常见金相组织图片
- 格式:ppt
- 大小:54.06 MB
- 文档页数:10
图谱文字说明第一部分金相图谱一.铁碳合金平衡组织图1 名称铁素体( 工业纯铁退火)组织铁素体说明等轴多边形晶粒为铁素体,黑色线条为晶界图2 名称奥氏体(T8钢950℃加热)组织奥氏体说明白色多边形晶粒为奥氏体,黑色线条为晶界。
高温下部分晶粒已合并长大,形成了混合晶粒图3 名称渗碳体(从珠光体中电化学分离出来的滲碳体片)组织渗碳体片说明从珠光体中分离出来的渗碳体片,其形状是不规则的,一侧鸡冠似的形状,某些部位有孔图4 名称亚共析钢组织( 20钢退火)组织铁素体+珠光体说明白色块状为铁素体,因放大倍数低,层状结构未能显示出来,珠光体呈黑色块图5 名称亚共析钢组织( 45钢退火)组织铁素体+珠光体说明白色块状为铁素体,黑色块状为珠光体图6 名称亚共析钢组织( 60钢退火)组织铁素体+珠光体说明白色网状分布的为铁素体,珠光体呈黑色块状图7 名称共析钢组织(T8钢退火)组织层状珠光体说明层状珠光体是铁素体和滲碳体的层状组织,因放大倍数较低,且分辨率小于滲碳体层片厚度,故只能看到白色基体的铁素体和黑色线条的滲碳体图8 名称共析钢电镜组织(T8钢退火)组织层状珠光体说明深灰色基体为铁素体,白色条状为滲碳体图9 名称过共析钢组织(T12钢完全退火)组织层状珠光体+二次滲碳体说明基体为层状珠光体,晶界上的白色网络为二次滲碳体图10 名称亚共晶白口铸铁铸态组织组织珠光体+变态莱氏体+二次滲碳体说明变态莱氏体呈黑白相间的基体,大黑块为珠光体,大黑块珠光体外围的白色滲碳体为二次滲碳体图11 名称共晶白口铸铁铸态组织组织变态莱氏体说明变态莱氏体中白色基体为滲碳体(共晶滲碳体和二次滲碳体),黑色圆状及条状为珠光体图12 名称过共晶口铸铁铸态组织组织一次滲碳体+变态莱氏体说明基体为黑白相间分布的变态莱氏体,白色条状为一次滲碳体二.钢经热处理后组织图13 名称索氏体(T8钢正火)组织索氏体说明索氏体是细珠光体,其层状结构只有在高倍金相显微镜下才可分辩图14 名称索氏体电镜形貌(T8钢正火)组织索氏体说明浅灰色基体为铁素体,白色条状为滲碳体图15 名称托氏体(45钢860℃油淬,试样心部)组织托氏体+马氏体说明托氏体是极细珠光体,在光学金相显微镜下呈黑色团絮状。
钢铁材料常见金相组织简介在Fe-Fe3C系中,可配制多种成分不同的铁碳合金,他们在不同温度下的平衡组织各不相同,但由几个基本相(铁素体F、奥氏体A和渗碳体Fe3C)组成。
这些基本相以机械混合物的形式结合,形成了钢铁中丰富多彩的金相组织结构。
常见的金相组织有下列八种:一、铁素体铁素体(ferrite,缩写FN,用F表示),纯铁在912℃以下为具有体心立方晶格。
碳溶于α-Fe中的间隙固溶体称为铁素体,以符号F表示。
这部分铁素体称为先共析铁素体或组织上自由的铁素体。
随形成条件不同,先共析铁素体具有不同形态,如等轴形、沿晶形、纺锤形、锯齿形和针状等。
铁素体还是珠光体组织的基体。
在碳钢和低合金钢的热轧(正火)和退火组织中,铁素体是主要组成相;铁素体的成分和组织对钢的工艺性能有重要影响,在某些场合下对钢的使用性能也有影响。
碳溶入δ-Fe中形成间隙固溶体,呈体心立方晶格结构,因存在的温度较高,故称高温铁素体或δ固溶体,用δ表示,在1394℃以上存在,在1495℃时溶碳量最大。
碳的质量分数为0.09%。
图1:铁素体二、奥氏体碳溶于γ-Fe晶格间隙中形成的间隙固溶体称为奥氏体,具有面心立方结构,为高温相,用符号A表示。
