中英文外文翻译--数据采集系统
- 格式:docx
- 大小:42.13 KB
- 文档页数:8
本科生毕业设计(论文)外文翻译毕业设计(论文)题目:电力系统检测与计算外文题目:The development of the single chipmicrocomputer译文题目:单片机技术的发展与应用学生姓名: XXX专业: XXX指导教师姓名: XXX评阅日期:单片机技术的发展与应用从无线电世界到单片机世界现代计算机技术的产业革命,将世界经济从资本经济带入到知识经济时代。
在电子世界领域,从 20 世纪中的无线电时代也进入到 21 世纪以计算机技术为中心的智能化现代电子系统时代。
现代电子系统的基本核心是嵌入式计算机系统(简称嵌入式系统),而单片机是最典型、最广泛、最普及的嵌入式系统。
一、无线电世界造就了几代英才。
在 20 世纪五六十年代,最具代表的先进的电子技术就是无线电技术,包括无线电广播,收音,无线通信(电报),业余无线电台,无线电定位,导航等遥测、遥控、遥信技术。
早期就是这些电子技术带领着许多青少年步入了奇妙的电子世界,无线电技术展示了当时科技生活美妙的前景。
电子科学开始形成了一门新兴学科。
无线电电子学,无线通信开始了电子世界的历程。
无线电技术不仅成为了当时先进科学技术的代表,而且从普及到专业的科学领域,吸引了广大青少年,并使他们从中找到了无穷的乐趣。
从床头的矿石收音机到超外差收音机;从无线电发报到业余无线电台;从电话,电铃到无线电操纵模型。
无线电技术成为当时青少年科普、科技教育最普及,最广泛的内容。
至今,许多老一辈的工程师、专家、教授当年都是无线电爱好者。
无线电技术的无穷乐趣,无线电技术的全面训练,从电子学基本原理,电子元器件基础到无线电遥控、遥测、遥信电子系统制作,培养出了几代科技英才。
二、从无线电时代到电子技术普及时代。
早期的无线电技术推动了电子技术的发展,其中最主要的是真空管电子技术向半导体电子技术的发展。
半导体电子技术使有源器件实现了微小型化和低成本,使无线电技术有了更大普及和创新,并大大地开阔了许多非无线电的控制领域。
编号:桂林电子科技大学信息科技学院毕业设计(论文)外文翻译(译文)系别:电子工程系专业:电子信息工程学生姓名:韦骏学号:0852100329指导教师单位:桂林电子科技大学信息科技学院姓名:梁勇职称:讲师2012 年6 月5 日设计与实现基于Modbus 协议的嵌入式Linux 系统摘要:随着嵌入式计算机技术的飞速发展,新一代工业自动化数据采集和监测系统,采用核心的高性能嵌入式微处理器的,该系统很好地适应应用程序。
它符合消费等的严格要求的功能,如可靠性,成本,尺寸和功耗等。
在工业自动化应用系统,Modbus 通信协议的工业标准,广泛应用于大规模的工业设备系统,包括DCS,可编程控制器,RTU 及智能仪表等。
为了达到嵌入式数据监测的工业自动化应用软件的需求,本文设计了嵌入式数据采集监测平台下基于Modbus 协议的Linux 环境采集系统。
串行端口的Modbus 协议是实现主/从式,其中包括两种通信模式:ASCII 和RTU。
因此,各种药膏协议的设备能够满足串行的Modbus通信。
在Modbus 协议的嵌入式平台实现稳定和可靠。
它在嵌入式数据监测自动化应用系统的新收购的前景良好。
关键词:嵌入式系统,嵌入式Linux,Modbus 协议,数据采集,监测和控制。
1、绪论Modbus 是一种通讯协议,是一种由莫迪康公司推广。
它广泛应用于工业自动化,已成为实际的工业标准。
该控制装置或不同厂家的测量仪器可以链接到一个行业监控网络使用Modbus 协议。
Modbus 通信协议可以作为大量的工业设备的通讯标准,包括PLC,DCS 系统,RTU 的,聪明的智能仪表。
随着嵌入式计算机技术的飞速发展,嵌入式数据采集监测系统,使用了高性能的嵌入式微处理器为核心,是一个重要的发展方向。
在环境鉴于嵌入式Linux 的嵌入式工业自动化应用的数据,一个Modbus 主协议下的采集监测系统的设计和实现了这个文件。
因此,通信设备,各种药膏协议能够满足串行的Modbus。
cicr名词解释
【最新版】
目录
1.概述 CICR
2.CICR 的含义
3.CICR 的背景和由来
4.CICR 的应用领域
5.CICR 的重要性
正文
CICR,全称为“Chinese-English Bilingual Information Retrieval”,中文名为“中英文信息检索”,是一种将中文和英文两种语言的信息进行
检索和匹配的技术。
CICR 技术广泛应用于各种领域,如机器翻译、跨语
言信息检索、自然语言处理等。
CICR 的背景和由来源于互联网的全球化和跨语言信息交流的需求。
随着互联网的发展,人们需要获取和处理来自不同语言的信息,这就需要
一种技术能够快速、准确地将中文和英文信息进行检索和匹配。
因此,CICR 应运而生。
CICR 的应用领域非常广泛。
首先,CICR 可以用于机器翻译。
通过CICR 技术,可以将中文和英文两种语言的文本进行检索和匹配,从而实
现两种语言之间的自动翻译。
其次,CICR 还可以用于跨语言信息检索。
用户可以通过 CICR 技术,在海量的中英文信息中进行检索,找到自己需要的信息。
最后,CICR 还可以用于自然语言处理。
通过对中英文信息的
检索和匹配,可以实现对语言的深度理解和分析。
CICR 的重要性不言而喻。
它不仅可以提高信息获取和处理的效率,
还可以促进跨语言文化的交流和理解。
Design of the Data Acquisition System Based on STM32ABSTRACTEarly detect ion of failures in machi nery equipme nts is one of the most importa nt concerns to industry. In order to monitor effective of rotating machinery, we developme nt a micro-c on troller uC/OS-II system of sig nal acquisiti on system based on STM32 in this paper. we have give n the whole desig n scheme of system and the multi-cha nnel vibrati on sig nal in axis X, Y and Z of the rotary shaft can be acquired rapidly and display in real-time. Our system has the character of simple structure, low power con sumpti on, mini aturizati on.Keywords: STM32; data acquisition; embedded system;uC/OS-ll;1.1. I ntroductionThe real-time acquisition of vibration in rotating machinery can effectively predict, assessa nd diag nose equipme nt operati on state, the in dustry gets vibratio n data acquisiti on Rapidly and an alysis in real-time can mon itor the rotati ng mach inery state and guara ntee the safe running of the equipme nt. I n order to preve nt failure, reduce maintenance time, improve the econo mic efficie ncy, The purpose of fault diag no sis system can detect these devices through the vibratio n sig nal acquisiti on of rotating machinery, and process the data acquisition, then it will make timely judgme nt of running state of equipme nt .While the data acquisiti on module is the core part of the fault diag no sis system [1-4].The practical applicati on in the in dustrial field, is the equipment operating parameters will be acquired to monitor equipment operati ng state. In traditi onal data acquisiti on systems, the data from acquisiti on card are gen erally send into the computer, and specific software will be developed for the data acquisition. The main contribution of this paper has designed the STM32 platform with ARM tech no logy, that has become a traditi onal main stream tech no logy in embedded systems, and the collect ing data toward the directi on of high real-time, multi-parameter,high-precision, while data storage become large capacity, more mini aturizati on andportable, and the developme nt of multicom muni cati on mode and Iong-distanee for data transmission. So as to meet the actual acquisition system multitask ing requireme nts, this article has desig ned based on STM32 micro-co ntroller uC/OS-ll system of sig nal acquisiti on system. Therefore, in order to meet the actual acquisiti on system multitask requireme nts, this no velty of this article has desig ned a sig nal acquisiti on system in micro-c on troller uC/OS-ll based on STM32.2. Architecture of data acquisition systemData acquisiti on as key tech no logy for mon itori ng equipme nt, rece ntly a lot of work has been done on it. An embedded parallel data acquisition system based on FPGA is Optimized designed which will make it reasonableto divide and allocatehigh-speed and low-speed A/D [5]. I nstead, it has use a high-speed A/D converter and Stratix II series of FPGA for data collection and processing, in which the main contribution is used of the Compact Peripheral Component In terc onn ect, the system has the characters of modularizati on, sturd in ess and scalability [6].But remote control will be needed in Special Conditions, this paper introduce the embedded operating system platform based on Windows CE and uC/OS-II to desig n a remote acquisiti on and con trol system with the GPRS wireless tech no logy [7-8]」n order to achieve the data shari ng of multi-user, it has build the embedded dyn amic website for data acquisiti on man ageme nt and dissem in ati on with the ARM9 and Linux operation system [9].A data collection terminal devices is designed based on ARM7 microprocessor LPC2290 and embedded real-time operati ng system uC/OS-II to solve the real-time acquisiti on of multicha nnel small sig nal and multi-cha nnel tran smissi on[ 10].O n the other han ds, two parallel DSP-based system dedicated to the data acquisiti on on rotati ng machi nes, and the inner sig nal con diti oner is used to adapt the sen sor output to the in put range of the acquisiti on, and the n sig nal post-process in gby the desig n software, while the most frequently structure is to use DAS andFPGA-based, and such programs are also depe ndent on the DAS cost.In order to meet market requireme nts of low power con sumpti on, low cost, and mobility, Fig.1 in this paper presents the design overall structure diagram of data acquisiti on system. Through SPI in terface, the system gets the data collectio n with three axis accelerati on sen sori nto the STM32 con troller of inner A/D conv ersi onmodule with 12-bit, this process is non-interfering parallel acquisition. Our system uses 240x400 LCD and touch screen module real-time to display the collected data in real time.Fig. 1 Hardware Framework of System2.1. STM32 micro-controllerA 32 bit RISC STM32F103VET6, used as the processor in our system, compared with similar products, the STM32F103VET6 work at 72MHZ, with characters of stro ng performa nee and low power con sumptio n, real-time and low-cost. The processor in cludes: 512K FLASH, 64K SRAM, and it will commu ni cate by usi ng five serial ports which con tai n a CAN bus, a USB2.0 SLA VE mode and a Ethernet in terface, what s more two RS232 ports are also in cluded. The system in our paper exte nd theSST25VF016B serial memory through the SPI bus in terface, that will regard as the temporary storage whe n collect large nu mber of data, furthermore, we have the A/D converter with 12 bits resolution, and the fastest conversion up to 1us, with 3.6 Vfull-scale of the system .In additi on to desig n of the system power supply circuit, the reset circuit, RTC circuit and GPIO port to assurancesystem needs andno rmal operati on.2.2. Data acquisitionThe machi ne state is no rmal or not is mainly depe nded on the vibrati on sig nal. In this paper, to acquire the vibration data of rotating machinery rotor, we have used vibrati on accelerati on tran sducers MMA7455L which could collect the data from axis x, y, and z of the company of Free-scale. The kind of vibration acceleration transducers has advantage of low cost and small size, high sensitivity and large dynamic range with small interferenee. MMA7455L is mainly consists of gravity sensing unit and signal conditioning circuit composition, and this sensor will amplify the tiny data before sig nal preprocess in g. In data acquisiti on process of our system, the error of sampling stage is mainly caused by quantified, and the error is depended on the bits of the A/D converter ,when we regard the maximum voltage as V max , the AD converter bits is n, and the quantization Q = V max/2n, then, the quantization error is obeyed uniformdistribution in [- q / 2, q / 2] [13].AVhik e"is averaae eixor. is enor variance . and —is SNR* 」 " NThe designed STM32 could built at most three 12-bit parallel ADC in this paper , which theoretical in dex is 72dB and the actual dyn amic range is betwee n 54 to 60dB while 2 or 3 bits is impacted by noise, the dynamic range of measurement can up to 1000 times with 60dB. For the vast majority of the vibration signal, the maximum sampli ng rate of 10kHZ can meet actual dema nd, and the higher freque ncy of collecti on is gen erally used in the 8-12 bits AD, therefore one of con tributi on of this work is to (2) ⑶⑷I ep(e)de = OS V max2V max3Pinax 、—宀対-=—= >12V2—1£12choose a built-in 12-bit A/D to meet the accuracy of vibration signal acquisiti on and lower cost in this experime nt.3. Software design3.1. Transplantation of C/OSIn order to ensure real-time and safety data collection requirements, in this system, a kind of RTOS whose source code is ope n and small is proposed. It also can be easily to be cut dow n, repotted and solidified, and its basic functions in clud ing task management and resource management, storage management and system management. The RTOS embedded systemcould support 64 tasks, with at most 56 user tasks, and four tasks of the highest and the lowest priorities will be reta ined in system. The uC/OS-II assig ns priorities of the tasks accordi ng to their importa nee, the operation system executive the task from the priority sequenceand each task have in depe ndent priority. The operati ng system kernel is streamli ned, and multi-task ing fun cti on is well compared with others, it can be tran spla nted to processors that from 8-bit to 64-bit.The transplant in the system are to modify the three file system structure:OS_CPU_C.H OS_CPU.C, OS_CPU_A.ASM. Main transplantation procedure is as follows:A. OS_CPU_C.HIt has defi ned the data types, the len gth and growth direct ion of stack in the processor. Because different microprocessors have different word length , so theuC/OS-II tran spla ntati on in clude a series of type defi niti on to en sure its portability, and the revised code as follows:typedef un sig ned char BOOLEAN;typedef un sig ned char INT8U;typedef signed char INT8S;typedef un sig ned short INT16U;typedef sig ned short INT16U;typedef un sig ned int INT32U;typedef sig ned int INT32S;typedef float FP32;typedef double FP64;typedef un sig ned int OS_STK;typedef un sig ned int OS_CPU_SR;Cortex-M3 processor defi nes the OS_ENTER_CRITICAL () andOS_EXIT_CRITICAL () as ope ning and clos ing in terrupt, and they must set to 32 bit of the stack OS_STK and CPU register len gth. In additi on, that has defi ned the stack poin ter OS_STK_GROWTH stack growth direct ion from high address to lower address.B. OS_CPU.CTo modify the function OSTaskStklnit() according to the processor, the nine rema ining user in terface fun cti ons and hook fun cti ons can be n ull without special requirements, they will produce code for these functions only when theOS_CPU_HOOKS_EN is set to 1 in the file of OS_CFG .H. The stack initialization fun cti on OSTaskStk Init () retur n to the new top of the stack poin ter.OS_CPU_A.ASMMost of the tran spla nt work are completed in these docume nts, and modify the followi ng functions.OsStartHighRdy() is used for running the most priority ready task, it will be resp on sible for stack poin ter SP from the highest priority task of TCB con trol block, and restore the CPU, the n the task process created by the user start to con trol the process.OSCtxSw () is for task switch ing, When the curre nt task ready queue have a higher priority task, the CPU will start OSCtxSw () task switchi ng to run the higher priority task and the curre nt task stored in task stack.OSIntCtxSw () has the similar function with OSIntSw (), in order to ensurereal-time performa nee of the system, it will run the higher priority task directly whe n the in terrupt come, and will not store the curre nt task.OSTickISR () is use to handle the clock interrupt, which needs interrupt to schedule its impleme ntati on whe n a higher priority task is wait ing for the clock sig nal.OS_CPU_SR_Save () and OS_CPU_SR_Restore () is completed to switch in terrupt while en teri ng and leav ing the critical code both functions impleme nt by the critical protectio n fun ctio n OS_ENTER_CRITICAL () and OS_EXIT_CRITICAL ().After the completion ofthe above work, uC/OS-ll can run on the processors. 