2017中考数学三角形面积小专题
- 格式:docx
- 大小:202.82 KB
- 文档页数:14
第五节直角三角形与勾股定理课标呈现指引方向1.了解直角三角形的概念,探索并掌握直角三角形的性质定理:直角三角形的两个锐角互余,直角三角形斜边上的中线等于斜边的一半。
掌握有两个角互余的三角形是直角三角形。
2.探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。
考点梳理夯实基础1.直角三角形的性质:(1)直角三角形的两个锐角;【答案】互余(2)勾股定理:若直角三角形的两条直角边分别为a,b,斜边为c,那么;【答案】a2+b2=c2(3)直角三角形斜边上的中线等于;【答案】斜边的一半(4)直角三角形中,30°角所对的直角边等于.【答案】斜边的一半2.直角三角形的判定:(1)勾股定理逆定理:如果三角形的三边a,b,c满足a2+b2=c2,那么这个三角形是直角三角形;(2)如果三角形一边上的中线等于这边的,那么这个三角形是直角三角形.【答案】一半3.勾股数:可以构成直角三角形三边的一组正整数.常见的勾股数有:(3,4,5)、(5,12,13)、(7,24,25)、(8,15,17)…以及(3n,4n,5n)、(5n,12n,13n)、(7n,24n,25n)、(8n,15n,17n)…(n为正整数)考点精析专项突破考点一勾股定理和勾股定理的逆定理【例1】(1)(2016临沂)如图,将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG.若AB=4,BC=8,则△ABF的面积为_____________.【答案】6解题点拨:本题考查矩形的性质,折叠的性质,勾股定理等,根据勾股定理列出方程是解题的关键.①先利用矩形的性质和折叠的性质得出∠B=90°,AF=FC;②然后利用勾股定理列方程求出BF的长;③再用三角形面积公式求出三角形的面积.(2)(2016武汉)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=55,则BD的长为___________【答案】解题点拨:连接AC,过点D作BC边上的高,交BC延长线于点H.在Rt△ABC中,AB=3,BC=4,∴AC=5,又CD=10,DA=55,可知△ACD为直角三角形,且∠ACD=90°,易证△ABC∽△CHD.则CH=6,DH=8,从而在Rt△BHD中易求BD.考点二性质“直角三角形斜边上的中线等于斜边的一半”的运用【例3】如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E.连接AC交DE于点F,点G为AF的中点.∠ACD=2∠ACB.若DG=3,EC=1.求DE的长.解题点拨:综合考查了勾股定理、等腰三角形的判定与性质和直角三角形斜边上的中线,解题的关键是证明CD=DG=3.鼹:∵AD∥BC,DE⊥BC,∴DE⊥AD,∠CAD=∠ACB∵点G为AF的中点,∴DG=AG,∴∠GAD=∠GDA,∴∠CGD=2∠CAD,∵∠ACD=2∠ACB,∴∠ACD=∠CGD,∴CD=DG=3,在Rt△CED中,DE.考点三性质“直角三角形中,30°角所对的直角边等于斜边的一半”的运用【例4】(2016西宁)如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC=4,则PD=.【答案】2解题点拨:作PE⊥OB于E,根据角平分线的性质可得PE=PD.根据平行线的性质可得∠BCP=∠AOB=30°,由直角三角形中30°的角所对的直角边等于斜边的一半,可求得PE,即可求得PD.课堂训练当堂检测1.(2016南京)下列长度的三条线段能组成直角三角形的是 ( )A.3,4,4 B.3,4,5C.3,4,6 D.3,4,7【答案】B2.(2015滨州)如图,在直角∠O的内部有一滑动杆AB,当端点A沿直线AO向下滑动时,端点B会随之自动地沿直线OB向左滑动,如果滑动杆从图中AB处滑动到A Bⅱ处,那么滑动杆的中点C所经过的路径是 ( )A.直线的一部分B.圆的一部分C.双曲线的一部分D.抛物线的一部分第2题【答案】B3.(2016黄冈)如图,在矩形ABCD中,点E,F分别在边CD,BC上,且DC=3DE=3a,将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP=.【答案】第3题4.(2015重庆A)如图1,在△ABC中,∠ACB= 90°,∠BAC=60°,点E是∠BAC角平分线上一点,过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点,DH⊥AC,垂足为H,连接EF,HF.(1)如图1,若点H是AC的中点,AC=AB,BD的长:(2)如图1,求证:HF=EF;(3)如图2,连接CF,CE,猜想:△CEF是否是等边三角形?若是,请证明;若不是,请说明理由,图1 图2第4题【答案】解:(1)∵在△ABC中,∠ACB=90°,∠BAC=60°,AC=∴AB=cos ACBACÐ2∵AD⊥AB.∴∠DAH=30°.∵点H是AC的中点,∴AH=12 AC∴在△ADH中.AD=cos AHCAHÐ=2.∴在△ADB中,根据勾股定理,得BD(2)如答图1,连接AF,易证:△DAE≌△ADH(AAS),∴DH=AE.∵∠FDH=∠FDA-∠HDA=∠FDA-60°=(90°-∠FBA)-60°=30°-∠FBA,∴∠EAF=∠FDH.又∵点F是BD的中点,即AF是Rt△ABD斜边上的中线,∴AF=DF.∴△DHF≌△AEF(SAS).∴HF=EF.(3)△CEF为等边三角形,证明如下:如答图2,取AB的中点M,连接CM、FM,在Rt△ADE中,AD=2AE,∵FM是△ABD的中位线.∴AD=2FM.∴FM=AE.易证△ACM为等边三角形,∴AC=CM,∠ACM=60°.∵∠CAE=12∠CAB=30°,∠CMF=∠AMF-∠AMC=30°,∴∠CAE=∠CMF.∴△ACE≌△MCF(SAS).∴CE=CF,∠ACE=∠MCF.∴∠ECF=∠ECM+∠MCF=∠ECM+∠ACE=60°.∴△CEF为等边三角形.图1 图2第4题答案图中考达标模拟自测A组基础训练一、选择题1.(2016连云港)如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、S2、S3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4、S5、S6.其中S1=16,S2=45 ,S5=11,S6=14,则S3+S4= ( ) A.8 B.64 C.54 D.48图1 图2第1题【答案】C2.(2016海南)如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C 落在点E的位置.如果BC=6,那么线段BE的长度为 ( )A.6 B.C.D.第2题【答案】D3.如图,在△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线,若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是 ( )A.125B.4 C.245D.5第3题【答案】C4.(2015泰安)如图,矩形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE.延长BG交CD于点F.若AB=6,BC=,则FD的长为 ( )A.2 B.4 C.B D.第4题【答案】B二、填空题5.(2016随州)如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=13BD,连接DM、DN、MN.若AB=6,则DN=.第5题【答案】36.(2016温州)七巧板是我们祖先的一项卓越创造,被誉为“东方魔板”,小明利用七巧板(如图1所示)中各板块的边长之间的关系拼成一个凸六边形(如图2所示),则该凸六边形的周长是cm.图1 图2第6题【答案】16)7.(2016连云港)如图1,将正方形纸片ABCD对折,使AB与CD重合,折痕为EF.如图2,展开后再折叠一次,使点C与点E重合,折痕为GH,点B的对应点为点M.EM交AB于N.若AD=2.则MN=图1 图2第7题【答案】1 3三、解答题8.已知,如图,在△ABC中,∠ACB=90°,点D为AB中点,连接CD.点E为边AC上一点,过点E作EF∥AB,交CD于点F,连接EB,取EB的中点G,连接DG、FG..(1)求证:EF=CF;(2)求证:FG⊥DG.第8题【答案】证明:(1)∵在R△ACB中,D为AB中点∴DA=DC=DB∴∠A=∠1∵EF∥AB∴∠2=∠A∴∠1=∠2∴CF=EF.(2)延长FG,交AB于点H∵EF∥AB∴∠FEG=∠GBH∵G为EB中点∴EG=GB又∵∠FGE=∠HGB∴△EFG≌△BHG∴FG=GH,EF=HB=CF∴DC-CF=DB-HB即DF=DH∴DG⊥FG.第8题答案图9.(2016黄石)在△ABC中,AB=AC,∠BAC=2∠DAE= 90°.(1)如图1,若点D关于直线AE的对称点为F,求证:DE2=BD2+CE2:(2)如图2,点E在BC的延长线上,则等式DE2=BD2+CE2还能成立吗?请说明理由.图1 图2第9题【答案】解:(1)∵点D关于直线AE的对称点为F,∴EF=DE,AF=AD,∵∠BAC=90°,∴∠BAD=90°-∠CAD,∠CAF=∠DAE+∠EAF-∠CAD=45°+45°-∠CAD=90°-∠CAD,∴∠BAD=∠CAF,在△ABD和△ACF中,AB ACBAD CAFAD AF ì=ïï??íï=ïî∴△ABD≌△ACF(SAS),∴CF=BD,∠ACF=∠B,∵△ABC是等腰直角三角形,∴∠B=∠ACB=45°,∴∠ECF=∠ACB+∠ACF=45°+45°=90°,在Rt△CEF中,由勾股定理得,EF2=CF2+CE2,所以,DE2=BD2+CE2;(2) DE2=BD2+CE2还能成立.理由如下:作点D关于AE的对称点F,连接EF、CF,由轴对称的性质得,EF=DE,AF=AD,∵∠BAC=90°,∴∠BAD=90°-∠CAD,∠CAF=∠DAE+∠EAF-∠CAD=45°+45°-∠CAD=90°-∠CAD,∴∠BAD=∠CAF,在△ABD和△ACF中,AB ACBAD CAFAD AF ì=ïï??íï=ïî∴△ABD≌△ACF(SAS),∴CF=BD,∠ACF=∠B,∵△ABC是等腰直角三角形,∴∠B=∠ACB=45°,∴∠ECF=∠ACB+∠ACF=45°+45°=90°,在Rt△CEF中,由勾股定理得,EF2=CF2+CE2,所以,DE2=BD2+CE2.第9题答案图B组提高练习10.(2016东营)在△ABC中,AB=10,AC=BC边上的高AD=6,则另一边BC等于( )A.10 B.8 C.6或10 D.8或10【答案】C(提示:在图①中,由勾股定理,得BD==8;CD==2;∴BC=BD+CD=8+2=10.在图②中,由勾股定理,得BD=8;CD2;∴BC=BD-CD=8-2=6.)图①图②11.(2016资阳)如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC上,且AD=CE,连结DE交CO于点P,给出以下结论:①△DOE是等腰直角三角形:②∠CDE=∠COE;③若AC=1,则四边形CEOD的面积为14,其中所有正确结论的序号是.【答案】①②③(提示:①如图,∵∠ACB=90°,AC=BC,CO⊥AB,∴AO=OB=OC,∠A=∠B=∠ACO=∠BCO=45°,∴△ADO≌△CEO,∴DO=OE,∠AOD=∠COE,∴∠AOC=∠DOE =90°,∴△DOE是等腰直角三角形.故①正确.②∵∠DCE+∠DOE=180°,∴D、C、E、O四点共圆,∴∠CDE=∠COE,故②正确.③∵AC=BC=1,∴S△ABC=12×1×1=12,S四边形DCEO=S△DOC+S△CEO=S△CDO+S△ADO=S△AOC=12S△ABC=14,故③正确.)12.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF.连接CF.(1)观察猜想如图1.当点D在线段BC上时,①BC与CF的位置关系为:.②BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=,CD=14BC,请求出GE的长.图1 图2 图3 第12题【答案】解:(1)垂直,BC=CD+CF.(2)不成立,BC=CD-CF.∵正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,∵AD=AF,AB=AC,∴△DA B≌△FAC,∴∠ABD=∠ACF,CF=BD∴∠ACF-∠ACB=90°,即CF⊥BD;∵BC=CD-BD,∴BC=CD-CF.(3)过A作AH⊥BC于H,过E作EM⊥BD于M,EN⊥CF于N,∵∠BAC=90°,AB=AC,∴BC AB=4,AH=12BC=2,∴CD=14BC=1,CH=12BC=2,∴DH=3.由(2)证得BC⊥CF,CF=BD=5,∵四边形ADEF是正方形,∴AD=DE,∠ADE=90°,∵BC⊥CF,EM⊥BD,EN⊥CF,∴四边形CMEN是矩形,∴NE=CM,EM=CN,∵∠AHD=∠ADE=∠EMD=90°,∴∠ADH+∠EDM=∠EDM+∠DEM=90°,∴∠ADH=∠DEM,∴△ADH≌△DEM,∴EM=DH=3,DM=AH=2,∴CN=EM=3,EN=CM=3,∵∠ABC= 45°,∴∠BGC=45°,∴△BCG是等腰直角三角形,∴CG=BC=4,∴GN=1,∴EG第12题答案图。
