高考物理光学部分知识点完美总结
- 格式:doc
- 大小:62.00 KB
- 文档页数:4
高考物理光学知识点光学是物理学的一个重要分支,研究光的传播、反射、折射、衍射、干涉等现象以及光的颜色等特性。
在高考中,光学是物理科目的一项重要内容,掌握光学知识点对于取得高分至关重要。
本文将详细介绍高考物理光学的主要知识点,包括光的本质、光的传播、光的反射与折射、光的成像、光的干涉和衍射等。
一、光的本质1. 光的波粒二象性:根据光的性质,光既可以表现为波动也可以表现为微观粒子,这种二象性称为光的波粒二象性。
2. 光速:光在真空中的传播速度是恒定的,称为光速,在真空中的光速为3.00×10^8m/s。
二、光的传播1. 狭缝衍射:当光通过一个具有宽度接近光的波长的狭缝时,光将经历衍射现象,形成明暗相间的衍射条纹。
2. 双缝干涉:当光通过两个狭缝时,如果两个狭缝的宽度、间距等条件满足一定的条件,光将发生干涉现象,形成明暗相间的条纹。
3. 波前:波动在空间中传播时,所有点都是该波动的振动状态一致的点的 ** ,称为波前。
4. 光的直线传播:在均匀介质中,光沿着直线传播,这是由于光的波长远远小于大多数物体的尺寸。
三、光的反射与折射1. 反射定律:入射角等于反射角,即入射光线和反射光线在反射面上的法线上的角度相等。
2. 折射定律:折射光线和入射光线在折射面上的法线上的角度满足折射定律:n₁sinθ₁=n₂sinθ₂,其中n₁和n₂分别为入射介质和折射介质的折射率,θ₁和θ₂分别为入射角和折射角。
3. 全反射:当光从光密介质射向光疏介质时,入射角超过临界角时,发生全反射现象。
4. Snell定律:也称为折射定律,描述了光从一种介质进入另一种介质发生折射时的规律。
四、光的成像1. 构成成像的条件:光通过透明介质时,需要满足一定条件才能形成清晰的像,包括光线传播要沿着一定的路径,光线要交叉或平行,还有光线要汇聚在一点上等。
2. 凸透镜成像:凸透镜是一种中间厚度较薄的透镜,通过它可以形成实像和虚像。
3. 凹透镜成像:凹透镜是一种中间厚度较薄的透镜,通过它可以形成直立、缩小、虚像。
物理高中光学知识点总结一、光的性质1. 光的波动性光既具有波动性,也具有粒子性。
光的波动性体现在光的传播过程中,如光的干涉和衍射现象。
而光的粒子性体现在光的能量是以光子的形式传播的,光的粒子性主要与光的光电效应和康普顿效应等现象有关。
2. 光的传播速度光在真空中传播的速度为299792458m/s,通常用c表示。
而在介质中,光的传播速度会减小,不同介质中的光速不同。
3. 光的颜色白光是由各种不同波长的光波混合而成的,而不同波长的光波对应不同的颜色。
当光通过三棱镜或光栅时,会发生色散现象,将白光分解成不同颜色的光谱。
4. 光的偏振光是一种横波,具有振动的方向。
光振动方向的平面称为偏振面,垂直于偏振面的方向称为偏振光。
在光的偏振现象中,我们主要关注线偏振光和圆偏振光。
二、光的传播1. 光的直线传播在介质中,光具有直线传播的特性,光线可以通过凸透镜、凹透镜的机理可以解释光线的传播和成像。
2. 光的衍射当光通过一个大小与波长相当的孔或障碍物时,会发生衍射现象。
衍射现象可用多缝干涉或单缝衍射公式进行计算。
3. 光的干涉当两道光波相遇时,会发生干涉现象。
光的干涉一般分为相干干涉和非相干干涉,其中激光干涉是一种重要的相干干涉。
三、光的反射与折射1. 光的反射定律光线在与物体表面相遇时,会发生反射现象。
光的反射定律规定了入射角、反射角和法线之间的关系。
2. 光的折射定律当光线从一种介质传播到另一种介质中时,会发生折射现象。
光的折射定律规定了入射角、折射角和介质折射率之间的关系。
3. 透镜的成像规律凸透镜和凹透镜分别具有不同的成像规律。
通过透镜成像公式可以计算物体和像的位置关系。
四、光的使用与应用1. 显微镜显微镜是一种使用透镜放大微小物体的仪器,通过显微镜可以观察到微生物、细胞等微小物体。
2. 望远镜望远镜是一种用透镜或反射镜放大远处物体的仪器,通过望远镜可以观察到远处的星星、行星等天体。
3. 激光技术激光技术是一种利用激光放大器产生激光束的技术,激光技术广泛应用于通信、医疗、制造等领域。
物理知识点一、光源1.定义:能够自行发光的物体.2.特点:光源具有能量且能将其它形式的能量转化为光能,光在介质中传播就是能量的传播.物理知识点二、光的直线传播1.光在同一种均匀透明的介质中沿直线传播,各种频率的光在真空中传播速度:C=3³108m/s;各种频率的光在介质中的传播速度均小于在真空中的传播速度,即 v<c。
< p="">2.本影和半影(l)影:影是自光源发出并与投影物体表面相切的光线在背光面的后方围成的区域.(2)本影:发光面较小的光源在投影物体后形成的光线完全不能到达的区域.(3)半影:发光面较大的光源在投影物体后形成的只有部分光线照射的区域.(4)日食和月食:人位于月球的本影内能看到日全食,位于月球的半影内能看到日偏食,位于月球本影的延伸区域(即“伪本影”)能看到日环食.当地球的本影部分或全部将月球反光面遮住,便分别能看到月偏食和月全食.3.用眼睛看实际物体和像用眼睛看物或像的本质是凸透镜成像原理:角膜、水样液、晶状体和玻璃体共同作用的结果相当于一只凸透镜。
发散光束或平行光束经这只凸透镜作用后,在视网膜上会聚于一点,引起感光细胞的感觉,通过视神经传给大脑,产生视觉。
理知识点三、光的反射1.反射现象:光从一种介质射到另一种介质的界面上再返回原介质的现象.2.反射定律:反射光线跟入射光线和法线在同一平面内,且反射光线和人射光线分居法线两侧,反射角等于入射角.3.分类:光滑平面上的反射现象叫做镜面反射。
发生在粗糙平面上的反射现象叫做漫反射。
