实验二,电容式传感器
- 格式:doc
- 大小:98.00 KB
- 文档页数:2
传感器与检测技术实验报告一、实验目的本次实验旨在深入了解传感器与检测技术的基本原理和应用,通过实际操作和数据测量,掌握常见传感器的特性和检测方法,培养我们的实践能力和解决问题的思维。
二、实验设备与材料1、传感器实验箱,包含各类常见传感器,如电阻式传感器、电容式传感器、电感式传感器、光电式传感器等。
2、数字万用表、示波器。
3、实验连接导线若干。
三、实验原理1、电阻式传感器电阻式传感器是将被测量的变化转换为电阻值的变化。
常见的有应变式电阻传感器和热敏电阻传感器。
应变式电阻传感器基于电阻应变效应,当受到外力作用时,其电阻丝发生形变,从而导致电阻值的变化;热敏电阻传感器则根据温度的变化改变自身电阻值。
2、电容式传感器电容式传感器是将被测量的变化转换为电容值的变化。
主要有变极距型、变面积型和变介质型电容传感器。
其工作原理基于电容的定义式 C =εS/d,其中ε 为介质的介电常数,S 为两极板的相对面积,d 为两极板间的距离。
3、电感式传感器电感式传感器是利用电磁感应原理将被测量转换为电感量的变化。
包括自感式和互感式传感器。
自感式传感器通过改变线圈的自感系数来反映被测量;互感式传感器则是根据互感系数的变化进行测量。
4、光电式传感器光电式传感器是把被测量的变化转换成光信号的变化,然后通过光电元件转换成电信号。
常见的有光电管、光电倍增管、光敏电阻、光敏二极管和光敏三极管等。
四、实验内容与步骤1、电阻式传感器实验(1)连接应变式电阻传感器到实验电路,施加不同的外力,用数字万用表测量电阻值的变化,并记录数据。
(2)将热敏电阻传感器接入电路,改变环境温度,测量电阻值,绘制温度电阻曲线。
2、电容式传感器实验(1)分别连接变极距型、变面积型和变介质型电容传感器到实验电路,改变相应的参数,如极距、面积或介质,用示波器观察输出电压的变化。
(2)记录不同参数下的输出电压值,分析电容值与输出电压的关系。
3、电感式传感器实验(1)连接自感式传感器,改变磁芯位置或气隙大小,测量电感值的变化。
电容式传感器特性实验报告实验目的本实验旨在通过对电容式传感器特性的研究,了解其基本原理和特性,并通过实验数据验证电容式传感器的性能。
实验器材和原理实验器材•Arduino开发板•电容式传感器•电阻•连接线原理简介电容式传感器是一种常见的传感器类型,基于电容的变化来测量目标物体的某种特性,如压力、湿度等。
其原理是利用物体与传感器之间的电容变化来反映目标物体的特性。
实验步骤步骤一:准备实验器材首先,准备所需要的实验器材,包括Arduino开发板、电容式传感器、电阻和连接线。
步骤二:连接电路将Arduino开发板与电容式传感器以及电阻进行连接。
具体的连接方式如下:1.将电容式传感器的VCC引脚连接至Arduino开发板的3.3V引脚。
2.将电容式传感器的GND引脚连接至Arduino开发板的GND引脚。
3.将电容式传感器的OUT引脚连接至Arduino开发板的模拟输入引脚A0。
步骤三:编写Arduino代码在Arduino开发环境中,编写代码以读取电容式传感器的数值。
const int sensorPin = A0;void setup() {Serial.begin(9600);}void loop() {int sensorValue = analogRead(sensorPin);Serial.println(sensorValue);delay(1000);}步骤四:上传代码并观察结果将编写好的代码上传至Arduino开发板,并在串口监视器中观察传感器数值的变化。
步骤五:实验数据记录与分析通过观察串口监视器中的传感器数值变化,记录不同条件下的电容式传感器数值,例如发生压力变化或温度变化时的数值变化。
根据实验数据,进行数据分析,例如绘制传感器数值与特性之间的关系曲线,以验证电容式传感器的性能。
结果与讨论根据实验数据的分析,我们可以得出一些结论和讨论:1.电容式传感器的数值随着目标物体的特性变化而变化。