第16讲三角形的基本知识全等三角形【试试火力】1.(2017•宁德)在△ABC中,AB=5,AC=8,则BC长不可能是()A.4 B.8 C.10 D.132. (2017贵州)如图,∠ACD=120°,∠B=20°,则∠A的度数是()A.120° B.90°C.100° D.30°3. (2017江苏徐州)△ABC中,点D,E分别是AB,AC的中点,DE=7,则BC= 14 .4.如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.【把握火苗】火点1三角形的概念及其分类⎧⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎧⎨⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎪⎨⎪⎧⎪⎪⎪⎪⎧⎨⎪⎪⎪⎨⎪⎪⎪⎪⎩⎩⎪⎩⎩概念:由不在同一直线上的三条线段连接所得到的图形叫做三角形.角三角形按角分类角三角形角三角形分类不等边三角形底与腰不相等的等腰三角形按边分类等腰三角形三角形①②③④⑤火点2 与三角形有关的线段【掌握火候】1.判断给定的三条线段能否组成三角形,只需判断两条较短线段的和是否大于最长线段即可.2.“截长法”和“补短法”是证明和差关系的重要方法,无论用哪一种方法都是要将线段的和差关系转化为证明线段相等的问题,因此添加辅助线构造全等三角形是通向结论的桥梁.【突破火点】燃点1 三角形中的线段例1 (2017广西河池)三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线 C.高 D.中位线【考点】K3:三角形的面积;K2:三角形的角平分线、中线和高.【分析】根据等底等高的三角形的面积相等解答.【解答】解:∵三角形的中线把三角形分成两个等底同高的三角形,∴三角形的中线将三角形的面积分成相等两部分.故选A.【思路点拨】不管是哪种类型的三角形,三角形的角平分线、中线和中位线都在三角形内部,但是锐角三角形的三条高在三角形内部,直角三角形的一条高在三角形内部,其余两条高与直角边重合,钝角三角形的一条高在三角形内部,其余两条高在三角形外部.方法归纳:解答本题的关键是熟练掌握三角形高、角平分线和中线的画法.燃点2 三角形中的角例2 (2017湖南株洲)如图,在△ABC中,∠BAC=x°,∠B=2x°,∠C=3x°,则∠BAD=()A.145° B.150° C.155° D.160°【考点】K7:三角形内角和定理.【分析】根据三角形内角和定理求出x,再根据三角形的外角的等于不相邻的两个内角的和,即可解决问题.【解答】解:在△ABC中,∵∠B+∠C+∠BAC=180°,∠BAC=x°,∠B=2x°,∠C=3x°,∴6x=180,∴x=30,∵∠BAD=∠B+∠C=5x=150°,故选B.方法归纳:当问题中含有平行线时,可利用平行线的性质将其转化为其他角;当该角是一个三角形的外角或内角时,根据三角形外角的性质和三角形内角和定理进行计算.燃点3 三角形的中位线例3 . (2017湖北宜昌)如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接ED.现测得AC=30m,BC=40m,DE=24m,则AB=()A.50m B.48m C.45m D.35m【考点】KX:三角形中位线定理.【分析】根据中位线定理可得:AB=2DE=48m.【解答】解:∵D是AC的中点,E是BC的中点,∴DE是△ABC的中位线,∴DE=AB,∵DE=24m,∴AB=2DE=48m,故选B.方法归纳:解答本题的关键是要依据题目条件,活用中位线定理的结论.燃点4 全等三角形的性质与判定例4如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E为AC中点,BD平分∠ABC,点F在AB上,且BF=BC.求证:(1)DF=AE;(2)DF⊥AC.【考点】全等三角形的判定与性质;平行四边形的性质.【专题】证明题.【分析】(1)延长DE交AB于点G,连接AD.构建全等三角形△AED ≌△DFB(SAS),则由该全等三角形的对应边相等证得结论;(2)设AC与FD交于点O.利用(1)中全等三角形的对应角相等,等角的补角相等以及三角形内角和定理得到∠EOD=90°,即DF⊥AC.【解答】证明:(1)延长DE交AB于点G,连接AD.∵四边形BCDE是平行四边形,∴ED∥BC,ED=BC.∵点E是AC的中点,∠ABC=90°,∴AG=BG,DG⊥AB.∴AD=BD,∴∠BAD=∠ABD.∵BD平分∠ABC,∴∠ABD=∠BAD=45°,即∠BDE=∠ADE=45°.又BF=BC,∴BF=DE.∴在△AED与△DFB中,,∴△AED≌△DFB(SAS),∴AE=DF,即DF=AE;(2)设AC与FD交于点O.∵由(1)知,△AED≌△DFB,∴∠AED=∠DFB,∴∠DEO=∠DFG.∵∠DFG+∠FDG=90°,∴∠DEO+∠EDO=90°,∴∠EOD=90°,即DF⊥AC.【点评】本题考查了平行四边形的性质,全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定.方法归纳:证明两条边或两个角相等时,若两条边或两个角分别在两个三角形当中,通常证明这两条边或两个角所在的三角形全等.【冰火不容】1. (2017甘肃张掖)已知a,b,c是△ABC的三条边长,化简|a+b ﹣c|﹣|c﹣a﹣b|的结果为()A.2a+2b﹣2c B.2a+2b C.2c D.02. (2017江苏盐城)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1= 120 °.3. (2017毕节)如图,Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,F为CD上一点,且CF=CD,过点B作BE∥DC交AF的延长线于点E,则BE的长为()A.6 B.4 C.7 D.124. (2017四川眉山)如图,在△ABC中,∠A=66°,点I是内心,则∠BIC的大小为()A.114° B.122° C.123° D.132°5. 如图,AF=DC,BC∥EF,只需补充一个条件BC=EF ,就得△ABC ≌△DEF.6. 如图,已知∠1=∠2,AC=AD,请增加一个条件,使△ABC≌△AED,你添加的条件是AE=AB .7.(2017浙江湖州)已知一个多边形的每一个外角都等于72°,则这个多边形的边数是 5 .8. 如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.9. 如图,在△ABC中,∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,求∠ABE、∠ACF和∠BHC的度数.10. (1)如图1,把△ABC沿DE折叠,使点A落在点A’处,试探索∠1+∠2与∠A的关系.(不必证明).(2)如图2,BI平分∠ABC,CI平分∠ACB,把△ABC折叠,使点A 与点I重合,若∠1+∠2=130°,求∠BIC的度数;(3)如图3,在锐角△ABC中,BF⊥AC于点F,CG⊥AB于点G,BF、CG交于点H,把△ABC折叠使点A和点H重合,试探索∠BHC与∠1+∠2的关系,并证明你的结论.【展示火情】【试试火力】1.(2017•宁德)在△ABC中,AB=5,AC=8,则BC长不可能是()A.4 B.8 C.10 D.13【考点】K6:三角形三边关系.【专题】11 :计算题.【分析】根据三角形三边的关系得到3<BC<13,然后对各选项进行判断.【解答】解:∵AB=5,AC=8,∴3<BC<13.故选D.【点评】本题考查了三角形三边的关系:三角形任意两边之和大于第三边.2. (2017贵州)如图,∠ACD=120°,∠B=20°,则∠A的度数是()A.120° B.90°C.100° D.30°【考点】K8:三角形的外角性质.【分析】根据三角形的外角的性质计算即可.【解答】解:∠A=∠ACD﹣∠B=120°﹣20°=100°,故选:C.3. (2017江苏徐州)△ABC中,点D,E分别是AB,AC的中点,DE=7,则BC= 14 .【考点】KX:三角形中位线定理.【分析】根据三角形中位线定理三角形的中位线平行于第三边,并且等于第三边的一半可知,BC=2DE,进而由DE的值求得BC.【解答】解:∵D,E分别是△ABC的边AC和AC的中点,∴DE是△ABC的中位线,∵DE=7,∴BC=2DE=14.故答案是:14.4.如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】先证出∠CAB=∠DAE ,再由SAS 证明△BAC ≌△DAE ,得出对应边相等即可.【解答】证明:∵∠1=∠2,∴∠CAB=∠DAE ,在△BAC 和△DAE 中,,∴△BAC ≌△DAE (SAS ),∴BC=DE .【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解决问题的关键.【把握火苗】①首尾顺次 ②锐 ③直 ④钝 ⑤等边 ⑥锐角 ⑦直角顶点 ⑧一点 ⑨相等⑩一点 ⑪内心 ⑫相等 ⑬大于 ⑭小于 ⑮中点 ⑯平行 ○17一半 ○18180°○19互余 ○20和 ○21相等 ○22相等 【冰火不容】1. (2017甘肃张掖)已知a ,b ,c 是△ABC 的三条边长,化简|a+b ﹣c|﹣|c ﹣a ﹣b|的结果为( )A .2a+2b ﹣2cB .2a+2bC .2cD .0【考点】K6:三角形三边关系.【分析】先根据三角形的三边关系判断出a﹣b﹣c与c﹣b+a的符号,再去绝对值符号,合并同类项即可.【解答】解:∵a、b、c为△ABC的三条边长,∴a+b﹣c>0,c﹣a﹣b<0,∴原式=a+b﹣c+(c﹣a﹣b)=0.故选D.2. (2017江苏盐城)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1= 120 °.【考点】K8:三角形的外角性质;K7:三角形内角和定理.【分析】根据三角形的外角的性质计算即可.【解答】解:由三角形的外角的性质可知,∠1=90°+30°=120°,故答案为:120.3. (2017毕节)如图,Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,F为CD上一点,且CF=CD,过点B作BE∥DC交AF的延长线于点E,则BE的长为()A.6 B.4 C.7 D.12【考点】KX:三角形中位线定理;KP:直角三角形斜边上的中线.【分析】先根据直角三角形的性质求出CD的长,再由三角形中位线定理即可得出结论.【解答】解:∵Rt△ABC中,∠ACB=90°,斜边AB=9,D为AB的中点,∴CD=AB=4.5.∵CF=CD,∴DF=CD=×4.5=3.∵BE∥DC,∴DF是△ABE的中位线,∴BE=2DF=6.故选A.4. (2017四川眉山)如图,在△ABC中,∠A=66°,点I是内心,则∠BIC的大小为()A.114° B.122° C.123° D.132°【考点】MI:三角形的内切圆与内心.【分析】根据三角形内角和定理求出∠ABC+∠ACB,根据内心的概念得到∠IBC=∠ABC,∠ICB=∠ACB,根据三角形内角和定理计算即可.【解答】解:∵∠A=66°,∴∠ABC+∠ACB=114°,∵点I是内心,∴∠IBC=∠ABC,∠ICB=∠ACB,∴∠IBC+∠ICB=57°,∴∠BIC=180°﹣57°=123°,故选:C.5. 如图,AF=DC,BC∥EF,只需补充一个条件BC=EF ,就得△ABC ≌△DEF.【考点】全等三角形的判定.【专题】开放型.【分析】补充条件BC=EF,首先根据AF=DC可得AC=DF,再根据BC∥EF可得∠EFC=∠BCF,然后再加上条件CB=EF可利用SAS定理证明△ABC≌△DEF.【解答】解:补充条件BC=EF,∵AF=DC,∴AF+FC=CD+FC,即AC=DF,∵BC∥EF,∴∠EFC=∠BCF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).故答案为:BC=EF.【点评】此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6. 如图,已知∠1=∠2,AC=AD,请增加一个条件,使△ABC≌△AED,你添加的条件是AE=AB .【考点】全等三角形的判定.【专题】开放型.【分析】添加条件AE=AB,根据等式的性质可得∠BAC=∠EAD,然后再用SAS证明△BAC≌△EAD.【解答】解:添加条件AE=AB,∵∠1=∠2,∴∠1+∠EAB=∠2+∠EAB,∴∠BAC=∠EAD,在△BCA和△EDA中,,∴△BAC≌△EAD(SAS).故答案为:AE=AB.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.(2017浙江湖州)已知一个多边形的每一个外角都等于72°,则这个多边形的边数是 5 .【考点】L3:多边形内角与外角.【分析】用多边形的外角和360°除以72°即可.【解答】解:边数n=360°÷72°=5.故答案为:5.8. 如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.【考点】全等三角形的判定.【专题】证明题.【分析】首先根据∠1=∠2可得∠BAC=∠EAD,再加上条件AB=AE,∠C=∠D可证明△ABC≌△AED.【解答】证明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠EAD,∵在△ABC和△AED中,,∴△ABC≌△AED(AAS).【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9. 如图,在△ABC中,∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,求∠ABE、∠ACF和∠BHC的度数.【考点】三角形的角平分线、中线和高;三角形内角和定理.【分析】由三角形的内角和是180°,可求∠A=60°.又因为BE是AC边上的高,所以∠AEB=90°,所以∠ABE=30°.同理,∠ACF=30度,又因为∠BHC是△CEH的一个外角,所以∠BHC=120°.【解答】解:∵∠ABC=66°,∠ACB=54°,∴∠A=180°﹣∠ABC﹣∠ACB=180°﹣66°﹣54°=60°.又∵BE是AC边上的高,所以∠AEB=90°,∴∠ABE=180°﹣∠BAC﹣∠AEB=180°﹣90°﹣60°=30°.同理,∠ACF=30°,∴∠BHC=∠BEC+∠ACF=90°+30°=120°.【点评】此题主要考查了三角形外角的性质及三角形的内角和定理,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;三角形的外角通常情况下是转化为内角来解决.10. (1)如图1,把△ABC沿DE折叠,使点A落在点A’处,试探索∠1+∠2与∠A的关系.(不必证明).(2)如图2,BI平分∠ABC,CI平分∠ACB,把△ABC折叠,使点A 与点I重合,若∠1+∠2=130°,求∠BIC的度数;(3)如图3,在锐角△ABC中,BF⊥AC于点F,CG⊥AB于点G,BF、CG交于点H,把△ABC折叠使点A和点H重合,试探索∠BHC与∠1+∠2的关系,并证明你的结论.【考点】三角形内角和定理;翻折变换(折叠问题).【分析】(1)根据翻折变换的性质以及三角形内角和定理以及平角的定义求出即可;(2)根据三角形角平分线的性质得出∠IBC+∠ICB=90°﹣∠A,得出∠BIC的度数即可;(3)根据翻折变换的性质以及垂线的性质得出,∠AFH+∠AGH=90°+90°=180°,进而求出∠A=(∠1+∠2),即可得出答案.【解答】解:(1)∠1+∠2=2∠A;(2)由(1)∠1+∠2=2∠A,得2∠A=130°,∴∠A=65°∵IB平分∠ABC,IC平分∠ACB,∴∠IBC+∠ICB=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣∠A,∴∠BIC=180°﹣(∠IBC+∠ICB),=180°﹣(90°﹣∠A)=90°+×65°=122.5°;(3)∵BF⊥AC,CG⊥AB,∴∠AFH+∠AGH=90°+90°=180°,∠FHG+∠A=180°,∴∠BHC=∠FHG=180°﹣∠A,由(1)知∠1+∠2=2∠A,∴∠A=(∠1+∠2),∴∠BHC=180°﹣(∠1+∠2).【点评】此题主要考查了图形的翻着变换的性质以及角平分线的性质和三角形内角和定理,正确的利用翻折变换的性质得出对应关系是解决问题的关键.。