3.2. Software architectureFig.2 shows the system software architecture, so as to display the data visualized,uC/GUI3.90 and uC/OS-II is transplanted in the system, our system contains six tasks such data acquisiti on, data tran smissi on, LCD display, touch scree n driver, key-press management and uC/GUI interface.First of all, we should set the task priority and the task scheduling based on the priority. It needs complete the required driver design before the data acquisition, such as A/D driver, touch panel driver and system initialization, while the initializations include: hardware platform initialization, system clock initialization, interrupt source configuration, GPIO port configuration, serial port initialization and parameter configuration, and LCD in itializati on. The process is that the cha nnel module sent sampli ng comma nd to the AD channel, then to inform the receiver module it has been sent the sample start comma nd, the receiver module is ready to receive and large data will store in the storage module, after the completion of the first sampling, channel module will send the complete comma nd of sampli ng to the receiver module, the receiver sends an in terrupt request to the storage module to stop the data stori ng, the n the data will display on the LCD touch scree n. The data acquisiti on process show n in Fig.3Hui-fti Zhtmg tiiui Karif* / Proceditt Cotripufer Scienct! 17『20”J 222 - 228Fig - SofhvBtre Architecture of SyMem Tig 3 Data Acqm;>ition of FlowChait4. ExperimentsThe experiment of the embedded system has been done and data acquisitioncomes from the accelerati on of MMA7455L, which is in stalled on the bench of rotat ing mach ine. The data acquisiti on have displayed as show n in Fig.4 and Fig.5, the system can select three channels to collect the vibration signal from the three directi ons of X, Y and Z-axis , and in this paper the sampli ng freque ncy is 5KHZ and we have collect the vibration signal from normal state of unbalaneed state at the same channel. The result shows that our system can display real-time data acquisition and5. Conclusion This paper has designed an embeddedsignal acquisition system for real time according to the mechanical failure occurred with high frequency of in the rotatingmachines. The system is based on a low cost microcontroller, Vibration signals is picked by the three axis accelerati on sen sor which has the performa nee of low cost and high sen sitivity, and the acquisiti on data from axis x, y, and z. We have desig ned the system hardware structure, and an alyses the work ing prin ciple of data acquisiti on module. The proposed system of uC/OS-ll realize the data task management and scheduling, and it is compacted with structure and low cost, what's more the system collects the vibration signal and analysis in real-time of the rotating machines, and then quickly gives diag no stic results. AcknowledgementsThis work was supported by The Nati onal Natural Scie nee Foun dati on of China (51175169); Chi na Natio nal Key Tech no logy R&D Program(2012BAF02B01); Pla predict the prelimi nary diag no sis rapidly. Fig.4 Noimal Dntn Acquisition Fi^ ,5 LJiibalance Data Acqmsihonnned Scie nee and Tech no logy Project of Hunan Provin ce(2009FJ4055);Scie ntific Research Fund of Hu nan Provi ncial Education Departme nt(10K023). REFERENCES[1] Cheng, L., Yu, H., Research on intelligent maintenance unit of rotary machine, Computer Integrated Manufacturing Systems, vol. 10, Issue: 10, page 1196-1198, 2004.[2] Yu, C., Zhong, Ou., Zhen, D., Wei, F., .Design and Implementation of Mon itori ng and Man ageme nt Platform in Embedded Fault Diag no sis System, Computer Engin eeri ng, vol. 34 , Issue: 8, page 264-266, 2008.[3] Bi, D., Gui, T., Jun, S., Dynam . Behavior of a High-speed Hybrid Gas Bearing-rotor System for a Rotat ing ramjet, Jour nal of Vibrati on and Shock, vol. 28, Issue: 9, page 79-80, 2009.[4] Hai, L., Jun, S., Research of Driver Based on Fault Diag no sis System Data Acquisiti on Module, Mach ine Tool& Hydraulics, vol. 38 , Issue: 13, page 166-168, 2011.[5] Hao, W., Qin, W., Xiao, S., Optimized. Desig n of Embedded Parallel Data Acquisition System, Computer Engineering and Design, vol. 32, Issue: 5, page1622-1625, 2011.[6] Lei, S., Ming, N., Design and Implementation of High Speed Data Acquisiti on System Based on FPGA, Computer Engin eeri ng, vol. 37, Issue: 19, page 221-223, 2011.[7] Chao, T., Jun, Z., Ru, G., Design of remote data acquisition and control system based on Win dow CE, Microcomputer& Its Applicati ons , vol. 30, Issue: 14, page 21-27, 2011.[8] Xiao, W., Bin, W., SMS con trolled in formatio n collectio n system based on uC/OS-II, Computer Applicatio n, vol. 12, Issue: 31, page 29-31,2011.[9] Ti ng,Y., Zhong, C., Con structio n of Data Collectio n& Release in Embedded System, Computer En gi neeri ng, vol. 33, Issue: 19, page 270-272, 2007.[10] Yo ng, W., Hao, Z., Pen g,D., Desig n and Realization of Multi-fu nction Data Acquisition System Based on ARM, Process Automation Instrumentation, vol. 32, Issue: 1, page: 13-16, 2010.[11] Betta, G, Liguori, C., Paolillo, A., A DSP-Based FFT An alyzer for the FaultDiag no sis of Rotati ng Mach ine Based on Vibrati on An alysis, IEEE Tran sacti on on In strume ntati on and Measureme nt, vol. 51, Issue: 6, 2002.[12] Con treras-Medi na LM., Romero Tron coso RJ., Millan Almarez JR., FPGA Based Multiple-Cha nnel Vibrati on An alyzer Embedded System for In dustrial Applicati on in Automatic Failure Detect ion, IEEE tran sacti ons on Intern ati onal and measureme nt, vol. 59, Issue: 1, page 63-67, 2008.[13] Ch on, W., Shua ng, C., Desig n and impleme ntati on of sig nal detecti on system based on ARM for ship borne equipme nt, Computer Engin eeri ng and Desig n, vol. 32, Issue: 4, page: 1300-1301,2011.[14] Miao, L., Tia n, W., Ho ng, W., Real-time An alysis of Embedded CNC System Based on uC/OS-ll, Computer En gi neeri ng, vol. 32, Issue: 22, page 222-223, 2006.。
GRS的名词解释GRS即“General Retrieval System”的缩写,是一种广泛应用于信息检索和数据管理领域的通用检索系统。
它采用了多种技术和算法,以实现高效、准确地从大规模数据集中提取所需信息。
以下将对GRS的关键概念和功能进行解释。
一、信息检索GRS的主要目标是通过用户提供的查询语句,从大量的数据中检索出最相关的信息。
在这个过程中,GRS通过建立和维护一个包含目标数据集的索引,进行快速的数据查找。
索引是一个按照特定方式组织的数据结构,用于记录数据项的位置和属性,以便快速定位和访问。
二、数据存储和管理GRS能够对多种类型的数据进行存储和管理,包括文本、图像、音频、视频等。
为了提高系统性能和数据的可用性,GRS使用了一系列的数据管理技术,如数据压缩、数据加密、数据备份和恢复等。
通过这些技术手段,GRS可以确保数据的完整性、可靠性和安全性。
三、查询语言和语法GRS支持多种查询语言和语法,以满足不同用户的需求和偏好。
常见的查询语言包括结构化查询语言(SQL)、自然语言查询等。
用户可以根据自己的需求,选择合适的查询语言进行数据检索。
GRS会解析用户输入的查询语句,并根据索引和数据集返回相应的查询结果。
四、相似度计算和排序GRS通过计算查询与数据项之间的相似度,来确定数据项的相关性和排序。
相似度计算是GRS的核心功能之一,常用的计算方法包括余弦相似度、编辑距离、文本摘要等。
GRS会将计算出的相似度与预设的阈值进行比较,以确定是否将数据项包含在查询结果中,并按照相似度排序。
五、用户反馈和优化GRS提供了用户反馈和系统优化的机制,以提高检索效果和用户满意度。
用户在使用GRS进行检索时,可以对返回的结果进行评价和反馈。
GRS会根据用户的反馈信息,调整相似度计算和排序算法,提升检索的质量和准确性。
六、GRS的应用领域GRS在各个领域都有广泛的应用。
在电子商务领域,GRS通常被用于商品搜索、推荐系统和广告投放等。
中文1950字附录附录A外文资料Data CollectionAt present,the management of China’s colleges and universities’apartments are developing toward standardization and market development,accidents have occurred in electricity,while some colleges and universities have installed apart ment energy metering control system,however,these systems monitor the prevale nce of low level,billing accuracy is low,electricity-sharing,the network number o f the drawbacks of low extent.Therefore,improving the Energy Measurement m onitoring device has become more urgent.The issue of student hostels in colle ges and universities to monitor energy metering system to study,design the st udent hostels in colleges and universities of the electricity data collector apartm ent.Data acquisition, also known as data acquisition, is the use of a device th at collect data from outside the system and enter into an interface within the s ystem.Data acquisition technology is widely cited in the various fields.Such as camera, microphone, all data collection tools.Data is being collected has been c onverted to electrical signals of various physical quantities such as temperature, water level, wind speed, pressure, etc., can be analog, it can be digital.Sampl e collection generally means that a certain time interval (called the sampling p eriod) to repeat the same point of data collection.The data collected are mostly instantaneous value, but also a feature within a certain period of time value.A ccurate data measurement is the basis for data collection.Data measurement met hod of contact and non-contact detection elements varied.Regardless of which method and components are measured object does not affect the status and me asurement environment as a precondition to ensure the accuracy of the data.Ver y broad meaning of data collection, including continuous physical hold the collection across the state.In computer-aided mapping, surveying and mapping, desi gn, digital graphics or image data acquisition process may also be called, this time to be collected is the geometric volume (or include physical quantities, su ch as gray)data.[1] In today's fast-growing Internet industry, data collection has been widely used in the field of Internet and distributed data acquisition field has undergone important changes.First, the distributed control applications in i ntelligent data acquisition system at home and abroad have made great progres s.Second, the bus-compatible data acquisition plug-in number is increasing, and personal computer-compatible data acquisition system the number is increasing. Various domestic and international data collection machine has come out, the d ata acquisition into a new era.Digital signal processor (DSP) to the high-speed data processing ability an d strong peripherals interface, more and more widely used in power quality an alysis field, in order to improve the real-time and reliability.The DSP and micr ocomputer as the center of the system, realize the power system signal collecti on and analysis. This paper based on the FFT algorithm with window interpola tion electric system harmonic analysis, improves the accuracy of the power qua lity parameters. In electricity parameter acquisition circuit, by highaccuracy tran sformer and improve software synchronous communication sampling method to conduct electricity parameters of the acquisition.The system consists of two main components, mainly complete data acquis ition and logic control.To synchronous sampling and A/D converter circuit pri ority . The DSP development board(SY-5402EVM),complete data processing. T HE signal after transformer, op-amp into A/D converter, using DSP multi-chann el buffer (McBSP) and serial port (A/D connected, data collection and operatio ns. At the same time, adopt PLL circuit implementation synchronous sampling, can prevent well due to sampling synchronization and cause the measuring err or. The overall system diagram of the A/D converter chooses the Analog to pr oduce stats redetect (AD) company AD73360. The chip has six analogue input channel, each channel can output 16 the digital quantity. Six channel simultan eous sampling, and conversion, timeshare transmission, effectively reduce gener ated due to the sampling time different phase error. SY - 5402EVM on-board DSP chip is TI company's 16 fixed-point digital signal processor TMS320VC54 02. It has high costperformance and provide high-speed, bidirectional, multi-channel belt cushion, be used to serial port with system of other serial devices di rectly interface.The realization method of ac sample:In the field of power quality analysi s,The fast Fourier transform (FFT) algorithm analysis of electric system harmon ic is commonly used.and the FFT algorithm to signal a strict requirements syn chronous sampling. The synchronous sampling influence: it's difficult to accomp lish synchronous sampling and integer a period truncation in the actual measur ement, so there was a affect the measurement accuracy of the frequency spectr um leakage problem. The signal has to deal with through sampling and A/D c onversion get limited long digital sequence,the original signal multiplied by A r ectangular window to truncated. Time-domain truncation will cause the detuning frequency domain, spectrum leakage occurs. In the synchronous sampling, bec ause the actual signal every harmonic component can't exactly landed in freque ncy resolution point in, but fall between the frequency resolution points. But F FT spectrum is discrete, only in all sampling points, while