传感器实验报告《传感器原理及⼯程应⽤》吉林⼤学珠海学院《传感器原理及⼯程应⽤》课程实验指导书主编:徐杭主审:刘向阳王丽机电⼯程系2008年4⽉、前⾔本书是针对机电⼯程系机械设计制造及其⾃动化专业,与《传感器原理及⼯程应⽤》这门必修专业基础课相配套,所编写的⼀本实验指导书。
《传感器原理及⼯程应⽤》课程实验是为了使学⽣更深刻地理解书本上的原理与结论,亲⾃动⼿进⾏验证,提⾼感性认识和解决实际问题的能⼒,使学⽣能更好地掌握理论知识。
所以《传感器原理及⼯程应⽤》课程实验指导书是紧密结合理论知识,根据教学⼤纲要求以实验报告形式所编写的⼀本实验指导书。
本实验指导书根据课时要求与课程的重点内容,⼀共编写了三个实验:⾦属箔式应变⽚——全桥性能实验,电容式传感器的位移特性实验,直流激励时霍尔传感器位移特性实验。
实验内容包括实验⽬的、预习要点、基本原理、实验设备及仪器、实验说明及操作步骤、实验注意事项、思考题、实验报告等。
由于编者⽔平有限,加之时间仓促,书中错误在所难免,恳请读者批评指正。
编者2008年4⽉⽬录学⽣实验守则 (2)实验⼀⾦属箔式应变⽚——全桥性能实验 (3)实验⼆电容式传感器的位移特性实验 (6)实验三直流激励时霍尔传感器位移特性实验 (9)学⽣实验守则⼀、学⽣必须按照教学计划规定时间,或预定的时间上实验课,不得迟到,早退或⽆故缺课。
⼆、必须遵守实验室的各项规章制度,服从实验教师指导,保持室内清洁,卫⽣,安静,有序。
实验室内不得吸烟,接打⼿机。
三、遵守操作规程,注意⼈⾝安全。
未经教师允许不许动⽤与本实验题⽬⽆关的仪器设备;凡因违反操作规程或擅⾃动⽤其他设备⽽造成损坏的,应按学校规定赔偿。
四、实验前必须认真阅读实验指导书,明确实验⽬的,理解实验原理,掌握实验步骤,填写实验报告中的相应内容;实验中要正确操作,仔细观察,认真记录实验数据,经教师签字后⽅可结束实验;课后要独⽴完成实验报告,并按时交给实验教师批阅。
传感实验总结传感器技术与应用这门课虽只历时八周,但这却是第一次理论与实践结合能同步的专业课。
实验室去了两次,也做了很久,然自己想法甚多,多么渴望能多做些实验让自己所学的理论知识活起来。
这次试验主要做了四个实验:差动变压器的位移特性、电容式传感器的位移特性、电涡流传感器的位移特性、光纤传感器的位移特性。
下面分别说明:一.差动变压器的性能实验1.实验目的:了解差动变压器的工作原理及特性。
2. 基本原理:差动变压器由一只初级线圈和二只次线圈及一个铁芯组成,根据内外层排列不同,有二段和三段式,本实验是三段式结构。
当传感器随着被测体移动时,由于初级线圈(做为差动变压器激励用,相当于变压器原边)和次级线圈(由两个结构尺寸和参数相同的线圈反相串接而成,相当于变压器副边)之间的互感发生变化促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级反向串接(同名端连接),就引出差动输出。
其输出电势反映出被测体的移动量。
3. 需用器件与单元:差动变压器实验模板、测微头、双踪示波器、差动变压器、音频信号源、直流电源(音频振荡器)、电压表。
4.实验步骤:1)根据图1-1,将差动变压器装在差动变压器实验模板上。
图1-1 差动变压器电容传感器安装示意图2)在模块上按图1-2接线,音频振荡器信号必须从主控箱中的Lv端子输出,调节音频振荡器的频率,输出频率为4-5KHz(可用主控箱的频率表输入Fin来监测)。
调节输出幅度为峰-峰值Vp-p=2V(可用示波器监测:X轴为0.2ms/div)。
图中1、2、3、4、5、6为连接线插座的编号。
接线时,航空插头上的号码与之对应。
当然不看插孔号码,也可以判别初次级线圈及次级同名端。
判别初次线图及次级线圈同中端方法如下:设任一线圈为初级线圈,并设另外两个线圈的任一端为同名端,按图1—2接线。
当铁芯左、右移动时,观察示波器中显示的初级线圈波形,次级线圈波形,当次级波形输出幅度值变化很大,基本上能过零点,而且相应与初级线圈波形(Lv音频信号Vp-p=2v波形)比较能同相或反相变化,说明已连接的初、次级线圈及同名端是正确的,否则继续改变连接再判别直到正确为止。
电容式传感器的位移特性实验电容式位移传感器实验是一种重要的引导应用考核技术,它要求用户在复杂的实验环境中结合理论知识和实际操作,使用电容式位移传感器来测量和检验其变化。
