半导体器件失效分析基础大全
- 格式:pdf
- 大小:16.48 MB
- 文档页数:68
半导体器件的检测与失效分析针对半导体器件失效分析主要涉及到了多种实验方法其中包括物理、化学以及金相的试验程序,进而明确器件失效的形式,分析失效的具体过程,从中探寻出导致这一事件原因所在,并设定相应的实施政策。
对此,文章对于半导体器件的失效与检测进行了具体的论述,并提出下面几点有效的检查方法,最终提升半导体元件的可靠性与耐用性。
关键词:半导体器件,检测,失效分析,无损检测,破坏性分析Detection and failure analysis of semiconductor devicesGao Shao-bin1,2, jin Li-hua(1. Shijiazhuang METDA Electronic Technology Limited Corporation,Shijiazhuang 050050, China;2. The 13th Research Institute,CETC, Shijiazhuang 050051, China)The failure analysis of semiconductor devices mainly involves a variety of experimental methods, including physical, chemical and metallographic test procedures, so as to clarify the form of device failure, analyze the specific process of failure, find out the cause of this event, and set the corresponding implementation policy. Inthis regard, the article specifically discusses the failure and detection of semiconductor devices, and puts forward the following effective inspection methods, so as to improve the reliability and durability of semiconductor devices.Key words: Semiconductor devices, testing, failure analysis, nondestructive testing, destructive analysis0引言失效分析技巧主要是探究电子元件产品失效的原理,提升产品可靠性的关键手段。
半导体器件失效原因分析发信站: 紫金飞鸿 (Mon Oct 2 12:02:48 2000)多年来,用户要求有更可靠的电子设备,而与此同时,电子设备发展得越来越复杂。
这两个因素的结合,促使人们更加关注电子设备在长期运行中确保无故障的能力。
通过失效分析可以深入理解失效机理和原因,引导元器件和产品设计的改进,有助于提高电子设备(系统)的可靠性。
半导体器件的失效通常是因为产生的应力超过了它们的最大额定值。
电气应力、热应力、化学应力、辐射应力、机械应力及其他因素都会造成器件失效。
半导体器件的失效机理主要划分成以下6种:一、包封失效。
这类失效发生在用于封装器件的包封出现缺陷,通常是开裂。
机械应力或热应力以及包封材料与金属引线之间热膨胀系数的不同都会引起包封开裂,当环境湿度很高或器件暴露在溶剂、清洗剂等中时,这些裂缝会使湿气浸入,产生的化学反应会使器件性能恶化,使它们失效。
二、导线连接失效。
由于通过大电流造成过量的热应力、或由于连接不当使连接线中产生机械应力、连接线与裸芯之间界面的开裂、硅中的电致迁移、以及过量的连接压力,都会引起导线连接失效。