中考数学复习专题(六) 与三角形有关的计算与证明1.(2016·河北)如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得AB =DE ,AC =DF ,BF =EC.(1)求证:△ABC ≌△DEF ;(2)指出图中所有平行的线段,并说明理由.解:(1)证明:∵BF =EC ,∴BF +FC =EC +FC ,即BC =EF.又∵AB =DE ,AC =DF ,∴△ABC ≌△DEF.(2)AB ∥DE ,AC ∥DF.理由:∵△ABC ≌△DEF ,∴∠ABC =∠DEF ,∠ACB =∠DFE.∴AB ∥DE ,AC ∥DF.2.(2017·苏州)如图,∠A =∠B ,AE =BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O.(1)求证:△AEC ≌△BED ;(2)若∠1=42°,求∠BDE 的度数.解:(1)证明:∵AE 和BD 相交于点O ,∴∠AOD =∠BOE.又∵∠A =∠B ,∴∠BEO =∠2.又∵∠1=∠2,∴∠1=∠BEO.∴∠AEC =∠BED.在△AEC 和△BED 中,⎩⎨⎧∠A =∠B ,AE =BE ,∠AEC =∠BED ,∴△AEC ≌△BED(ASA ).(2)∵△AEC ≌△BED ,∴EC =ED ,∠C =∠BDE.在△EDC 中,∵EC =ED ,∠1=42°,∴∠C =∠EDC =69°.∴∠BDE =∠C =69°.3.(2016·襄阳)如图,在△ABC 中,AD 平分∠BAC ,且BD =CD ,DE ⊥AB 于点E ,DF ⊥AC 于点F.(1)求证:AB =AC ;(2)若AD =23,∠DAC =30°,求AC 的长.解:(1)证明:∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴DE =DF.又∵BD =CD ,∴Rt △BDE ≌Rt △CDF.∴∠B =∠C.∴AB =AC.(2)∵AB =AC ,BD =CD ,∴AD ⊥BC.在Rt △ADC 中,∵∠DAC =30°,AD =23,∴AC =AD cos 30°=4.4.(2017·重庆)如图,△ABC 中,∠ACB =90°,AC =BC ,点E 是AC 上一点,连接BE.(1)如图1,若AB =42,BE =5,求AE 的长;(2)如图2,点D 是线段BE 延长线上一点,过点A 作AF ⊥BD 于点F ,连接CD ,CF ,当AF =DF 时,求证:DC =BC.解:(1)∵∠ACB =90°,AC =BC ,∴AC =BC =22AB =4. ∵BE =5,∴CE =BE 2-BC 2=3.∴AE =4-3=1.(2)证明:∵∠ACB =90°,AC =BC ,∴∠CAB =45°.∵AF ⊥BD ,∴∠AFB =∠ACB =90°.∴A ,F ,C ,B 四点共圆.∴∠CFB =∠CAB =45°,∴∠DFC =∠AFC =135°.在△ACF 和△DCF 中, ⎩⎨⎧AF =DF ,∠AFC =∠DFC ,CF =CF ,∴△ACF ≌△DCF.∴AC =DC.又∵AC =BC ,∴DC =BC.5.(2017·北京)在等腰直角△ABC 中,∠ACB =90°,P 是线段BC 上一动点(与点B ,C 不重合),连接AP ,延长BC 至点Q ,使得CQ =CP ,过点Q 作QH ⊥AP 于点H ,交AB 于点M.(1)若∠PAC =α,求∠AMQ 的大小;(用含α的式子表示)(2)用等式表示线段MB 与PQ 之间的数量关系,并证明.解:(1)∵∠PAC =α,△ACB 是等腰直角三角形,∴∠BAC =∠B =45°,∠PAB =45°-α.∵QH ⊥AP ,∴∠AHM =90°.∴∠AMQ =180°-∠AHM -∠PAB =45°+α.(2)PQ =2MB.理由如下:连接AQ ,作ME ⊥QB 于点E ,∵∠PAC +∠APC =∠MQE +∠APC =90°,∴∠PAC =∠MQE.∵AC ⊥QP ,CQ =CP ,∴∠QAC =∠PAC =α.∴∠QAM =45°+α=∠AMQ.∴AP =AQ =QM.在△APC 和△QME 中,⎩⎨⎧∠PAC =∠MQE ,∠ACP =∠QEM ,AP =QM ,∴△APC ≌△QME(AAS ).∴PC =ME.∵△MEB 是等腰直角三角形,∴MB =2ME =2PC =22PQ , 即PQ =2MB.6.如图,已知∠ABC =90°,D 是直线AB 上的点,AD =BC.(1)如图1,过点A 作AF ⊥AB ,并截取AF =BD ,连接DC ,DF ,CF ,判断△CDF 的形状并证明;(2)如图2,E 是直线BC 上一点,且CE =BD ,直线AE ,CD 相交于点P ,∠APD 的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.解:(1)△CDF 是等腰直角三角形.理由如下:∵AF ⊥AD ,∠ABC =90°,∴∠FAD =∠DBC.在△FAD 和△DBC 中,⎩⎨⎧AD =BC ,∠FAD =∠DBC ,AF =BD ,∴△FAD ≌△DBC(SAS ).∴FD =DC.∴△CDF 是等腰三角形.∵△FAD ≌△DBC ,∴∠FDA =∠DCB.∵∠BDC +∠DCB =90°,∴∠BDC +∠FDA =90°,即∠CDF =90°. ∴△CDF 是等腰直角三角形.(2)∠APD 的度数是固定值.作AF ⊥AB 于A ,使AF =BD ,连接DF ,CF. ∵AF ⊥AD ,∠ABC =90°,∴∠FAD =∠DBC ,AF ∥CE. 在△FAD 和△DBC 中,⎩⎨⎧AD =BC ,∠FAD =∠DBC ,AF =BD , ∴△FAD ≌△DBC(SAS ).∴FD =DC.∴△CDF 是等腰三角形.∵△FAD ≌△DBC ,∴∠FDA =∠DCB.∵∠BDC +∠DCB =90°,∴∠BDC +∠FDA =90°,即∠CDF =90°. ∴△CDF 是等腰直角三角形.∴∠FCD =45°.∵AF ∥CE ,且AF =BD =CE ,∴四边形AFCE 是平行四边形.∴AE ∥CF.∴∠APD =∠FCD =45°.。
中考数学一轮复习《三角形及其性质》练习题(含答案)课时1一般三角形及等腰三角形(建议答题时间:40分钟)1. (2017泰州)三角形的重心是()A. 三角形三条边上中线的交点B. 三角形三条边上高线的交点C. 三角形三条边垂直平分线的交点D. 三角形三条内角平分线的交点2. (2017金华)下列各组数中,不可能成为一个三角形三边长的是()A. 2,3,4B. 5,7,7C. 5,6,12D. 6,8,103. (2017株洲)如图,在△ABC中,∠BAC=x,∠B=2x,∠C=3x,则∠BAD的度数是()A. 145°B. 150°C. 155°D. 160°第3题图4. (2017甘肃)已知a,b,c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A. 2a+2b-2cB. 2a+2bC. 2cD. 05. (2017德阳)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°,则∠DAC的大小是()A. 15°B. 20°C. 25°D. 30°第5题图第6题图6. (2017滨州)如图,在△ABC中,AB=AC,D为BC上一点,且DA=DC,BD=BA,则∠B的大小为()A. 40°B. 36°C. 30°D. 25°7. (2017荆州)如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC 于点D,则∠CBD的度数为()A. 30°B. 45°C. 50°D. 75°第7题图第8题图第9题图8. (2017郴州)小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A. 180°B. 210°C. 360°D. 270°9. (2017天津)如图,在△ABC中,AB=AC,AD,CE是△ABC的两条中线,P是AD上的一个动点,则下列线段的长等于BP+EP最小值的是().A. BCB. CEC. ADD. AC10. (2017泰州)将一副三角板如图叠放,则图中∠α的度数为________.第10题图第12题图第13题图11. (2017成都)在△ABC中,∠A∶∠B∶∠C=2∶3∶4,则∠A的度数为________.12. (2017江西)如图①是一把园林剪刀,把它抽象为图②,其中OA=OB,若剪刀张开的角为30°,则∠A=________度.13. (2017湘潭)如图,在Rt△ABC中,∠C=90°,BD平分∠ABC交AC于点D,DE垂直平分AB,垂足为点E,请任意写出一组相等的线段________.14. (2017徐州)△ABC中,点D、E分别是AB、AC的中点,DE=7,则BC=________.15. (2017丽水)等腰三角形的一个内角为100°,则顶角的度数是________.16. (2017陕西)如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A =52°,则∠1+∠2的度数为________.第16题图第18题图17. (2017淄博)在边长为4的等边三角形ABC中,D为BC边上的任意一点,过点D分别作DE⊥AB,DF⊥AC,垂足分别为E,F,则DE+DF=________. 18. (2017宁夏)在△ABC中,AB=6,点D是AB的中点,过点D作DE∥BC,交AC于点E,点M在DE上,且ME=13DM,当AM⊥BM时,则BC的长为________.19. (2017达州)△ABC中,AB=5,AC=3,AD是△ABC的中线,设AD长为m,则m的取值范围是________.20. (2017内江)如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.第20题图21. (2017北京)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC 于点D.求证:AD=BC.第21题图22. (2017连云港)如图,已知等腰三角形ABC中,AB=AC,点D、E分别在边AB、AC上,且AD=AE,连接BE、CD交于点F.(1)判断∠ABE与∠ACD的数量关系,并说明理由;(2)求证:过点A、F的直线垂直平分线段BC.第22题图课时2直角三角形及勾股定理(建议答题时间:40分钟)1. 下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A. 3,4,5B. 1,2, 3C. 6,7,8D. 2,3,42. (2016沈阳)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是()A. 433 B.4 C. 83 D. 4 3第2题图第3题图3. (2017大连)如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB的长为()A. 2aB. 22aC. 3aD. 43 3a4. (2017黄石)如图,在△ABC中,E为BC边的中点,CD⊥AB,AB=2,AC=1,DE=32,则∠CDE+∠ACD=()A. 60°B. 75°C. 90°D. 105°第4题图第5题图5. (2017重庆巴蜀月考)如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交AC于点D,交AB于点E.若BC=4,AC=8,则BD=()A. 3B. 4C. 5D. 66. (2017陕西)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A. 3 3B. 6C. 3 2D. 21第6题图第7题图7. 关注数学文化(2017襄阳)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A. 3B. 4C. 5D. 68. (2017株洲)如图,在Rt△ABC中,∠B的度数是________度.第8题图第11题图第12题图9. (2017安顺)三角形三边长分别为3,4,5,那么最长边上的中线长等于________.10. (2017岳阳)在△ABC中,BC=2,AB=23,AC=b,且关于x的方程x2-4x +b=0有两个相等的实数根,则AC边上的中线长为________.11. (2017常德)如图,已知Rt△ABE中∠A=90°,∠B=60°,BE=10,D是线段AE上的一动点,过D作CD交BE于C,并使得∠CDE=30°,则CD长度的取值范围是________.12. (2017娄底)如图,在等腰Rt△ABC中,∠ABC=90°,AB=CB=2,点D为AC的中点,点E,F分别是线段AB,CB上的动点,且∠EDF=90°,若ED的长为m,则△BEF的周长是________.(用含m的代数式表示)13. (2017杭州)如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连接AE,则△ABE的面积等于________.第13题图第14题图14. (2017武汉)如图,在△ABC中,AB=AC=23,∠BAC=120°,点D,E都在边BC上,∠DAE=60°,BD=2CE,则DE的长为________.15. (2017山西)一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB =∠BCD=90°,∠A=60°,∠CBD=45°.E为AB的中点,过点E作EF⊥CD于点F.若AD=4 cm,则EF的长为________cm.第15题图第16题图16. (2017河南)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=2+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终..落在边AC上,若△MB′C为直角三角形,则BM的长为________.17. (2018原创)如图,在△ABC中,∠ABC=90°,∠A=30°,D是边AB上一点,∠BDC=45°,AD=4,求BC的长.(结果保留根号)第17题图18. (2018原创)如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.(1)求DB的长;(2)在△ABC中,求BC边上高的长.第18题图19. 在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AC=20,BC=15,(1)求AB的长;(2)求CD的长.第19题图20. (2017徐州)如图,已知AC⊥BC,垂足为C,AC=4,BC=33,将线段AC 绕点A按逆时针方向旋转60°,得到线段AD,连接DC、DB.(1)线段DC=________;(2)求线段DB的长度.第20题图答案课时1 一般三角形及等腰三角形1. A2. C3. B4. D【解析】由三角形中任意两边之和大于第三边,得:a+b>c,∴c-a-b =c-(a+b)<0,∴|c-a-b|=a+b-c,|a+b-c|=a+b-c,∴|a+b-c|-|c-a -b|=0.5. B【解析】∵BE是∠ABC的角平分线,∴∠ABC=2∠ABE=50°,又∵∠BAC =60°,则∠C=70°,又∵∠ADC=90°,∴∠DAC=20°.6.B【解析】设∠C=x°,∵AD=DC,∴∠DAC=∠C=x°,∴∠ADB=2x°,∵AB=BD,∴∠BAD=∠ADB=2x°,∴∠B=180°-4x°,∵AB=AC,∴∠B=∠C=x°,∴180°-4x°=x°,解得x=36,∴∠B=∠C=36°.7.B【解析】∵∠A=30°,AB=AC,∴∠ABC=∠C=75°,又∵l为AB的垂直平分线,∴DB=DA,∠DBA=∠A=30°∴∠CBD=∠CBA-∠DBA=75°-30°=45°.8. B【解析】如解图,∵∠C=∠F=90°,∴∠3+∠4=90°,∠2+∠5=90°,又∵∠2=∠4,∴∠3=∠5,∵∠1=∠3,∴∠1=∠5=180°-∠β,∵∠α=∠D+∠1=∠D+180°-∠β,∴∠α+∠β=∠D+180°=30°+180°=210°.