概率论与数理统计第4讲
- 格式:pptx
- 大小:2.91 MB
- 文档页数:33
《概率论与数理统计》第4-7章自测题讲评第四章﹑数字特征1. 设随机变量X 的密度函数f(x)= ⎩⎨⎧5x 4 0≤x ≤10 其他 , 求数学期望EX 。
【讲评】考点:连续型随机变量数学期望的定义为EX= ∫-∞+∞xf(x)dx 。
[解]:EX= ∫-∞+∞xf(x)dx = 5∫01x 5dx = 5[x 56]01= 562.设随机变量X ~N (-1,3),Y ~N (0,5),Cov(X ,Y )=0.4,求D (X +Y )的值。
【讲评】考点:正态分布N(μ, σ2)的数字特征,EX=μ,DX=σ2。
和的方差公式:D(X+Y)=DX+DY+2Cov(X, Y)。
[解]:D(X+Y)=DX+DY+2Cov(X, Y)= 3+5+2×0.4 = 8.83. 设随机变量X 和Y 的密度函数分别为f X (x)= ⎩⎨⎧0.5, 1≤x ≤30, 其它 ,f Y (y)= ⎩⎨⎧3e -3y , y>00, y ≤0 ,若X ,Y 相互独立,求: E(XY)【讲评】考点:均匀分布与指数分布的数学期望,X~U[a,b] ⇒ EX=a+b 2 。
X~exp(λ) ⇒ EX=1λ 。
若X 与Y 相互独立,则 E(XY)=EXEY 。
本题:注意:X~U[1,3], Y~Exp(3) ⇒ EX=1+32 =1, EY=1/3,因为X, Y 相互独立,则 E(XY)=E(X)E(Y)=1×(1/3) =1/34. 设 X 服从参数为 λ 的普阿松分布(λ>0),则下列6个等式中那几个是错误的。
DX=1λ , E(X)D(X) =1 , E(X 2)=E(X)[E(X)+1] , E(X) = λ , E (X - λ)2 = 0, EX=λ2+λ【讲评】考点:普阿松分布X~P(λ)的数字特征:EX=λ, DX=λ 。
及DX = E(X-EX)2 = EX 2 – (EX)2 , EX 2 =DX+(EX)2本题:X~P(λ) ⇒ EX=λ, DX=λ, EX 2=λ+λ2 .所以E(X)D(X) =1,E(X 2)=λ2+λ=E(X)[E(X)+1],E(X) = λ,但是 DX=1λ , E (X - λ)2 = 0, 这两个是错误等式。
概率论与数理统计第1章随机事件与概率第4讲条件概率与乘法公式01 条件概率02 乘法公式本 讲 内容在解决许多概率问题时,往往需要在某些附加条件下世界万物都是互相联系、互相影响的,随机事件也不例?条件概率外.通事故发生的可能性明显比天气状况优良情况下要大得定程度的相互影响.多.在同一个试验中的不同事件之间,通常会存在着一例如,在天气状况恶劣的情况下交求事件的概率.概率,将此概率记作P(B|A).如在事件A 发生的条件下求事件B 发生的在100件产品中有72件为一等品,从中取两件产品,记A表示“第一件为一等品”,B表示“第二件为一等品”. 求P(B),P(B|A).Ὅ例1解由前例可知无论有放回抽样和无放回抽样都有(1)有放回抽样(2)无放回抽样独立性如何定义?.设A 、B 为两事件, P ( A ) > 0 , 则称为事件 A 发生的条件下事件 B 发生的条件概率.称为在事件B 发生的条件下事件A 的条件概率.同理Ὅ 定义Ὅ性质条件概率也是概率, 故概率的重要性质都适用于条件概率.例如:在100件产品中有72件为一等品,从中取两件产品,记A 表示“第一件为一等品”,B 表示“第二件为一等品”. Ὅ例2 2) 可用缩减样本空间法1) 用定义计算:P (A )>0A 发生后的缩减样本空间所含样本点总数在缩减样本空间中B 所含样本点个数无放回抽样Ὅ 计算.在全部产品中有4%是废品,有72%为一等品. 现从其中任取一件,发现是合格品,求它是一等品的概率.Ὅ例3解设A=依题意,P(A)=所求概率为P(B|A) .{任取一件为合格品},B={任取一件为一等品}0.96,0.72.P(B)=利用事件的关系及概率性质公式求条件概率Ὅ例4设A,B,C 是随机事件,A与C互不相容,则.由条件概率的定义:若已知P(A), P(B|A)时, 可以反过来求P(AB).注乘法公式.