三、裸芯粘接故障。
裸芯与衬底之间粘接不当时,就会恶化两者之间的导热性,结果会使裸芯过热,产生热应力和开裂,使器件失效。
四、本征硅的缺陷。
由晶体瑕疵或本征硅材料中的杂质和污染物造成的缺陷使器件失效,在器件制造期间扩散工艺产生的工艺瑕疵也会造成器件失效。
五、氧化层缺陷。
静电放电和通过器件引线的高压瞬时传送,可能会使氧化层(即绝缘体)断开,造成器件功能失常。
氧化层中的开裂、划伤、或杂质也会导致器件失效。
六、铝金属缺陷。
这类缺陷往往由下列几种情况造成:由于大电场导致在电流流动方向上发生铝的电迁移;由于大电流造成过量电气应力,导致铝导体断裂;铝被腐蚀;焊接引起铝金属耗损;接触孔被不适当地淀积上金属;有小丘和裂缝。
半导体器件应该工作在由生产厂确定的电压、电流和功耗限定范围内,当器件工作在这个“安全工作范围(SOA)”之外时,电气应力过度(EOS)就会引起内部电压中断,导致器件内部损伤。
半导体器件失效分析与检测摘要:本文对半导体器件的失效做了详尽分析,并介绍了几种常用的失效检测方法。
1 半导体器件失效剖析经过剖析可知形成半导体器件失效的要素有很多,我们主要从几个方面进论述。
1.1 金属化与器件失效环境应力对半导体器件或集成电路牢靠性的影响很大。
金属化及其键合处就是一个不容无视的失效源。
迄今,大多数半导体器件平面工艺都采用二氧化硅作为掩膜钝化层。
为在芯片上完成互连,常常在开窗口的二氧化硅层上淀积铝膜即金属化。
从物理、化学角度剖析,金属化失效机理大致包括膜层张力、内聚力、机械疲倦、退火效应、杂质效应及电迁移等。
1.2 晶体缺陷与器件失效晶体缺陷招致器件失效的机理非常复杂,有些问题至今尚不分明。
晶体缺陷分晶体资料固有缺陷(如微缺陷)和二次缺陷两类。
后者是在器件制造过程中,由于氧化、扩散等热处置后呈现或增殖的大量缺陷。
两种缺陷或者彼此互相作用,都将招致器件性能的退化。
二次击穿就是晶体缺陷招来的严重结果。
1.2.1 位错这种缺陷有的是在晶体生长过程中构成的(原生位错),有的是在器件工艺中引入的(诱生位错)。
位错易沿位错线加速扩散和析出,间接地促成器件劣化。
事实证明,表面杂质原子(包括施主和受主)沿位错边缘的扩散比在圆满晶体内快很多,其结果常常使P-N结的结平面不平整以至穿通。
鉴于位错具有“吸除效应”,对点缺陷如杂质原子、点阵空位、间隙原子等起到内部吸收的作用,故适量的位错反而对器件消费有利。
1.2.2 沉淀物除位错形成不平均掺杂外,外界杂质沾污也会带来严重结果,特别是重金属沾污,在半导体工艺中是经常发作的。
假如这些金属杂质存在于固溶体内,其危害相对小一些;但是,一旦在P-N结处构成堆积物,则会产生严重失效,使反向漏电增大,以至到达毁坏的水平。
堆积需求成核中心,而位错恰恰提供了这种中心。
硅中的二次孪生晶界为堆积提供了有利的成核场所,所以具有这种晶界的二极管,其特性明显变软。
1.2.3 二次缺陷。
半导体器件失效分析的研究Research on Semiconductor Device Failure Analysis中文摘要半导体失效分析在提高集成电路的可靠性方面有着至关重要的作用。
随着集成度的提高,工艺尺寸的缩小,失效分析所面临的困难也逐步增大。
因此,失效分析必须配备相应的先进、准确的设备和技术,配以具有专业半导体知识的分析人员,精确定位失效位置。
在本文当中,着重介绍多种方法运用Photoemission显微镜配合IR-OBIRCH精确定位失效位置,并辅以多项案例。
Photoemission是半导体元器件在不同状态下(二极管反向击穿、短路产生的电流、MOS管的饱和发光,等等),所产生的不同波长的光被捕获,从而在图像上产生相应的发光点。
Photoemission在失效分析中有着不可或缺的作用,通过对好坏品所产生的发光点的对比,可以为后面的电路分析打下坚实的基础,而且在某些情况下,异常的发光点就是最后我们想要找到的defect的位置。