第8题解图9. B【解析】∵AB=AC,AD是BC边上的中线,∴AD⊥BC,∴AD是BC的垂直平分线,∴点B关于AD的对应点为点C,∴CE等于BP+EP的最小值.10. 15°11. 40°12. 7513. CD=DE14. 1415. 100°【解析】由三角形内角和定理可知,若等腰三角形的一个内角为100°,则这个内角为顶角,此时两底角均为40°,即该三角形顶角的度数是100°.16. 64°【解析】∵在△ABC中,BD和CE是△ABC的两条角平分线,∴∠1=∠ABD=12∠ABC,∠2=∠ACE=12∠ACB,∴∠1+∠2=12(∠ABC+∠ACB),∵∠ABC+∠ACB+∠A=180°,∴∠ABC+∠ACB=180°-∠A=180°-52°=128°,∴∠1+∠2=12(∠ABC+∠ACB)=12×128°=64°.17. 23【解析】假设点D与点B重合,可得DE+DF为等边三角形AC边上的高,再由等边三角形的边长为4,可求AC边上的高为23,故DE+DF=2 3.18. 8【解析】∵AM⊥BM,∴∠AMB=90°,在Rt△ABM中,∵D是AB的中点,∴DM=12AB=3,∵ME=13DM,∴ME=1,DE=4,又∵DE∥BC,∴DE是△ABC的中位线,∴BC=8.19. 1<m<4【解析】如解图,延长AD到点E,使AD=ED,连接CE,∵AD 是△ABC的中线,∴BD=CD,∵在△ABD和△ECD中,BD=CD,DE=AD,∠ADB=∠EDC,∴△ABD≌△ECD(SAS),∴AB=EC,在△AEC中,∵AC+EC>AE,且EC-AC<AE,即AB+AC>2AD,AB-AC<2AD,∴2<2AD<8,∴1<AD<4即1<m<4.第11题解图20. 证明:∵AD平分∠BAC,∴∠BAD=∠DAC,∵DE∥AC,∴∠ADE=∠DAC.∴∠BAD=∠ADE,∵AD⊥BD,∴∠ADB=90°,∴∠BAD+∠B=90°.∵∠BDE+∠ADE=90°,∴∠B=∠BDE,∴BE=DE,∴△BDE是等腰三角形.21. 解:∵AB=AC∴在△ABC中,∠ABC=∠C=12(180°-∠A)=12×(180°-36°)=72°,又∵BD平分∠ABC,∴∠ABD=∠DBC=12∠ABC=12×72°=36°,∴∠ABD=∠A,∴AD=BD,又∵在△ABC中,∠BDC=∠A+∠ABD=36°+36°=72°,∴∠BDC=∠C,∴BD=BC,∴AD=BC.22. (1)解:∠ABE=∠ACD.理由如下:∵AB=AC,∠BAE=∠CAD,AE=AD,∴△ABE≌△ACD(SAS).∴∠ABE=∠ACD;(2)证明:∵AB=AC,∴∠ABC=∠ACB.由(1)可知∠ABE=∠ACD,∴∠FBC=∠FCB,∴FB=FC.又∵AB=AC,∴点A、F均在线段BC的垂直平分线上,即过点A、F的直线垂直平分线段BC.课时2直角三角形及勾股定理1. B2. D3. B【解析】∵CD⊥AB,CD=DE=a,∴CE=2a,∵在△ABC中,∠ACB =90°,点E是AB的中点,∴AB=2CE=22a.4. C【解析】∵点E为BC边的中点,CD⊥AB,DE=32,∴BE=CE=DE=32,∴∠CDE =∠DCE ,BC = 3.在△ABC 中,AC 2+BC 2=1+(3)2=4=AB 2,∴∠ACB =90°,∴∠CDE +∠ACD =∠DCE +∠ACD =90°.5. C 【解析】设BD =x ,∵边AB 的垂直平分线交AC 于点D ,∴AD =BD =x ,则CD =8-x ,在Rt △BCD 中,根据勾股定理,得x 2-(8-x )2=42,解得x =5.6. A 【解析】∵∠ACB =∠A ′C ′B ′=90°,AC =BC =3,∴△ABC 是等腰直角三角形,∴∠CAB =45°,在Rt △ABC 中,AB =AC 2+BC 2=32+32=32,又∵△ABC ≌△A ′B ′C ′, ∴A ′B ′= AB =32, ∠C ′A ′B ′=∠CAB =45°,∴∠CAB ′=∠C ′AB ′+∠CAB = 45°+45°=90°,在Rt △CAB ′中,AC =3,AB ′=32,∴B ′C =AC 2+AB′2=32+(32)2=3 3.7. C 【解析】如解图,∵S 正方形ABCD =13,∴AB =13,∵AG =a ,BG =b ,∴a 2+b 2=AB 2=13,∵(a +b )2=a 2+2ab +b 2=21,∴2ab =(a +b )2-a 2-b 2=21-13=8,∴ab =4,∴S △ABG =12ab =12×4=2,∴S 小正方形=S 大正方形-4S △ABG =13-4×2=5.第7题解图8. 25 9. 5210. 2 【解析】∵方程x 2-4x +b =0有两个相等的实数根,∴b 2-4ac =16-4b =0,解得b =4.又∵BC =2,AB =23,AC =b =4,∴AB 2+BC 2=(23)2+22=42=AC 2,∴∠B =90°,∴AC 边上的中线长为2.11. 0<CD ≤5 【解析】如解图,取BE 的中点F ,连接AF ,∵∠A =90°,则AF =12BE =EF =5,∴∠EAF =∠E =90°-∠B =30°,又∵∠CDE =30°,∴∠CDE=∠EAF ,∴CD ∥AF ,∴CD AF =EDEA .当D 与A 重合时,CD 与AF 重合,取得最大值为5,当D 接近于E 时,DE 越小,CD 越小,∵线段CD 不能为0,∴0<CD≤5.第11题解图12. 2+2m【解析】如解图,连接BD,∵D为AC的中点,∴BD⊥AC,BD 平分∠ABC,∴∠BDC=90°,∠ABD=∠C=45°,∴∠BDF+∠FDC=90°,又∵∠EDF=90°,∴∠BDF+∠BDE=90°,∴∠CDF=∠BDE,∴△BED≌△CFD(ASA),∴BE=CF,DE=DF,则BE+BF+EF=BC+EF=2+EF,而Rt △DEF中,DE=DF=m,∴EF=2m,则△BEF的周长为2+ 2 m.第12题解图13. 78【解析】如解图,过点A作AH⊥BC于点H,∵AB=15,AC=20,∠BAC=90°,∴由勾股定理得,BC=152+202=25,∵AD=5,∴DC=20-5=15,∵DE⊥BC,∠BAC=90°,∴△CDE∽△CBA,∴CECA=CDCB,∴CE=1525×20=12.第13题解图14. 33-3【解析】∵AB=AC=23,∠BAC=120°,∴BC=6,∠B=∠BCA =30°,如解图,将△ABD绕点A逆时针旋转120°得到△ACD′,∴∠D′CA=∠B =30°,AD=AD′,∴∠D′CE=60°,∵∠DAE=60°,∠DAD′=120°,∴∠EAD′=60°,∴△EAD′≌∠EAD(SAS),∴ED′=ED,∴ED′+BD+EC=6,∴EC=6-DE3,∵CD ′=BD =2CE ,∠D ′CE =60°,∴∠D ′EC =90°,∴D ′E 2+EC 2=D ′C 2,即DE 2+(6-DE 3)2=(6-DE3×2)2,解得DE =33-3(负根舍去).第14题解图15. 2+6 【解析】如解图,连接DE ,在EF 上找一点G ,使得DG =EG ,连接DG ,在Rt △ABD 中,∠A =60°, ∴AD =12AB ,又∵E 为AB 的中点,∴AE =12AB =DE ,∴AD =AE =DE ,∴△ADE 为等边三角形 ,∴DE =AD =4 cm ,∠DEA =60°,又∵EF ⊥CD ,∠C =90°,∴EF ∥CB ,∴∠AEF =∠ABC =75°,∴∠DEF =15°,在Rt △EFD 中,∠EFD =90°,∵DG =EG ,∴∠GDE =∠DEF =15°,∴∠DGF =30°,设DF =x ,则EG =DG =2x ,FG =3x ,EF =(2+3)x ,根据勾股定理得DF 2+EF 2=DE 2,即x 2+(2+3)2x 2=16,解得x =6-2,∴EF =(2+6) cm .第15题解图16. 2+12或1 【解析】(1)当∠B ′MC 为直角时,此时点M 在BC 的中点位置,点B ′与点A 重合,如解图①,则BM 长度为12BC =2+12;(2)当∠MB ′C 为直角时,如解图②,根据折叠性质得,BM =B ′M ,BN =B ′N ,B ′M ∥BA ,∴MC BC =B ′MAB ,即MC B ′M =BC AB =2,∴MC B ′M=2,即MC +BM BM =2+11,即BCBM =2+11,∵BC=2+1,∴BM=1.故BM长为2+12或1.第16题解图17. 解:∵∠BDC=45°,∠ABC=90°,∴△BDC为等腰直角三角形,∴BD=BC,∵∠A=30°,∴BC=12AC,在Rt△ABC中,根据勾股定理得AC2=AB2+BC2,即(2BC)2=(4+BD)2+BC2,解得BC=BD=2+23(负根舍去).18. 解:(1)∵DB⊥BC,BC=4,CD=5,∴BD=52-42=3;(2)如解图,延长CB,过点A作AE⊥CB交CB延长线于点E,∵DB⊥BC,AE⊥BC,∴AE∥DB,∵D为AC边的中点,∴BD=12AE,∴AE=6,即BC边上高的长为6.第18题解图19. 解:(1)在Rt△ABC中,∠ACB=90°,BC=15,AC=20,∴AB=AC2+BC2=202+152=25,即AB的长是25;(2)∵S△ABC=12AC·BC=12AB·CD,∴20×15=25·CD,∴CD=12.20. 解:(1) 4;【解法提示】在△ACD中,∵∠A=60°,AC=AD,∴△ACD是等边三角形,∴DC=AC=4.(2)如解图,过点D作DE⊥BC于点E.第20题解图在△CDE中,∠DCE=∠ACB-∠ACD=90°-60°=30°,CD=4,∴DE=2,根据勾股定理得CE=CD2-DE2=23,∴BE=BC-CE=33-23=3,∴DB=BE2+DE2=(3)2+22=7.。
求三角形面积题目10题
以下是10道适合小学生求解三角形面积的题目:
1.一个三角形的底是8厘米,高是6厘米,求这个三角形的面积。
2.一个三角形的面积是12平方厘米,底是4厘米,求这个三角形的高。
3.一个等腰三角形的底是10厘米,高是8厘米,求这个三角形的面积。
4.一个直角三角形的两条直角边分别是6厘米和8厘米,求这个三角形的面积。
5.一个三角形的底是15厘米,面积是45平方厘米,求这个三角形的高。
6.一个三角形的面积是24平方厘米,高是8厘米,求这个三角形的底。
7.一个等边三角形的边长是12厘米,求这个三角形的面积。
8.一个三角形的底是12厘米,高是底的2倍,求这个三角形的面积。
9.一个三角形的面积是36平方厘米,高是9厘米,求这个三角形的底。
10.一个三角形的底和高都是10厘米,求这个三角形的面积。
一、选择题目1.(2017四川省南充市)如图,等边△OAB 的边长为2,则点B 的坐标为( )A .(1,1)B .1) C .D .(1)2.(2017四川省广安市)如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,已知cos ∠CDB =45,BD =5,则OH 的长度为( )A .23B .56C .1D .763.(2017四川省眉山市)“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为( )A .1.25尺B .57.5尺C .6.25尺D .56.5尺4.(2017四川省绵阳市)为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E ,标记好脚掌中心位置为B ,测得脚掌中心位置B 到镜面中心C 的距离是50cm ,镜面中心C 距离旗杆底部D 的距离为4m ,如图所示.已知小丽同学的身高是1.54m ,眼睛位置A 距离小丽头顶的距离是4cm ,则旗杆DE 的高度等于( )A .10mB .12mC .12.4mD .12.32m5.(2017四川省绵阳市)如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交AD ,BC 于E ,F 两点.若AC=AEO =120°,则FC 的长度为( )A .1B .2 CD6.(2017四川省绵阳市)如图,直角△ABC 中,∠B =30°,点O 是△ABC 的重心,连接CO 并延长交AB于点E ,过点E 作EF ⊥AB 交BC 于点F ,连接AF 交CE 于点M ,则MOMF 的值为( )A .12 BC .23 D7.(2017山东省枣庄市)如图,在△ABC 中,∠A =78°,AB =4,AC =6,将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A .B .C .D .8.(2017山东省枣庄市)如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是( )A .15B .30C .45D .609.(2017山东省枣庄市)如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A 为圆心,r 为半径画圆,选取的格点中除点A 外恰好有3个在圆内,则r 的取值范围为( )A.r << Br << C5r << D.5r <<10.(2017山东省济宁市)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕点A逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为,则图中阴影部分的面积是( )A . 6πB . 3πC .122π-D . 1211.(2017广西四市)如图,△ABC 中,∠A =60°,∠B =40°,则∠C 等于( )A .100°B .80°C .60°D .40°12.(2017广西四市)如图,△ABC 中,AB >AC ,∠CAD 为△ABC 的外角,观察图中尺规作图的痕迹,则下列结论错误的是( )A .∠DAE =∠B B .∠EAC =∠C C .AE ∥BCD .∠DAE =∠EAC 13.(2017广西四市)如图,一艘海轮位于灯塔P 的南偏东45°方向,距离灯塔60n mile 的A 处,它沿正北方向航行一段时间后,到达位于灯塔P 的北偏东30°方向上的B 处,这时,B 处与灯塔P 的距离为( )A .60√3nmileB .60√2nmileC . 30√3nmileD .30√2nmile14.(2017江苏省连云港市)如图,已知△ABC ∽△DEF ,DE =1:2,则下列等式一定成立的是( )A.12BCDF B.12AD∠的度数∠的度数C.12ABCDEF△的面积△的面积D.12ABCDEF△的周长△的周长15.(2017河北省)若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B 的度数相比()A.增加了10% B.减少了10% C.增加了(1+10%)D.没有改变16.(2017河北省)如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确的()A. B. C. D.17.(2017浙江省台州市)如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是()A.2B.3C D.418.