysisTodayꎬ2015ꎬ246:67 ̄71. [16]MuroyamaHꎬHanoSꎬMatsuiTꎬetal.Catalyticsootcom ̄bustionoverCeO2 ̄basedoxides[J].CatalysisTodayꎬ2010ꎬ153(3/4):133 ̄135.[17]SahooDꎬYooCꎬLeeY.DirectCO2additiontoaNi(0) ̄COspeciesallowstheselectivegenerationofaNickel(II)carboxylatewithexpulsionofCO[J].JournaloftheAmericanChemicalSocietyꎬ2018ꎬ140(6):2179 ̄2185. [18]KimJꎬHanSWꎬKimJCꎬetal.Supportingnickeltore ̄placeplatinumonzeolitenanospongesforcatalytichydroi ̄somerizationofn ̄dodecane[J].ACSCatalysisꎬ2018ꎬ8(11):10545 ̄10554.1782。
珍稀元素探秘铈的特殊性质与用途铈(Cerium)是一种化学元素,属于稀土金属,化学符号为Ce。
它的特殊性质使其在众多领域中得到广泛应用。
本文将探讨铈的特殊性质以及它在不同领域的用途。
1. 铈的基本性质铈是一种银白色金属,在室温下相对稳定。
它具有良好的延展性和可锻性,可加工成各种形状。
铈的密度较低,熔点相对较高。
它是一种化学活泼的金属,容易与氧气反应形成氧化铈(CeO₂)。
2. 铈的特殊性质铈有一些独特的性质,使其在多个领域中发挥关键作用。
2.1 咖啡因及褐黄色铈在化学分析和实验室技术中广泛应用。
它可以作为指示剂,通过改变溶液的颜色来指示物质的存在或浓度。
铈的溶液呈现褐黄色,当与一些物质发生反应时,颜色会发生明显的变化。
2.2 催化剂铈在催化剂领域有着重要的应用。
铈催化剂常用于汽车尾气净化系统中,以协助还原有害氧化物(如氮氧化物和一氧化碳)转化为无害物质。
此外,铈还可以被用于氢氧化氨制取氨,以及水处理过程中的催化剂。
2.3 稳定剂铈在陶瓷生产中被广泛使用。
由于其氧化物(氧化铈)具有出色的稳定性和高熔点,它被添加到陶瓷材料中,以提高其耐磨性、耐高温性和抗化学侵蚀性。
铈也可以用作光学玻璃和陶瓷的稳定剂,以改善其光学性能和稳定性。
2.4 光谱分析铈在光谱学研究中扮演重要角色。
由于铈离子在多种能级间存在强吸收和发射特性,它可以被用作荧光光谱和稀土元素的研究。
3. 铈的应用领域铈的独特性质使其广泛应用于多个领域。
3.1 能源领域铈可以作为太阳能电池的材料之一,用于转化太阳能为电能。
此外,铈也被用于燃料电池系统,以提高其效率和稳定性。
3.2 材料工业铈广泛应用于涂层技术中,以提供材料更好的抗氧化性和耐蚀性。
例如,在航空航天领域,铈涂层可以保护航空发动机部件免受高温和化学侵蚀的损害。
3.3 生物医学领域铈被广泛应用于生物医学领域。
它可以用于药物制剂和医药技术中,以改善药物的稳定性和生物利用率。
此外,铈还可以用于生物标记和成像技术,以及治疗某些疾病的放射性同位素。
稀土催化材料在汽车尾气净化中的作用
目前国外广泛开发应用于汽车尾气净化的催化剂基本上是由铂(Pt),铑(Rh)等贵金属组成的,目前, 普遍使用的铂铑基贵金属三元催化剂主要通过Pt 的氧化作用净化HC , CO , 通过Rh 的还原作用净化NO x 。