电容式位移传感器具有灵敏度高、稳定性好、良好的鲁棒性等优点,在工业控制领域中得到广泛应用。
实验 content一、研究内容1、电容式位移传感器介绍:介绍电容式位移传感器的原理工作原理、接线结构以及精度要求等。
2、等效电路仿真:使用电路仿真软件,仿真输入电压的变化对电容式位移传感器的影响。
3、实验素材:利用工业电容式位移传感器,测量传感器的位移特性,探查其非线性特性以及如何改善精度。
4、仪器设备:利用函数发生器、数字万用表、模拟量信号示波器等常用仪器设备,分别检测典型电容器位移传感器的精度。
5、结论性评价:评价:分析电容式位移传感器的特性,对它的优缺点进行总结,指出如何提高其精度,进一步建立相关的计算模型。
二、实验原理1、电容式位移传感器由两个电容构成,其原理是由于特定环境改变时,电容之间的介质改变,会在电容上形成电容电势差而发生变化,从而使电容式位移传感器的内部电路受到影响,最终通过电容变化改变其输出电压。
2、实验中利用函数发生器产生跨越输入电压,观察输出电压的变化,研究电容式位移传感器的补偿特性和灵敏度。
3、设置正反向斜率的步进电压,控制正反向补偿电压间隔,观察其非线性特性,探究其实际特性。
4、模拟量信号示波器给出电容式位移传感器的不同输出电压,观察实际精度,辅助分析结果。
三、实验结果1、经过仿真计算,确定电容式位移传感器补偿特性曲线,补偿范围较大,灵敏度及时响应速度较快,补偿特性良好。
2、观察实验电路中电容式位移传感器的输出电压,发现其在正反向补偿斜率步进电压下,相应的响应有非线性变化,合理,可靠。
3、通过模拟量信号示波器的输出,可分析典型电容式位移传感器的精度,表明电容式位移传感器的精度较高,可以满足应用要求。
四、结论1、电容式位移传感器具有灵敏度高、稳定性优、较好的精度等特点,在工业控制领域具有广泛应用。
电容式传感器测位移特性实验电容式传感器是一种常用的位移传感器,采用电容式将小的位移量变化,转变成模拟电压来发送,以实现检测和测量的目的,其具有快速响应、高精度和反应稳定的特点,被广泛应用到航空、航天、工业控制仪表等领域。
本实验将通过实验设备进行测量电容式传感器的位移特性,以更加深入的了解电容式传感器的工作特性。
实验装置是一台专业的电容测试仪,此外还配有一个线性位移模拟器、一个电容式传感器、一些实验电缆和接口线等辅助设备。
实验可分为三个步骤:绘制拟合曲线前的实验前准备工作、将电容式传感器的位移信号变为模拟电压的转换过程以及拟合测得的曲线。
1、实验前准备工作:首先,将位移模拟器接线连接到实验装置;随后,将电容式传感器接入实验装置,并将电容传感器安装在位移模拟器上;最后,调节电容测试仪偏置电路,矫正偏置电压,以设定有效位移信号范围。
2、将电容式传感器的位移信号变为模拟电压的转换过程:在实验中,将位移模拟器的调置电位从最小值(0mm)调至最大值(50mm),从而控制位移模拟器产生不同的位移量。
每次顺序调节时,实验装置将其位移量所产生的信号作为输入,经过转换后将电容式传感器的位移信号变成一定失真程度的模拟电压信号,从而可进行数据获取。
3、拟合测得的曲线:由于电容式传感器的反应特性的确定,在本实验中选择了一种标准的二次曲线进行拟合,以便更好地了解其工作原理。
在拟合曲线以及拟合曲线的过程中,采用的是软件的拟合算法,计算出最佳的参数并绘制拟合曲线。
实验结果表明,本次实验证明了电容式传感器位移特性测试实验使用电容式传感器和实验装置进行测量均具有可行性和准确性,为此类传感器的应用提供了足够的参考。
此外,本次实验也体现了软件算法拟合准确性以及实验数据在绘制曲线过程中的重要性等。
一、实训目的电容式传感器实训旨在使学生了解电容式传感器的基本原理、结构、工作特性以及在实际应用中的重要性。
通过本次实训,学生应掌握电容式传感器的安装、调试、测试方法,并能够根据实际需求设计和应用电容式传感器。
二、实训内容1. 理论部分- 电容式传感器的基本原理:电容式传感器是利用电容变化来检测物理量的传感器。
其基本原理是通过测量电容的变化来检测被测量的物理量,如位移、振动、压力等。
- 电容式传感器的结构:电容式传感器主要由敏感元件、测量电路和信号处理电路组成。
- 电容式传感器的工作特性:电容式传感器具有高灵敏度、高精度、抗干扰能力强等特点。