in other places of s pectrum is not. Such through FFT and cannot directly get every harmonic com ponent, but only the accurate value in neighboring frequency resolution point v alue to approximate instead of, can cause the fence effect error.The realization method of synchronous sampling signal:According to provide different ways of sampling signal, synchronous sampling method and divided into software sync hronous sampling method and hardware synchronous sampling method is two k inds. Software is synchronous sampling method by micro controller (MCU) or DSP provide synchronized sampling pulse, first measured the measured signal, the sa mpling interval period T Δ T = T/N (N for week of sampling points), T hus the count value determined timer,Use timing interrupt way realization sync hronous sampling. The advantage of this method is no hardware synchronous c ircuit, simple structure .This topic will be the eventual realization of access to embedded systems,the realization of the power measurement and monitoring,m onitoring system to meet the electricity network,intelligence requirement,it prom ote the development of remote monitoring services,bringing a certain degree of socio.economic effectiveness.On the fundamental reactive current and harmonic current detection, there are mainly 2 ways: First, the instantaneous reactive power theory based method, the second is based on adaptive cancellation techniques.In addition, there areother non-mainstream approach, such as fast Fourier transform method, wavelet transform.Instantaneous power theory based on the method of offensive principles ar e: a three-phase current detection and load phase voltage A, the coordinate tra nsformation, two-phase stationary coordinate system the current value, calculate the instantaneous active and instantaneous reactive power ip iq,then after coor dinate transformation, three-phase fundamental active current, with the final loa d current minus the fundamental current, active power and harmonic currents a re fundamental iah, ibhi, ich.From:Principles of Data Acquisitio数据采集目前,我国高校公寓管理正在向着正规化、市场化发展,在不断提高学生方便用电的同时,用电事故频有发生,虽然部分高校公寓已经安装了电能计量监控系统,但这些系统普遍存在着监控程度低、计费精度不高、电费均分、网络程度低等诸多端。
中文1950字附录附录A外文资料Data CollectionAt present,the management of China’s colleges and universities’apartments are developing toward standardization and market development,accidents have occurred in electricity,while some colleges and universities have installed apart ment energy metering control system,however,these systems monitor the prevale nce of low level,billing accuracy is low,electricity-sharing,the network number o f the drawbacks of low extent.Therefore,improving the Energy Measurement m onitoring device has become more urgent.The issue of student hostels in colle ges and universities to monitor energy metering system to study,design the st udent hostels in colleges and universities of the electricity data collector apartm ent.Data acquisition, also known as data acquisition, is the use of a device th at collect data from outside the system and enter into an interface within the s ystem.Data acquisition technology is widely cited in the various fields.Such as camera, microphone, all data collection tools.Data is being collected has been c onverted to electrical signals of various physical quantities such as temperature, water level, wind speed, pressure, etc., can be analog, it can be digital.Sampl e collection generally means that a certain time interval (called the sampling p eriod) to repeat the same point of data collection.The data collected are mostly instantaneous value, but also a feature within a certain period of time value.A ccurate data measurement is the basis for data collection.Data measurement met hod of contact and non-contact detection elements varied.Regardless of which method and components are measured object does not affect the status and me asurement environment as a precondition to ensure the accuracy of the data.Ver y broad meaning of data collection, including continuous physical hold the collection across the state.In computer-aided mapping, surveying and mapping, desi gn, digital graphics or image data acquisition process may also be called, this time to be collected is the geometric volume (or include physical quantities, su ch as gray)data.[1] In today's fast-growing Internet industry, data collection has been widely used in the field of Internet and distributed data acquisition field has undergone important changes.First, the distributed control applications in i ntelligent data acquisition system at home and abroad have made great progres s.Second, the bus-compatible data acquisition plug-in number is increasing, and personal computer-compatible data acquisition system the number is increasing. Various domestic and international data collection machine has come out, the d ata acquisition into a new era.Digital signal processor (DSP) to the high-speed data processing ability an d strong peripherals interface, more and more widely used in power quality an alysis field, in order to improve the real-time and reliability.The DSP and micr ocomputer as the center of the system, realize the power system signal collecti on and analysis. This paper based on the FFT algorithm with window interpola tion electric system harmonic analysis, improves the accuracy of the power qua lity parameters. In electricity parameter acquisition circuit, by highaccuracy tran sformer and improve software synchronous communication sampling method to conduct electricity parameters of the acquisition.The system consists of two main components, mainly complete data acquis ition and logic control.To synchronous sampling and A/D converter circuit pri ority . The DSP development board(SY-5402EVM),complete data processing. T HE signal after transformer, op-amp into A/D converter, using DSP multi-chann el buffer (McBSP) and serial port (A/D connected, data collection and operatio ns. At the same time, adopt PLL circuit implementation synchronous sampling, can prevent well due to sampling synchronization and cause the measuring err or. The overall system diagram of the A/D converter chooses the Analog to pr oduce stats redetect (AD) company AD73360. The chip has six analogue input channel, each channel can output 16 the digital quantity. Six channel simultan eous sampling, and conversion, timeshare transmission, effectively reduce gener ated due to the sampling time different phase error. SY - 5402EVM on-board DSP chip is TI company's 16 fixed-point digital signal processor TMS320VC54 02. It has high costperformance and provide high-speed, bidirectional, multi-channel belt cushion, be used to serial port with system of other serial devices di rectly interface.The realization method of ac sample:In the field of power quality analysi s,The fast Fourier transform (FFT) algorithm analysis of electric system harmon ic is commonly used.and the FFT algorithm to signal a strict requirements syn chronous sampling. The synchronous sampling influence: it's difficult to accomp lish synchronous sampling and integer a period truncation in the actual measur ement, so there was a affect the measurement accuracy of the frequency spectr um leakage problem. The signal has to deal with through sampling and A/D c onversion get limited long digital sequence,the original signal multiplied by A r ectangular window to truncated. Time-domain truncation will cause the detuning frequency domain, spectrum leakage occurs. In the synchronous sampling, bec ause the actual signal every harmonic component can't exactly landed in freque ncy resolution point in, but fall between the frequency resolution points. But F FT spectrum is discrete, only in all sampling points, while in other places of s pectrum is not. Such through FFT and cannot directly get every harmonic com ponent, but only the accurate value in neighboring frequency resolution point v alue to approximate instead of, can cause the fence effect error.The realization method of synchronous sampling signal:According to provide different ways of sampling signal, synchronous sampling method and divided into software sync hronous sampling method and hardware synchronous sampling method is two k inds. Software is synchronous sampling method by micro controller (MCU) or DSP provide synchronized sampling pulse, first measured the measured signal, the sa mpling interval period T Δ T = T/N (N for week of sampling points), T hus the count value determined timer,Use timing interrupt way realization sync hronous sampling. The advantage of this method is no hardware synchronous c ircuit, simple structure .This topic will be the eventual realization of access to embedded systems,the realization of the power measurement and monitoring,m onitoring system to meet the electricity network,intelligence requirement,it prom ote the development of remote monitoring services,bringing a certain degree of socio.economic effectiveness.On the fundamental reactive current and harmonic current detection, there are mainly 2 ways: First, the instantaneous reactive power theory based method, the second is based on adaptive cancellation techniques.In addition, there areother non-mainstream approach, such as fast Fourier transform method, wavelet transform.Instantaneous power theory based on the method of offensive principles ar e: a three-phase current detection and load phase voltage A, the coordinate tra nsformation, two-phase stationary coordinate system the current value, calculate the instantaneous active and instantaneous reactive power ip iq,then after coor dinate transformation, three-phase fundamental active current, with the final loa d current minus the fundamental current, active power and harmonic currents a re fundamental iah, ibhi, ich.From:Principles of Data Acquisitio数据采集目前,我国高校公寓管理正在向着正规化、市场化发展,在不断提高学生方便用电的同时,用电事故频有发生,虽然部分高校公寓已经安装了电能计量监控系统,但这些系统普遍存在着监控程度低、计费精度不高、电费均分、网络程度低等诸多端。
中英双语数据集中英双语数据集主要是将一篇文章、一句话或一段文字用中文和英文两种语言进行对照的数据集。
这种数据集通常应用于机器翻译、双语阅读、双语学习等领域。
下面我们将分别从机器翻译和双语学习两个角度来探讨中英双语数据集的重要性以及它们的应用和意义。
一、机器翻译机器翻译(Machine Translation,MT)是指使用计算机程序将一种语言自动翻译成另一种语言的技术。
机器翻译技术在国际交流和信息传播方面具有重要的意义,因此中英双语数据集的构建和使用对于机器翻译技术的发展具有重要的推动作用。
中英双语数据集的构建是机器翻译技术的第一步,只有有了足够的数据,才能使机器翻译系统不断学习、进化、提高性能,进而使机器翻译技术更加完善。
中英双语数据集在机器翻译技术中的应用可以更好地促进文化交流和国际贸易,从而对人类社会的发展起到积极的推动作用。
二、双语学习双语学习(Bilingual education)是指利用两种语言,分别对学生进行教学和学习的教育形式。
双语学习对于培养学生的语言能力、文化素养和国际视野等方面都具有很重要的作用。
而中英双语数据集在双语学习中的应用也具有重要意义。
中英双语数据集将中文和英文进行对照,通过对比一段话在中文和英文中的表述,可以使学生更好地掌握两种语言的语法、词汇、表达方式、习惯用语等等方面的应用差异。
同时,中英双语数据集又是一种优秀的教学资源,学生可以根据双语对照来进行阅读、翻译、默写等练习,提高语言能力和学科成绩。
总之,中英双语数据集在机器翻译和双语学习中的应用都是非常广泛的。
随着国际交流的不断加深、全球化进程的不断推进,双语数据集的建设和应用将会越来越重要,对于促进世界文化和经济的交流与合作势在必行。
英文原文:Automatic meter reading systemThe present invention relates to automatic meter reading. More particularly, the present invention relates to an automated system for remotely monitoring a plurality of utility meters on command from a host server via an RF outbound broadcast.BACKGROUND OF THE INVENTIONHistorically, meters measuring electrical energy, water flow, gas usage, and the like have used measurement devices, which mechanically monitor the subscriber's usage and display a reading of the usage at the meter itself. Consequently, the reading of these meters has required that human meter readers physically go to the site of the meter and manually document the readings. Clearly, this approach relies very heavily on human intervention and, thus, is very costly, time-consuming, and prone to human error. As the number of meters in a typical utility's service region has increased, in some cases into the millions, human meter reading has become prohibitive in terms of time and money.In response, various sensing devices have been developed to automatically read utility meters and store the meter data electronically. These sensing devices, usually optical, magnetic, or photoelectric in nature, are coupled to the meter to record the meter data. Additionally, the meters have been equipped with radio frequency (RF) transceivers and control devices which enable the meters to transmit meter data over an RF link when requested to do so. Hand-held devices have been developed which include RF transceivers designed to interface with the meters' RF transceivers. These hand-held devices enable the human meter reader to simply walk by the meter's location, transmit a reading request over an RF link from the hand-held device to the meter's receiving device, wait for a response from the meter's sensing and transmitting device, and then record, manually or electronically, the meter data.Similarly, meter reading devices have been developed for drive-by reading systems. Utility vans are equipped with RF transceivers similar to those described in the hand-held example above. The human meter reader drives by the subscriber's location, with an automated reading system in the utility van. Again, the meters are commanded to report the meter data, which