(2017浙江省台州市)如图,已知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE 19.(2017浙江省绍兴市)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为( )A .0.7米B .1.5米C .2.2米D .2.4米20.(2017浙江省绍兴市)在探索“尺规三等分角”这个数学名题的过程中,曾利用了下图,该图中,四边形ABCD 是矩形,E 是BA 延长线上一点,F 是CE 上一点,∠ACF =∠AFC ,∠F AE =∠FEA .若∠ACB =21°,则∠ECD 的度数是( )A .7°B .21°C .23°D .24°21.(2017湖北省襄阳市)如图,在△ABC 中,∠ACB =90°,∠A =30°,BC =4,以点C 为圆心,CB 长为半径作弧,交AB 于点D ;再分别以点B 和点D 为圆心,大于12BD 的长为半径作弧,两弧相交于点E ,作射线CE 交AB 于点F ,则AF 的长为( )A .5B .6C .7D .822.(2017湖北省襄阳市)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若()221a b +=,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .623.(2017重庆市B 卷)已知△ABC ∽△DEF ,且相似比为1:2,则△ABC 与△DEF 的面积比为( ) A .1:4 B .4:1 C .1:2 D .2:124.(2017重庆市B 卷)如图,已知点C 与某建筑物底端B 相距306米(点C 与点B 在同一水平面上),某同学从点C 出发,沿同一剖面的斜坡CD 行走195米至坡顶D 处,斜坡CD 的坡度(或坡比)i =1:2.4,在D 处测得该建筑物顶端A 的俯视角为20°,则建筑物AB 的高度约为(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)( )A .29.1米B .31.9米C .45.9米D .95.9米 二、填空题目25.(2017四川省南充市)如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C旋转,给出下列结论:①BE =DG ;②BE ⊥DG ;③222222DE BG a b +=+,其中正确结论是(填序号)26.(2017四川省广安市)如图,Rt △ABC 中,∠C =90°,BC =6,AC =8,D 、E 分别为AC 、AB 的中点,连接DE ,则△ADE 的面积是 .27.(2017四川省眉山市)如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB =8cm ,DC =2cm ,则OC = cm .28.(2017四川省绵阳市)将形状、大小完全相同的两个等腰三角形如图所示放置,点D 在AB 边上,△DEF 绕点D 旋转,腰DF 和底边DE 分别交△CAB 的两腰CA ,CB 于M ,N 两点,若CA =5,AB =6,AB =1:3,则MD +12MA DN 的最小值为 .29.(2017四川省绵阳市)如图,过锐角△ABC 的顶点A 作DE ∥BC ,AB 恰好平分∠DAC ,AF 平分∠EAC 交BC 的延长线于点F .在AF 上取点M ,使得AM=13AF ,连接CM 并延长交直线DE 于点H .若AC =2,△AMH 的面积是112,则1tan ∠ACH的值是 .30.(2017四川省达州市)△ABC 中,AB =5,AC =3,AD 是△ABC 的中线,设AD 长为m ,则m 的取值范围是 .31.(2017山东省枣庄市)在矩形ABCD 中,∠B 的角平分线BE 与AD 交于点E ,∠BED 的角平分线EF 与DC 交于点F ,若AB =9,DF =2FC ,则BC = .(结果保留根号)32.(2017山西省)如图,已知△ABC 三个顶点的坐标分别为A (0,4),B (-1,1),C (-2,2).将△ABC 向右平移4个单位,得到A B C '''∆,点A 、B 、C 的对应点分别为,,A B C ''',再将A B C '''∆绕点B '顺时针旋转90,得到A B C ''''''∆,点,,A B C '''的对应点分别为,,A B C '''''',则点A ''的坐标为 .33.(2017山西省)如图,创新小组要测量公园内一棵树的高度AB ,其中一名小组成员站在距离树10米的点E 处,测得树顶A 的仰角为54°.已知测角仪的架高CE =1.5米,则这颗树的高度为米(结果保留一位小数.参考数据:sin 540.8090=,cos540.5878=,tan 54 1.3764=).34.(2017江苏省盐城市)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1= °.35.(2017江苏省连云港市)如图,已知等边三角形OAB 与反比例函数ky x(k >0,x >0)的图象交于A 、B 两点,将△OAB 沿直线OB 翻折,得到△OCB ,点A 的对应点为点C ,线段CB 交x 轴于点D ,则BDDC 的值为 .(已知sin15624)36.(2017河北省)如图,A ,B 两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C ,连接CA ,CB ,分别延长到点M ,N ,使AM =AC ,BN =BC ,测得MN =200m ,则A ,B 间的距离为 m .37.(2017浙江省丽水市)等腰三角形的一个内角为100°,则顶角的度数是 .38.(2017浙江省丽水市)我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD 的边长为14,正方形I J KL 的边长为2,且I J ∥AB ,则正方形EFGH 的边长为.39.(2017浙江省绍兴市)如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F.若小敏行走的路程为3100m,则小聪行走的路程为m.40.(2017浙江省绍兴市)以Rt△ABC的锐角顶点A为圆心,适当长为半径作弧,与边AB、AC各相交于一点,再分别以两个交点为圆心,适当长为半径作弧,过两弧的交点与点A作直线,与边BC交于点D.若∠ADB=60°,点D到AC的距离为2,则AB的长为.41.(2017湖北省襄阳市)在半径为1的⊙O中,弦AB、AC的长分别为1,则∠BAC的度数为.42.(2017湖北省襄阳市)如图,在△ABC中,∠ACB=90°,点D,E分别在AC,BC上,且∠CDE=∠B,将△CDE沿DE折叠,点C恰好落在AB边上的点F处.若AC=8,AB=10,则CD的长为.三、解答题43.(2017四川省南充市)如图,DE⊥AB,CF⊥AB,垂足分别是点E、F,DE=CF,AE=BF,求证:AC∥BD.44.(2017四川省广安市)如图,四边形ABCD是正方形,E、F分别是了AB、AD上的一点,且BF⊥CE,垂足为G,求证:AF=BE.45.(2017四川省广安市)如图,线段AB、CD分别表示甲乙两建筑物的高,BA⊥AD,CD⊥DA,垂足分别为A、D.从D点测到B点的仰角α为60°,从C点测得B点的仰角β为30°,甲建筑物的高AB=30米(1)求甲、乙两建筑物之间的距离AD.(2)求乙建筑物的高CD.46.(2017四川省广安市)如图,已知AB是⊙O的直径,弦CD与直径AB相交于点F.点E在⊙O外,做直线AE,且∠EAC=∠D.(1)求证:直线AE是⊙O的切线.(2)若∠BAC=30°,BC=4,cos∠BAD=34,CF=103,求BF的长.47.(2017四川省眉山市)在如图的正方形网格中,每一个小正方形的边长为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(﹣4,6),(﹣1,4).(1)请在图中的网格平面内建立平面直角坐标系;(2)请画出△ABC关于x轴对称的△A1B1C1;(3)请在y轴上求作一点P,使△PB1C的周长最小,并写出点P的坐标.48.(2017四川省眉山市)如图,为了测得一棵树的高度AB,小明在D处用高为1m的测角仪CD,测得树顶A的仰角为45°,再向树方向前进10m,又测得树顶A的仰角为60°,求这棵树的高度AB.49.(2017四川省眉山市)如图,点E是正方形ABCD的边BC延长线上一点,连结DE,过顶点B作BF⊥DE,垂足为F,BF分别交AC于H,交BC于G.(1)求证:BG=DE;(2)若点G 为CD 的中点,求HGGF 的值.50.(2017四川省绵阳市)如图,已知AB 是圆O 的直径,弦CD ⊥AB ,垂足为H ,与AC 平行的圆O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F ,连接AF 交CD 于点N . (1)求证:CA =CN ;(2)连接DF ,若cos ∠DF A =45,AN=,求圆O 的直径的长度.51.(2017四川省达州市)如图,在△ABC 中,点O 是边AC 上一个动点,过点O 作直线EF ∥BC 分别交∠ACB 、外角∠ACD 的平分线于点E 、F . (1)若CE =8,CF =6,求OC 的长;(2)连接AE 、AF .问:当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?并说明理由.52.(2017四川省达州市)如图,信号塔PQ 座落在坡度i =1:2的山坡上,其正前方直立着一警示牌.当太阳光线与水平线成60°角时,测得信号塔PQ 落在斜坡上的影子QN 长为25米,落在警示牌上的影子MN 长为3米,求信号塔PQ 的高.(结果不取近似值)53.(2017四川省达州市)如图,△ABC 内接于⊙O ,CD 平分∠ACB 交⊙O 于D ,过点D 作PQ ∥AB 分别交CA 、CB 延长线于P 、Q ,连接BD . (1)求证:PQ 是⊙O 的切线; (2)求证:BD 2=AC •BQ ;(3)若AC 、BQ 的长是关于x 的方程4x mx +=的两实根,且tan ∠PCD =13,求⊙O 的半径.54.(2017山东省枣庄市)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (2,2),B (4,0),C (4,﹣4).(1)请在图中,画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请在图中y 轴右侧,画出△A 2B 2C 2,并求出∠A 2C 2B 2的正弦值.55.(2017山东省济宁市)如图,已知⊙O 的直径AB =12,弦AC =10,D 是BC 的中点,过点D作DE⊥AC,交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求AE的长.56.(2017山西省)一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB=∠BCD=90°,∠A=60°,∠CBD=45°.E为AB的中点,过点E作EF⊥CD于点F.若AD=4cm,则EF的长为cm.57.(2017山西省)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C 的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.58.(2017广东省)如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.59.(2017广东省)如图,在平面直角坐标系中,抛物线b ax x y ++-=2交x 轴于A (1,0),B (3,0)两点,点P 是抛物线上在第一象限内的一点,直线BP 与y 轴相交于点C .(1)求抛物线b ax x y ++-=2的解析式; (2)当点P 是线段BC 的中点时,求点P 的坐标; (3)在(2)的条件下,求sin ∠OCB 的值.60.(2017广东省)如图,AB 是⊙O 的直径,AB=E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF ⊥PC 于点F ,连接CB .(1)求证:CB 是∠ECP 的平分线; (2)求证:CF =CE ;(3)当34CF CP =时,求劣弧BC 的长度(结果保留π)61.(2017广东省)如图,在平面直角坐标系中,O 为原点,四边形ABCO 是矩形,点A ,C 的坐标分别是A (0,2)和C(0),点D 是对角线AC 上一动点(不与A ,C 重合),连结BD ,作DE ⊥DB ,交x 轴于点E ,以线段DE ,DB 为邻边作矩形BDEF . (1)填空:点B 的坐标为 ;(2)是否存在这样的点D ,使得△DEC 是等腰三角形?若存在,请求出AD 的长度;若不存在,请说明理由;(3)①求证:DEDB②设AD =x ,矩形BDEF 的面积为y ,求y 关于x 的函数关系式(可利用①的结论),并求出y 的最小值.62.(2017广西四市)如图,矩形ABCD 的对角线AC ,BD 相交于点O ,点E ,F 在BD 上,BE =DF . (1)求证:AE =CF ;(2)若AB =6,∠COD =60°,求矩形AB CD 的面积.63.(2017江苏省连云港市)如图,已知等腰三角形ABC 中,AB =AC ,点D 、E 分别在边AB .AC 上,且AD =AE ,连接BE 、CD ,交于点F .(1)判断∠ABE 与∠ACD 的数量关系,并说明理由; (2)求证:过点A 、F 的直线垂直平分线段BC .64.(2017江苏省连云港市)如图,湿地景区岸边有三个观景台A 、B 、C ,已知AB =1400米,AC =1000米,B 点位于A 点的南偏西60.7°方向,C 点位于A 点的南偏东66.1°方向. (1)求△ABC 的面积;(2)景区规划在线段BC 的中点D 处修建一个湖心亭,并修建观景栈道AD ,试求A 、D 间的距离.(结果精确到0.1米)(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin60.7°≈0.87,c os60.7°≈0.49,sin66.1°≈0.91,cos66.1°≈0.41≈1.414).65.(2017河北省)平面内,如图,在ABCD 中,AB =10,AD =15,tan A=43.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90°得到线段PQ .(1)当∠DPQ =10°时,求∠APB 的大小;(2)当tan ∠A tan A =3:2时,求点Q 与点B 间的距离(结果保留根号); (3)若点Q 恰好落在ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留).66.(2017浙江省丽水市)如图是某小区的一个健身器材,已知BC =0.15m ,AB =2.70m ,∠BOD =70°,求端点A 到地面CD 的距离(精确到0.1m ).(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)67.(2017浙江省丽水市)如图,在Rt △ABC 中,∠C =Rt ∠,以BC 为直径的⊙O 交AB 于点D ,切线DE 交AC 于点E .