IR-OBIRCH(Infrared Optical beam Induced Resistance Change)主要是由两部分组成:激光加热器和电阻改变侦测器。
电阻的改变是通过激光加热电流流经的路径时电流或者电压的变化来表现的,因此,在使用IR-OBIRCH时,前提是必须保证所加电压两端产生的电流路径要流过defect的位置,这样,在激光加热到defect位置时,由于电阻的改变才能产生电流的变化,从而在图像上显现出相应位置的热点。
虽然Photoemission和IR-OBIRCH可以很好的帮助我们找到defect的位置,但良好的电路分析以及微探针(microprobe)的使用在寻找失效路径方面是十分重要的,只有通过Photoemission的结果分析,加上电路分析以及微探针(mi croprobe)测量内部信号的波形以及I-V曲线,寻找出失效路径后,IR-OBIRCH 才能更好的派上用场。
半导体器件失效分析半导体器件失效分析就是通过对失效器件进行各种测试和物理、化学、金相试验,确定器件失效的形式(失效模式),分析造成器件失效的物理和化学过程(失效机理),寻找器件失效原因,制订纠正和改进措施。
加强半导体器件的失效分析,提高它的固有可靠性和使用可靠性,是改进电子产品质量最积极、最根本的办法,对提高整机可靠性有着十分重要的作用。
半导体器件与使用有关的失效十分突出,占全部失效器件的绝大部分。
进口器件与国产器件相比,器件固有缺陷引起器件失效的比例明显较低,说明进口器件工艺控制得较好,固有可靠性水平较高。
1. 与使用有关的失效与使用有关的失效原因主要有:过电应力损伤、静电损伤、器件选型不当、使用线路设计不当、机械过应力、操作失误等。
①过电应力损伤。
过电应力引起的烧毁失效占使用中失效器件的绝大部分,它发生在器件测试、筛选、安装、调试、运行等各个阶段,其具体原因多种多样,常见的有多余物引起的桥接短路、地线及电源系统产生的电浪涌、烙铁漏电、仪器或测试台接地不当产生的感应电浪涌等。
按电应力的类型区分,有金属桥接短路后形成的持续大电流型电应力,还有线圈反冲电动势产生的瞬间大电流型电应力以及漏电、感应等引起的高压小电流电应力;按器件的损伤机理区分,有外来过电应力直接造成的PN结、金属化烧毁失效,还有外来过电应力损伤PN结触发CMOS电路闩锁后引起电源电流增大而造成的烧毁失效。
②静电损伤。
严格来说,器件静电损伤也属于过电应力损伤,但是由于静电型过电应力的特殊性以及静电敏感器件的广泛使用,该问题日渐突出。
静电型过电应力的特点是:电压较高(几百伏至几万伏),能量较小,瞬间电流较大,但持续时间极短。
与一般的过电应力相比,静电型损伤经常发生在器件运输、传送、安装等非加电过程中,它对器件的损伤过程是不知不觉的,危害性很大。
从静电对器件损伤后的失效模式来看,不仅有PN结劣化击穿、表面击穿等高压小电流型的失效模式,也有金属化、多晶硅烧毁等大电流失效模式。
半导体器件失效分析_半导体器件芯片焊接技巧及控制随着技术的发展,芯片的焊接(粘贴)技巧也越来越多并不断完善。
半导体器件焊接(粘贴)失效主要与焊接面洁净度差、不平整、有氧化物、加热不当和基片镀层质量有关。
树脂粘贴法还受粘料的组成结构及其有关的物理力学性能的制约和影响。
要解决芯片微焊接不良问题,必须明白不同技巧的机理,逐一分析各种失效模式,及时发现影响焊接(粘贴)质量的不利因素,同时严格生产过程中的检验,加强工艺管理,才能有效地避免因芯片焊接不良对器件可靠性造成的潜在危害。
本文首先介绍了芯片焊接(粘贴)技巧及机理,其次介绍了失效模式分析,最后介绍了焊接质量的三种检验技巧以及焊接不良原因及对应措施,具体的跟随小编一起来了解一下。
芯片焊接(粘贴)技巧及机理芯片的焊接是指半导体芯片与载体(封装壳体或基片)形成牢固的、传导性或绝缘性连接的技巧。