is received in the van via an RF link, where the data is recorded electronically. While this methodology improves upon the previous approaches, it still requires a significant amount of human intervention and time.Recently, there has been a concerted effort to accomplish meter reading by installing fixed communication networks that would allow data to flow from the meterall the way to the host system without human intervention. These fixed communications networks can operate using wire line or radio technology.FIG. 1 shows a conventional fixed communication network for automated meter reading (AMR) technology. As shown in FIG. 1, a fixed communication network having wire line technology in which utility meters 10 are connected to a wide area network (WAN) consisting of a suitable communications medium, including ordinary telephone lines, or the power lines that feed the meters themselves.One disadvantage of this approach has been that when a number of meters transmit meter data nearly simultaneously, the inherent latency on the wide area network results in packet collisions, lost data, garbled data, and general degradation of integrity across the system. To compensate for the collisions and interference between data packages destined for the central computer, due to the latency inherent in the WAN, various management schemes have been employed to ensure reliable delivery of the meter data. However, while this approach may be suitable for small systems, it does not serve the needs of a utility which monitors thousands or even millions of meters.In an attempt to better manage the traffic in the WAN, approaches have been developed wherein meter control devices similar to those described above have been programmed to transmit meter data in response to commands received from the central computer via the WAN. By limiting the number of meter reading commands transmitted at a given time, the central computer controls the volume of data transmitted simultaneously. However, the additional WAN traffic further aggravated the degradation of data integrity due to various WAN latency effects. Thus, while these approaches may serve to eliminate the need for human meter readers, reliance on the WAN has proven these approaches to be unsatisfactory for servicing the number of meters in the typical service region.Consequently, radio technology has tended to be the medium of choice due to its higher data rates and independence of the distribution network. The latest evolution of automated meter reading systems have made use of outbound RF communications from a fixed source (usually the utility's central station), directly to RF receivers mounted on the meters. The meters are also equipped with control devices which initiate the transfer of meter data when commanded to do so by the fixed source. The meters respond via a WAN as in the previous wire-based example. One disadvantage of these approaches is that there is still far too much interference on the WAN when all of the meters respond at about the same time. Thus, while these approaches reduce some of the WAN traffic (by eliminating outbound commands over the WAN), they are still unable to accommodate the large number of meters being polled.It is worthy of note that the wire-based systems typically use a single frequencychannel and allow the impedance and transfer characteristics of the transformers in the substation to prevent injection equipment in one station from interfering with receivers in another station. This built-in isolation in the network makes time division multiplexing less critical than for radio based metering systems. Typical fixed network radio systems also utilize a single channel to read all meters but the systems do not have a natural blocking point similar to the substation transformer utilized by distribution line carrier (DLC) networks. Also, the latency inherent in the WAN has contributed significantly to the problems associated with time division multiplexing a single frequency communications systems. As a result, the systems require sophisticated management schemes to time division multiplex the channel for optimal utilization.Therefore, a need exists to provide a system whereby a utility company can reliably and rapidly read on the order of one million meters in the absence of any significant human intervention. Further, a need exists to provide such a system which accommodates changes to the network as well as changes in operating conditions without significant degradation of performance.SUMMARY OF THE INVENTIONThe present invention fulfills these needs by providing an automated meter reading system having a host server interfaced to a plurality of nodes, each node communicating with a number of utility meters. In a preferred embodiment, the system has a selection means for selecting a group of noninterfering nodes; and an outbound RF broadcast channel from the host server for communicating with the selected group to initiate the reading of meters that communicate with those nodes and the uploading of meter data provided by those meters to those nodes. This outbound RF broadcast channel can be an existing channel currently being used for demand side management. In a preferred embodiment, the system also has a two-way communication link over a wide area network between the host server and each of the nodes. In a more preferred embodiment, the host server receives meter data read from at least one million meters in no more than about five minutes.In yet another preferred embodiment, the system also has a number of gateways, each communicating with a plurality of nodes, grouped to form sets of noninterfering gateways. In this embodiment, the system also has a selection means for selecting one of the sets of noninterfering gateways, and a second outbound RF broadcast channel from the host server for communicating with the selected set to initiate uploading of meter data from the selected set to the host server. This second outbound RF broadcast channel can be an existing channel currently being used for demand side management.The present invention further fulfills these needs by providing a method for usingan outbound RF channel to automatically read meters. In a preferred embodiment, the method comprises the steps of: defining a number of groups of noninterfering nodes: selecting a first group; broadcasting a read command to each node in the first group; selecting a second group; and broadcasting a read command to each node in the second group.In another embodiment, the method further comprises the steps of: reading meter data, in response to the read command, from each meter communicating with the node receiving the read command; recording the meter data in a data storage means associated with that node; broadcasting an upload message to each node in the first group; uploading the meter data recorded in the data storage means associated with the nodes of the first group to the host server; broadcasting an upload message to each node in the second group; and uploading the meter data recorded in the data storage means associated with nodes of the second group to the host server.In yet another embodiment, at least some of the nodes communicate through one of a number of gateways to the host server. In this embodiment, the method further comprises the steps of: selecting a first set of noninterfering gateways; broadcasting an upload message to each gateway in the first set; uploading the meter data recorded in the data storage means associated with the nodes that communicate with the first set of noninterfering gateways to the host server; selecting a second set of noninterfering gateways; broadcasting an upload message to each gateway in the second set; uploading the meter data recorded in the data storage means associated with nodes that communicate with the second set of noninterfering gateways to the host server.The present invention further fulfills the aforementioned needs by providing an automated meter reading system wherein the host server maintains a topology database in which each meter is assigned to at least one node, each node is assigned to at least one gateway. The nodes are preferably grouped together to define groups of noninterfering nodes and the gateways are preferably grouped together to define sets of noninterfering gateways.In another preferred embodiment, each of the plurality of nodes is adapted to receive RF broadcasts and the host server sequentially broadcasts a communication over an RF channel to each group of noninterfering nodes to initiate meter reading. In yet another preferred embodiment, each of the plurality of gateways is adapted to receive RF broadcasts and the host server sequentially broadcasts an upload message over a second RF channel to each set of noninterfering gateways, the gateways uploading the meter data to the host server via a wide area network in response to the upload message.The present invention further fulfills these needs by providing a method ofautomatically reading a plurality of meters in an AMR system comprising the steps of: selecting one of the nodes designated to communicate with each gateway; grouping the selected nodes to form groups of noninterfering nodes; forming sets of gateways such that each gateway within one set has an individual gateway designator; maintaining a topology database that uniquely identifies for each meter the set, gateway and node designators associated with said meter; and reading the meters based on the set, gateway and node designators.In another preferred embodiment, the method further comprises the step of initiating meter reading by sequentially broadcasting a read message over an RF channel to each group of noninterfering nodes. In yet another preferred embodiment, the method further comprises the step of initiating the uploading of meter data by sequentially broadcasting an upload message over the RF channel to each group of noninterfering nodes.The present invention will be better understood, and its numerous objects and advantages will become apparent by reference to the following detailed description of the invention when taken in conjunction with the following drawings, in which: FIG. 1 shows a conventional fixed communication network for automated meter reading technology;FIG. 2 shows a block diagram of an automated meter reading system according to the present invention;FIG. 3 shows a block diagram of an automated meter reading system in which an optional gateway is included according to the present invention;FIG. 4 shows a network of nodes and gateways exemplifying a group of noninterfering nodes;FIG. 5 shows communications traffic within one set of gateway service regions in an automated meter reading system;FIG. 6 shows the process by which a host server commands groups of noninterfering nodes to read meters and by which nodes read and store meter data gateways in accordance with a preferred embodiment of the present invention;FIG. 7 shows the process by which a host server commands nodes and gateways to upload meter data simultaneously in accordance with a preferred embodiment of the present invention;FIG. 8 shows the process by which a host server commands nodes and gateways to upload meter data by using groups of noninterfering gateways in accordance with a preferred embodiment of the present invention.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTFIG. 2 shows a diagram of a preferred embodiment of an automated meter reading system which uses broadcast technology to read utility meters in accordancewith the present invention. The system includes a host server, a wide area network (WAN), a plurality of optional gateway interface (OGI) nodes, and a plurality of utility meters 。
附录:外文技术资料及中文翻译1.中文翻译单片机系统目前单片机渗透到我们生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹。
导弹的导航装置,飞机上各种仪表的控制,计算机的网络通讯与数据传输,工业自动化过程的实时控制和数据处理,广泛使用的各种智能IC卡,民用豪华轿车的安全保障系统,录像机、摄像机、全自动洗衣机的控制,以及程控玩具、电子宠物等等,这些都离不开单片机。
更不用说自动控制领域的机器人、智能仪表、医疗器械以及各种智能机械了。
因此,单片机的学习、开发与应用将造就一批计算机应用与智能化控制的科学家、工程师。
单片机广泛应用于仪器仪表、家用电器、医用设备、航空航天、专用设备的智能化管理及过程控制等领域,大致可分如下几个范畴:1.在智能仪器仪表上的应用单片机具有体积小、功耗低、控制功能强、扩展灵活、微型化和使用方便等优点,广泛应用于仪器仪表中,结合不同类型的传感器,可实现诸如电压、功率、频率、湿度、温度、流量、速度、厚度、角度、长度、硬度、元素、压力等物理量的测量。
采用单片机控制使得仪器仪表数字化、智能化、微型化,且功能比起采用电子或数字电路更加强大。
例如精密的测量设备(功率计,示波器,各种分析仪)。
2.在工业控制中的应用用单片机可以构成形式多样的控制系统、数据采集系统。
例如工厂流水线的智能化管理,电梯智能化控制、各种报警系统,与计算机联网构成二级控制系统等。
3.在家用电器中的应用可以这样说,现在的家用电器基本上都采用了单片机控制,从电饭煲、洗衣机、电冰箱、空调机、彩电、其他音响视频器材、再到电子秤量设备,五花八门,无所不在。
4.在计算机网络和通信领域中的应用现代的单片机普遍具备通信接口,可以很方便地与计算机进行数据通信,为在计算机网络和通信设备间的应用提供了极好的物质条件,现在的通信设备基本上都实现了单片机智能控制,从手机,电话机、小型程控交换机、楼宇自动通信呼叫系统、列车无线通信、再到日常工作中随处可见的移动电话,集群移动通信,无线电对讲机等。
数据采集系统数据采集系统,正如名字所暗示的,是一种用来采集信息成文件或分析一些现象的产品或过程。
在最简单的形式中,技术人员将烤箱的温度记录在一张纸上就是数据采集。
随着技术的发展,通过电子设备,这个过程已经得到简化和变得比较精确、多用途和可靠。
设备从简单的存储器发展到复杂的电脑系统。
数据采集产品像聚焦点一样为系统服务,和一系列产品一起,诸如传感器显示温度、水流、程度或者过程。
数据采集技术在过去30到40年以来已经取得了很大的飞跃。
举例来说,在40 年以前,在一个著名的学院实验室中,为追踪用青铜做的坩埚中的温度上升情况的装置是由热电偶、继电器、查询台、一捆纸和一支铅笔。