奥氏体在1148℃有最大溶解度2.11%C,727℃时可固溶0.77%C;强度和硬度比铁素体高,塑性和韧性良好,并且无磁性,具体力学性能与含碳量和晶粒大小有关,一般为170~220 HBS、=40~50%。
TRIP钢(变塑钢)即是基于奥氏体塑性、柔韧性良好的基础开发的钢材,利用残余奥氏体的应变诱发相变及相变诱发塑性提高了钢板的塑性,并改善了钢板的成形性能。
碳素或合金结构钢中的奥氏体在冷却过程中转变为其他相,只有在高碳钢和渗碳钢渗碳高温淬火后,奥氏体才能残留在马氏体的间隙中存在,其金相组织由于不易受侵蚀而呈白色。
三、渗碳体渗碳体(cementite),指铁碳合金按亚稳定平衡系统凝固和冷却转变时析出的Fe3C型碳化物。
66张典型金相图片金相图谱说明1、工业纯铁-退火-白色等轴晶为F晶粒,黑色网络为晶粒之间的边界。
2、20钢-退火-F+P,白色晶粒为F,黑色块状为片P。
3、45钢-退火-F+P,白色晶粒为F,黑色块状为片状P。
4、65钢-退火-F+P,黑色基体为片状P,白色呈网络状分布的为F。
5、T8钢-退火-片状P。
6、T12钢-退火-黑白相间的层片状基体为P,晶界上的白色网络为Fe3Cll。
7、T12钢-退火-P+Fe3Cll,Fe3C染成黑色,P仍保留白色。
8、亚共晶生铁-铸态-P+Ld+Fe3Cll,斑点装基体为共晶Ld,黑色枝晶为P。
9、共晶生铁-铸态-共晶Ld是由P+Fe3Cll+Fe组成,P组织细小。
10、过共晶生铁-铸态-Fe3Cll+Ld,板条状是Fe3Cl,斑点状是Ld。
11、T8钢-正火态-S。
细层片状F与Fe3C的机械混合物。
12、T8钢-等温淬火-B上+M+A残。
B上是由成束的大致平行排列的条状F与分布在F条间的断续Fe3C组成的羽毛状组织。
13、T8钢-等温淬火-B下+M+A残。
B下是呈扁片状的过饱和F 与分布在F内的短针状Fe3C的两相混合物。
14、20钢-淬火-板条M。
15、T8钢-淬火-针状M+Ar。
高碳M呈针状,互成一定的角度。
16、45钢-正火-F+S。
白色条块状为F。
沿晶界析出;黑色块状为S。
17、45钢-860度水淬-860度水淬-中碳M。
M成板条和针状混合分布。
18、45钢-860度水淬低回火-回火中碳M。
19、45钢-860度水淬中温回火T。
回火T是从M分解出的F基体上分布极细粒状Fe3C的混合物组合。
20、45钢-860度水淬高温回火S。
回火S是F基体上分布细粒状Fe3C的混合物。
21、45钢-780度水淬-亚温淬火组合F+M。
M呈黑色,F为白色。
22、45钢-1100度水淬-水淬过热淬火组织M。
23、T12球化退火-球状P。
是F基体上分布颗粒状Fe3C。
白色为F基体,白色小颗粒为Fe3C。
钢铁材料常见金相组织简介在Fe-Fe3C系中,可配制多种成分不同的铁碳合金,他们在不同温度下的平衡组织各不相同,但由几个基本相(铁素体F、奥氏体A和渗碳体Fe3C)组成。
这些基本相以机械混合物的形式结合,形成了钢铁中丰富多彩的金相组织结构。
常见的金相组织有下列八种:一、铁素体铁素体(ferrite,缩写FN,用F表示),纯铁在912℃以下为具有体心立方晶格。
碳溶于α-Fe中的间隙固溶体称为铁素体,以符号F表示。
这部分铁素体称为先共析铁素体或组织上自由的铁素体。
随形成条件不同,先共析铁素体具有不同形态,如等轴形、沿晶形、纺锤形、锯齿形和针状等。
铁素体还是珠光体组织的基体。
在碳钢和低合金钢的热轧(正火)和退火组织中,铁素体是主要组成相;铁素体的成分和组织对钢的工艺性能有重要影响,在某些场合下对钢的使用性能也有影响。