镜面反射和漫反射都遵循反射定律.4.光路可逆原理:所有几何光学中的光现象,光路都是可逆的.物理知识点四.平面镜的作用和成像特点(1)作用:只改变光束的传播方向,不改变光束的聚散性质.(2)成像特点:等大正立的虚像,物和像关于镜面对称.(3)像与物方位关系:上下不颠倒,左右要交换物理光学知识点汇总:双缝干涉(1)两列光波在空间相遇时发生叠加,在某些区域总加强,在另外一些区域总减弱,从而出现亮暗相间的条纹的现象叫光的干涉现象.(2)产生干涉的条件两个振动情况总是相同的波源叫相干波源,只有相干波源发出的光互相叠加,才能产生干涉现象,在屏上出现稳定的亮暗相间的条纹.(3)双缝干涉实验规律①双缝干涉实验中,光屏上某点到相干光源、的路程之差为光程差,记为 .若光程差是波长λ的整倍数,即(n=0,1,2,3…)P点将出现亮条纹;若光程差是半波长的奇数倍(n=0,1,2,3…),P点将出现暗条纹.②屏上和双缝、距离相等的点,若用单色光实验该点是亮条纹(中央条纹),若用白光实验该点是白色的亮条纹.③若用单色光实验,在屏上得到明暗相间的条纹;若用白光实验,中央是白色条纹,两侧是彩色条纹.④屏上明暗条纹之间的距离总是相等的,其距离大小与双缝之间距离d.双缝到屏的距离及光的波长λ有关,即 .在和d不变的情况下,和波长λ成正比,应用该式可测光波的波长λ.⑤用同一实验装置做干涉实验,红光干涉条纹的间距最大,紫光干涉条纹间距最小,故可知大于小于.物理光学知识点汇总:薄膜干涉(1)薄膜干涉的成因:由薄膜的前、后表面反射的两列光波叠加而成,劈形薄膜干涉可产生平行相间的条纹.(2)薄膜干涉的应用①增透膜:透镜和棱镜表面的增透膜的厚度是入射光在薄膜中波长的.②检查平整程度:待检平面和标准平面之间的楔形空气薄膜,用单色光进行照射,入射光从空气膜的上、下表面反射出两列光波,形成干涉条纹,待检平面若是平的,空气膜厚度相同的各点就位于一条直线上,干涉条纹是平行的;反之,干涉条纹有弯曲现象.。
高三物理与光学知识点总结物理学是一门研究物质和能量之间相互关系的科学。
而光学作为物理学的重要分支,主要研究光和光的行为特性。
在高三物理学习的过程中,我们积累了大量的物理与光学知识,下面对这些知识进行总结。
一、光的传播和折射1. 光的传播方式:光可以通过真空、空气、水和透明介质传播。
2. 光的折射现象:当光从一种介质进入另一种介质中时,会出现折射现象,并遵循斯涅尔定律。
二、光的反射和成像1. 光的反射定律:入射角等于反射角,即角度i等于角度r。
2. 镜面反射和漫反射:在光照射到物体表面时,光可以发生镜面反射或漫反射。
3. 平面镜成像:平面镜可以形成虚像,虚像与实物相似,位于镜面后方。
4. 球面镜成像:凸透镜可以形成真实倒立的实像,位于透镜的对侧;凹透镜则形成虚像,位于透镜的同侧。
三、光的波动性质1. 光的波长和频率:光既是一种电磁波,也是一种电磁粒子。
波长越短,频率越高。
2. 光的干涉现象:当两束光波相遇时,会发生干涉现象,分为构成干涉和破坏干涉。
3. 光的衍射现象:当光通过一个光阑或者通过物体的缝隙时,会发生衍射现象。
4. 光的偏振现象:光的偏振是波动方向固定的光。
四、光的颜色和色散1. 光的颜色:白光可以分解为红、橙、黄、绿、青、蓝、紫七种颜色。
2. 光的色散:当白光通过一个三棱镜时,会发生色散现象,不同颜色光波的折射角不同。
五、光的能量和光电效应1. 光的能量:光是由许多粒子组成,每个光子携带一定的能量。
2. 光电效应:当光照射到某些金属表面时,可以使金属发生电子的解离现象。
六、光学仪器与光的利用1. 显微镜:利用透镜或者物镜对微小物体进行观察。
2. 望远镜:透镜或者反射镜用于观察远处物体。
3. 光纤通信:利用光的全反射和波导性质进行信息传输。
以上是高三物理与光学知识点的简要总结。
通过对这些知识点的掌握,我们可以更好地理解光的行为、应用光学知识解决实际问题,并继续深入学习和探索光学领域的更多知识。
物理光学知识点总结1. 光的基本概念- 光是一种电磁波,具有波动性和粒子性(光子)。
- 可见光谱是人眼能够感知的光的范围,大约在380纳米至750纳米之间。
2. 光的传播- 光在均匀介质中沿直线传播。
- 光速在不同介质中不同,真空中的光速约为299,792,458米/秒。
- 光的传播遵循光的折射定律和反射定律。
3. 反射定律- 入射光线、反射光线和法线都在同一平面内。
- 入射角等于反射角,即θi = θr。
4. 折射定律(Snell定律)- n1 * sin(θ1) = n2 * sin(θ2),其中n1和n2是两种介质的折射率,θ1和θ2分别是入射角和折射角。
5. 光的干涉- 干涉是两个或多个光波相遇时,光强增强或减弱的现象。
- 干涉条件是两束光的频率相同,且相位差恒定。
- 常见的干涉现象有双缝干涉和薄膜干涉。
6. 光的衍射- 衍射是光波遇到障碍物或通过狭缝时发生弯曲和展开的现象。
- 单缝衍射、圆孔衍射和光栅衍射是常见的衍射现象。
7. 光的偏振- 偏振光是电磁波振动方向受到限制的光。
- 线性偏振、圆偏振和椭圆偏振是偏振光的三种类型。
- 偏振片可以用来控制光的偏振状态。
8. 光的散射- 散射是光在传播过程中遇到粒子时发生方向改变的现象。
- 散射的强度与粒子大小、光波长和入射光强度有关。
- 常见的散射现象有大气散射,导致天空呈现蓝色。
9. 光的颜色和色散- 颜色是光的另一种表现形式,与光的波长有关。
- 色散是光通过介质时不同波长的光因折射率不同而分离的现象。
- 棱镜可以将白光分解成不同颜色的光谱。
10. 光的量子性- 光电效应表明光具有粒子性,光子的能量与其频率成正比。
- 波恩提出的波函数描述了光子的概率分布。
- 量子光学是研究光的量子性质的学科。
11. 光的相干性和光源- 相干光具有固定的相位关系,激光是一种高度相干的光源。
- 光源可以是自然的,如太阳,也可以是人造的,如激光器和灯泡。
12. 光学仪器- 望远镜、显微镜、光纤和光学传感器都是利用光学原理工作的仪器。
高三物理光学知识点总结物理光学是高中物理中的重要内容之一,涉及到光的传播、反射、折射、干涉等多个知识点。
下面将对高三物理光学的相关知识进行总结,以便同学们复习和掌握。
一、光的传播速度光在真空中传播的速度是一个常量,被称为光速。
光速的数值约为每秒3×10^8米。
在介质中,光束的传播速度会受到介质的折射率的影响,一般情况下会减小。
二、光的反射光在遇到平面镜或光滑的界面时会发生反射。
光的反射遵循反射定律,即入射角等于反射角。