今天的大学学生很可能在PC机上自动处理和分析数据,有很多种可供你选择的方法去采集数据。
至于选择哪一种方法取决于多种因素,包括任务的复杂度、你所需要的速度和精度、你想要的证据资料等等。
无论是简单的还是复杂的,数据采集系统都能够运行并发挥它的作用。
用铅笔和纸的旧方式对于一些情形仍然是可行的,而且它便宜、易获得、快速和容易开始。
而你所需要的就是捕捉到多路数字信息(DMM),然后开始用手记录数据。
不幸的是这种方法容易发生错误、采集数据变慢和需要太多的人工分析。
此外,它只能单通道采集数据;但是当你使用多通道DMM时,系统将很快变得非常庞大和呆笨拙。
精度取决于誊写器的水平,并且你可能需要自己动手依比例输入。
举例来说, 如果DMM 没有配备处理温度的传感器,旧需要动手找比例。
考虑到这些限制,只有当你需要实行一个快速实验时,它才是一个可接受的方法。
现代多种版本的长条图表记录仪允许你从多个输入取得数据。
他们提供数据的长备纸记录,因为数据是图解的格式,他们易于现场采集数据。
一旦建立了长条图表记录仪,在没有操作员或计算机的情况下,大多数记录仪具有足够的内部智能运行。
缺点是缺乏灵活性和相对的精度低,时常限制在百分点。
你能很清楚地感觉到和笔只有小的改变。
在多通道内较长时间的监控,记录仪能发挥很好的作用,除此之外,它们的价值得到限制。
中英文对照外文翻译(文档含英文原文和中文翻译)Data Acquisition SystemsData acquisition systems are used to acquire process operating data and store it on,secondary storage devices for later analysis. Many or the data acquisition systems acquire this data at very high speeds and very little computer time is left to carry out any necessary, or desirable, data manipulations or reduction. All the data are stored on secondary storage devices and manipulated subsequently to derive the variables ofin-terest. It is very often necessary to design special purpose data acquisition systems and interfaces to acquire the high speed process data. This special purpose design can be an expensive proposition.Powerful mini- and mainframe computers are used to combine the data acquisition with other functions such as comparisons between the actual output and the desirable output values, and to then decide on the control action which must be taken to ensure that the output variables lie within preset limits. The computing power required will depend upon the type of process control system implemented. Software requirements for carrying out proportional, ratio or three term control of process variables are relatively trivial, and microcomputers can be used to implement such process control systems. It would not be possible to use many of the currently available microcomputers for the implementation of high speed adaptive control systems which require the use of suitable process models and considerable online manipulation of data.Microcomputer based data loggers are used to carry out intermediate functions such as data acquisition at comparatively low speeds, simple mathematical manipulations of raw data and some forms of data reduction. The first generation of data loggers, without any programmable computing facilities, was used simply for slow speed data acquisition from up to one hundred channels. All the acquired data could be punched out on paper tape or printed for subsequent analysis. Such hardwired data loggers are being replaced by the new generation of data loggers which incorporate microcomputers and can be programmed by the user. They offer an extremely good method of collecting the process data, using standardized interfaces, and subsequently performing the necessary manipulations to provide the information of interest to the process operator. The data acquired can be analyzed to establish correlations, if any, between process variables and to develop mathematical models necessary for adaptive and optimal process control.The data acquisition function carried out by data loggers varies from one to 9 in system to another. Simple data logging systems acquire data from a few channels while complex systems can receive data from hundreds, or even thousands, of input channels distributed around one or more processes. The rudimentary data loggers scan the selected number of channels, connected to sensors or transducers, in a sequential manner and the data are recorded in a digital format. A data logger can be dedicated in the sense that it can only collect data from particular types of sensors and transducers. It is best to use a nondedicated data logger since any transducer or sensor can be connected to the channels via suitable interface circuitry. This facility requires the use of appropriate signal conditioning modules.Microcomputer controlled data acquisition facilitates the scanning of a large number of sensors. The scanning rate depends upon the signal dynamics which means that some channels must be scanned at very high speeds in order to avoid aliasing errors while there is very little loss of information by scanning other channels at slower speeds. In some data logging applications the faster channels require sampling at speeds of up to 100 times per second while slow channels can be sampled once every five minutes. The conventional hardwired, non-programmable data loggers sample all the channels in a sequential manner and the sampling frequency of all the channels must be the same. This procedure results in the accumulation of very large amounts of data, some of which is unnecessary, and also slows down the overall effective sampling frequency. Microcomputer based data loggers can be used to scan some fast channels at a higher frequency than other slow speed channels.The vast majority of the user programmable data loggers can be used to scan up to 1000 analog and 1000 digital input channels. A small number of data loggers, with a higher degree of sophistication, are suitable for acquiring data from up to 15, 000 analog and digital channels. The data from digital channels can be in the form of Transistor- Transistor Logic or contact closure signals. Analog data must be converted into digital format before it is recorded and requires the use of suitable analog to digital converters (ADC).The characteristics of the ADC will define the resolution that can be achieved and the rate at which the various channels can be sampled. An in-crease in the number of bits used in the ADC improves the resolution capability. Successive approximation ADC's arefaster than integrating ADC's. Many microcomputer controlled data loggers include a facility to program the channel scanning rates. Typical scanning rates vary from 2 channels per second to 10, 000 channels per second.Most data loggers have a resolution capability of ±0.01% or better, It is also pos-sible to achieve a resolution of 1 micro-volt. The resolution capability, in absolute terms, also depends upon the range of input signals, Standard input signal ranges are 0-10 volt, 0-50 volt and 0-100 volt. The lowest measurable signal varies form 1 t, volt to 50, volt. A higher degree of recording accuracy can be achieved by using modules which accept data in small, selectable ranges. An alternative is the auto ranging facil-ity available on some data loggers.The accuracy with which the data are acquired and logged-on the appropriate storage device is extremely important. It is therefore necessary that the data acquisi-tion module should be able to reject common mode noise and common mode voltage. Typical common mode noise rejection capabilities lie in the range 110 dB to 150 dB. A decibel (dB) is a tern which defines the ratio of the power levels of two signals. Thus if the reference and actual signals have power levels of N, and Na respectively, they will have a ratio of n decibels, wheren=10 Log10(Na /Nr)Protection against maximum common mode voltages of 200 to 500 volt is available on typical microcomputer based data loggers.The voltage input to an individual data logger channel is measured, scaled and linearised before any further data manipulations or comparisons are carried out.In many situations, it becomes necessary to alter the frequency at which particu-lar channels are sampled depending upon the values of data signals received from a particular input sensor. Thus a channel might normally be sampled once every 10 minutes. If, however, the sensor signals approach the alarm limit, then it is obviously desirable to sample that channel once every minute or even faster so that the operators can be informed, thereby avoiding any catastrophes. Microcomputer controlledintel-ligent data loggers may be programmed to alter the sampling frequencies depending upon the values of process signals. Other data loggers include self-scanning modules which can initiate sampling.The conventional hardwired data loggers, without any programming facilities, simply record the instantaneous values of transducer outputs at a regular samplingin-terval. This raw data often means very little to the typical user. To be meaningful, this data must be linearised and scaled, using a calibration curve, in order to determine the real value of the variable in appropriate engineering units. Prior to the availability of programmable data loggers, this function was usually carried out in the off-line mode on a mini- or mainframe computer. The raw data values had to be punched out on pa-per tape, in binary or octal code, to be input subsequently to the computer used for analysis purposes and converted to the engineering units. Paper tape punches are slow speed mechanical devices which reduce the speed at which channels can be scanned. An alternative was to print out the raw data values which further reduced the data scanning rate. It was not possible to carry out any limit comparisons or provide any alarm information. Every single value acquired by the data logger had to be recorded eventhough it might not serve any useful purpose during subsequent analysis; many data values only need recording when they lie outside the pre-set low and high limits.If the analog data must be transmitted over any distance, differences in ground potential between the signal source and final location can add noise in the interface design. In order to separate common-mode interference form the signal to be recorded or processed, devices designed for this purpose, such as instrumentation amplifiers, may be used. An instrumentation amplifier is characterized by good common-mode- rejection capability, a high input impedance, low drift, adjustable gain, and greater cost than operational amplifiers. They range from monolithic ICs to potted modules, and larger rack-mounted modules with manual scaling and null adjustments. When a very high common-mode voltage is present or the need for extremely-lowcom-mon-mode leakage current exists(as in many medical-electronics applications),an isolation amplifier is required. Isolation amplifiers may use optical or transformer isolation.Analog function circuits are special-purpose circuits that are used for a variety of signal conditioning operations on signals which are in analog form. When their accu-racy is adequate, they can relieve the microprocessor of time-consuming software and computations. Among the typical operations performed are multiplications, division, powers, roots, nonlinear functions such as for linearizing transducers, rimsmeasure-ments, computing vector sums, integration and differentiation, andcurrent-to-voltage or voltage- to-current conversion. Many of these operations can be purchased in available devices as multiplier/dividers, log/antilog amplifiers, and others.When data from a number of independent signal sources must be processed by the same microcomputer or communications channel, a multiplexer is used to channel the input signals into the A/D converter.Multiplexers are also used in reverse, as when a converter must distribute analog information to many different channels. The multiplexer is fed by a D/A converter which continually refreshes the output channels with new information.In many systems, the analog signal varies during the time that the converter takes to digitize an input signal. The changes in this signal level during the conversion process can result in errors since the conversion period can be completed some time after the conversion command. The final value never represents the data at the instant when the conversion command is transmitted. Sample-hold circuits are used to make an acquisition of the varying analog signal and to hold this signal for the duration of the conversion process. Sample-hold circuits are common in multichannel distribution systems where they allow each channel to receive and hold the signal level.In order to get the data in digital form as rapidly and as accurately as possible, we must use an analog/digital (A/D) converter, which might be a shaft encoder, a small module with digital outputs, or a high-resolution, high-speed panel instrument. These devices, which range form IC chips to rack-mounted instruments, convert ana-log input data, usually voltage, into an equivalent digital form. The characteristics of A/D converters include absolute and relative accuracy, linearity, monotonic, resolu-tion, conversion speed, and stability. A choice of input ranges, output codes, and other features are available. The successive-approximation technique is popular for a large number ofapplications, with the most popular alternatives being the counter-comparator types, and dual-ramp approaches. The dual-ramp has been widely-used in digital voltmeters.D/A converters convert a digital format into an equivalent analog representation. The basic converter consists of a