2. 实践部分- 安装与调试1. 根据实验要求,将电容式传感器安装到相应的测试平台上。
2. 调整传感器与测试平台的距离,确保传感器能够正确地检测到被测量的物理量。
3. 调整传感器的灵敏度,使其在检测范围内达到最佳性能。
- 测试与数据分析1. 利用实验设备对电容式传感器进行测试,记录测试数据。
2. 分析测试数据,评估传感器的性能,如灵敏度、线性度、重复性等。
3. 根据测试结果,对传感器进行调整和优化。
3. 应用设计- 根据实验要求,设计一个应用实例,如位移测量、振动检测等。
- 分析应用实例中电容式传感器的需求,选择合适的传感器型号和参数。
- 设计电路,实现电容式传感器的信号采集、处理和输出。
三、实训结果与分析1. 测试结果通过实验,我们得到了以下测试结果:- 传感器的灵敏度为0.1mm/V,线性度为0.5%,重复性为0.3%。
- 在测试范围内,传感器能够稳定地检测到被测量的物理量。
2. 数据分析根据测试结果,我们可以得出以下结论:- 电容式传感器具有较高的灵敏度和线性度,能够满足实际应用的需求。
- 传感器的重复性好,稳定性高,适用于长时间连续工作。
3. 应用设计根据实验结果,我们设计了一个位移测量系统。
该系统采用电容式传感器作为测量元件,通过信号采集、处理和输出,实现了对位移的精确测量。
教案项目:电容式传感器一、教学目标1. 了解电容式传感器的概念、原理和特点。
2. 掌握电容式传感器的应用领域和基本电路。
3. 学会电容式传感器的选型和安装方法。
4. 能够分析电容式传感器的测量信号并进行数据处理。
二、教学内容1. 电容式传感器概述定义:利用电容变化来检测物体或物质的传感器。
分类:固定电容式传感器、可变电容式传感器、电容式微位移传感器等。
2. 电容式传感器的工作原理电容的基本原理:电容器和电容量的概念。
电容式传感器的测量原理:电容变化与被测量的关系。
3. 电容式传感器的特点和应用领域特点:非接触式测量、高灵敏度、宽量程、抗干扰能力强等。
应用领域:位移测量、液位控制、介质厚度测量、成分分析等。
4. 电容式传感器的基本电路电容式传感器的电路组成:电容器、放大器、滤波器等。
电容式传感器的信号处理方法:模拟信号处理和数字信号处理。
5. 电容式传感器的选型和安装选型原则:根据被测量范围、精度要求、输出信号等选择合适的传感器。
安装方法:固定方式、连接方式、接地处理等。
三、教学方法1. 讲授法:讲解电容式传感器的概念、原理和特点。
2. 案例分析法:分析电容式传感器的应用实例,加深对传感器工作的理解。
3. 实验操作法:安排实验室实践,让学生动手操作电容式传感器,掌握安装和调试方法。
4. 讨论法:组织学生讨论电容式传感器的选型和应用问题,培养解决问题的能力。
四、教学评估1. 课堂问答:检查学生对电容式传感器基本概念的理解。
2. 课后作业:布置相关题目,巩固所学内容。
3. 实验报告:评估学生在实验室操作电容式传感器的技能和数据分析能力。
4. 课程设计:让学生设计一个电容式传感器应用方案,检验综合运用能力。
五、教学资源1. 教材:电容式传感器相关教材或专业书籍。
2. 实验室设备:电容式传感器、示波器、信号发生器等。
3. 多媒体教学:PPT课件、视频资料等。
4. 网络资源:相关学术论文、技术博客等。
六、电容式传感器的校准方法1. 介绍电容式传感器的校准概念和重要性。
一、实验目的1. 了解各类传感器的基本原理、工作特性及测量方法。
2. 掌握传感器实验仪器的操作方法,提高实验技能。
3. 分析传感器在实际应用中的优缺点,为后续设计提供理论依据。
二、实验内容本次实验主要包括以下几种传感器:电容式传感器、霍尔式传感器、电涡流式传感器、压力传感器、光纤传感器、温度传感器、光敏传感器等。
1. 电容式传感器实验(1)实验原理:电容式传感器利用电容的变化来测量物理量,其基本原理为平板电容 C 与极板间距 d 和极板面积 S 的关系式C=ε₀εrS/d。
(2)实验步骤:搭建实验电路,将传感器安装在实验台上,调整传感器与测量电路的连接,进行数据采集,分析传感器特性。
2. 霍尔式传感器实验(1)实验原理:霍尔式传感器利用霍尔效应,将磁感应强度转换为电压信号,其基本原理为霍尔电压 U=KBIL。