(1)求证:∠A =∠ADE ;(2)若AD =16,DE =10,求BC 的长.68.(2017浙江省丽水市)如图1,在△ABC 中,∠A =30°,点P 从点A 出发以2c m /s 的速度沿折线A ﹣C ﹣B 运动,点Q 从点A 出发以a (c m /s )的速度沿AB 运动,P ,Q 两点同时出发,当某一点运动到点B 时,两点同时停止运动.设运动时间为x (s ),△APQ 的面积为y (cm 2),y 关于x 的函数图象由C 1,C 2两段组成,如图2所示.(1)求a 的值;(2)求图2中图象C 2段的函数表达式;(3)当点P 运动到线段BC 上某一段时△APQ 的面积,大于当点P 在线段AC 上任意一点时△APQ 的面积,求x 的取值范围.69.(2017浙江省丽水市)如图,在矩形ABCD 中,点E 是AD 上的一个动点,连接BE ,作点A 关于BE 的对称点F ,且点F 落在矩形ABCD 的内部,连接AF ,BF ,EF ,过点F 作GF ⊥AF 交AD 于点G ,设ADn AE .(1)求证:AE =GE ;(2)当点F 落在AC 上时,用含n 的代数式表示ADAB 的值;(3)若AD =4AB ,且以点F ,C ,G 为顶点的三角形是直角三角形,求n 的值.70.(2017浙江省台州市)如图是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧OB 与墙MN 平行且距离为0.8米,已知小汽车车门宽AO 为1.2米,当车门打开角度∠AOB 为40°时,车门是否会碰到墙?请说明理由.(参考数据:sin40°≈0.64;cos40°≈0.77;tan40°≈0.84)71.(2017浙江省台州市)如图,已知等腰直角三角形ABC ,点P 是斜边BC 上一点(不与B ,C 重合),PE 是△ABP 的外接圆⊙O 的直径. (1)求证:△APE 是等腰直角三角形; (2)若⊙O 的直径为2,求22PC PB +的值.72.(2017浙江省台州市)在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程2520x x -+=,操作步骤是:第一步:根据方程的系数特征,确定一对固定点A (0,1),B (5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A ,另一条直角边恒过点B ;第三步:在移动过程中,当三角板的直角顶点落在x 轴上点C 处时,点C 的横坐标m 即为该方程的一个实数根(如图1);第四步:调整三角板直角顶点的位置,当它落在x 轴上另一点D 处时,点D 的横坐标n 即为该方程的另一个实数根.(1)在图2中,按照“第四步”的操作方法作出点D (请保留作出点D 时直角三角板两条直角边的痕迹); (2)结合图1,请证明“第三步”操作得到的m 就是方程2520x x -+=的一个实数根;(3)上述操作的关键是确定两个固定点的位置,若要以此方法找到一元二次方程20ax bx c ++= (a ≠0,24b ac -≥0)的实数根,请你直接写出一对固定点的坐标;(4)实际上,(3)中的固定点有无数对,一般地,当m 1,n 1,m 2,n 2与a ,b ,c 之间满足怎样的关系时,点P (m 1,n 1),Q (m 2,n 2)就是符合要求的一对固定点?73.(2017浙江省绍兴市)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C 测得教学楼顶部D 的仰角为18°,教学楼底部B 的俯角为20°,量得实验楼与教学楼之间的距离AB =30m . (1)求∠BCD 的度数.(2)求教学楼的高BD .(结果精确到0.1m ,参考数据:tan20°≈0.36,tan18°≈0.32)74.(2017浙江省绍兴市)已知△ABC ,AB =AC ,D 为直线BC 上一点,E 为直线AC 上一点,AD =AE ,设∠BAD =α,∠CDE =β.(1)如图,若点D 在线段BC 上,点E 在线段AC 上.①如果∠ABC =60°,∠ADE =70°, 那么α=_______,β=_______. ②求α、β之间的关系式.(2)是否存在不同于以上②中的α、β之间的关系式?若存在,求出这个关系式,若不存在,请说明理由.75.(2017重庆市B 卷)如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数ky x(k ≠0)的图象交于A 、B 两点,与x 轴交于点C ,过点A 作AH ⊥x 轴于点H ,点O 是线段CH 的中点,AC=cos ∠ACH,点B 的坐标为(4,n )(1)求该反比例函数和一次函数的解析式; (2)求△BCH 的面积.76.(2017重庆市B 卷)如图,△ABC 中,∠ACB =90°,AC =BC ,点E 是AC 上一点,连接BE . (1)如图1,若AB =42,BE =5,求AE 的长;(2)如图2,点D 是线段BE 延长线上一点,过点A 作AF ⊥BD 于点F ,连接CD 、CF ,当AF =DF 时,求证:DC =BC .祝你考试成功!祝你考试成功!。
一、选择题1.(2017天津,第11题,3分)如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC2.(2017滨州,第11题,3分)如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN 恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A.4B.3C.2D.13.(2017广西河池市,第12题,3分)已知等边△ABC的边长为12,D是AB上的动点,过D作DE⊥AC 于点E,过E作EF⊥BC于点F,过F作FG⊥AB于点G.当G与D重合时,AD的长是()A.3B.4C.8D.94.(2017江苏省宿迁市,第8题,3分)如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=2cm,点P在边AC上,从点A向点C移动,点Q在边CB上,从点C向点B移动.若点P,Q均以1c m/s的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,则线段PQ的最小值是()A.20cm B.18cm C.25cm D.32cm5.(2017江苏省无锡市,第10题,3分)如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A.2B.54C.53D.756.(2017浙江省宁波市,第11题,4分)如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E作EF∥BC,分别交BD,CD于G,F两点.若M,N分别是DG,CE的中点,则MN的长为()A.3B.23C.13D.47.(2017浙江省杭州市,第10题,3分)如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3B.2x﹣y2=9C.3x﹣y2=15D.4x﹣y2=218.(2017湖北省武汉市,第10题,3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A .4B .5C .6D .79.(2017湖北省鄂州市,第10题,3分)如图四边形ABCD 中,AD ∥BC ,∠BCD =90°,AB =BC +AD ,∠DAC =45°,E 为CD 上一点,且∠BAE =45°.若CD =4,则△ABE 的面积为( )A .712B .724C . 748D .750 10.(2017贵州省毕节市,第15题,3分)如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,AD 平分∠CAB 交BC 于D 点,E ,F 分别是AD ,AC 上的动点,则CE +EF 的最小值为( )A .340B .415C .524 D .6 11.(2017辽宁省营口市,第7题,3分)如图,在△ABC 中,AB =AC ,E ,F 分别是BC ,AC 的中点,以AC 为斜边作Rt △ADC ,若∠CAD =∠CAB =45°,则下列结论不正确的是( )A .∠ECD =112.5°B .DE 平分∠FDC C .∠DEC =30°D .AB 2CD12.(2016浙江省湖州市)如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是()A.4B.174C.32D.2513.(2016湖北省武汉市)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC 为等腰三角形,则满足条件的点C的个数是()A.5B.6C.7D.814.(2016贵州省六盘水市)如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n的度数为()A.702nB.1702n+C.1702n-D.2702n+15.(2016山东省威海市)如图,在△ABC中,∠B=∠C=36°,AB的垂直平分线交BC于点D,交AB于点H,AC的垂直平分线交BC于点E,交AC于点G,连接AD,AE,则下列结论错误的是()A.512BDBC=B.AD,AE将∠BAC三等分C.△ABE≌△ACD D.S△ADH=S△CEG16.(2016山东省德州市)在矩形ABCD中,AD=2AB=4,E是AD的中点,一块足够大的三角板的直角顶点与点E重合,将三角板绕点E旋转,三角板的两直角边分别交AB,BC(或它们的延长线)于点M,N,设∠AEM=α(0°<α<90°),给出下列四个结论:①AM =CN ;②∠AME =∠BNE ;③BN ﹣AM =2;④S △EMN =22cos . 上述结论中正确的个数是( )A .1B .2C .3D .417.(2016山东省淄博市)如图,直线l 1∥l 2∥l 3,一等腰直角三角形ABC 的三个顶点A ,B ,C 分别在l 1,l 2,l 3上,∠ACB =90°,AC 交l 2于点D ,已知l 1与l 2的距离为1,l 2与l 3的距离为3,则AB BD的值为( )A .425B .34C .528D .20223 18.(2016贵州省铜仁市)如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CE =2DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③EG =DE +BG ;④AG ∥CF ;⑤S △FGC =3.6.其中正确结论的个数是( )A .2B .3C .4D .519.(2016内蒙古包头市)如图,在四边形ABCD 中,AD ∥BC ,∠ABC =90°,E 是AB 上一点,且DE ⊥CE .若AD =1,BC =2,CD =3,则CE 与DE 的数量关系正确的是( )A.CE=3DE B.CE=2DE C.CE=3DE D.CE=2DE20.(2016四川省达州市)如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为()A.2B.3C.4D.521.(2016山东省东营市)在△ABC中,AB=10,AC=210,BC边上的高AD=6,则另一边BC等于()A.10B.8C.6或10D.8或1022.(2016山东省淄博市)如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH 的长为()A.835B.22C.145D.105223.(2016山东省淄博市)如图是由边长相同的小正方形组成的网格,A,B,P,Q四点均在正方形网格的格点上,线段AB,PQ相交于点M,则图中∠QMB的正切值是()A.12B.1C.3D.224.(2016江苏省无锡市)如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是()A.7B.22C.3D.2325.(2016浙江省舟山市)如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是()A.5B.136C.1D.5626.(2016湖北省武汉市)如图,在等腰Rt△ABC中,AC=BC=22,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是()A2πB.πC.22D.227.(2016贵州省黔东南州)如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB6,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D 、E ,则CD +CE =( )A .2B .3C .2D .628.(2016福建省泉州市)如图,已知点A (﹣8,0),B (2,0),点C 在直线344y x =-+上,则使△ABC 是直角三角形的点C 的个数为( )A .1B .2C .3D .429.(2016青海省)如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…,按照此规律继续下去,则S 9的值为( )A .61()2 B .71()2 C .62(2 D .72()230.(2015绵阳)如图,在△ABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC =( )A .118°B .119°C .120°D .121°31.(2015广州)已知2是关于x 的方程2230x mx m -+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( )A .10B .14C .10或14D .8或1032.(2015百色)△ABC 的两条高的长度分别为4和12,若第三条高也为整数,则第三条高的长度是( )A .4B .4或5C .5或6D .633.(2015淄博)如图,在四边形ABCD 中,DC ∥AB ,CB ⊥AB ,AB =AD ,CD =12AB ,点E 、F 分别为AB 、AD 的中点,则△AEF 与多边形BCDFE 的面积之比为( )A .17B .16C .15D .1434.(2015泰州)如图,△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线分别交AC 、AD 、AB 于点E 、O 、F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对35.(2015荆门)如图,点A ,B ,C 在一条直线上,△ABD ,△BCE 均为等边三角形,连接AE 和CD ,AE 分别交CD ,BD 于点M ,P ,CD 交BE 于点Q ,连接PQ ,BM ,下面结论:①△ABE ≌△DBC ;②∠DMA =60°;③△BPQ 为等边三角形;④MB 平分∠AMC ,其中结论正确的有( )A.1个B.2个C.3个D.4个36.(2015柳州)如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=12GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()A.1个B.2个C.3个D.4个37.