焊接层除了为器件提供机械连接和电连接外,还须为器件提供良好的散热通道。
其技巧可分为树脂粘接法和金属合金焊接法。
树脂粘贴法是采用树脂粘合剂在芯片和封装体之间形成一层绝缘层或是在其中掺杂金属(如金或银)形成电和热的良导体。
粘合剂大多采用环氧树脂。
环氧树脂是稳定的线性聚合物,在加入固化剂后,环氧基打开形成羟基并交链,从而由线性聚合物交链成网状结构而固化成热固性塑料。
其过程由液体或粘稠液→凝胶化→固体。
固化的条件主要由固化剂种类的选择来决定。
而其中掺杂的金属含量决定了其导电、导热性能的好坏。
掺银环氧粘贴法是当前最流行的芯片粘贴技巧之一,它所需的固化温度低,这能够避免热应力,但有银迁移的缺点。
近年来应用于中小功率晶体管的金导电胶优于银导电胶。
非导电性填料包括氧化铝、氧化铍和氧化镁,能够用来改善热导率。
树脂粘贴法因其操作过程中载体不须加热,设备简单,易于实现工艺自动化操作且经济实惠而得到广泛应用,尤其在集成电路和小功率器件中应用更为广泛。
树脂粘贴的器件热阻和电阻都很高。
树脂在高温下简单分解,有可能发生填料的析出,在粘贴面上只留下一层树脂使该处电阻增大。
第一章半导体器件失效分析概论1*失效分析的产生与发展随着微电子学的飞速发展,半导体器件已广泛应用于宇航/军事/工业和民用产品中。
所以对半导体器件的可靠性研究也更加重要。
半导体器件的可靠性的研究主要包括两方面:一是评价可靠性水平(如可靠性数学/可靠性试验/可靠性评估等);二是如何提高可靠性(如失效分析/失效物理/工艺监控/可靠性设计等)。
虽然器件可靠性研究首先是从评价可靠性水平开始的,但研究重点逐渐在转向如何提高可靠性方面。
因为可靠性研究不仅是为了评价器件可靠性,更重要的是为了提高可靠性,所以失效分析的失效物理研究越来越受到广大可靠性工作者的重视。
失效分析和失效物理研究的迅速发展并不单是为了学术研究的需要,更重要的是为了满足可靠性工程迅速发展的需要。
特别是60年代以后,随着可靠性研究的发展和高可靠半导体器件及大规模集成电路的出现,可靠性研究遇到了难以克服的困难(例如失效率10-7意味着10000个器件作1000小时试验之后才能得出这一结果)。
第二,半导体器件和集成电路的品种及工艺更新速度很快,使得过去取得的可靠性数据常常变得不适用。
第三。
当代电子设备和系统的日益复杂化/综合化,并对器件提出了高可靠的要求。
为了解决以上的问题,迫切需要一种既省时间,又省费用的可靠性研究方法。
失效分析和失效物理研究就是为了达到这一目的而迅速发展起来的,发展的情况如表1-1所示。
路两项发明,开辟了利用集成电路的新时期,使集成电路的可靠性得到了很大提高,并成功地用于“民兵”洲际弹道导弹,成为美国宇航局在阿波罗计划中广泛使用集成电路的典范。
集成电路用于“民兵”导弹在可靠性方面的意义可定量说明如下:在1958年,要求微型电路的平均失效率为7*10-9。
然而,那时侯晶体管的失效率大约是1*10-5。
“民兵”计划的改进措施(主要是以失效分析为中心的元器件质量保证计划)致使集成电路的失效率降低到3*10-9。
其中失效分析对半导体器件可靠性的提高发挥了很大的推动作用。
半导体芯片常用失效分析方法失效分析赵工半导体工程师 2022-10-12 09:06 发表于北京显微镜分析OM 无损检测:蔡司金相显微镜OM服务介绍:可用来进行器件外观及失效部位的表面形状,尺寸,结构,缺陷等观察。
金相显微镜系统是将传统的光学显微镜与计算机(数码相机)通过光电转换有机的结合在一起,不仅可以在目镜上作显微观察,还能在计算机(数码相机)显示屏幕上观察实时动态图像,电脑型金相显微镜并能将所需要的图片进行编辑、保存和打印。
服务范围:可供研究单位、冶金、机械制造工厂以及高等工业院校进行金属学与热处理、金属物理学、炼钢与铸造过程等金相试验研究之用服务内容:1.样品外观、形貌检测2.制备样片的金相显微分析3.各种缺陷的查找体视显微镜OM 无损检测:蔡司服务介绍:体视显微镜,亦称实体显微镜或解剖镜。