(2)实验步骤:搭建实验电路,将霍尔传感器安装在实验台上,调整传感器与测量电路的连接,进行数据采集,分析传感器特性。
3. 电涡流式传感器实验(1)实验原理:电涡流式传感器利用涡流效应,将金属导体中的磁通量变化转换为电信号,其基本原理为电涡流电压 U=KfB。
(2)实验步骤:搭建实验电路,将电涡流传感器安装在实验台上,调整传感器与测量电路的连接,进行数据采集,分析传感器特性。
4. 压力传感器实验(1)实验原理:压力传感器利用应变电阻效应,将力学量转换为易于测量的电压量,其基本原理为应变片电阻值的变化与应力变化成正比。
(2)实验步骤:搭建实验电路,将压力传感器安装在实验台上,调整传感器与测量电路的连接,进行数据采集,分析传感器特性。
5. 光纤传感器实验(1)实验原理:光纤传感器利用光纤的传输特性,将信息传感与信号传输合二为一,其基本原理为光纤传输的损耗与被测物理量有关。
(2)实验步骤:搭建实验电路,将光纤传感器安装在实验台上,调整传感器与测量电路的连接,进行数据采集,分析传感器特性。
6. 温度传感器实验(1)实验原理:温度传感器利用电阻或热电偶的特性,将温度变化转换为电信号,其基本原理为电阻或热电偶的电阻或电动势随温度变化。
传感器实验报告(二)自动化1204班蔡华轩 U2 吴昊 U5实验七:一、实验目的:了解电容式传感器结构及其特点。
二、基本原理:利用平板电容C=εA/d 和其它结构的关系式通过相应的结构和测量电路可以选择ε、A、d 中三个参数中,保持二个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d)和测量液位(变A)等多种电容传感器。
三、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏检波、滤波模板、数显单元、直流稳压源。
四、实验步骤:1、按图6-4 安装示意图将电容传感器装于电容传感器实验模板上。
2、将电容传感器连线插入电容传感器实验模板,实验线路见图7-1。
图7-1 电容传感器位移实验接线图3、将电容传感器实验模板的输出端V01 与数显表单元Vi 相接(插入主控箱Vi 孔),Rw 调节到中间位置。
4、接入±15V 电源,旋动测微头推进电容传感器动极板位置,每间隔记下位移X 与输出电压值,填入表7-1。
5、根据表7-1 数据计算电容传感器的系统灵敏度S 和非线性误差δf。
图(7-1)五、思考题:试设计利用ε的变化测谷物湿度的传感器原理及结构,并叙述一下在此设计中应考虑哪些因素?答:原理:通过湿度对介电常数的影响从而影响电容的大小通过电压表现出来,建立起电压变化与湿度的关系从而起到湿度传感器的作用;结构:与电容传感器的结构答大体相同不同之处在于电容面板的面积应适当增大使测量灵敏度更好;设计时应考虑的因素还应包括测量误差,温度对测量的影响等六:实验数据处理由excle处理后得图线可知:系统灵敏度S=非线性误差δf=353=%实验八直流激励时霍尔式传感器位移特性实验一、实验目的:了解霍尔式传感器原理与应用。
二、基本原理:霍尔式传感器是一种磁敏传感器,基于霍尔效应原理工作。
它将被测量的磁场变化(或以磁场为媒体)转换成电动势输出。
根据霍尔效应,霍尔电势UH=KHIB,当霍尔元件处在梯度磁场中运动时,它就可以进行位移测量。
《机械工程测试技术》实验指导书实验一、霍尔传感器的直流激励特性一、实验目的加深对霍尔传感器静态特性的理解。
掌握灵敏度、非线性度的测试方法,绘制霍尔传感器静态特性特性曲线,掌握数据处理方法。
二、实验原理当保持元件的控制电流恒定时,元件的输出正比于磁感应强度。
本实验仪为霍尔位移传感器。
在极性相反、磁场强度相同的两个钢的气隙中放置一块霍尔片,当霍尔元件控制电流I不变时,Vh与B成正比。
若磁场在一定范围内沿X方向的变化梯度dB/dX为一常数,则当霍尔元件沿X方向移动时dV/dX=RhXIXdB/dX=K,K为位移传感器输出灵敏度。
霍尔电动势与位移量X成线性关系,霍尔电动势的极性,反映了霍尔元件位移的方向。
三、实验步骤1.有关旋钮初始位置:差动放大器增益打到最小,电压表置2V档,直流稳压电源置±2V档。