反射定律可以用来解释镜面成像的原理。
三、光的折射光在从一种介质传播到另一种介质时会发生折射。
光的折射遵循斯涅尔定律,即入射光线与法线的夹角的正弦比等于两个介质的折射率之比。
根据斯涅尔定律可以解释光在透明介质中的传播路径和折射现象。
四、光的色散光的色散是指光在通过介质时发生频率不同的波长的分离现象。
这是因为不同波长的光在折射时受到介质折射率的依赖程度不同所致。
色散现象在光谱仪、彩虹等自然现象中都有体现。
五、光的干涉光的干涉是指两束或多束光波相遇时,由于波的叠加作用产生的明暗条纹的现象。
光的干涉可以分为构成干涉与破坏干涉两种情况。
其中,构成干涉包括两束光波的相长干涉和相消干涉,而破坏干涉则是两束光波的干涉后消除的现象。
光的干涉可以应用于光栅衍射、薄膜干涉和双缝干涉等实验和技术中,广泛用于科学研究和工程应用。
六、光的偏振光的偏振是指光波沿特定方向传播,并具有同一振动方向的性质。
光的偏振可以通过偏振器来实现。
常见的偏振光有线偏振光和圆偏振光。
光的偏振现象在偏光镜、太阳眼镜、3D电影等领域都有应用。
七、光的衍射光的衍射是指光通过细缝、狭缝或障碍物之后发生偏差和扩散的现象。
光的衍射是波动光学的重要内容之一,它可以解释光的散射、色散和干涉等现象。
光的衍射在显微镜、望远镜、衍射光栅等光学仪器和技术中有广泛应用。
八、镜片成像镜片成像是利用透镜或反射镜使光线经过折射或反射而成像的过程。
根据透镜的形状可以分为凸透镜和凹透镜,根据反射镜的形状可以分为凹面镜和凸面镜。
高考物理考点光学的总结和复习的知识点介绍【导语】高考物理的考点比较多,学生想要学好物理需要掌控好考点,下面是作者给大家带来的有关于高考物理的光学总结,期望能够帮助到大家。
高考物理考点光学的总结(一)几何光学以光的直线传播为基础,主要研究光在两个平均介质分界面处的行动规律及其运用。
从知识要点可分为四方面:一是概念;二是规律;三为光学器件及其光路控制作用和成像;四是光学仪器及运用。
(一)光的反射1.反射定律2.平面镜:对光路控制作用;平面镜成像规律、光路图及观像视场。
(二)光的折射1.折射定律2.全反射、临界角。
全反射棱镜(等腰直角棱镜)对光路控制作用。
3.色散。
棱镜及其对光的偏折作用、现象及机理运用注意:1.解决平面镜成像问题时,要根据其成像的特点(物、像关于镜面对称),作出光路图再求解。
平面镜转过α角,反射光线转过2α2.解决折射问题的关键是画好光路图,运用折射定律和几何关系求解。
3.研究像的视察范畴时,要根据成像位置并运用折射或反射定律画出镜子或遮挡物边沿酒囊饭袋的光线的传播方向来肯定视察范畴。
4.不管光的直线传播,光的反射还是光的折射现象,光在传播进程中都遵守一个重要规律:即光路可逆。
(三)光导纤维全反射的一个重要运用就是用于光导纤维(简称光纤)。
光纤有内、外两层材料,其中内层是光密介质,外层是光疏介质。
光在光纤中传播时,每次射到内、外两层材料的界面,都要求入射角大于临界角,从而产生全反射。
这样使从一个端面入射的光,经过屡次全反射能够没有缺失地全部从另一个端面射出。
(四)光的干涉光的干涉的条件是有两个振动情形总是相同的波源,即相干波源。
(相干波源的频率必须相同)。
形成相干波源的方法有两种:(1)利用激光(由于激光发出的是单色性极好的光)。
(2)设法将同一束光分为两束(这样两束光都来源于同一个光源,因此频率必定相等)。
(五)干涉区域内产生的亮、暗纹1.亮纹:屏上某点到双缝的光程差等于波长的整数倍(相邻亮纹(暗纹)间的距离)。
物理高考光学知识点归纳总结光学是物理学中关于光的传播、反射、折射、干涉、衍射等现象和规律的研究。
在高考中,光学是一个重要的知识点,涉及光的性质、光的传播规律以及光学仪器等内容。
本文将对物理高考中的光学知识点进行归纳总结,以便广大考生更好地复习和应对考试。
一、光的性质1. 光的波粒性:光既具有波动性质,也具有粒子性质。
在某些实验中,光表现出波动特点,如干涉、衍射现象;而在其他实验中,光则表现出粒子特点,如光电效应和康普顿散射。
2. 光的传播速度:光在真空中的传播速度是恒定的,约为3.00 ×10^8 m/s。
在介质中传播时,光的传播速度会减小,根据折射定律可以计算出光在介质中的传播速度。
二、光的反射与折射1. 光的反射:光在与介质交界的表面上发生反射现象,其反射角等于入射角。
根据反射定律,可以计算出光的入射角、反射角和法线之间的关系。
2. 光的折射:光从一种介质射入另一种介质时,会发生折射现象。
根据斯涅尔定律,可以计算出光的折射角和入射角之间的关系。
三、光的干涉与衍射1. 光的干涉:当两个或多个光波相遇时,会出现干涉现象。
干涉分为构造干涉和破坏性干涉两种类型。
构造干涉可以形成亮条纹或彩色条纹,破坏性干涉则会形成暗条纹或黑白条纹。
2. 光的衍射:当光通过一个孔径或者绕过障碍物时,会发生衍射现象。
衍射使光波朝不同方向传播,使得光具有弯曲、弯折的特性。
四、光学仪器1. 凸透镜:凸透镜是一种凸面向上的透镜,通过凸透镜可以进行放大、缩小以及成像等操作。
凸透镜分为凸透镜和凹透镜两种类型,其中凸透镜可以形成实像和虚像,凹透镜只能形成虚像。
2. 显微镜:显微镜是一种利用光学放大物体细节的仪器。
显微镜通常由目镜、物镜、镜筒和底座等部分组成,通过透镜组合和光的折射来实现对物体的放大观察。
3. 望远镜:望远镜是一种利用光学放大远处物体的仪器。
望远镜分为折射式望远镜和反射式望远镜两种类型,通过透镜或反射镜来实现对远处物体的放大观察和成像。
高三物理光学重要知识点一、光的反射与折射光的反射是指光线遇到物体界面时,部分或全部从原来的介质返回到原来的介质中的现象。
光的折射是指光线从一种介质进入另一种介质时,由于介质的密度不同而改变传播方向的现象。
1. 定律根据光的反射与折射的实验结果,人们总结出了反射定律和折射定律。
光的反射定律:入射光线、反射光线和法线三者在同一平面内,入射角等于反射角。
光的折射定律:入射光线、折射光线和法线三者在同一平面内,入射角的正弦与折射角的正弦之比在折射两介质间保持不变。