碳溶入δ-Fe中形成间隙固溶体,呈体心立方晶格结构,因存在的温度较高,故称高温铁素体或δ固溶体,用δ表示,在1394℃以上存在,在1495℃时溶碳量最大。
碳的质量分数为0.09%。
图1:铁素体二、奥氏体碳溶于γ-Fe晶格间隙中形成的间隙固溶体称为奥氏体,具有面心立方结构,为高温相,用符号A表示。
奥氏体在1148℃有最大溶解度2.11%C,727℃时可固溶0.77%C;强度和硬度比铁素体高,塑性和韧性良好,并且无磁性,具体力学性能与含碳量和晶粒大小有关,一般为170~220 HBS、=40~50%。
TRIP钢(变塑钢)即是基于奥氏体塑性、柔韧性良好的基础开发的钢材,利用残余奥氏体的应变诱发相变及相变诱发塑性提高了钢板的塑性,并改善了钢板的成形性能。
碳素或合金结构钢中的奥氏体在冷却过程中转变为其他相,只有在高碳钢和渗碳钢渗碳高温淬火后,奥氏体才能残留在马氏体的间隙中存在,其金相组织由于不易受侵蚀而呈白色。
三、渗碳体渗碳体(cementite),指铁碳合金按亚稳定平衡系统凝固和冷却转变时析出的Fe3C型碳化物。
一汽车钢板弹簧金相组织分级图(×500)图1 回火屈氏体 (1级) 图 2 回火屈氏体+少量贝氏体(2级)图3 回火屈氏体+少量铁素体 (3级) 图4 回火屈氏体+少量贝氏体+少量铁素体(4级)图5 回火屈氏体+铁素体+屈氏体 (5级)二马氏体组织a板条状马氏体 B针状马氏体 c片状马氏体加残余奥氏体三莱氏体四粒状贝氏体五索氏体汽车钢板弹簧金相组织及缺陷组织——黎方英1、原材料金相组织及缺陷组织分析材料:60Si2Mn 钢、处理情况:热轧状原材料、组织分析:图1 a) ,金相组织为铁素体与片层珠光体、正常原材料组织、图1 b) ,弹簧扁钢表面的脱碳、图1 c) ,d) ,金相组织为带状铁素体与珠光体、严重带状组织一般热处理工艺难以消除、图1 e) ,弹簧扁钢表面的划痕,原材料表面缺陷、图1 f) ,弹簧扁钢表面的碎裂,原材料表面缺陷的废品、a)500× b)100×c)100× d)100×e)100× f)100×图1 原材料金相组织及缺陷组织分析2、60Si2Mn 钢板弹簧正常淬火与回火组织分析:处理情况:图2 a) ,860 ℃加热保温后油冷淬火、图2b) ,860 ℃加热保温后油冷淬火,460 ℃回火、组织分析:图2 a) ,金相组织为中等针状淬火马氏体、淬火获得马氏体,就是达到强韧化的重要基础、图2 b) ,金相组织为中等回火屈氏体、a)500× b)500×图2 汽车钢板弹簧正常淬火组织与回火组织分析3、淬火加热温度低形成的缺陷组织如图3材料:50CrVA 钢、侵蚀剂:4 %硝酸酒精溶液、处理情况:加热保温后油冷淬火,460 ℃回火、组织分析:图3 a) ,金相组织为回火屈氏体,未溶解的铁素体与未溶解的碳化物、图3 b) ,金相组织为回火屈氏体,未溶解的铁素体与片状珠光体、a)500× b)500×图3 淬火加热温度低形成的缺陷组织4、淬火加热温度高形成的缺陷组织如图4、材料:图4 a) 、图4 c) ,60Si2Mn 钢;图4 b) ,50CrVA 钢、处理情况:图4 b) ,加热保温后油冷淬火;图4 a) 、图4c) ,加热保温后油冷淬火,460 ℃回火、组织分析:图4 a) ,金相组织为回火屈氏体与上贝氏体,最大晶粒度超过1 级、图4 b) ,金相组织为淬火马氏体与残余奥氏体、图4 c) ,金相组织为回火屈氏体,表层有一层全脱碳铁素体层,并有沿晶界向内伸展的裂纹,裂纹内充满氧化物、a)500× b)500×c)100×图4 