某工厂有职工400名,其中男女职工各占一半,Ὅ例5男女职工中技术优秀的分别为20人和40人,从中任选一名职工,计算(1)该职工技术优秀的概率;(2)已知选出的是男职工,他技术优秀的概率.解设A表示“选出的职工技术优秀”,B表示“选出的职工为男性”,则:(1)利用古典概率有.(2)通过缩减样本空间,有.Ὅ例6某杂志包含三个栏目“艺术”(记为事件A)、“图书”(记为事件B)、“电影”(记为事件C),调查读者的阅读习惯有如下结果:试求解01 条件概率02 乘法公式本 讲 内容乘法公式推广ab -1ab O F (x )xb a 1xf (x )O盒中装有100个产品, 其中3个次品,从中不放回Ὅ例7地取产品, 每次1个, 求(1)取两次,两次都取得正品的概率;(2)取三次,第三次才取得正品的概率.解令A i为第 i 次取到正品(波利亚罐子--传染病模型)一个罐子中包含b 个白球和r 个红球. b 个白球, r 个红球Ὅ 乘法公式应用举例8随机地抽取一个球,观看颜色后放进行四次,试求第一、二次取到白 球且第三、四次取到红球的概率.回罐中,并且再加进c 个与所抽出 的球具有相同颜色的球.这种手续于是W 1W 2R 3R 4表示事件“连续取四个球,第一、二个是白球,第三、四个是红球. ”设W i =R j ==P (W 1)P (W 2|W 1)P (R 3|W 1W 2)P (R 4|W 1W 2R 3)P (W 1W 2R 3R 4)解1,2,3,4{第i 次取出是白球},i =j ={第j 次取出是红球},1,2,3,4记A=为了防止意外,在矿内同时装有两种报警系统(Ⅰ)和(Ⅱ),每种系统单独使用时,系统(Ⅰ)和系统(Ⅱ)的有效概率分别为0.92和0.93,在系统(Ⅰ)失灵的情况下,系统(Ⅱ)仍有效的概率为0.85,求两个报警系统至少有一个有效的概率.Ὅ例9解报警系统至少一个有效”可表示为A ∪B ,由于“两个“系统(Ⅰ) 有效”,B=“系统(Ⅱ)有效”,且A 和 互斥,因此:学海无涯,祝你成功!概率论与数理统计。
《概率论与数理统计》第4-7章自测题讲评第四章﹑数字特征1. 设随机变量X 的密度函数f(x)= ⎩⎨⎧5x 4 0≤x ≤10 其他 , 求数学期望EX 。
【讲评】考点:连续型随机变量数学期望的定义为EX= ∫-∞+∞xf(x)dx 。
[解]:EX= ∫-∞+∞xf(x)dx = 5∫01x 5dx = 5[x 56]01= 562.设随机变量X ~N (-1,3),Y ~N (0,5),Cov(X ,Y )=0.4,求D (X +Y )的值。
【讲评】考点:正态分布N(μ, σ2)的数字特征,EX=μ,DX=σ2。
和的方差公式:D(X+Y)=DX+DY+2Cov(X, Y)。
[解]:D(X+Y)=DX+DY+2Cov(X, Y)= 3+5+2×0.4 = 8.83. 设随机变量X 和Y 的密度函数分别为f X (x)= ⎩⎨⎧0.5, 1≤x ≤30, 其它 ,f Y (y)= ⎩⎨⎧3e -3y , y>00, y ≤0 ,若X ,Y 相互独立,求: E(XY)【讲评】考点:均匀分布与指数分布的数学期望,X~U[a,b] ⇒ EX=a+b 2 。
X~exp(λ) ⇒ EX=1λ 。
若X 与Y 相互独立,则 E(XY)=EXEY 。
本题:注意:X~U[1,3], Y~Exp(3) ⇒ EX=1+32 =1, EY=1/3,因为X, Y 相互独立,则 E(XY)=E(X)E(Y)=1×(1/3) =1/34. 设 X 服从参数为 λ 的普阿松分布(λ>0),则下列6个等式中那几个是错误的。
DX=1λ , E(X)D(X) =1 , E(X 2)=E(X)[E(X)+1] , E(X) = λ , E (X - λ)2 = 0, EX=λ2+λ【讲评】考点:普阿松分布X~P(λ)的数字特征:EX=λ, DX=λ 。
及DX = E(X-EX)2 = EX 2 – (EX)2 , EX 2 =DX+(EX)2本题:X~P(λ) ⇒ EX=λ, DX=λ, EX 2=λ+λ2 .所以E(X)D(X) =1,E(X 2)=λ2+λ=E(X)[E(X)+1],E(X) = λ,但是 DX=1λ , E (X - λ)2 = 0, 这两个是错误等式。