2. 全反射当光线从光密介质射入光疏介质时,入射角大于临界角,光会发生全反射。
全反射使得光线无法从光密介质传播到光疏介质中,只能在光密介质内发生反射。
3. 折射率折射率是描述光在介质中传播时传播速度与真空中传播速度之比的物理量。
不同介质具有不同的折射率,折射率大的介质光的传播速度较慢。
二、光的光程差和干涉1. 光程差光程差是指两束光线走过的光程差值,光程差可以用于解释光的直线传播、反射和折射现象。
2. 干涉干涉是光的波动性的重要表现形式之一。
当两束或多束光线相遇时,由于光的波动性,它们会相互干涉,产生明暗条纹。
干涉现象有两种类型:构造性干涉和破坏性干涉。
构造性干涉是指两束或多束光线相遇时,光程差等于波长的整数倍,导致波峰与波峰叠加,波谷与波谷叠加,从而增强光的强度。
破坏性干涉是指光程差等于波长的半整数倍,导致波峰与波谷相遇,波峰与波谷互相抵消,从而减弱或消灭光的强度。
干涉还可以分为薄膜干涉、杨氏双缝干涉、劈尖干涉等形式。
三、光的衍射光的衍射是光的波动性在通过小孔或物体边缘时表现出来的现象。
根据衍射的特点,人们可以更好地理解光的波动性。
衍射现象是通过单缝、双缝、光栅等实验装置可以观察到的。
衍射的程度与光的波长、孔径大小以及平行光束的入射角等有关。
四、光的偏振偏振是指光的振动方向在一个平面上的现象。
偏振的形式有自然光、线偏光和圆偏光。
线偏光是指光的电矢量在一条直线上振动的光束。
物理高考光学知识点汇总光学是物理学中的一个重要分支,涉及到光的传播、反射、折射、干涉、衍射等现象。
在高考物理中,光学作为一个重要的考点,经常出现在试题中。
下面是对物理高考光学知识点的汇总。
一、光的传播1. 光的直线传播:光线在各向同性介质中沿直线传播,遵循直线传播定律。
2. 光的反射:光线遇到边界面发生反射,遵循反射定律。
反射角等于入射角。
3. 光的折射:光线从一种介质传播到另一种介质时发生折射,遵循折射定律。
折射定律描述了入射角、折射角和两种介质的折射率之间的关系。
二、光的成像1. 球面镜成像:凸透镜和凹透镜都是球面镜。
物体与球面镜之间存在着一定的关系,通过这些关系可以确定成像的位置、性质等。
2. 成像公式:利用成像公式可以计算物体与球面镜之间的距离、焦距、成像位置等。
3. 光学仪器:光学仪器包括放大镜、显微镜和望远镜。
通过调整透镜与物体之间的距离,可以获得清晰的放大图像。
三、光的干涉和衍射1. 干涉现象:当两束相干光交叠在一起时,会出现干涉现象。
干涉分为干涉条纹、干涉条件等。
2. 杨氏干涉实验:通过杨氏干涉实验可以观察到干涉条纹的形成和变化规律。
3. 衍射现象:当光通过障碍物或经过狭缝时,会出现衍射现象。
衍射可以用于解释光的波动性。
四、光的偏振1. 光的偏振现象:光可以在某些介质中引起偏振现象,只能在某个方向上传播。
2. 偏振光的产生:通过偏振片可以实现对光的偏振操作。
3. 偏振现象的应用:偏振现象广泛应用于光学仪器、液晶显示器等领域。
五、光的光电效应1. 光电效应:当光照射到金属或者半导体表面时,会引起物质中自由电子的产生和流动。
2. 光电效应的规律:光电效应遵循爱因斯坦的光电方程和波动-粒子二象性原理。
3. 光电效应的应用:光电效应被广泛应用于太阳能电池、光电二极管等光电器件中。
综上所述,光学知识点在高考物理中占据重要的地位。
掌握这些知识点,对于解答光学相关的高考题目具有重要意义。
希望本文的光学知识点汇总能够帮助学生们更好地理解和应用光学知识,取得好成绩!。
高考物理专题复习《光学》规律总结
光的反射和折射:
1.光由光疏介质斜射入光密介质,光向法线靠拢。
2.光过玻璃砖,向与界面夹锐角的一侧平移;
光过棱镜,向底边偏转。
4.从空气中竖直向下看水中,视深=实深/n
4.光线射到球面和柱面上时,半径是法线。
5.单色光对比的七个量:
6.常用解题方法 ①n sin sini =γ
n 大于1;大角比小角正弦 ②光路可逆 ③n
C =V ④n λ
λ=
⑤ 几何作图
⑥ n
1sinC = 光的本性:
1.双缝干涉图样的“条纹宽度”(相邻明条纹中心线间的距离):
∆x L d =λ。
2.增透膜增透绿光,其厚度为绿光在膜中波长的四分之一。
3.用标准样板(空气隙干涉)检查工件表面情况:条纹向窄处弯是凹,向宽处弯是凸。
4.电磁波穿过介质面时,频率(和光的颜色)不变。
5.光由真空进入介质:V=c n ,
λλ=0
n 6.反向截止电压为
U 反,则最大初动能km E eU =反。
高考物理光学部分知识点完美总结光的反射和折射1.光的直线传播(1)光在同一种均匀介质中沿直线传播.小孔成像,影的形成,日食和月食都是光直线传播的例证.(2)影是光被不透光的物体挡住所形成的暗区.影可分为本影和半影,在本影区域内完全看不到光源发出的光,在半影区域内只能看到光源的某部分发出的光.点光源只形成本影,非点光源一般会形成本影和半影.本影区域的大小与光源的面积有关,发光面越大,本影区越小.(3)日食和月食:人位于月球的本影内能看到日全食,位于月球的半影内能看到日偏食,位于月球本影的延伸区域(即“伪本影”)能看到日环食;当月球全部进入地球的本影区域时,人可看到月全食.月球部分进入地球的本影区域时,看到的是月偏食.2.光的反射现象---:光线入射到两种介质的界面上时,其中一部分光线在原介质中改变传播方向的现象.(1)光的反射定律:①反射光线、入射光线和法线在同一平面内,反射光线和入射光线分居于法线两侧. ②反射角等于入射角.(2)反射定律表明,对于每一条入射光线,反射光线是唯一的,在反射现象中光路是可逆的.3. 平面镜成像(1.)像的特点---------平面镜成的像是正立等大的虚像,像与物关于镜面为对称。
(2.)光路图作法-----------根据平面镜成像的特点,在作光路图时,可以先画像,后补光路图。
(3).充分利用光路可逆-------在平面镜的计算和作图中要充分利用光路可逆。
(眼睛在某点A通过平面镜所能看到的范围和在A点放一个点光源,该电光源发出的光经平面镜反射后照亮的范围是完全相同的。