淬火加热温度高形成的缺陷组织5、淬火冷却速度不够形成的缺陷组织如图5、材料:图5 a),60Si2Mn 钢;图5 b) ,50CrV4 钢、处理情况:图5 a),加热保温后油冷淬火,460 ℃回火;图5 b) ,加热保温后超速油冷淬火、组织分析:图5 a),金相组织为回火屈氏体与上贝氏体、图5 b) ,金相组织为淬火马氏体,残余奥氏体,析出铁素体,析出屈氏体与上贝氏体、a)500× b)500×图5 淬火冷却速度不够形成的缺陷组织6 、回火缺陷组织如图6、材料:60Si2Mn钢、侵蚀剂:4%硝酸酒精溶液、处理情况:860℃加热保温淬火,460℃回火、组织分析:图6 a) ,金相组织为回火屈氏体,心部少量回火马氏体,心部硬度值为49 HRC。
15种金相组织图1. 奥氏体定义:碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe的面心立方晶格特征:奥氏体是一般钢在高温下的组织,其存在有一定的温度和成分范围。
有些淬火钢能使部分奥氏体保留到室温,这种奥氏体称残留奥氏体。
奥氏体一般由等轴状的多边形晶粒组成,晶粒内有孪晶。
在加热转变刚刚结束时的奥氏体晶粒比较细小,晶粒边界呈不规则的弧形。
经过一段时间加热或保温,晶粒将长大,晶粒边界可趋向平直化。
铁碳相图中奥氏体是高温相,存在于临界点A1温度以上,是珠光体逆共析转变而成。
当钢中加入足够多的扩大奥氏体相区的化学元素时,Ni,Mn等,则可使奥氏体稳定在室温,如奥氏体钢。
2. 铁素体定义:碳与合金元素溶解在a-Fe中的固溶体特征:亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。
3. 渗碳体定义:碳与铁形成的一种化合物特征:渗碳体不易受硝酸酒精溶液的腐蚀,在显微镜下呈白亮色,但受碱性苦味酸钠的腐蚀,在显微镜下呈黑色。
渗碳体的显微组织形态很多,在钢和铸铁中与其他相共存时呈片状、粒状、网状或板状。
(1)在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状(2)过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状(3)铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。
4. 珠光体定义:铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物特征:珠光体的片间距离取决于奥氏体分解时的过冷度。
过冷度越大,所形成的珠光体片间距离越小。
(1)在A1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。
(2)在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。