(2015资阳)如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13cm B.261cm C.61cm D.234cm38.(2015荆门)如图,在△ABC中,∠BAC=Rt∠,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为()A .13B .21-C .23-D .1439.(2015天水)如图,在四边形ABCD 中,∠BAD =∠ADC =90°,AB =AD =22,CD =2,点P 在四边形ABCD 的边上.若点P 到BD 的距离为32,则点P 的个数为( )A .2B .3C .4D .540.(2015龙东)△ABC 中,AB =AC =5,BC =8,点P 是BC 边上的动点,过点P 作PD ⊥AB 于点D ,PE ⊥AC 于点E ,则PD +PE 的长是( ) A .4.8 B .4.8或3.8 C .3.8 D .541.(2015安顺)如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC =3,则折痕CE 的长为( )A .32B .323C .3D .6 42.(2015烟台)如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…按照此规律继续下去,则S 2015的值为( )A .20122()2 B .20132()2 C .20121()2 D .20131()243.(2015烟台)等腰三角形边长分别为a ,b ,2,且a ,b 是关于x 的一元二次方程2610x x n -+-=的两根,则n 的值为( )A .9B .10C .9或10D .8或10 44.(2015眉山)如图,A 、B 是双曲线xky =上的两点,过A 点作AC ⊥x 轴,交OB 于D 点,垂足为C .若△ADO 的面积为1,D 为OB 的中点,则k 的值为( ) A .34 B .38C .3D .445.(2015绵阳)如图,D 是等边△ABC 边AB 上的一点,且AD :D B =1:2,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E ,F 分别在AC 和BC 上,则CE :C F =( )A .34 B .45 C .56 D .6746.(2015常德)若两个扇形满足弧长的比等于它们半径的比,则这称这两个扇形相似.如图,如果扇形AOB 与扇形A 1O 1B 1是相似扇形,且半径OA :O 1A 1=k (k 为不等于0的常数).那么下面四个结论:①∠AOB =∠A 1O 1B 1;②△AOB ∽△A 1O 1B 1;③11ABkA B =;④扇形AOB 与扇形A 1O 1B 1的面积之比为2k . 成立的个数为( )A .1个B .2个C .3个D .4个47.(2015黔西南州)在数轴上截取从0到3的对应线段AB ,实数m 对应AB 上的点M ,如图1;将AB 折成正三角形,使点A 、B 重合于点P ,如图2;建立平面直角坐标系,平移此三角形,使它关于y 轴对称,且点P 的坐标为(0,2),PM 的延长线与x 轴交于点N (n ,0),如图3,当m =3时,n 的值为( ) A .423- B .432- C .332-D .33248.(2015宁波)如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A 2处,称为第1次操作,折痕DE 到BC 的距离记为h 1;还原纸片后,再将△ADE 沿着过AD 中点D 1的直线折叠,使点A 落在DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为h 2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D 2014E 2014到BC 的距离记为h 2015,到BC 的距离记为h 2015.若h 1=1,则h 2015的值为( )A .201521 B .201421 C .2015211- D .2014212-二、填空题49.(2017四川省达州市,第14题,3分)△ABC 中,AB =5,AC =3,AD 是△ABC 的中线,设AD 长为m ,则m 的取值范围是 .50.(2017湖北省咸宁市,第16题,3分)如图,在Rt △ABC 中,BC =2,∠BAC =30°,斜边AB 的两个端点分别在相互垂直的射线OM 、ON 上滑动,下列结论: ①若C 、O 两点关于AB 对称,则OA =23; ②C 、O 两点距离的最大值为4; ③若AB 平分CO ,则AB ⊥CO ; ④斜边AB 的中点D 运动路径的长为2; 其中正确的是 (把你认为正确结论的序号都填上).51.(2017山东省威海市,第18题,3分)如图,△ABC 为等边三角形,AB =2.若P 为△ABC 内一动点,且满足∠P AB =∠ACP ,则线段PB 长度的最小值为 .52.(2017山东省淄博市,第17题,4分)设△ABC 的面积为1.如图1,分别将AC ,BC 边2等分,D 1,E 1是其分点,连接AE 1,BD 1交于点F 1,得到四边形CD 1F 1E 1,其面积S 1=13. 如图2,分别将AC ,BC 边3等分,D 1,D 2,E 1,E 2是其分点,连接AE 2,BD 2交于点F 2,得到四边形CD 2F 2E 2,其面积S 2=16; 如图3,分别将AC ,BC 边4等分,D 1,D 2,D 3,E 1,E 2,E 3是其分点,连接AE 3,BD 3交于点F 3,得到四边形CD3F3E3,其面积S3=1 10;…按照这个规律进行下去,若分别将AC,BC边(n+1)等分,…,得到四边形CD n E n F n,其面积S= .53.(2017山西省,第15题,3分)一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB=∠BCD=90°,∠A=60°,∠CBD=45°.E为AB的中点,过点E作EF⊥CD于点F.若AD=4cm,则EF的长为cm.54.(2017广西贵港市,第16题,3分)如图,点P在等边△ABC的内部,且PC=6,P A=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠P AP'的值为.55.(2017江苏省扬州市,第16题,3分)如图,把等边△A BC沿着D E折叠,使点A恰好落在BC边上的点P处,且DP⊥BC,若BP=4cm,则EC= cm.56.(2017河南省,第15题,3分)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=2+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C 为直角三角形,则BM的长为.57.(2017浙江省嘉兴市,第15题,4分)如图,把n个边长为1的正方形拼接成一排,求得tan∠BA1C=1,tan∠BA2C=13,tan∠BA3C=17,计算tan∠BA4C= ,…按此规律,写出tan∠BA n C= (用含n的代数式表示).58.(2017浙江省湖州市,第16题,4分)如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数1yx=和9yx=在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交1yx=的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是.59.(2017浙江省绍兴市,第16题,5分)如图,∠AOB=45°,点M、N在边OA上,OM=x,ON=x+4,点P是边OB上的点.若使点P、M、N构成等腰三角形的点P恰好有三个,则x的值是.60.(2017海南省,第18题,4分)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是.61.(2017湖北省孝感市,第16题,3分)如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数kyx(x>0)的图象经过A,B两点.若点A的坐标为(n,1),则k的值为.62.(2016河北省)如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°-7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=__ ___°.……若光线从点A发出后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=___ ____°.[来源:学63.(2016内蒙古包头市)如图,已知△ABC是等边三角形,点D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF,CF,连接BE并延长交CF于点G.下列结论:①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,则GF=2EG.其中正确的结论是.(填写所有正确结论的序号)64.(2016广西贺州市)如图,在△ABC中,分别以AC、BC为边作等边三角形ACD和等边三角形BCE,连接AE、BD交于点O,则∠AOB的度数为.65.(2016江苏省常州市)如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE面积的最大值是.66.(2016四川省达州市)如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连接BQ.若P A=6,PB=8,PC=10,则四边形APBQ的面积为.67.(2016辽宁省抚顺市)如图,△A1A2A3,△A4A5A5,△A7A8A9,…,△A3n﹣2A3n﹣1A3n(n为正整数)均为等边三角形,它们的边长依次为2,4,6,…,2n,顶点A3,A6,A9,…,A3n均在y轴上,点O是所有等边三角形的中心,则点A2016的坐标为.68.(2016黑龙江省龙东地区)如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C的坐标为.69.(2016福建省南平市)如图,正方形ABCD中,点E、F分别为AB、CD上的点,且AE=CF=13AB,点O为线段EF的中点,过点O作直线与正方形的一组对边分别交于P、Q两点,并且满足PQ=EF,则这样的直线PQ(不同于EF)有条.70.(2016贵州省遵义市)如图,AC⊥BC,AC=BC,D是BC上一点,连接AD,与∠ACB的平分线交于点E,连接BE.若S△ACE=67,S△BDE=314,则AC= .71.(2016辽宁省丹东市)如图,在平面直角坐标系中,A、B两点分别在x轴、y轴上,OA=3,OB=4,连接AB.点P在平面内,若以点P、A、B为顶点的三角形与△AOB全等(点P与点O不重合),则点P的坐标为.72.(2016内蒙古赤峰市)如图,正方形ABCD的面积为3cm2,E为BC边上一点,∠BAE=30°,F为AE 的中点,过点F作直线分别与AB,DC相交于点M,N.若MN=AE,则AM的长等于cm.73.(2016天津市)如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF的延长线的交点.(1)AE的长等于________;(2)若点P在线段AC上,点Q在线段BC上,且满足AP = PQ = QB,请在如图所示的网格中,用无刻度的直尺,画出线段PQ,并简要说明点P,Q的位置是如何找到的(不要求证明)________.74.(2016山东省泰安市)如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则△BOF的面积为.75.(2016山东省烟台市)如图,O为数轴原点,A,B两点分别对应﹣3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为.76.(2016山西省)如图,已知点C为线段AB的中点,CD⊥AB且CD=AB=4,连接AD,BE⊥AB,AE是DAB的平分线,与DC相交于点F,EH⊥DC于点G,交AD于点H,则HG的长为______.77.(2016广东省)如图,点P是四边形ABCD外接圆上任意一点,且不与四边形顶点重合,若AD是⊙O 的直径,AB=BC=CD.连接P A、P A、PC,若P A=a,则点A到PB和PC的距离之和AE+AF= .78.(2016广西桂林市)如图,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于H,点O是AB中点,连接OH,则OH= .79.(2016广西梧州市)如图,在坐标轴上取点A1(2,0),作x轴的垂线与直线y=2x交于点B1,作等腰直角三角形A1B1A2;又过点A2作x轴的垂线交直线y=2x交于点B2,作等腰直角三角形A2B2A3;…,如此反复作等腰直角三角形,当作到A n(n为正整数)点时,则A n的坐标是.80.(2016广西贵港市)如图,AB是半圆O的直径,C是半圆O上一点,弦AD平分∠BAC,交BC于点E,若AB=6,AD=5,则DE的长为.81.(2016江西省)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是.82.(2016湖北省孝感市)如图示我国汉代数学家赵爽在注解《周脾算经》时给出的“赵爽弦图”,图中的四个直角三角形是全等的,如果大正方形ABCD的面积是小正方形EFGH面积的13倍,那么tan∠ADE 的值为.83.(2016福建省莆田市)魏朝时期,刘徽利用下图通过“以盈补虚,出入相补”的方法,即“勾自乘为朱方,股自乘为青方,令出入相补,各从其类”,证明了勾股定理.若图中BF=1,CF=2,则AE的长为__________.84.(2016湖北省鄂州市)如图,AB=6,O是AB的中点,直线l经过点O,∠1=120°,P是直线l上一点,当△APB为直角三角形时,AP= .85.(2016辽宁省葫芦岛市)如图,点A1(2,2)在直线y=x上,过点A1作A1B1∥y轴交直线12y x=于点B1,以点A1为直角顶点,A1B1为直角边在A1B1的右侧作等腰直角△A1B1C1,再过点C1作A2B2∥y轴,分别交直线y=x和12y x=于A2,B2两点,以点A2为直角顶点,A2B2为直角边在A2B2的右侧作等腰直角△A2B2C2…,按此规律进行下去,则等腰直角△A n B n C n的面积为.(用含正整数n的代数式表示)86.(2015广东省)如图,△ABC三边的中线AD、BE、CF的公共点为G,若ABC 12S=△,则图中阴影部分的面积是.87.(2015昆明)如图,△ABC是等边三角形,高AD、BE相交于点H,BC=3BE上截取BG=2,以GE为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为.88.(2015福州)如图,在Rt△ABC中,∠ABC=90°,AB=BC=2,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是.89.(2015鄂尔多斯)如图,△ABC中,∠C=90°,CA=CB,点M在线段AB上,∠GMB=12∠A,BG⊥MG,垂足为G,MG与BC相交于点H.