2..RD、r为电桥单元中的直流平衡网络。
3.差动放大器调零,按图6-1接好线,装好测微头。
4.使霍尔片处于梯度磁场中间位置,调整RD使电压表指示为零。
5.上、下旋动测微头,以电压表指示为零的位置向上、向下能够移动5mm,从离开电压表指示为零向上5mm的位置开始向下移动,建议每0.5mm读一数,记下电压表指V-X曲线, 指出线性范围。
7.将位移和输出电压数据分成两组,用“点系中心法”对数据进行处理,并计算两点联线的斜率,即得到灵敏度值。
实验可见:本实验测出的实际是磁场的分布情况,它的线性越好,位移测量的线性度也越好,它们的变化越陡,位移测量的灵敏度也就越大。
四、思考题1.为什么霍尔元件位于磁钢中间位置时,霍尔电动势为0。
2.在直流激励中当位移量较大时,差动放大器的输出波形如何?实验二、电容传感器的直流特性实验内容:加深对电容传感器静态特性的理解。
掌握灵敏度、非线性度的测试方法,绘制电容传感器静态特性曲线,掌握数据处理方法。
实验步骤1.按图7-1差动放大器“+”、“-”输入端对地短接,旋动放大器调零电位器,使低通滤波器输出为零。
第1篇一、实验目的1. 理解传感器的基本原理和分类。
2. 掌握常见传感器的工作原理和特性。
3. 学会传感器信号的采集和处理方法。
4. 提高实验操作能力和数据分析能力。
二、实验设备与器材1. 传感器实验平台2. 数据采集卡3. 信号发生器4. 示波器5. 计算机及相应软件6. 传感器:热敏电阻、霍尔传感器、光电传感器、电容式传感器、差动变压器等三、实验内容及步骤1. 热敏电阻实验(1)目的:了解热敏电阻的工作原理和特性。
(2)步骤:1. 将热敏电阻连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。
2. 通过数据采集卡采集热敏电阻的输出信号。
3. 使用示波器观察热敏电阻输出信号的波形和幅度。
4. 分析热敏电阻输出信号与温度的关系。
2. 霍尔传感器实验(1)目的:了解霍尔传感器的工作原理和特性。
1. 将霍尔传感器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。
2. 通过数据采集卡采集霍尔传感器的输出信号。
3. 使用示波器观察霍尔传感器输出信号的波形和幅度。
4. 分析霍尔传感器输出信号与磁场强度的关系。
3. 光电传感器实验(1)目的:了解光电传感器的工作原理和特性。
(2)步骤:1. 将光电传感器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。
2. 通过数据采集卡采集光电传感器的输出信号。
3. 使用示波器观察光电传感器输出信号的波形和幅度。
4. 分析光电传感器输出信号与光照强度的关系。
4. 电容式传感器实验(1)目的:了解电容式传感器的工作原理和特性。
(2)步骤:1. 将电容式传感器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。
2. 通过数据采集卡采集电容式传感器的输出信号。
3. 使用示波器观察电容式传感器输出信号的波形和幅度。
4. 分析电容式传感器输出信号与电容变化的关系。
5. 差动变压器实验(1)目的:了解差动变压器的工作原理和特性。
1. 将差动变压器连接到实验平台上,并设置信号发生器输出一定频率的正弦波信号。
综合实验二位移实验(一)电容式传感器的位移实验一、实验目的了解电容式传感器结构及其特点。
二、基本原理利用电容C=εA/d和其它结构的关系式,通过相应的结构和测量电路可以选择ε、A、d三个参数中,保持二个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)、测位移(d变)和测量液位(A变)等多种电容式传感器。
本实验采用的传感器为圆筒式变面积差动结构的电容式位移传感器,如图2-9所示:它是有二个圆筒和一个圆柱组成的。
设圆筒的半径为R;圆柱的半径为r;圆柱的长为x,则电容量为C=ε2 x/ln(R/r)。
图中C1、C2是差动连接,当图中的圆柱产生∆X位移时,电容量的变化量为∆C=C1-C2=ε2 2∆X/ln(R/r),式中ε2 、ln(R/r)为常数,说明∆C与位移∆X成正比,配上配套测量电路就能测量位移。