是一种具有正像立体感的目视仪器,从不同角度观察物体,使双眼引起立体感觉的双目显微镜。
对观察体无需加工制作,直接放入镜头下配合照明即可观察,成像是直立的,便于操作和解剖。
视场直径大,但观察物要求放大倍率在200倍以下。
服务范围:电子精密部件装配检修,纺织业的品质控制、文物、邮票的辅助鉴别及各种物质表面观察服务内容:1.样品外观、形貌检测2.制备样片的观察分析3.封装开帽后的检查分析4.晶体管点焊、检查X-Ray无损检测:德国依科视朗服务介绍:X-Ray是利用阴极射线管产生高能量电子与金属靶撞击,在撞击过程中,因电子突然减速,其损失的动能会以X-Ray形式放出。
而对于样品无法以外观方式观测的位置,利用X-Ray穿透不同密度物质后其光强度的变化,产生的对比效果可形成影像,即可显示出待测物的内部结构,进而可在不破坏待测物的情况下观察待测物内部有问题的区域。
服务范围:产品研发,样品试制,失效分析,过程监控和大批量产品观测服务内容:1.观测DIP、SOP、QFP、QFN、BGA、Flipchip等不同封装的半导体、电阻、电容等电子元器件以及小型PCB印刷电路板2.观测器件内部芯片大小、数量、叠die、绑线情况3.观测芯片crack、点胶不均、断线、搭线、内部气泡等封装缺陷,以及焊锡球冷焊、虚焊等焊接缺陷C-SAM(超声波扫描显微镜),无损检测:sonix1.材料内部的晶格结构,杂质颗粒.夹杂物.沉淀物.2. 内部裂纹.3.分层缺陷.4.空洞,气泡,空隙等.I/V Curve advanced smart-1服务介绍:验证及量测半导体电子组件的电性、参数及特性。
半导体器件失效分析半导体器件失效分析就是通过对失效器件进行各种测试和物理、化学、金相试验,确定器件失效的形式(失效模式),分析造成器件失效的物理和化学过程(失效机理),寻找器件失效原因,制订纠正和改进措施。
加强半导体器件的失效分析,提高它的固有可靠性和使用可靠性,是改进电子产品质量最积极、最根本的办法,对提高整机可靠性有着十分重要的作用。
半导体器件与使用有关的失效十分突出,占全部失效器件的绝大部分。
进口器件与国产器件相比,器件固有缺陷引起器件失效的比例明显较低,说明进口器件工艺控制得较好,固有可靠性水平较高。
1. 与使用有关的失效与使用有关的失效原因主要有:过电应力损伤、静电损伤、器件选型不当、使用线路设计不当、机械过应力、操作失误等。
①过电应力损伤。
过电应力引起的烧毁失效占使用中失效器件的绝大部分,它发生在器件测试、筛选、安装、调试、运行等各个阶段,其具体原因多种多样,常见的有多余物引起的桥接短路、地线及电源系统产生的电浪涌、烙铁漏电、仪器或测试台接地不当产生的感应电浪涌等。
按电应力的类型区分,有金属桥接短路后形成的持续大电流型电应力,还有线圈反冲电动势产生的瞬间大电流型电应力以及漏电、感应等引起的高压小电流电应力;按器件的损伤机理区分,有外来过电应力直接造成的PN结、金属化烧毁失效,还有外来过电应力损伤PN结触发CMOS电路闩锁后引起电源电流增大而造成的烧毁失效。
②静电损伤。
严格来说,器件静电损伤也属于过电应力损伤,但是由于静电型过电应力的特殊性以及静电敏感器件的广泛使用,该问题日渐突出。
静电型过电应力的特点是:电压较高(几百伏至几万伏),能量较小,瞬间电流较大,但持续时间极短。
与一般的过电应力相比,静电型损伤经常发生在器件运输、传送、安装等非加电过程中,它对器件的损伤过程是不知不觉的,危害性很大。
从静电对器件损伤后的失效模式来看,不仅有PN结劣化击穿、表面击穿等高压小电流型的失效模式,也有金属化、多晶硅烧毁等大电流失效模式。
2012/09/03瑞萨电子(中国)有限公司中国质量保证中心半导体故障解析技术致:珠海格力电器股份有限公司No.:No.: RESH-MR-CQAC-000231. 故障解析技术2. 破坏的原因(ESD和EOS)3.半导体故障原理和不良事例介紹目录1.故障解析技术1.1 什么是故障分析当根据故障判断标准判断出对象器件已丧失基本功能时,就开始进行故障分析。