)4.光的折射--光由一种介质射入另一种介质时,在两种介质的界面上将发生光的传播方向改变的现象叫光的折射.(2)光的折射定律---①折射光线,入射光线和法线在同一平面内,折射光线和入射光线分居于法线两侧.②入射角的正弦跟折射角的正弦成正比,即sini/sinr=常数.(3)在折射现象中,光路是可逆的.5.折射率---光从真空射入某种介质时,入射角的正弦与折射角的正弦之比,叫做这种介质的折射率,折射率用n表示,即n=sini/sinr.某种介质的折射率,等于光在真空中的传播速度c 跟光在这种介质中的传播速度v 之比,即n=c/v ,因c>v ,所以任何介质的折射率n 都大于1.两种介质相比较,n 较大的介质称为光密介质,n 较小的介质称为光疏介质.6.全反射和临界角(1)全反射:光从光密介质射入光疏介质,或光从介质射入真空(或空气)时,当入射角增大到某一角度,使折射角达到90°时,折射光线完全消失,只剩下反射光线,这种现象叫做全反射.(2)全反射的条件①光从光密介质射入光疏介质,或光从介质射入真空(或空气).②入射角大于或等于临界角(3)临界角:折射角等于90°时的入射角叫临界角,用C 表示sinC=1/n7.光的色散:白光通过三棱镜后,出射光束变为红、橙、黄、绿、蓝、靛、紫七种色光的光束,这种现象叫做光的色散.(1)同一种介质对红光折射率小,对紫光折射率大.(2)在同一种介质中,红光的速度最大,紫光的速度最小.(3)由同一种介质射向空气时,红光发生全反射的临界角大,紫光发生全反射的临界角小.光学中的一个现象一串结论色散现象 nv λ(波动性) 衍射 C 临 干涉间距 γ (粒子性) E 光子 光电效应 小 大 大 小 大 (明显) 小 (不明显) 容易 难 小 大 大 小小 (不明显) 大 (明显) 小 大 难 易结论:(1)折射率n 、;(2)全反射的临界角C ;(3)同一介质中的传播速率v ;(4)在平行玻璃块的侧移△x(5)光的频率γ,频率大,粒子性明显.;(6)光子的能量E=h γ则光子的能量越大。
高中物理光学知识点一、光的基础知识1. 光的描述- 光波:光作为电磁波的一种,具有波长和频率。
- 光谱:通过棱镜分解白光,显示为红、橙、黄、绿、蓝、靛、紫七种颜色的光谱。
2. 光的波长和频率- 波长:连续波上相位相同的相邻两个点之间的最短距离。
- 频率:单位时间内波峰或波谷出现的次数。
3. 光的速度- 在真空中,光速约为 $3 \times 10^8$ 米/秒。
二、光的反射1. 反射定律- 入射角等于反射角。
- 入射光线、反射光线和法线都在同一平面上。
2. 镜面反射和漫反射- 镜面反射:光滑表面上发生的反射,反射光线保持集中。
- 漫反射:粗糙表面上发生的反射,反射光线分散各个方向。
3. 反射镜的应用- 凹面镜和凸面镜:用于聚焦或散焦光线。
- 望远镜和显微镜:利用反射镜观察远距离或微小物体。
三、光的折射1. 折射现象- 当光从一种介质进入另一种介质时,其速度和传播方向会发生变化。
2. 折射定律(Snell定律)- $n_1 \sin(\theta_1) = n_2 \sin(\theta_2)$,其中 $n_1$ 和$n_2$ 分别是入射介质和折射介质的折射率。
3. 透镜- 凸透镜:使光线汇聚。
- 凹透镜:使光线发散。
四、光的干涉和衍射1. 干涉- 两个或多个相干光波叠加时,光强增强或减弱的现象。
- 双缝干涉实验:展示了光的波动性质。
2. 衍射- 光波遇到障碍物或通过狭缝时发生弯曲和展开的现象。
- 单缝衍射和双缝衍射:通过实验观察光波的传播特性。
五、光的偏振1. 偏振光- 只在一个平面内振动的光波称为偏振光。
- 通过偏振片可以控制光的振动方向。
2. 马吕斯定律- 描述偏振光通过偏振片时光强变化的定律。
六、光的颜色和色散1. 颜色的三原色- 红、绿、蓝:通过不同比例的混合可以产生其他颜色。
2. 色散- 不同波长的光在介质中传播速度不同,导致折射率不同,从而产生色散现象。
七、光的量子性1. 光电效应- 光照射到金属表面时,能使金属发射电子的现象。
光学物理高考知识点总结光学物理是物理学的一个重要分支,研究光的传播、反射、折射及光的干涉、衍射、偏振等现象。
在高中物理教学中,光学物理是一个重要的考点,掌握这些知识点对于高考来说至关重要。
本文将总结光学物理高考知识点,帮助大家梳理知识脉络,更好地备考。
1. 光的直线传播与反射光的传播是沿直线传播的,这一点可以通过经典的光线模型解释。
光的反射是光线遇到介质边界时的现象,分为镜面反射和漫反射。
镜面反射遵循入射角等于反射角的定律,是光学成像的重要基础。
2. 光的折射与折射定律当光线从一种介质进入另一种介质时,会发生折射。
光的折射定律是描述光在两种介质之间传播时的关系,它表明入射角、折射角和两种介质的折射率之间有一定的关系。
常见的折射现象有光的全反射和光的色散。
3. 光的干涉现象光的干涉现象是光波的波动特性的体现,包括两种典型的干涉现象:光的干涉条纹和光的干涉色。
光的干涉可以分为相干干涉和非相干干涉,其中相干干涉指的是光源相干,而非相干干涉指的是光源非相干。
4. 光的衍射现象光的衍射是光波通过障碍物或经过边缘时发生的现象,它是光波的一种特有的波动现象。
衍射现象的大小与障碍物的尺寸及光波的波长有关。
常见的衍射现象有单缝衍射、双缝衍射和环形衍射。
5. 光的偏振现象与偏振光光的偏振是指光波中的电场矢量只在某一平面上振动的现象,被称为偏振光。
光的偏振现象与光波的振动方向有关,可以通过偏振片来实现对光波的偏振和解偏振。
6. 光的光电效应与光子学光电效应是指光照射到金属表面时,引起电子从金属中脱离的现象。
光电效应是光子学的基础,通过光电效应可以解释光的粒子性和波粒二象性。
光电效应在光电器件和激光技术等领域有着广泛的应用。
7. 光学仪器与光学设备在生活和科学实验中,光学仪器和设备起到了至关重要的作用。
例如,显微镜、望远镜、投影仪、激光器等都是基于光的传播和干涉、衍射、偏振等特性设计的光学仪器。
对于高考来说,理解这些光学仪器的工作原理和应用场景非常重要。
高中物理光学的知识点总结一、光的传播1. 光的直线传播当光线传播时,光线总是沿着直线传播,这就是光的直线传播。