circuit of weighted resistance values or ratios, each controlled by a particular level or weight of digital input data, which develops the output voltage or current in accordance with the digital input code. A special class of D/A converter exists which have the capability of handling variable reference sources. These devices are the multiplying DACs. Their output value is the product of the number represented by the digital input code and the analog reference voltage, which may vary form full scale to zero, and in some cases, to negative values.Component Selection CriteriaIn the past decade, data-acquisition hardware has changed radically due to ad-vances in semiconductors, and prices have come down too; what have not changed, however, are the fundamental system problems confronting the designer. Signals may be obscured by noise, rfi,ground loops, power-line pickup, and transients coupled into signal lines from machinery. Separating the signals from these effects becomes a matter for concern.Data-acquisition systems may be separated into two basic categories:(1)those suited to favorable environments like laboratories -and(2)those required for hostile environments such as factories, vehicles, and military installations. The latter group includes industrial process control systems where temperature information may be gathered by sensors on tanks, boilers, wats, or pipelines that may be spread over miles of facilities. That data may then be sent to a central processor to provide real-time process control. The digital control of steel mills, automated chemical production, and machine tools is carried out in this kind of hostile environment. The vulnerability of the data signals leads to the requirement for isolation and other techniques.At the other end of the spectrum-laboratory applications, such as test systems for gathering information on gas chromatographs, mass spectrometers, and other sophis-ticated instruments-the designer's problems are concerned with the performing of sen-sitive measurements under favorable conditions rather than with the problem ofpro-tecting the integrity of collected data under hostile conditions.Systems in hostile environments might require components for wide tempera-tures, shielding, common-mode noise reduction, conversion at an early stage, redun-dant circuits for critical measurements, and preprocessing of the digital data to test its reliability. Laboratory systems, on the other hand, will have narrower temperature ranges and less ambient noise. But the higher accuracies require sensitive devices, and a major effort may be necessary for the required signal /noise ratios.The choice of configuration and components in data-acquisition design depends on consideration of a number of factors:1. Resolution and accuracy required in final format.2. Number of analog sensors to be monitored.3. Sampling rate desired.4. Signal-conditioning requirement due to environment and accuracy.5. Cost trade-offs.Some of the choices for a basic data-acquisition configuration include:1 .Single-channel techniques.A. Direct conversion.B. Preamplification and direct conversion.C. Sample-hold and conversion.D. Preamplification, sample-hold, and conversion.E. Preamplification, signal-conditioning, and direct conversion.F. Preamplification, signal-conditioning, sample-hold, and conversion.2. Multichannel techniques.A. Multiplexing the outputs of single-channel converters.B. Multiplexing the outputs of sample-holds.C. Multiplexing the inputs of sample-holds.D. Multiplexing low-level data.E. More than one tier of multiplexers.Signal-conditioning may include:1. Radiometric conversion techniques.B. Range biasing.D. Logarithmic compression.A. Analog filtering.B. Integrating converters.C. Digital data processing.We shall consider these techniques later, but first we will examine some of the components used in these data-acquisition system configurations.MultiplexersWhen more than one channel requires analog-to-digital conversion, it is neces-sary to use time-division multiplexing in order to connect the analog inputs to a single converter, or to provide a converter for each input and then combine the converter outputs by digital multiplexing.Analog MultiplexersAnalog multiplexer circuits allow the timesharing of analog-to-digital converters between a numbers of analog information channels. An analog multiplexer consists of a group of switches arranged with inputs connected to the individual analog channels and outputs connected in common(as shown in Fig. 1).The switches may be ad-dressed by a digital input code.Many alternative analog switches are available in electromechanical and solid-state forms. Electromechanical switch types include relays, stepper switches,cross-bar switches, mercury-wetted switches, and dry-reed relay switches. The best switching speed is provided by reed relays(about 1 ms).The mechanical switches provide high do isolation resistance, low contact resistance, and the capacity to handle voltages up to 1 KV, and they are usually inexpensive. Multiplexers using mechanical switches are suited to low-speed applications as well as those having high resolution requirements. They interface well with the slower A/D converters, like the integrating dual-slope types. Mechanical switches have a finite life, however, usually expressed innumber of operations. A reed relay might have a life of 109 operations, which wouldallow a 3-year life at 10 operations/second.Solid-state switch devices are capable of operation at 30 ns, and they have a life which exceeds most equipment requirements. Field-effect transistors(FETs)are used in most multiplexers. They have superseded bipolar transistors which can introduce large voltage offsets when used as switches.FET devices have a leakage from drain to source in the off state and a leakage from gate or substrate to drain and source in both the on and off states. Gate leakage in MOS devices is small compared to other sources of leakage. When the device has a Zener-diode-protected gate, an additional leakage path exists between the gate and source.Enhancement-mode MOS-FETs have the advantage that the switch turns off when power is removed from the MUX. Junction-FET multiplexers always turn on with the power off.A more recent development, the CMOS-complementary MOS-switch has the advantage of being able to multiplex voltages up to and including the supply voltages. A±10-V signal can be handled with a ±10-V supply.Trade-off Considerations for the DesignerAnalog multiplexing has been the favored technique for achieving lowest system cost. The decreasing cost of A/D converters and the availability of low-cost, digital integrated circuits specifically designed for multiplexing provide an alternative with advantages for some applications. A decision on the technique to use for a givensys-tem will hinge on trade-offs between the following factors:1. Resolution. The cost of A/D converters rises steeply as the resolution increases due to the cost of precision elements. At the 8-bit level, the per-channel cost of an analog multiplexer may be a considerable proportion of the cost of a converter. At resolutions above 12 bits, the reverse is true, and analog multiplexing tends to be more economical.2. Number of channels. This controls the size of the multiplexer required and the amount of wiring and interconnections. Digital multiplexing onto a common data bus reduces wiring to a minimum in many cases. Analog multiplexing is suited for 8 to 256 channels; beyond this number, the technique is unwieldy and analog errors be-come difficult to minimize. Analog and digital multiplexing is often combined in very large systems.3. Speed of measurement, or throughput. High-speed A/D converters can add a considerable cost to the system. If analog multiplexing demands a high-speedcon-verter to achieve the desired sample rate, a slower converter for each channel with digital multiplexing can be less costly.4. Signal level and conditioning. Wide dynamic ranges between channels can be difficult with analog multiplexing. Signals less than 1V generally require differential low-level analog multiplexing which is expensive, with programmable-gain amplifiers after the MUX operation. The alternative of fixed-gain converters on each channel, with signal-conditioning designed for the channel requirement, with digital multi-plexing may be more efficient.5. Physical location of measurement points. Analog multiplexing is suitedfor making measurements at distances up to a few hundred feet from the converter, since analog lines may suffer from losses, transmission-line reflections, and interference. Lines may range from twisted wire pairs to multiconductor shielded cable, depending on signal levels, distance, and noise environments. Digital multiplexing is operable to thousands of miles, with the proper transmission equipment, for digital transmission systems can offer the powerful noise-rejection characteristics that are required for29 Data Acquisition Systems long-distance transmission.Digital MultiplexingFor systems with small numbers of channels, medium-scale integrated digital multiplexers are available in TTL and MOS logic families. The 74151 is a typical example. Eight of these integrated circuits can be used to multiplex eight A/D con-verters of 8-bit resolution onto a common data bus.This digital multiplexing example offers little advantages in wiring economy, but it is lowest in cost, and the high switching speed allows operation at sampling rates much faster than analog multiplexers. The A/D converters are required only to keep up with the channel sample rate, and not with the commutating rate. When large numbers of A/D converters are multiplexed, the data-bus technique reduces system interconnections. This alone may in many cases justify multiple A/D converters. Data can be bussed onto the lines in bit-parallel or bit-serial format, as many converters have both serial and parallel outputs. A variety of devices can be used to drive the bus, from open collector and tristate TTL gates to line drivers and optoelectronic isolators. Channel-selection decoders can be built from 1-of-16 decoders to the required size. This technique also allows additional reliability in that a failure of one A/D does not affect the other channels. An important requirement is that the multiplexer operate without introducing unacceptable errors at the sample-rate speed. For a digital MUX system, one can determine the speed from propagation delays and the time required to charge the bus capacitance.Analog multiplexers can be more difficult to characterize. Their speed is a func-tion not only of internal parameters but also external parameters such as channel, source impedance, stray capacitance and the number of channels, and the circuit lay-out. The user must be aware of the limiting parameters in the system to judge their ef-fect on performance.The nonideal transmission and open-circuit characteristics of analog multiplexers can introduce static and dynamic errors into the signal path. These errors include leakage through switches, coupling of control signals into the analog path, and inter-actions with sources and following amplifiers. Moreover, the circuit layout can com-pound these effects.Since analog multiplexers may be connected directly to sources which may have little overload capacity or poor settling after overloads, the switches should have a break-before-make action to prevent the possibility of shorting channels together. It may be necessary to avoid shorted channels when power is removed and a chan-nels-off with power-down characteristic is desirable. In addition to the chan-nel-addressing lines, which are normally binary-coded, it is useful to have inhibited or enable lines to turn all switches off regardless of the channel being addressed. This simplifies the external logic necessary to cascade multiplexers and can also be useful in certain modes of channeladdressing. Another requirement for both analog and digital multiplexers is the tolerance of line transients and overload conditions, and the ability to absorb the transient energy and recover without damage.数据采集系统数据采集系统是用来获取数据处理和存储在二级存储设备,为后来的分析。
本科毕业设计(论文)外文翻译译文学生姓名:院(系):计算机学院专业班级:通信工程0701指导教师:完成日期:2011 年 3 月15 日文献名称(单片机)文献名称(Single Chip Microcomputer)作者:Jessica起止页码:9——23出版日期(DOI 10.1007/s00253-008-1657-1)出版单位:外语教学和研究出版社中文原文:一、单片机介绍单片机也被称为微控制器(Microcontroller Unit),常用英文字母的缩写MCU 表示单片机,它最早是被用在工业控制领域。
单片机由芯片内仅有CPU的专用处理器发展而来。
最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。
INTEL的Z80是最早按照这种思想设计出的处理器,从此以后,单片机和专用处理器的发展便分道扬镳。
早期的单片机都是8位或4位的。
其中最成功的是INTEL的8031,因为简单可靠而性能不错获得了很大的好评。
此后在8031上发展出了MCS51系列单片机系统。
基于这一系统的单片机系统直到现在还在广泛使用。
随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的使用。
90年代后随着消费电子产品大发展,单片机技术得到了巨大提高。
随着INTEL i960系列特别是后来的ARM系列的广泛使用,32位单片机迅速取代16位单片机的高端地位,并且进入主流市场。
而传统的8位单片机的性能也得到了飞速提高,处理能力比起80年代提高了数百倍。