该催化剂虽具有活性高、净化效果好、寿命长等优点,但是造价也较高,尤其是Pt、Rh等受到资源限制。
为了缓解Pt特别是Rh的供应与需求之间的矛盾,广泛使用价格相对便宜的钯(Pd),
开发了Pt,Rh和Pd组成的催化剂以及钯催化剂。
人们发现用稀土代替部分贵重金属制成的催化剂成本低,而且能获得满意
的净化效果。
稀土汽车尾气净化催化剂所用的稀土主要是以氧化铈、氧化镨和氧化镧的混合物为主,其中氧化铈是关键成份。
由于氧化铈的氧化还原特性,有效地控制排放尾气的组分,能在还原气氛中供氧,或在氧化气氛中耗氧。
二氧化铈还在贵
金属气氛中起稳定作用,以保持催化剂较高的催化活性。
所以开发稀土少贵金属的汽车尾气净化剂,是取稀土之长补贵金属贵属之短,生产出具有实用性的汽车尾气净化剂。
其特点是价格低、热稳定性好、活性较高、使用寿命长,因此在汽车尾气净化领域备受青睐。
稀土元素外层电子结构相似,稀土元素间的催化性能差别比较小,总的催化活性比不上外层电子结构的过渡元素及贵金属元素。
在现行的实用工业催化剂中,稀土一般只用作助催化剂或催化剂中的一种活性组分,很少作为主体催化剂。
作为贵金属催化剂的助剂,稀土能够提高和改变催化剂的性能,其助剂的作用远远大于传统意义上的碱金属或碱土金属元素。
我国的机动车排放污染严重,然而我国贵金属贫乏而稀土资源丰富,因此稀土应用于机动车尾气处理在我困得到广泛的应用。
稀上在机动车尾气净化催化剂中主要是具有储氧和催化作用,将其加入催化剂活性成组中,能提高催化剂的抗铅、硫中毒性能和耐高温稳定性,并能改善催化剂的空燃比工作特性。
稀土在TWC中的应用
稀土氧化物特有的性质早已引起了国内外催化剂研究工作者的广泛关注,然而到目前为止稀上氧化物多用作催化剂载体和助剂。
稀土在催化剂中的作用主要有以下几方面。
1.汽车尾气净化催化剂活性成分
汽车尾气中的主要有害成分为碳氧化合物(Hc)、一氧化碳(CO)和氮氧化物(NO),在净化器中的化学反应包括氧化和还原反应。
因此,需要找出一种能使氧化和还原两类反应同时进行的三元催化剂,使催化剂在汽车排气管内借助于排气温度和空气中氧的浓度,对尾气中的CO、HC和NO同时起氧化还原作用,使其转化成无害物质C02、H20和N2。
Ce、La稀土催化活性的研究结果表明:Ce02的引入明显提高了CO和NO的催化转化活性。
因此,可用稀土氧化物完全或部分代替贵
金属来担当催化剂的活性组分,催化还原Co、HC和No。
2提高催化剂的抗中毒能力
机动车尾气含有的Pb、S、P等是易使贵金属三效催化剂中毒的物质,这些物质在催化剂的表面活性位置上产生化学吸附,阻碍了反应的进行,使催化剂失去了催化活性。
稀上具有抗硫化物中毒能力是因为这些有毒物与其生成稳定相,如Ce203与硫化物反应生成稳定的C02(S04)3。
在还原气氛中,这些硫化物又被释放出来并在Pt和Rh催化剂上转化成H2S,同尾气一起排出(产生有臭味的H2S)。
稀上对硫化物的转化作用使含稀土的催化剂具有较强的抗中毒能力。
研究表明Ce02对尾气中S02组分有一定的储硫作用。
汽车发动机在贫燃条件下工作时发生如下反应:6 Ce02+3S02一Ce2(S04)3+2C0203,在富燃条件下储存的硫会被释放,从而增强了催化剂的抗S中毒能力。
3提高催化剂的热稳定和机械强度
通常构成活化涂层的丫-A1203在800℃以上会转变成a-A1203,使密度增加,表面积减少,造成孔隙结构坍塌。
并且在1200℃以上活化涂层会从载体上脱落,使气体阻力增大,催化活性降低。
加入Ce02能稳定丫-A1203晶体结构,使活化涂层在高温下保持稳定,抑制活性损失。