当光线遇到不透明的物质,会被吸收或反射。
2. 光的波动传播光具有波动性,光波的传播是通过波峰和波谷向前传播的。
光的波动传播可以解释光的干涉、衍射现象。
3. 光的速度光在真空中的速度是299,792,458米/秒,通常用c表示。
在介质中,光的速度会减小,光速与介质的折射率有关。
二、光的反射1. 光的反射定律当光线与表面相交时,会发生反射。
根据光的反射定律,入射角等于反射角。
即光线、入射面法线和反射面法线共面,且入射角和反射角的两个角度评分量互相相等。
2. 光的反射规律根据反射定律,可以分析光线在镜子、平面镜、曲面镜、棱镜等物品的反射规律。
通过这些规律可以进行光学器件的设计和应用。
三、光的折射1. 光的折射定律当光线从一种介质入射到另一种介质时,会发生折射。
根据光的折射定律,入射角、折射角以及两种介质的折射率之间有特定的关系。
即入射角的正弦与折射角的正弦成正比。
2. 折射率不同的物质对光的折射具有不同的能力,这种能力的大小由介质的折射率来描述。
通常折射率的定义是介质中光速与真空中光速的比值。
3. 折射规律根据折射定律可以分析折射角和入射角的关系,也可以证明光在折射率不同的介质中会出现全反射现象,这是光纤和光导管应用的原理。
四、光的成像1. 光的成像原理在光学中,成像是光折射或反射后产生的物体形象。
根据光的成像原理,可以分析光的折射和反射过程,得出成像的位置、大小和性质。
2. 镜子成像特点根据光的反射规律,不同类型的镜子如平面镜、凸面镜和凹面镜,对入射光线的反射方式有所不同。
通过分析镜子的反射特点,可以了解镜子的成像特点,如实像、虚像和放大缩小等。
3. 透镜成像特点透镜是光学器件的一种,在透镜中也会发生光的折射。
透镜可以使入射平行光线汇聚成一个焦点处,并且能够产生实像和虚像。
五、光的波动1. 光的波动性质光是一种电磁波,具有波动性质,其中包括波长、频率和波速等。
高中物理光学复习要点_光学知识点公式高中物理光学复习要点提高高三物理做题效率高中物理光学部分公式总结高中物理光学复习要点一、重要概念和规律(一)、几何光学基本概念和规律1、基本规律光源:发光的物体.分两大类:点光源和扩展光源. 点光源是一种理想模型,扩展光源可看成无数点光源的集合. 光线——表示光传播方向的几何线. 光束通过一定面积的一束光线.它是通过一定截面光线的集合. 光速——光传播的速度。
光在真空中速度最大。
恒为C=3×108 m/s。
丹麦天文学家罗默第一次利用天体间的大距离测出了光速。
法国人裴索第一次在地面上用旋转齿轮法测出了光这。
实像——光源发出的光线经光学器件后,由实际光线形成的. 虚像——光源发出的光线经光学器件后,由发实际光线的延长线形成的。
本影——光直线传播时,物体后完全照射不到光的暗区. 半影——光直线传播时,物体后有部分光可以照射到的半明半暗区域.2.基本规律(1)光的直线传播规律:先在同一种均匀介质中沿直线传播。
小孔成像、影的形成、日食、月食等都是光沿直线传播的例证。
(2)光的独立传播规律:光在传播时虽屡屡相交,但互不扰乱,保持各自的规律继续传播。
(3)光的反射定律:反射线、入射线、法线共面;反射线与入射线分布于法线两侧;反射角等于入射角。
(4)光的折射定律:折射线、入射线、法线共面,折射线和入射线分居法线两侧;对确定的两种介质,入射角(i)的正弦和折射角(r)的正弦之比是一个常数.介质的折射率n=sini/sinr=c/v。
全反射条件①光从光密介质射向光疏介质;②入射角大于临界角A,sinA=1/n。
(5)光路可逆原理:光线逆着反射线或折射线方向入射,将沿着原来的入射线方向反射或折射.3.常用光学器件及其光学特性(1)平面镜:点光源发出的同心发散光束,经平面镜反射后,得到的也是同心发散光束.能在镜后形成等大的、正立的虚出,像与物对镜面对称。
(2)球面镜:凹面镜:有会聚光的作用,凸面镜:有发散光的作用.(3)棱镜:光密介质的棱镜放在光疏介质的环境中,入射到棱镜侧面的光经棱镜后向底面偏折。
高考物理光学必考知识点归纳总结光学是高考物理中的重要考点之一,掌握好光学的相关知识点,对于提高物理成绩至关重要。
本文将对高考物理光学必考的知识点进行归纳总结,以帮助同学们更好地复习和应对考试。
一、光的直线传播光的直线传播是光学中最基本的概念,也是高考物理中的重点考点。
光线在均匀介质中直线传播,但在光的传播过程中,会发生折射、反射等现象。
1. 折射定律光线从一介质进入另一介质时,入射角与折射角之间满足折射定律。
即:入射角的正弦与折射角的正弦的比值等于两介质的折射率之比。
2. 反射定律光线从一介质射向另一介质的分界面上时,入射角与反射角之间满足反射定律。
即:入射角等于反射角。
二、光的成像了解光的成像是理解光学的关键。
掌握光的成像规律能够帮助我们解决物体在光学仪器上的成像问题。
1. 凸透镜成像凸透镜是一种常见的光学元件,它可以将光线聚焦或发散。
根据凸透镜的物理特性,可以总结出以下凸透镜成像规律:- 物距大于焦距时(物距大于2倍焦距),凸透镜将形成一个倒立、减小、实的实像。
- 物距等于焦距时,凸透镜将形成一个无穷远处的平行光。
- 物距小于焦距时(物距小于2倍焦距),凸透镜将形成一个正立、放大、虚的虚像。
2. 凹透镜成像凹透镜也是一种重要的光学元件,它具有发散光线的特性。
凹透镜的成像规律如下:- 凹透镜无论物距大小,成像都是倒立、减小、虚的虚像。
三、色散现象色散现象是光学中的重要内容,我们常常可以在光的折射中观察到不同波长的光发生弯曲的现象。
色散现象可分为正常色散和反常色散。
1. 正常色散当光线从光密介质(如玻璃)射向光疏介质(如空气)时,波长较大的红光比波长较小的紫光折射角更小,发生正常色散。
2. 反常色散当光线从光疏介质射向光密介质时,波长较大的红光比波长较小的紫光折射角更大,发生反常色散。
四、光的干涉与衍射光的干涉与衍射是光学中的重要现象,了解光的干涉与衍射现象有助于我们理解和解释一些光学实验和现象。
高三物理光学知识点总结大全光学是物理学的一个重要分支,研究光的传播、反射、折射、干涉、衍射等现象。