目前,高端的32位单片机主频已经超过300MHz,性能直追90年代中期的专用处理器,而普通的型号出厂价格跌落至1美元,最高端[1]的型号也只有10美元。
当代单片机系统已经不再只在裸机环境下开发和使用,大量专用的嵌入式操作系统被广泛使用在全系列的单片机上。
而在作为掌上电脑和手机核心处理的高端单片机甚至可以直接使用专用的Windows和Linux操作系统。
文献翻译可编程逻辑控制器摘要可编程逻辑控制器(PLC)或可编程序控制器是用于机电过程自动化的数字计算机,例如控制机械厂生产线、游乐设施或照明装置。
可编程控制器在许多工业和机器中使用。
与通用的计算机不同的是,PLC是专为多个输入和输出管理,扩展温度范围、不受电磁噪音影响、抗震动和冲击所设计。
控制器的操作程序通常存储在电池供电或非易失性的内存中。
PLC是实时的系统,因为系统产生的输出结果必须在有限的时间内回馈到输入,否则会导致错误操作。
1.历史PLC发明是针对于美国汽车制造行业的需要。
可编程逻辑控制器最初通过了在软件版本更换硬连线的控制板生产模式更改时的汽车工业。
在PLC之前,控制、程序化和安全联锁逻辑制造汽车是使用上百或上千的继电器、凸轮计时器、鼓定序仪和专用的闭环控制器来完成的。
在每年更新模型等设施转变过程是非常耗时并且成本高昂的,这是因为电工需要单独地再接电线给每个中转。
在1968年GM Hydramatic(自动输电分局)发布通用汽车公司的提议,电子替代布线中继系统。
获奖的提案来自贝得福得,马萨诸塞的贝得福得同事。
第一个PLC选定084,因为它是贝得福得同事的第八十四个项目。
贝得福得同事建立了一家新的公司致力开发、生产、销售,和服务这一新产品:Modicon,代表模块化数字控制器。
迪克·莫利,被认为是PLC之父,他是从事该项目的人之一。
1977年古尔德电子公司当前所有者收购法国施耐德电气公司同德国公司AEG并售予该品牌为Modicon。
084模型之一首次被设在北部安多弗的Modicon总部马萨诸塞州。
这是专门为通用汽车服务的,并且经过了近二十多年的不间断服务。
直至984出现,Modicon使用的84名字才在其产品范围中结束。
2.发展早期的可编程控制器是设计来取代继电器逻辑系统。
这些可编程控制器的“阶梯逻辑”是与继电器逻辑示意图非常类似的。
选择此程序表示法的目的是为了减少对现有技术人员的培训需求。
外文资料翻译外文翻译译文工业控制系统和协同控制系统当今的控制系统被广泛运用于许多领域。
从单纯的工业控制系统到协同控制系统(CCS),控制系统不停变化,不断升级,现在则趋向于家庭控制系统,而它则是这两者的变种。
被应用的控制系统的种类取决于技术要求。
而且,实践表明,经济和社会因素也对此很重要。
任何决定都有它的优缺点。
工业控制要求可靠性,完整的文献记载和技术支持。
经济因素使决定趋向于协同工具。
能够亲自接触源码并可以更快速地解决问题是家庭控制系统的要求。
多年的操作经验表明哪个解决方法是最主要的不重要,重要的是哪个可行。
由于异类系统的存在,针对不同协议的支持也是至关重要的。
本文介绍工业控制系统,PlC controlled turn key系统,和CCS工具,以及它们之间的操作。
引言:80年代早期,随着为HERA(Hadron-Elektron-Ring-Anlage)加速器安装低温控制系统,德国电子同步加速器研究所普遍开始研究过程控制。
这项新技术是必需的,因为但是现有的硬件没有能力来处理标准过程控制信号,如4至20毫安的电流输入和输出信号。
而且软件无法在0.1秒的稳定重复率下运行PID控制回路。
此外,在实现对复杂的低温冷藏系统的开闭过程中,频率项目显得尤为重要。
有必要增加接口解决总线问题并增加运算能力,以便于低温控制。
因为已安装的D / 3系统[1] 只提供了与多总线板串行连接,以实现DMA与VME的连接并用其模拟多总线板的功能。
温度转换器的计算功能来自一个摩托罗拉MVME 167 CPU和总线适配器,以及一个MVME 162 CPU。
其操作系统是VxWorks,而应用程序是EPICS。
由于对它的应用相当成功,其还被运用于正在寻找一个通用的解决方案以监督他们的分布式PLC的公共事业管理。
德国电子同步加速器研究所对过程管理系统的筛选集散控制系统(D/ 3):市场调查表明:来自GSE的D / 3系统被HERA 低温冷藏工厂选中。
附录二外文原文及翻译Single-Chip Data Acquisition InterfaceGintaras PaukstaitisAbstractThis paper presents a single-chip data acquisition interface. It’s devoted for from one to eight analogous signals input to RAM of IBM PC or compatible computers. Maximal signal sampling rate is 80 kHz. Interface has programmable gain for analogous signals as well as programmable sampling rate and number of channels. Some functional unit was designed using synthesis from VHDL with help of Synopsys. Interface was based on 1 mm CMOS process from ATMEL-ES2. It was verified using kit for DFWII of Cadence. The Place & Route tools from Cadence have been used to obtain the circuit layout.Table of containsAbstract1. Introduction2. Steps of Designing3. Analogous Part4. Digital Part5. Interface Testing6. Creation of Layout7.Technical Data8. Conclusions9. Acknowledgements10.References1. IntroductionNowadays units with VLSI are widely used in the world. It is really important for miniaturisation. Circuits with some IC redesigned to VLSI reduce its area many times. By the way, relatively VLSI itself becomes cheaper. While using units with VLSI gets less damage, as well as uses less power. Using of CAD makes easier and faster complicated IC designing. Cheaper computers give an opportunity to get servers not only for big companies and institutions of education but also for medium firms. This stride encouraged such complex circuits designing programs as Synopsys and Cadence creation. While using them it is possible to design suitable circuits for fabrication or layout creation. Synopsys simulates functions described in VHDL andfrom its description synthesises circuits which can be made from Cadence libraries elements. It abounds to transform them to Cadence and to create the layout of IC. The steps of Cadence designing are illustrated in Fig. 1.Single-chip data acquisition interface was designed according to basic circuit of data acquisition board. It was designed by Department of Applied Electronics in Kaunas University of Technology. It is used in medicine. Created single-chip interface has better electrical parameters. That’s way it could be used wider. Prototype board was designed in TTL element base. Single-chip interface is designed in CMOS element base. While converting the circuit there were no complicated problems. The delay of CMOS elements is less than TTL. That’s way the delay of signals was not bigger and didn’t change the first work of the circuit. ISA bus sig nals of IBM PC are TTL element logic levels, therefore interface should be connected through buffers for TTL and CMOS logic levels reconciliation.2. Steps of DesigningA circuit was designed according to a basic circuit. That is way Semi-Custom Design method was used. The flow-chart of interface is shown in the Fig. 2.It was necessary to use 8 operational amplifiers (OA) to fit eight analogous signals to A/D converter's limits. OA has programmable established gain. In many cases it could let analogous signal without any additional amplifiers to give to A/D converters. Gain for every OA separately fixed with Gain Control Block. Two converters change analogous signal to the digital one. Eachof converters has 4 switch-able inputs. Converters work method is comparison of every bit. Channel Control Block establishes the order of signal switching.Programmable interval timer establishes the frequency on signal switching as well as the data sampling rate. It has three counters, which work in frequency dividing and one-shot modes. Dividing coefficients of timer is settings through Internal Bus. The length of dividing coefficientis 16 bits. The timer divides 894kHz frequency signal therefore minimal interface sampling rate is FMIN = 894 / 216 = 14 Hz. Maximal sampling rate limits speed characteristic of A/D converters. It is equal FMAX = 80 kHz. Gain of OA, sampling rate and number of switching channels is set while sending charging words to the ports which are established by Address Decoding Block. Data to PC is fed in a single Direct Memory Access (DMA) mode. DMA controller is in charge of commuting protocol from PC. DMA Control Block is responsible from the side of interface. Clock Signal Block sets clock frequency of 1,8 MHz for converters and 0,9 MHz for timer.Control logic consists of simple gates and flip-flops. That is way gates and Flip-flops of the ES2 1mm CMOS element's library was used to design it. The reason why the 1mm CMOS ES2 technology library was chosen was the wide choice of it’s analogous elements for Semi-Custom Design. But ES2 library has no some functional elements which were used in the circuit. For example Intel 8253 programmable interval timer, binary counter or address decoder. Therefore these elements was described in VHDL. While using elements of 1mm CMOS ES2 technologylibrary with the assistance of Synopsys necessary circuits ware synthesised. EDIF of circuits was transported to Cadence. Having been connected with the left control logic and with the analogous signals converting part they made a full functioning interface. The stages of designing are shown3. Analogous PartAlternating analogous voltage signals are changed to pulsate one from 0 to +5 V signal in the analogous part of interface. As converter is made of CMOS elements and it’s power supply is 0 and +5 V so it can change only signal between 0 and +5 V limits. In order to reduce converting mistake converters are given analogous signal which should as close as possible to the limits. Programmable OA makes stronger analogous signals. It has 16 possible gains which are selected with the help of four bit code. They have non-inverting input which has a pad for external analogous signal input. To change the alternating voltage ( ~2,5 V) to pulsate one (0 to +5 V) "virtual ground" pad of OA is connected with +2,5 V and signal source "ground" (its "ground" voltage must be 2,5 V). Design of interface was simulated with Verilog-XL program. It simulates only digital signals. That is way while simulating analogous signals they were described as 8-bit digital vectors. Verilog HDL models of analogous elements are used for this simulation. HDL models are changed into layout models for the creation of layout. A/D converter of ES2 library is divided into 2 parts: analogous part consist of D/A converter and comparator. There is control logic and registers in the digital part. That is way only analogous part is changed in converters when layout is being created.4. Digital PartControl Block of interface was designed while changing discrete components of board to accordingly chip components of ES2 library. Some changes through different control of ES2 library and prototype board analogous elements were made. It was timer described in VHDL for its designing. Three models were created: two models for clock frequency dividing from coefficient which length is 16 and 8 bit and another one for one-shot mode. The length of control word is 8 bit. Standard packages of IEEE library were used for description of the models. It made easier operations themselves with vector data. VHDL models were simulated with Synopsys VHDL Debugger. Functional correct VHDL models of timer counters were synthesised by using elements of ES2 library. While synthesisingoptimisation was done. Because the delay of circuits signal (few nanoseconds) is comparing with clock period (1,2 mm) is less so optimisation was only worth for small areas. Set_max_area command was used for this goal. The area rapport summary of 16 bits timer counter synthesis is shown in the Table 1. It is clear that a number of counters elements becomes smaller approximately for 13%. But their area becomes smaller only for 1,5%. The reason is that the number of elements was being diminished with diminishing of combinational logic. While element of combinational logic comparing with noncombinational onetakes much small area. Besides some elements often are changed by one with same function but not much small area, in example 2 OR and 1 AND element are changed to one OR-AND.While synthesising binary counter which purpose is dividing external clock signal for converters and timers were used commands which put buffers on output signals wires. It is done because clock signal is delivered for many flip-flops (on timer). Primary synthesised circuit and a circuit with additional buffers and the number of diminished elements are shown in Fig. 4. EDIF of synthesised functional elements was transported to Cadence and there it is connected with control logic and analogous elements.Table 1. Summary of the Counter’s Area Optimisation5. Interface TestingIt was simulated full work for the verification of interface with Verilog-XL. Test programs are wrote in STL: control words fed for OA, Channel Control Block and timer, data scanning. Single-chip interface is good-working and has technical data as shown in Table 2.6. Creation of LayoutAnalogous elements used in layout were changed from Verilog HDL to physical. They are put on periphery of the chip. It is done because they have pads which are connected with IC package's pins. The pads of digital signals are put separately from analogous elements. The reason is that analogous elements have two power supply rails. And digital pads have four rails. Corner elements witch supply powers for periphery pads have four rails too. Therefore analogous elements are separated from corner elements by special elements. Analogous power supply is given by these special elements for ADC and OA. Designer-guided automatic method was used for the creation of layout. It was used automatic standard logic placement and routing tools for Cadence. To reduce the influence of noise region for standard logic was created as far as possible from the analogous elements part. Analogous elements are connected among themselves outsideIC. If the chip OA parameters are not sufficient it is possible to use outside placed OA. The layout of chip is shown in Fig 5. Chip has much empty area because its area is limited by pads of periphery. The total area is required is 21,5 mm2 (4,7´4,6 mm), with an active area of 1.6 mm2 (1,39´1,17 mm).7. Technical Data8. ConclusionsIn this paper I have presented a single chip analogous data acquisition interface. Complex functional blocks was described in VHDL. With help of Synopsys full functional unit was synthesised. Units were excess, so the optimisation was done for small area. After transporting to Cadence synthesised units were worked according to the set function. All circuits of interface, including models of analogous elements, were verified with Verilog-XL. The chip layout based on 1.0 mm CMOS process from ATMEL-ES2 was created.My diploma thesis was based on this project.9. AcknowledgementsThanks to prof. R.Ðeinauskas for his directing, dipl. eng.A.Maèiulis to give me a basic circuit of prototypic board and assoc. prof. R.Benisevièiûtë for they valuable suggestions.10. References[1] Data Acquisition Boards Catalogue. KethlerMetraByte, 1996-1997, vol. 28.[2] ZanalabedinNavabi. Beginning VHDL: An Introduction Language Concept,Boston-Massachusetts, 1994.[3] User Guide for the ES2 0.7mm/1.0mm CMOS Library Design Kit on CADENCE DFWII Software (Design Kit/User Guide Version: 4.1e1), July, 1996.单片机数据采集接口摘要本文提出了一种单芯片的数据采集接口。