从完全老化到功能下降,故障所包含的范围非常广。
最近,由于电子设备系统变得非常复杂,不只是部件故障,而且经常因整个系统匹配不良而发生故障。
因此在进行故障分析时,如果不充分地考虑以上事项,就会因得出错误结论而看错改善活动的方向。
故障分析是指通过仔细斟酌故障内容,明确故障机理,运用恰当的电气、物理和化学分析技术解明故障原因。
在进行实际的故障分析时,需要在着手分析操作之前尽可能详细地调查故障发生时的状况,准确地把握故障内容,并且还需要对特性值的变化内容、故障发生的经过、使用环境、应力条件、实际设备上的问题以及人为的错误等进行分析。
通过充分调查这些问题,在某种程度上推定故障模式和故障机理非常重要,并以此为基础决定最佳的分析方法和步骤。
如果不充分地进行故障分析,就有可能因错选了分析方法并损坏了贵重的分析样品而无法查明故障原因。
另外,在进行故障分析时,比较故障产品和良品也是尽快解决问题的突破口。
LSI很小,却没有比他再大的地方了。
对于芯片的面积来说这个缺陷却又如此的小。
比从整体日本(=37万平方公里)找到一个1m×1m的洞。
故障分析的方法和步骤取决于上述故障的发生状况,一般按照下页所示的步骤实施。
对于故障产品,首先检查封装的外观,然后评价电特性并将故障模式进行分类。
其次,按照故障模式,在分析封装内部和芯片内部后,用光学显微镜或者电子显微镜SEM:Scanning Electron Microscope)观察故障位置(物理分析)。
最后,通过综合判断,确定故障机理并制定对策。
半导体器件失效分析★★★★★微谱检测:中国权威检测机构★★★★★----------专业研究半导体器件失效分析微谱检测是国内最专业的未知物剖析技术服务机构,拥有最权威的图谱解析数据库,掌握最顶尖的未知物剖析技术,建设了国内一流的分析测试实验室。
首创未知物剖析,成分分析,配方分析等检测技术,是未知物剖析技术领域的第一品牌!上海微谱化工检测技术有限公司,是一家专业从事材料分析检测技术服务的机构,面向社会各业提供各类材料样品剖析、配方分析、化工品检验检测、单晶硅纯度检测及相关油品测试服务。
本公司由高校科研院所教授博士领衔、多个专业领域专家所组成的技术团队具有长期从事材料分析测试的经验,技术水平和能力属国内一流。
通过综合性的分离和检测手段对未知物进行定性鉴定与定量分析,为科研及生产中调整配方、新产品研发、改进生产工艺提供科学依据。
微谱检测与同济大学联合建立微谱实验室,完全按照CNAS国家认可委的要求建设,通过CMA国家计量认证,并依据CNAS-CL01:2006、CNAS-CL10和《实验室资质认定评审准则》进行管理,微谱实验室出具的检测数据均能溯源到中国国家计量基准。
微谱检测的分析技术服务遍布化工行业,从原材料鉴定、化工产品配方分析,到产品生产中的工业问题诊断、产品应用环节的失效分析、产品可靠性测试,微谱检测都可以提供最专业的分析技术服务。
微谱检测深耕于未知物剖析技术领域内的创新,以振兴民族化工材料产业为己任!微谱检测可以提供塑料制品,橡胶制品,涂料,胶粘剂,金属加工助剂,清洗剂,切削液,油墨,各种添加剂,塑料,橡胶加工改性助剂,水泥助磨剂,助焊剂,纺织助剂,表面活性剂,化肥,农药,化妆品,建筑用化学品等产品的成分分析,配方分析,工艺诊断服务。
微谱检测是国内最大的未知物剖析服务机构,专业研究半导体器件失效分析,技术实力居于国内领先水平。
目前,常可见到的半导体器件失效分析项目包括:半导体芯片(芯片内部分层,孔洞气泡、芯联半导体)、半导体晶圆片、封装器件、红外器件、光电传感器件、SMT贴片器件、MEMS、半导体激光器、半导体致冷器、半导体二极管、半导体三极管、半导体放电管、半导体应变片、半导体热敏电阻、半导体硅晶片等等。