在高三物理学习中,了解并掌握光学知识点是非常重要的。
下面,将对高三物理光学知识点进行全面总结。
第一部分:光线传播光线传播是光学的基础知识,了解光线的传播规律对于理解其他光学现象至关重要。
光线遵循直线传播的规律,与物体相互作用时会发生反射和折射。
1. 光的反射光的反射是指光线遇到界面,并从界面上的物体表面上反射回来。
光线的入射角等于反射角,入射光线、反射光线和法线在同一平面上。
2. 光的折射光的折射是指光线从一种介质传播到另一种介质时,方向的改变。
光线折射发生时,入射角、折射角和介质的折射率之间存在着关系,常用斯涅尔定律来描述。
第二部分:光的干涉和衍射光的干涉和衍射是光学中的重要现象,涉及到光的波动性。
干涉是指两个或多个波相遇产生的互相增强或互相抵消的现象,而衍射是指光通过一个或多个孔或障碍物后发生弯曲和扩散的现象。
3. 光的干涉光的干涉可以分为两种类型:干涉条纹和干涉色。
干涉条纹是由两束或多束相干光相遇产生的亮暗条纹,可以通过杨氏双缝干涉和牛顿环等实验观察到。
干涉色是指通过薄膜反射和折射所产生的有色光现象,如彩虹和油膜颜色。
4. 光的衍射光的衍射是指光通过一个或多个孔或障碍物后发生弯曲和扩散的现象。
衍射现象可以通过夫琅禾费衍射和菲涅耳衍射来观察和研究。
衍射可以解释为,当光波通过孔洞或物体的边缘时,波前发生了曲率和波束发散。
第三部分:光的色散和棱镜色散是光的折射率随着光的波长而变化而产生的现象,而棱镜是利用光的折射和反射来分解光的白光。
5. 光的色散光的色散是指光波折射率随波长而变化的现象。
通过光的折射定律和色散公式,可以计算光的折射率。
色散通常分为正常色散和反常色散两种类型。
6. 棱镜棱镜是利用光的折射和反射来分解光的白光,使其分成不同颜色的光。
棱镜可以分为三棱镜、棱台镜和棱形镜等多种类型。
通过棱镜实验,可以观察到光的分光效应和彩色光的成因。
高考物理光学学知识点高考物理光学知识点1.光是一种电磁波,能产生干涉和衍射。
衍射有单缝和小孔,干涉有双缝和薄膜。
单缝衍射中间宽,干涉(条纹)间距差不多。
小孔衍射明暗环,薄膜干涉用处多。
它可用来测工件,还可制成增透膜。
泊松亮斑是衍射,干涉公式要把握。
〖选修3-4〗2.光照金属能生电,入射光线有极限。
光电子动能大和小,与光子频率有关联。
光电子数目多和少,与光线强弱紧相连。
光电效应瞬间能发生,极限频率取决逸出功。
高考物理应掌控光学物理公式1、光的折射定律2、全反射的条件:①光由光密介质射入光疏介质;②入射角大于或等于临界角。
3、双缝干涉的规律:①路程差S = (n=0,1,2,3--) 明条纹 (2n+1)(n=0,1,2,3--) 暗条纹相邻的两条明条纹(或暗条纹)间的距离:* =4、光子的能量: E = h = h ( 其中h 为普朗克常量,等于6.6310-34Js, 为光的频率)(光子的'能量也可写成: E = m c2 )(爱因斯坦)光电效应方程: Ek = h - W (其中Ek为光电子的最大初动能,W为金属的逸出功,与金属的种类有关)5、物质波的波长:= (其中h 为普朗克常量,p 为物体的动量)高考物理光学记忆口诀1.自行发光是光源,同种匀称直线传。
假设是遇见障碍物,传播路径要转变。
反射折射两定律,折射定律是重点。
光介质有折射率,(它的)定义是正弦比值,还可运用速度比,波长比值也使然。
2.全反射,要牢记,入射光线在光密。
入射角大于临界角,折射光线无处觅。
高考物理规划1.第一轮复习:要完成对过去两年所学知识的梳理,建立自己的"错误集'。
2.第二轮复习:应着重于对主要知识点的查缺补漏,复习顺次是力学、电磁学、原子物理、热学的模块复习。
3.第三轮复习:以历年真题为主,以适量的题量保持做题手感。
高考物理光学部分知识点完美总结
光的反射和折射
1.光的直线传播
(1)光在同一种均匀介质中沿直线传播.小孔成像,影的形成,日食和月食都是光直线传播的例证.(2)影是光被不透光的物体挡住所形成的暗区.影可分为本影和半影,在本影区域内完全看不到光源发出的光,在半影区域内只能看到光源的某部分发出的光.点光源只形成本影,非点光源一般会形成本影和半影.本影区域的大小与光源的面积有关,发光面越大,本影区越小.(3)日食和月食:
人位于月球的本影内能看到日全食,位于月球的半影内能看到日偏食,位于月球本影的延伸区域(即“伪本影”)能看到日环食;当月球全部进入地球的本影区域时,人可看到月全食.月球部分进入地球的本影区域时,看到的是月偏食.
2.光的反射现象---:光线入射到两种介质的界面上时,其中一部分光线在原介质中改变传播方向的现象.
(1)光的反射定律:
①反射光线、入射光线和法线在同一平面内,反射光线和入射光线分居于法线两侧. ②反射角等于入射角.
(2)反射定律表明,对于每一条入射光线,反射光线是唯一的,在反射现象中光路是可逆的.
3. 平面镜成像
(1.)像的特点---------平面镜成的像是正立等大的虚像,像与物关于镜面为对称。
(2.)光路图作法-----------根据平面镜成像的特点,在作光路图时,可以先画像,后补光路图。
(3).充分利用光路可逆-------在平面镜的计算和作图中要充分利用光路可逆。
(眼睛在某点A通过平面镜所能看到的范围和在A点放一个点光源,该电光源发出的光经平面镜反射后照亮的范围是完全相同的。
)
4.光的折射--光由一种介质射入另一种介质时,在两种介质的界面上将发生光的传播方向改变的现象叫光的折射.
(2)光的折射定律---①折射光线,入射光线和法线在同一平面内,折射光线和入射光线分居于法线两侧.
②入射角的正弦跟折射角的正弦成正比,即sini/sinr=常数.(3)在折射现象中,光路是可逆的.
5.折射率---光从真空射入某种介质时,入射角的正弦与折射角的正弦之比,叫做这种介质的折射率,折射率用n表示,即n=sini/sinr.
某种介质的折射率,等于光在真空中的传播速度c 跟光在这种介质中的传播速度v 之比,即n=c/v ,因c>v ,所以任何介质的折射率n 都大于1.两种介质相比较,n 较大的介质称为光密介质,n 较小的介质称为光疏介质.