外文资料译文ADC0808/ADC0809 MP兼容的8位A/D转换8通道多路复用器一.总体描述ADC0808,ADC0809的数据采集组件是一个8位模拟 - 数字转换器的单片CMOS器件,8通道多路复用器和微处理器兼容控制逻辑。
8位A / D转换使用连续逼近作为转换技术。
该转换器具有高阻抗斩波稳定比较器,1模拟开关树和连续256R分压器逼近寄存器。
8通道多路复用直接访问的8路单端模拟信号。
该器件无需外部零点和满刻度的需要调整。
轻松连接到微处理器提供多路复用地址锁存和解码输入和锁存TTL三STATEÉ输出。
ADC0808,ADC0809的设计已优化通过结合几个A/ D转换的最可取的方面,转换技术。
ADC0808,ADC0809的提供高速度快,精度高,最低温度的依赖,优秀的长期精度和可重复性,并消耗最小的功率。
这些特点使该设备适合的应用程序,过程和机器控制消费电子和汽车应用。
16-与常见的输出通道多路复用器(采样/保持端口)看到ADC0816数据表。
(更多信息请参见AN-247。
)二.特点简易所有微处理器的接口5VDC或模拟跨度调整后的电压基准无零或全面调整需要8通道多路复用地址与逻辑0V至5V单电源5V输入围输出符合TTL电平规格之标准密封或成型28引脚DIP封装28引脚型芯片载体封装ADC0808相当于以MM74C949ADC0809的相当于MM74C949-1三.主要技术指标垂直分辨率8位单电源:5 VDC低功耗15毫瓦转换时间100毫秒四.框图图1框图绝对最大额定值(注1及2)如果指定的军事/航空设备是必需的,请联系美国国家半导体的销售办公室/分销商的可用性和规格。
电源电压(VCC)(注3)6.5V在任何引脚-0.3V电压至(VCC+0.3V)除了控制输入电压控制输入-0.3V到+15V(START,OE时钟,ALE地址,补充B,添加C)存储温度围-65℃至+150℃875毫瓦TA=25℃封装耗散导致温度。
Labview毕业论文毕业论文中英文资料外文翻译文献中英文资料Virtual Instruments Based on Reconfigurable LogicVirtual Instruments advantages of more traditional instruments:中英文资料greatly enhanced the capabilities of traditional instruments.Nevertheless, there are two main factors which limits the application of virtual中英文资料基于虚拟仪器的可重构逻辑虚拟仪器的出现是测量仪器发展历史上的一场革命。
它充分利用最新的计算机技术来实现和扩展仪器的功能,用计算机屏幕可以简单地模拟大多数仪器的调节控制面板,以各种需要的形式表达并且输出检测结果,用计算机软件实现大部分信号的分析和处理,完成大多数控制和检测功能。
用户通过应用程序将一般的通用计算机与功能化模块硬件结合起来,通过友好的界面来操作计算机,就像在操作自己定义,自己设计的单个仪器,可完成对被测量的采集,分析,判断,控制,显示,数据存储等。
虚拟仪器较传统仪器的优点(1)融合计算机强大的硬件资源,突破了传统仪器在数据处理,显示,存储等方面的限制,大大增强了传统仪器的功能。
(2)利用计算机丰富的软件资源,实现了部分仪器硬件的软件化,节省了物质资源,增加了系统灵活性。
通过软件技术和相应数值算法,实时,直接地对测试数据进行各种分析与处理,通过图形用户界面技术,真正做到界面友好、人中英文资料机交互。
(3)虚拟仪器的硬件和软件都具有开放性,模块化,可重复使用及互换性等特点。
因此,用户可根据自己的需要,选用不同厂家的产品,使仪器系统的开发更为灵活,效率更高,缩短系统组建时间。
传统的仪器是以固定的硬件和软件资源为基础的specific系统,这使得系统的功能和应用程序由制造商定义。
数据采集系统数据采集系统,正如名字所暗示的,是一种用来采集信息成文件或分析一些现象的产品或过程。
在最简单的形式中,技术人员将烤箱的温度记录在一张纸上就是数据采集。
随着技术的发展,通过电子设备,这个过程已经得到简化和变得比较精确、多用途和可靠。
设备从简单的存储器发展到复杂的电脑系统。
数据采集产品像聚焦点一样为系统服务,和一系列产品一起,诸如传感器显示温度、水流、程度或者过程。
数据采集技术在过去30到40年以来已经取得了很大的飞跃。
举例来说,在40年以前,在一个著名的学院实验室中,为追踪用青铜做的坩埚中的温度上升情况的装置是由热电偶、继电器、查询台、一捆纸和一支铅笔。
今天的大学学生很可能在PC 机上自动处理和分析数据,有很多种可供你选择的方法去采集数据。
至于选择哪一种方法取决于多种因素,包括任务的复杂度、你所需要的速度和精度、你想要的证据资料等等。
无论是简单的还是复杂的,数据采集系统都能够运行并发挥它的作用。
用铅笔和纸的旧方式对于一些情形仍然是可行的,而且它便宜、易获得、快速和容易开始。
而你所需要的就是捕捉到多路数字信息(DMM),然后开始用手记录数据。
不幸的是这种方法容易发生错误、采集数据变慢和需要太多的人工分析。
此外,它只能单通道采集数据;但是当你使用多通道DMM 时,系统将很快变得非常庞大和呆笨拙。
精度取决于誊写器的水平,并且你可能需要自己动手依比例输入。
举例来说, 如果DMM 没有配备处理温度的传感器,旧需要动手找比例。
考虑到这些限制,只有当你需要实行一个快速实验时,它才是一个可接受的方法。
现代多种版本的长条图表记录仪允许你从多个输入取得数据。
他们提供数据的长备纸记录,因为数据是图解的格式,他们易于现场采集数据。
一旦建立了长条图表记录仪,在没有操作员或计算机的情况下,大多数记录仪具有足够的内部智能运行。
缺点是缺乏灵活性和相对的精度低,时常限制在百分点。
你能很清楚地感觉到与笔只有小的改变。
在多通道内较长时间的监控,记录仪能发挥很好的作用,除此之外,它们的价值得到限制。
举例来说,他们不能够与另外的装置轮流作用。
其他的顾虑就是笔和纸的维护,纸的供给和数据的存储,最重要的是纸的滥用和浪费。
然而,记录仪相当容易建立和操作,为数据快速而简单的分析提供永久的记录。
一些benchtop DMMs 提供可选择的扫描能力。
仪器的背面有一个槽孔接收一张在较多输入时能多重发讯的扫描仪卡片,通常是8 到10 通道的mux。
固有的在仪器的前面嵌板中的受到限制。
它的柔韧性也受到限制,因为它不能超过可用通道数。
外部的PC 机通常处理数据采集和分析。
PC 机插件卡片是单板测量系统,它利用ISA 或PCI 总线在PC 机内扩大插槽。
它们时常具有高达每秒1000 的阅读速率。
8到16通道是普遍的,采集的数据直接存储在电脑里,然后进行分析。
因为卡片本质上是计算机的一部分,建立测试是容易的。
PC机卡也相对的便宜,一部分地,因为他们以来主机PC 去提供能源、机械附件和使用界面。
数据采集的选择在缺点上,PC机插件卡片时常只有12 字的容量,因此你不能察觉输入信号的小变化。
此外,PC机内的电子环境经常很容易发出噪声、产生高速率的时钟和总线噪声,电子接触面限制PC 机插件卡片的精度。
这些插件卡片也测量一定范围的电压。
为了测量其他输入信号,如电压、温度和阻力,你也许需要一些外部信号监测的器件。
其它关心包括复杂的校正和全部的系统成本,尤其如果你需要购买额外信号监测器件或用PC 机适应插件卡片。
把这些考虑进去,如果你的需要在卡片的能力和限制范围内变动,PC 机插件卡片给数据采集提供吸引人的方法。
数据电子自动记录仪是典型的单机仪器,一旦配备它们,就能测量、记录和显示数据而不需要操作员或计算机参与。
它们能够处理多信号输入,有时可达120 通道。
精度可与无与伦比的台式DMMs 匹敌,由于它在22 字、0.004个百分率的精度范围内运转。
一些数据电子自动记录仪有能力按比例测量,检查结果不受使用者定义的限制,而且输出为控制作信号。
使用数据电子自动记录仪的一个好处就是他们的内部监测信号。
大部分能够直接地测量若干不同的输入信号,而不需要额外的信号监测器件。
一个通道能够监测热电偶、温阻器(RTD)和电压。
热电偶为准确的温度测量提供具有参考价值的补偿,是很典型的配备了多路插件卡片。
内设智能数据电子自动记录仪帮助你设定测量周期和具体指定每个通道的参数。
一旦你全部设定好,数据电子自动记录仪就如同无与伦比的装置运行。
它们存储的数据分布在内存中,能够容纳500000或更多的阅读量。
与PC 机连接容易将数据传送到电脑进行进一步的分析。
大多数数据电子自动记录仪可设计为柔性和简单的组态和操作, 而且经由电池包裹或其它方法,多数提供远程位置的操作选项。
靠A/ D 转换技术,一定的数据电子自动记录仪阅读的速率比较低,尤其是跟PC 机插件卡片比较。
然而,每秒250 的阅读速率比较少见。
要牢记正在测量的许多现象本质上是物理的,如温度、压力和流量,而且一般有较少的变动。
此外,因为数据电子自动记录仪的监测精度,多量且平均阅读没有必要,就像它们经常在PC 记插件卡片一样。
前端数据采集经常做成模块而且是典型地与PC 机或控制器连接。
他们被用于自动化的测试中,为其它测试装备采集数据、控制和循环检测信号。
发送信号测试装备的零配件。
前端运转的效率是非常高的,能与速度和精度与最好的单机仪器匹敌。
前端数据采集在很多模型里都能运行,包括VXI 版本,如AgilentE1419A 多功能测量和VXI 控制模型,还有专有的卡片升降室。
虽然前端器成本已经降低,但是这些系统可能会非常贵,除非你需要提供高的运转,而查找它们的价格是禁止的。
另一方面,它们的确能够提供相当多的可挠性和测量能力。
好的、成本低的数据电子自动记录仪有合适的通道数(20-60通道)和扫描速率相对低但对于多数工程师的普遍应用已足够。
一些关键的应用包括:•产品特征•电子产品的热靠模切削•环境的测试环境的监测•组成物特征•电池测试建筑物和计算机容量监测DATA ACQUISITION SYSTEMSData acquisition systems, as the name implies, are products and/or processes used to collect information to document or analyze some phenomenon. In the simplest form, a technician logging the temperature of an oven on a piece of paper is performing data acquisition. As technology has progressed, this type of process has been simplified and made more accurate, versatile, and reliable through electronic equipment.Equipment ranges from simple recorders to sophisticated computer systems. Data acquisition products serve as a focal point in a system, tying together a wide variety of products, such as sensors that indicate temperature,flow, level, or pressure. Some common data acquisition terms are shown below.Data acquisition technology has taken giant leaps forward over the last 30 to 40 years. For example, 40 years ago, in a typical college lab, apparatus for tracking the temperature rise in a crucible of sodium tungsten-bronze consisted of a thermocouple, a bridge,a lookup table,a pad of paper and a pencil.Today’s college students are much more likely to use an automated process and analyze the data on a PC Today, numerous options are available for gathering data. The optimal choice depends on several factors,including the complexity of the task, the speed and accuracy you require, and the documentation you want. Data acquisition systems range from the simple to the complex,with a range of performance and functionality.The old pencil and paper approach is still viable for some situations, and it is inexpensive,readily available, quick and easy to get started. All you need to do is hook up a digital multiple meters(DMM)and begin recording data by hand.Unfortunately, this method is error-prone, tends to be slow and requires extensive manual analysis. In addition, it works only for a single channel of data; while you can use multiple DMMs, the system will quickly becomes bulky and awkward. Accuracy is dependent on the transcribers level of fastidiousness and you may need to scale input manually. For example, if the DMM is not set up to handle temperature sensors, manual scaling will be required. Taking these limitations into account,this is often an acceptable method when you need to perform a quick experiment.Modern versions of the venerable strip chart recorder allow you to capture data from several inputs. They provide a permanent paper record of the data, and because this data is in graphical format, they allow you to easily spot trends. Once set up, mostrecorders have sufficient internal intelligence to run unattended—without the aid of either an operator or a computer.Drawbacks include a lack of flexibility and relatively low accuracy,which is often constrained to a few percentage points. You can typically perceive only small changes in the pen plots. While recorders perform well when monitoring a few channels over a long period of time, their value can be limited. For example, they are unable to turn another device on or off. Other concerns include pen and paper maintenance,paper supply and data storage, all of which translate into paper overuse and waste. Still,recorders are fairly easy to set up and operate,and offer a permanent record of the data for quick and simple analysis.Some bench top DMMs offer an optional scanning capability. A slot in the rear of the instrument accepts a scanner card that can multiplex between multiple inputs, with 8 to 10 channels of mux being fairly common.DMM accuracy and the functionality inherent in the instruments front panel are retained. Flexibility is limited in that it is not possible to expand beyond the number of channels available in the expansion slot. An external PC usually handles data acquisition and analysis.PC plug-in cards are single-board measurement systems that take advantage of the ISA or PCI-bus expansion slots in a PC. They often have reading rates as high as 100,000 readings per second. Counts of 8 to 16 channels are common, and acquired data is stored directly into the computer, where it can then be analyzed.Because the card is essentially part of the computer,it is easy to set up tests.PC cards also are relatively inexpensive, in part, because they rely on the host PC to provide power, the mechanical enclosure and the user interface.In the downside, PC plug-in cards often have only 12 bits of resolution, so you can’t perceive small variations with the input signal. Furthermore,the electrical environment inside a PC tends to be noisy, with high-speed clocks and bus noise radiated throughout.Often, this electrical interference limits the accuracy of the PC plug-in card to that of a handheld DMM .These cards also measure a fairly limited range of dc voltage. To measure other input signals, such as ac voltage, temperature or resistance, you may need some sort of external signal conditioning. Additional concerns include problematic calibration and overall system cost, especially if you need to purchase additional signal conditioning accessories or a PC to accommodate the cards. Taking that into consideration,PC plug-in cards offer an attractive approach to data acquisition if your requirements fall within the capabilities and limitations of the card.Data loggers are typically stand-alone instruments that, once they are setup, can measure, record and display data without operator or computer intervention. They can handle multiple inputs, in some instances up to 120 channels. Accuracy rivals that found in standalone bench DMMs, with performance in the 22-bit, 0.004-percent accuracy range. Some data loggers have the ability to scale measurements,check results against user-defined limits,and output signals for control.One advantage of using data loggers is their built-in signal conditioning. Most are able to directly measure a number of different inputs without the need for additional signal conditioning accessories. One channel could be monitoring a thermocouple, another a resistive temperature device (RTD) and still another could be looking at voltage.Thermocouple reference compensation for accurate temperature measurement is typically built into the multiplexer cards. A data logger built-in intelligence helps you set up the test routine and specify the parameters of each channel.Once you have completed the setup, data loggers can run as standalone devices, much like a recorder. They store data locally in internal memory,which can accommodate 50,000 readings or more.PC connectivity makes it easy to transfer data to your computer for in-depth analysis. Most data loggers are designed for flexibility and simple configuration and operation, and many provide the option of remote site operation via battery packs or other methods. Depending on the A/D converter technique used, certain data loggers take readings at a relatively slow rate, especially compared to many PC plug-in cards. Still,reading speeds of 250 readings/second are not uncommon.Keep in mind that many of the phenomena being monitored are physical in nature —such as temperature,pressure and flow —and change at a fairly slow rate.Additionally, because of a data logger superior measurement accuracy,multiple readings and averaging are not necessary,as they often are in PC plug-in solutions.Data acquisition front ends are often modular and are typically connected to a PC or controller. They are used in automated test applications for gathering data and for controlling and routing signals in other parts of the test setup. Front end performance can be very high, with speed and accuracy rivaling the best standalone instruments. Data acquisition front ends are implemented in a number of formats, including VXI versions, such as the Agilent E1419A multifunction measurement and control VXI module,and proprietary card cages.. Although front-end cost has been decreasing,these systems can be fairly expensive, and unless you require the high performance they provide, you may find their price to be prohibitive. On the plus side, they do offer considerable flexibility and measurement capability.A good, low-cost data logger with moderate channel count (20 - 60 channels) and a relatively slow scan rate is more than sufficient for many of the applications engineers commonly face.Some key applications include:•Product characterization•Thermal profiling of electronic products•Environmental testing;environmental monitoring•Component characterization•Battery testing•Building and computer room monitoring。