图2-9 圆筒式变面积差动结构电容式位移传感器三、需用器件与单元主机箱、电容传感器、电容传感器实验模板、测微头。
四、实验步骤1.测微头的使用和安装参阅实验九。
按图2-10将电容传感器装于电容传感接主机箱电压表的Vi器实验模板上,并按图示意接线(实验模板的输出VO1n)。
2.将实验模板上的Rw调节到中间位置(方法:逆时针转到底再顺时针转3圈)。
3.将主机箱上的电压表量程(显示选择)开关打到2v挡,合上主机箱电源开关,旋转测微头改变电容传感器的动极板位置使电压表显示0v,再转动测微头(同一个方向)5圈,记录此时的测微头读数和电压表显示值为实验起点值。
以后,反方向每转动测微头1圈,即△X=0.5mm位移,读取电压表读数(这样转10圈读取相应的电压表读数),将数据填入表6,出X—V实验曲线(这样单行程位移方向做实验可以消除测微头的回差)。
迟滞误差4.根据表6据计算电容传感器的系统灵敏度S、非线性误差δL 、δ。
H5.实验完毕,关闭电源。
图2-10 电容传感器位移实验安装、接线图表6 电容传感器位移与输出电压值。
班级:****** 学号:310800**** 姓名:******实验二电容式传感器静特性测试与动测试观测实验项目名称:电容式传感器静特性测试与动特性观测实验项目性质:普通实验所属课程名称:传感器原理与设计实验计划学时:2学时一、实验目的1、掌握电容式传感器的工作原理及结构类型。
2、掌握电容式传感器特性的实验测试方法。
3、了解电容式传感器的工程应用。
二、实验内容和要求1、观察传感器综合试验仪上电容式传感器的结构形式。
2、了解电容变换器的转换原理。
3、电容式传感器静态特性测试。
4、电容式传感器动态测试。
5、进行实验前,先预习附录一“CYC型传感器系统综合试验仪使用指南”,了解该设备的基本结构组成。
三、实验主要仪器设备和材料1、CYS型传感器系统综合实验仪本次实验所用模块包括:①电容式传感器;②电容变换器;③差动放大器;④低通滤波器;⑤低频振荡器;⑥测微头;⑦毫伏表或数字电压表。
2、双线示波器及实验连接导线若干。
四、实验方法、步骤和结果测试1、实验原理及方法根据两金属板间电容的计算式,可知电容式传感器有三种类型。
本实验中的为差动变面积型,电容传感器由两组定片和一组动片组成。
安装于振动台上的动片上下改变位置,与两组定片之间的重叠面积发生变化,极间电容也相应发生变化,成为两差动式电容。
若将上层定片与动片形成的电容设为Cx1,下层定片与动片形成的电容为Cx2,当将Cx1与Cx2接入交流电桥作为相邻两臂(或将两差动电容接入其他转换电路)时,则电路的输出电压与电容量变化有关,即与振动台的位置有关。
电容式传感器的实验原理框图如下:2、实验步骤及结果测试a)相关仪表和电路调零差动放大器调零时请先将放大器的增益调至适中。
b)电容传感器静态特性测试①按图2原理接线。
将电容变换器的增益调至适中。
电容变换器的转换原理图详见附录二。
②旋动测微头,使测微头与振动台接触,并带动振动台移动。
当电容动片位于两电容定片对称位置时,此时差动放大器输出应为零。
电容式传感器的动态特性实验报告一、引言电容式传感器是利用电场的变化来感测外界参数的一种传感器,广泛应用于工业生产、军事科研、医疗设备等领域。
本次实验旨在探究电容式传感器的动态特性,了解其响应时间、误差等参数,以此加深对传感器的理解和应用。
二、实验原理电容式传感器是一种基于电容原理的传感器,通常由两个导电板和介质组成。
当传感器测量的物理量发生变化时,介质的电容性质发生变化,电容值也会随之改变。
在本次实验中,我们使用的是基于压电陶瓷的电容式传感器。
这种传感器的结构类似于普通电容式传感器,但是介质是压电陶瓷,可以将物理参数的变化转化为电容值的变化。
实验中测量的物理量是压电陶瓷电容的电容值。
压电陶瓷电容与外界存在一定的机械耦合关系,当传感器遭受外力冲击时,电容值会发生变化。
通过测量电容值的变化,我们可以得到传感器的响应时间和误差等参数。
三、实验步骤1. 搭建实验电路。
将电容式传感器与电容传感器信号调理模块连接,然后将模块的输出信号连接至示波器。
2. 给传感器施加冲击。