1.铁素体组织金相图(工业纯铁)2.奥氏体组织金相图3.渗碳体组织﹙过共晶白口铁组织金相图﹚4.共析钢组织金相图5.三次渗碳体金相图6.共晶白口铁组织金相图7.低碳板条状马氏体组织金相图﹙低倍图﹚8.低碳板条状马氏体组织金相图﹙高倍图﹚9.高碳针片状马氏体组织金相图10.Fe--Fe3C相图11.亚共析钢组织金相图12.过共析钢组织金相图13.亚共晶体白口铁组织金相图14.上贝氏体组织金相图15.下贝氏体组织金相图16.珠光体金相图17.莱氏体金相图18.回火索氏体组织金相图19.回火屈氏体组织金相图20.回火马氏体组织金相图23.W18Cr4V铸造组织﹙30×﹚24.W18Cr4V锻造组织﹙210×﹚25.W18Cr4V球化退火组织﹙420×﹚26.W18Cr4V淬火组织﹙300×﹚27.W18Cr4V淬火回火组织﹙105×﹚28.W18Cr4V淬火回火组织﹙420×﹚29.W18Cr4V过烧组织﹙420×﹚30.钢渗碳缓冷组织﹙化染﹚﹙580×﹚31.共析钢球化退火组织﹙化染﹚﹙700×﹚32.T10钢球化退火组织﹙化染﹚﹙580×﹚33.GCr15钢﹙320摄氏度﹚等温淬火组织﹙210×﹚34.lCr18Ni9Ti固溶处理组织﹙化染﹚﹙580×﹚35.lCr13供货状态组织﹙化染﹚﹙580×﹚36.高猛钢铸造组织﹙化染﹚﹙52×﹚37.高猛钢水韧淬火组织﹙化染﹚﹙52×﹚38.高猛钢水韧淬火回火组织﹙化染﹚﹙105×﹚39.20CrMnTi钢渗碳层组织﹙化染﹚﹙320×﹚40.38CrMoAl钢氮化组织﹙化染﹚﹙66×﹚41.38CrMoAl气体渗氮层组织﹙化染﹚﹙650×﹚42.20CrMnTi碳氮共渗层组织44.20Cr2Ni4A钢高温碳氮共渗淬火组织﹙化染﹚﹙52×﹚47.铝镁合金铸造组织﹙化染﹚﹙105×﹚49.纯铜组织﹙电解+偏振光﹚﹙100﹚50.黄铜退火组织﹙化染﹚﹙25×﹚51.62Cu-37Zn-Sn海军黄铜铸造组织﹙化染﹚﹙600×﹚52.锡青铜铸造组织﹙真空镀膜﹚﹙53×﹚53.铅基轴承合金组织﹙65×﹚54.锡基轴承合金组织﹙52×﹚56.铝黄铜退火组织﹙化染﹚﹙70×﹚58.锡磷青铜﹙5%Sn﹚冷模铸造组织﹙化染﹚﹙150×﹚59.不锈钢中的位错线60.纯铁的室温平衡组织(铁素体)61.45钢的室温平衡组织(铁素体+珠光体)62.珠光体63.T12钢的室温平衡组织(珠光体+二次渗碳体)64.碳纤维环氧树脂复合材料断裂断口电子扫描照片65.灰口铸铁的显微组织铁素体+片状石墨铁素体+珠光体+片状石墨珠光体+片状石墨66.灰口铸铁的组织(二)铁素体和团絮状石墨67.灰口铸铁的组织(三)铁素体和团絮状石墨68.陶瓷在室温下的组织69.Ti-6Al-4V W18Cr4V钢离子氮碳共渗+离子渗硫复合处理渗层组织70.共晶合金组织的形态71.亚共晶合金组织的形态72.过共晶合金组织的形态73.共析钢的室温组织74.共晶白口铸铁室温平衡组织75.亚共晶白口铸铁室温平衡组织76.过共晶白口铸铁室温平衡组织77.珠光体型组织(a)珠光体 3800倍78.上贝氏体形态(a)光学显微照片 500倍 (b) 电子显微照片 5000倍79.下贝氏体形态(a) 光学显微照片 500倍(b) 电子显微照片 12000倍80.低碳马氏体的组织形态81.高碳马氏体的组织形态82.铸锭结构(1) 细晶区;(2)柱状晶区;(3)等轴晶区83.回火索氏体84.低碳钢渗碳缓冷后的显微组织85.38CrMoAl钢氮化层的显微组织86.球墨铸铁的显微组织87.蠕墨铸铁的显微组织88.可锻铸铁的显微组织89.ZL102合金的铸态组织(一)未变质处理90.ZL102合金的铸态组织(二)变质处理后91.铜锌合金的显微组织(一)单相黄铜92.铜锌合金的显微组织(二)双相黄铜93.Ti-6Al-4V合金时效处理后的显微组织94.GCr15钢淬火、回火后的显微组织95.Ti-6Al-4V轴承合金的显微组织96.高速钢淬火、回火后的组织97.钨纤维铜基复合材料裂纹在铜中扩展受阻98.脆性断裂断口(河流花样)。