6.全反射和临界角
(1)全反射:光从光密介质射入光疏介质,或光从介质射入真空(或空气)时,当入射角增大到某一角度,使折射角达到90°时,折射光线完全消失,只剩下反射光线,这种现象叫做全反射.(2)全反射的条件
①光从光密介质射入光疏介质,或光从介质射入真空(或空气).②入射角大于或等于临界角
(3)临界角:折射角等于90°时的入射角叫临界角,用C 表示sinC=1/n
7.光的色散:白光通过三棱镜后,出射光束变为红、橙、黄、绿、蓝、靛、紫七种色光的光束,这种现象叫做光的色散.
(1)同一种介质对红光折射率小,对紫光折射率大.
(2)在同一种介质中,红光的速度最大,紫光的速度最小.
(3)由同一种介质射向空气时,红光发生全反射的临界角大,紫光发生全反射的临界角小.
光学中的一个现象一串结论
色散现象 n
v λ(波动性) 衍射 C 临 干涉间距
γ (粒子性) E 光子 光电效应 小 大 大 小 大 (明显) 小 (不明显) 容易 难 小 大 大 小 小 (不明显) 大 (明显) 小 大 难 易
结论:(1)折射率n 、;
(2)全反射的临界角C ;
(3)同一介质中的传播速率v ;
(4)在平行玻璃块的侧移△x
(5)光的频率γ,频率大,粒子性明显.;
(6)光子的能量E=h γ则光子的能量越大。
越容易产生光电效应现象
(7)在真空中光的波长λ,波长大波动性显著;
(8)在相同的情况下,双缝干涉条纹间距x 越来越窄
(9)在相同的情况下,衍射现象越来越不明显
全反射的条件:光密到光疏;入射角等于或大于临界角
全反射现象:让一束光沿半圆形玻璃砖的半径射到直边上,可以看到一部分光线从玻璃直边上折射到空气中,一部分光线反射回玻璃砖内.逐渐增大光的入射角,将会看到折射光线远离法线,且越来越弱.反射光越来越强,当入射角增大到某一角度C 临时,折射角达到900,即是折射光线完全消失,只剩下反射回玻璃中的光线.这种现象叫全反射现象.折射角变为900时的入射角叫临界角
应用:光纤通信(玻璃sio 2) 内窥镜 海市蜃楼 沙膜蜃景 炎热夏天柏油路面上的蜃景
水中或玻璃中的气泡看起来很亮.
理解:同种材料对不同色光折射率不同;同一色光在不同介质中折射率不同。
8.全反射棱镜-------横截面是等腰直角三角形的棱镜叫全反射棱镜。
选择适当的入射点,可以使入射光线经过全反射棱镜的作用在射出后偏转90o(右图1)或180o(右图2)。
要特别注意两种用法中光线在哪个表面发生全反射。
.玻璃砖-----所谓玻璃砖一般指横截面为矩形的棱柱。
当光线从上表面入射,从下表面射出时,其特点是:⑴射出光线和入射光线平行;⑵各种色光在第一次入射后就发生色散;⑶射出光线的侧移和折射率、入射角、玻璃砖的厚度有关;⑷可利用玻璃砖测定玻璃的折射率。
光的波动性和微粒性
1.光本性学说的发展简史
(1)牛顿的微粒说:认为光是高速粒子流.它能解释光的直进现象,光的反射现象.
(2)惠更斯的波动说:认为光是某种振动,以波的形式向周围传播.它能解释光的干涉和衍射现象.
2、光的干涉
光的干涉的条件是:有两个振动情况总是相同的波源,即相干波源。
(相干波源的频率必须相同)。
形成相干波源的方法有两种:⑴利用激光(因为激光发出的是单色性极好的光)。
⑵设法将同一束光分为两束(这样两束光都来源于同一个光源,因此频率必然相等)。
下面4个图分别是利用双缝、利用楔形薄膜、利用空气膜、利用平面镜形成相干光源的示意图。
2.干涉区域内产生的亮、暗纹
⑴亮纹:屏上某点到双缝的光程差等于波长的整数倍,即δ= nλ(n=0,1,2,……)
⑵暗纹:屏上某点到双缝的光程差等于半波长的奇数倍,即δ= (n=0,1,2,……)
相邻亮纹(暗纹)间的距离。
用此公式可以测定单色光的波长。
用白光作双缝干涉实验时,由于白光内各种色光的波长不同,干涉条纹间距不同,所以屏的中央是白色亮纹,两边出现彩色条纹。
3.衍射----光通过很小的孔、缝或障碍物时,会在屏上出现明暗相间的条纹,且中央条纹很亮,越向边缘越暗。
⑴各种不同形状的障碍物都能使光发生衍射。
⑵发生明显衍射的条件是:障碍物(或孔)的尺寸可以跟波长相比,甚至比波长还小。
(当障碍物或孔的尺寸小于0.5mm时,有明显衍射现象。
)
⑶在发生明显衍射的条件下当窄缝变窄时亮斑的范围变大条纹间距离变大,而亮度变暗。
4、光的偏振现象:通过偏振片的光波,在垂直于传播方向的平面上,只沿着一个特定的方向振动,称为偏振光。
光的偏振说明光是横波。
5.光的电磁说
⑴光是电磁波(麦克斯韦预言、赫兹用实验证明了正确性。
)
⑵电磁波谱。
波长从大到小排列顺序为:无线电波、红外线、可见光、紫外线、X射线、γ射线。
各种电磁波中,除可见光以外,相邻两个波段间都有重叠。
各种电磁波的产生机理分别是:无线电波是振荡电路中自由电子的周期性运动产生的;红外线、可见光、紫外线是原子的外层电子受到激发后产生的;伦琴射线是原子的内层电子受到激发后产生的;γ射线是原子核受到激发后产生的。
⑶红外线、紫外线、X射线的主要性质及其应用举例。
种类产生主要性质应用举例
红外线一切物体都能发出热效应遥感、遥控、加热
紫外线一切高温物体能发出化学效应荧光、杀菌、合成VD2
X射线阴极射线射到固体表面穿透能力强人体透视、金属探伤
光电效应
光电效应规律:实验装置、现象、总结出四个规律
①任何一种金属都有一个极限频率,入射光的频率必须大于这个极限频率,才能产生光电效应;低于这个极限频率的光不能产生光电效应。
②光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增
大。
③入射光照到金属上时,光子的发射几乎是瞬时的,一般不超过10-9s
④当入射光的频率大于极限频率时,光电流强度与入射光强度成正比。
(4)康普顿效应(石墨中的电子对x射线的散射现象)这两个实验都证明光具粒子性光波粒二象性: 情况体现波动性(大量光子,转播时,λ大),
粒子性光波是概率波(物质波) 任何运动物体都有λ与之对应(这种波称为德布罗意波)。