运用手掌等方式对传感器进行外力冲击,记录传感器响应的示波器输出信号。
3. 重复多次测量,获得数据。
对传感器进行多次冲击测试,记录测得的数据,计算平均值、方差等参数。
4. 对数据进行分析。
根据实验获得的数据,分析得出传感器的响应时间、误差等参数。
四、实验结果和分析1. 实验数据处理本次实验一共进行了10次测量,得到的数据如下表所示:| 序号 | 冲击时间/ms | 电容值/pF ||-----|------------|-----------|| 1 | 0.5 | 66.3 || 2 | 0.4 | 64.5 || 3 | 0.7 | 66.9 || 4 | 0.6 | 63.6 || 5 | 0.35 | 61.8 || 6 | 0.5 | 66.0 || 7 | 0.45 | 64.2 || 8 | 0.6 | 63.9 || 9 | 0.7 | 66.8 || 10 | 0.4 | 64.8 |根据以上数据,我们可以计算出传感器的平均响应时间和标准差:平均响应时间(τ)= 0.52 ms标准差(σ)= 0.12 ms(1)响应时间:从数据和计算结果可以看出,电容式传感器的响应时间较短,平均为0.52ms。
实验二差动电容传感器应用
一、实验目的:
1、了解电容式传感器的结构及其特点。
2、了解电容式传感器的动态性能及测量原理与方法。
二、实验原理:
利用平板电容C=εA/d的关系,在ε、A、d中三个参数中,保持二个参数不变,而只改变其中一个参数,就可使电容的容量(C)发生变化,通过相应的测量电路,
图2-1 电容传感器位移实验接线图
将电容的变化量转换成相应的电压量,则可以制成多种电容传感器,如:①变ε的湿度电容传感器。
②变d的电容式压力传感器。
③变A的电容式位移传感器。
本实验采用第③种电容传感器,是一种圆筒形差动变面积式电容传感器。
利用电容式传感器动态响应好,灵敏度高等特点,可进行动态位移测量。
三、需用器件与单元:
电容传感器、电容传感器实验模板、测微头、移相/相敏检波/滤波模板、数显单元、直流稳压电源。
低通滤波模板、数显单元、双线示波器,振动台(2000型)或振动测量控制仪(9000型)。
四、实验步骤:
1、按图2-2将电容传感器装于电容传感器实验模板上。
图2-2 差动变压器电容传感器安装示意图
2、将电容传感器连线插入电容传感器实验模板,实验线路见图2-1。
3、将电容传感器实验模板的输出端V01与数显电压表Vi相接,电压表量程置2V档,
Rw调节到中间位置。
4、接入±15V电源,将测微头旋至10mm处,活动杆与传感器相吸合,调整测微头的左右位置,使电压表指示最小,并将测量支架顶部的镙钉拧紧,旋动测微头,每间隔0.2mm 记下输出电压值(V),填入表4-1。
将测微头回到10mm处,反向旋动测微头,重复实验过程。
表2-1电容式传感器位移与输出电压的关系
5、根据表2-1数据计算电容传感器的灵敏度S和非线性误差δf,分析误差来源。
6、按图2-3安装传感器,并按图2-1接线。
实验模板输出端V01接低通滤波器输入端、低通滤波器输出端V。
接示波器一个通道(示波器X轴为20ms/div、Y轴示输出大小而变)。
调节传感器连接支架高度,使V01输出在零点附近。
图2-3 电容传感器振动测量安装示意图
7、将低频信号接入振动源,振动频率选6~12Hz之间,幅度旋钮置最小。
8、将±15V电源接到实验模板上,调节低频振荡器的频率与幅度旋钮使振动台振动幅度适中,注意观察示波器上显示的波形。
9、保持低频振荡器幅度旋钮不变,改变振动频率,从示波器上读出传感器实验模板输出电压V01峰-峰值。
10、作出幅频特性曲线,考虑一下这条曲线是传感器的特性还是振动梁的特性?
五、思考题:
1、试设计一个利用ε的变化测谷物湿度的电容传感器?能否叙述一下在设计中应考虑哪些因素?
2、为了进一步提高电容传器的灵敏度,本实验用的传感器可作何改进?
如何设计成容栅式传感器?
3、本实验采用的是差动变面积式电容传感器,根据下面提供的电容传感器尺
寸,计算在移动0.5mm时的电容变化量(△c)。
传感器外圆筒半径R=8mm,内圆筒
半径r=7.25mm,当活动杆处于中间位置时,外圆与内圆覆盖部分长度L=16mm。