氧化铈在还原或中性气氛下,在1473 K处理数小时后仍能保持60
m2·g.1表面积,说明主要以Ce A1203存在的Ce3+阻碍了晶体生长和氧化铝的转变。
4.自动调节空气燃料比(储氧能力提高催化剂的活性)
(围绕汽车发动机工作时的理论空燃比,汽车废气的组成是会呈周期地发生变化.利用选种特性,把废气中的氧能可逆的进行吸附和放出的物质叫做氧的存储物质,CeO 有这种作用。
)
许多研究发现,氧化铈等稀土氧化物具有储放氧能力。
Ce02在贫氧区放出02,氧化C0和HC,在富氧区储存02,从而控制贵金属附近的气氛波动,使空燃比A/F 稳定在化学计量平衡附近,起到扩大空燃比窗口的作用,保持催化剂的催化活性。
Ce02中的Ce能改变氧化态(Ce4+与Ce3+之间的转化),具有极好的储氧效应和释放氧能力,在贫燃/富燃条件下可以储存/释放氧气,从而可以提高催化剂对CO、HC、NO的转化率。
(当发动机瞬时富油而造成废气瞬时缺氧时,四价Cc (CeO2)可变成三价
Ce(Ce2O3),释放出O2.当发动机瞬时贫油而造成废气瞬时富氧时, Ce2O3又结合O2而转化成CeO2,这就是所谓的氧的储备作用。
其反应方程式如下:2 CeO2-- Ce2O3+1/2O2.)
5.助催剂的作用
汽车尾气中含有约l0%的水蒸气,Ce02可以促进水气转移反应产生还原性气体,可以在缺氧时提高CO的净化率,同时H2可用在NO的还原中,提高NO在富燃区的净化率。
CO+H2O- -CO2+H2
为了弥补富Pd及全Pd催化剂中Pd在催化还原NO方面的能力不足,在Pd内加入La203,这种Pd-La催化剂在性能上完全可以和Pt.Rh催化剂媲美。
6.提高活性涂层的催化活性
加入CeO2 使活性涂层中贵金属颗粒保持分散, 避免因烧结而导致催化
格点减少, 使活性受损。
在Pt/γ2Al2O3 中添加CeO2 , 由于CeO2 能在γ2Al2O3 上单层分散( 最大单层分散量为01035 gCeO2Pgγ2Al2O3 ) , 改变了γ2Al2O3 的表面性质, 从而提高了Pt 的分散度。
当CeO2 含量等于或接近于分散阈值时, Pt 的分散度达到最高。
CeO2 的分散阈值即为它的最佳添加用量。
Rh 在600 ℃以上氧化气氛中, 因高温氧化生成的Rh2O3 与Al2O3 形成固溶体而失去活化作用。
CeO2 的存在将减弱Rh与Al2O3 之间的反应, 保持Rh 的活化作用。
La2O3也能防止Pt 超微细粒长大。
将CeO2 和La2O3 添加到PdPγ2Al2O3 后发现, CeO2 的加入促进了Pd 在载体上的分散, 并且产生一种协同还原作用。
Pd 的高度分散及其与CeO2 在Pd/γ2Al2O3 上的相互作用是催化剂具有高活性的关键。
CeO2 还是一种有效的烃类氧化催化剂。
在考察Pt/ CeO2 上CO 氧化时发现Pt 和CeO2 界面处的晶格氧起着重要作用。
在真空或还原气氛中CeO2表面可以产生低价铈和氧缺陷, 具有优异的氧化2还原催化性能和气敏功能, 特别是具有与吸附分子交换电荷、交换物种的功能。
CeO2 在氢作用下易产生低价铈和氧空位。
Pt/ CeO2 可吸收气相氢并再释放出来。
在常温下部分还原的CeO2 上吸附氧形成分子离子氧物种。
氧物种可部分脱附, 高于170 ℃时均可转化为晶格氧
[4 ] 。
另外, CeO2 对γ2Al2O3 载体的改性, 有利于钯催化剂上表面氧物种的脱附和氧化再恢复, 从而促进Pd/ CeO22γ2Al2O3催化剂的氧化作用[5 ] 。