若MH=8cm,则BG= cm.90.(2015贺州)如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B、C重合),∠ADE=∠B=∠α,DE交AB于点E,且tan∠α=34.有以下的结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或214;④0<BE≤245,其中正确的结论是(填入正确结论的序号).91.(2015攀枝花)如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE 的最小值为.92.(2015淄博)如图,等腰直角三角形BDC 的顶点D 在等边三角形ABC 的内部,∠BDC =90°,连接AD ,过点D 作一条直线将△ABD 分割成两个等腰三角形,则分割出的这两个等腰三角形的顶角分别是 度.93.(2015庆阳)在底面直径为2cm ,高为3cm 的圆柱体侧面上,用一条无弹性的丝带从A 至C 按如图所示的圈数缠绕,则丝带的最短长度为 cm .(结果保留π)94.(2015南通)如图,矩形ABCD 中,F 是DC 上一点,BF ⊥AC ,垂足为E ,12AD AB ,△CEF 的面积为1S ,△AEB 的面积为2S ,则12S S 的值等于 .95.(2015扬州)如图,已知△ABC 的三边长为a 、b 、c ,且a <b <c ,若平行于三角形一边的直线l 将△ABC 的周长分成相等的两部分.设图中的小三角形①、②、③的面积分别为1S 、2S 、3S ,则1S 、2S 、3S 的大小关系是 .(用“<”号连接)96.(2015连云港)如图,在△ABC 中,∠BAC =60°,∠ABC =90°,直线l 1∥l 2∥l 3,l 1与l 2之间距离是1,l 2与l 3之间距离是2,且l 1,l 2,l 3分别经过点A ,B ,C ,则边AC 的长为 .97.(2015盐城)设△ABC 的面积为1,如图①,将边BC 、AC 分别2等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;…,依此类推,则S n 可表示为 .(用含n 的代数式表示,其中n 为正整数)98.(2015成都)已知菱形1111A B C D 的边长为2,111A B C =60°,对角线11A C ,11B D 相交于点O .以点O 为坐标原点,分别以1OA ,1OB 所在直线为x 轴、y 轴,建立如图所示的直角坐标系.以11B D 为对角线作菱形1212B C D A ∽菱形1111A B C D ,再以22A C 为对角线作菱形2222A B C D ∽菱形1212B C D A ,再以22B D 为对角线作菱形2323B C D A ∽菱形2222A B C D ,…,按此规律继续作下去,在x 轴的正半轴上得到点1A ,2A ,3A ,......,n A ,则点n A 的坐标为________.三、解答题99.(2017内蒙古赤峰市,第24题,12分)如图1,在△ABC中,设∠A、∠B、∠C的对边分别为a,b,c,过点A作AD⊥BC,垂足为D,会有sin∠C=ADAC,则S△ABC=12BC×AD=12×BC×AC sin∠C=12ab sin∠C,即S△ABC=12ab sin∠C同理S△ABC=12bc sin∠AS△ABC=12ac sin∠B通过推理还可以得到另一个表达三角形边角关系的定理﹣余弦定理:如图2,在△ABC中,若∠A、∠B、∠C的对边分别为a,b,c,则a2=b2+c2﹣2bc cos∠Ab2=a2+c2﹣2ac cos∠Bc2=a2+b2﹣2ab cos∠C用上面的三角形面积公式和余弦定理解决问题:(1)如图3,在△DEF中,∠F=60°,∠D、∠E的对边分别是3和8.求S△DEF和DE2.解:S△DEF=12EF×DF sin∠F= ;DE2=EF2+DF2﹣2EF×DF cos∠F= .(2)如图4,在△ABC中,已知AC>BC,∠C=60°,△ABC'、△BCA'、△ACB'分别是以AB、BC、AC 为边长的等边三角形,设△ABC、△ABC'、△BCA'、△ACB'的面积分别为S1、S2、S3、S4,求证:S1+S2=S3+S4.100.(2017四川省成都市,第27题,10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,做AD⊥BC于点D,则D为BC的中点,∠BAD=12∠BAC=60°,于是23BC BDAB AB==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠ADE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.101.(2017江苏省扬州市,第26题,10分)我们规定:三角形任意两边的“极化值”等于第三边上的中线和这边一半的平方差.如图1,在△ABC中,AO是BC边上的中线,AB与AC的“极化值”就等于AO2﹣BO2的值,可记为AB△AC=AO2﹣BO2.(1)在图1中,若∠BAC =90°,AB =8,AC =6,AO 是BC 边上的中线,则AB △AC = ,OC △OA = ; (2)如图2,在△ABC 中,AB =AC =4,∠BAC =120°,求AB △AC 、BA △BC 的值; (3)如图3,在△ABC 中,AB =AC ,AO 是BC 边上的中线,点N 在AO 上,且ON =13AO .已知AB △AC =14,BN △BA =10,求△ABC 的面积.102.(2017丽水,第23题,10分)如图1,在△ABC 中,∠A =30°,点P 从点A 出发以2c m /s 的速度沿折线A ﹣C ﹣B 运动,点Q 从点A 出发以a (c m /s )的速度沿AB 运动,P ,Q 两点同时出发,当某一点运动到点B 时,两点同时停止运动.设运动时间为x (s ),△APQ 的面积为y (cm 2),y 关于x 的函数图象由C 1,C 2两段组成,如图2所示.(1)求a 的值;(2)求图2中图象C 2段的函数表达式;(3)当点P 运动到线段BC 上某一段时△APQ 的面积,大于当点P 在线段AC 上任意一点时△APQ 的面积,求x 的取值范围.103.(2017浙江省台州市,第24题,14分)在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程2520x x -+=,操作步骤是:第一步:根据方程的系数特征,确定一对固定点A (0,1),B (5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A ,另一条直角边恒过点B ;第三步:在移动过程中,当三角板的直角顶点落在x 轴上点C 处时,点C 的横坐标m 即为该方程的一个实数根(如图1);第四步:调整三角板直角顶点的位置,当它落在x 轴上另一点D 处时,点D 的横坐标n 即为该方程的另一个实数根.(1)在图2中,按照“第四步”的操作方法作出点D (请保留作出点D 时直角三角板两条直角边的痕迹); (2)结合图1,请证明“第三步”操作得到的m 就是方程2520x x -+=的一个实数根;(3)上述操作的关键是确定两个固定点的位置,若要以此方法找到一元二次方程20ax bx c ++= (a ≠0,24b ac -≥0)的实数根,请你直接写出一对固定点的坐标;(4)实际上,(3)中的固定点有无数对,一般地,当m 1,n 1,m 2,n 2与a ,b ,c 之间满足怎样的关系时,点P (m 1,n 1),Q (m 2,n 2)就是符合要求的一对固定点?104.(2017湖北省荆门市,第24题,12分)已知:如图所示,在平面直角坐标系xOy 中,∠C =90°,OB =25,OC =20,若点M 是边OC 上的一个动点(与点O 、C 不重合),过点M 作MN ∥OB 交BC 于点N . (1)求点C 的坐标;(2)当△MCN 的周长与四边形OMNB 的周长相等时,求CM 的长;(3)在OB 上是否存在点Q ,使得△MNQ 为等腰直角三角形?若存在,请求出此时MN 的长;若不存在,请说明理由.105.(2017黑龙江省大庆市,第28题,9分)如图,直角△ABC 中,∠A 为直角,AB =6,AC =8.点P ,Q ,R 分别在AB ,BC ,CA 边上同时开始作匀速运动,2秒后三个点同时停止运动,点P 由点A 出发以每秒3个单位的速度向点B 运动,点Q 由点B 出发以每秒5个单位的速度向点C 运动,点R 由点C 出发以每秒4个单位的速度向点A 运动,在运动过程中:(1)求证:△APR,△BPQ,△CQR的面积相等;(2)求△PQR面积的最小值;(3)用t(秒)(0≤t≤2)表示运动时间,是否存在t,使∠PQR=90°?若存在,请直接写出t的值;若不存在,请说明理由.106.(2016广东省)如图,Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D,以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI=90°.若AC=a,求CI的长.107.(2016上海市)如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余切值.108.(2016山东省威海市)如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF.延长DB交EF于点N.(1)求证:A D=AF;(2)求证:B D=EF;(3)试判断四边形ABNE的形状,并说明理由.109.(2016山东省济南市)在学习了图形的旋转知识后,数学兴趣小组的同学们又进一步对图形旋转前后的线段之间、角之间的关系进行了探究.(一)尝试探究如图1,在四边形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,点E、F分别在线段BC、CD 上,∠EAF=30°,连接EF.(1)如图2,将△ABE绕点A逆时针旋转60°后得到△A′B′E′(A′B′与AD重合),请直接写出∠E′AF= 度,线段BE、EF、FD之间的数量关系为.(2)如图3,当但点E、F分别在线段BC、CD的延长线上时,其他条件不变,请探究线段BE、EF、FD 之间的数量关系,并说明理由.(二)拓展延伸如图4,在等边△ABC中,E、F是边BC上的两点,∠EAF=30°,BE=1,将△ABE绕点A逆时针旋转60°得到△A′B′E′(A′B′与AC重合),连接EE′,AF与EE′交于点N,过点A作AM⊥BC于点M,连接MN,求线段MN的长度.110.(2016山东省日照市)阅读理解:我们把满足某种条件的所有点所组成的图形,叫做符合这个条件的点的轨迹.例如:角的平分线是到角的两边距离相等的点的轨迹.问题:如图1,已知EF为△ABC的中位线,M是边BC上一动点,连接AM交EF于点P,那么动点P为线段AM中点.理由:∵线段EF为△ABC的中位线,∴EF∥BC,由平行线分线段成比例得:动点P为线段AM中点.由此你得到动点P的运动轨迹是:.知识应用:如图2,已知EF为等边△ABC边AB、AC上的动点,连结EF;若AF=BE,且等边△ABC的边长为8,求线段EF中点Q的运动轨迹的长.拓展提高:如图3,P为线段AB上一动点(点P不与点A、B重合),在线段AB的同侧分别作等边△APC和等边△PBD,连结AD、BC,交点为Q.(1)求∠AQB的度数;(2)若AB=6,求动点Q运动轨迹的长.111.(2016山东省泰安市)(1)已知:△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A=60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其它条件不变(如图②),(1)的结论是否成立,并说明理由;(3)若将(1)中的“若∠A=60°”改为“若∠A=90°”,其它条件不变,则EBAD的值是多少?(直接写出结论,不要求写解答过程)112.(2016内蒙古包头市)如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E、F 分别是AC、AB边上点,连接EF.(1)图①,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF=3S△EDF,求AE的长;(2)如图②,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,且使MF∥CA.①试判断四边形AEMF的形状,并证明你的结论;②求EF的长;(3)如图③,若FE的延长线与BC的延长线交于点N,CN=1,CE=47,求AFBF的值.113.(2016北京市)在等边△ABC中:(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有P A=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明P A=PM,只需证△APM是等边三角形;想法2:在BA上取一点N,使得BN=BP,要证明P A=PM,只需证△ANP≌△PCM;。
直角三角形----知识讲解(提高)【学习目标】1. 掌握勾股定理的内容及证明方法、勾股定理的逆定理及其应用.理解原命题与其逆命题,原定理与其逆定理的概念及它们之间的关系.2. 能够运用勾股定理解决简单的实际问题,会运用方程思想解决问题;能利用勾股定理的逆定理,由三边之长判断一个三角形是否是直角三角形.3. 能够熟练地掌握直角三角形的全等判定方法(HL )及其应用.【要点梳理】要点一、勾股定理直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为a b ,,斜边长为c ,那么222a b c +=.要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目中已知线段的长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.(3)理解勾股定理的一些变式:222a c b =-,222b c a =-, ()222c a b ab =+-. (4)勾股数:满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助:① 3、4、5; 5、12、13; 8、15、17; 7、24、25; 9、40、41……② 如果a b c 、、是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形.③22121n n n -+,,(1,n n >是自然数)是直角三角形的三条边长;④2222,21,221n n n n n ++++(n 是自然数)是直角三角形的三条边长; ⑤2222,,2m n m n mn -+ (,m n m n >、是自然数)是直角三角形的三条边长. 要点二、勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.图(1)中,所以.方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.图(2)中,所以.方法三:如图(3)所示,将两个直角三角形拼成直角梯形.,所以.要点三、勾股定理的逆定理 如果三角形的三条边长a b c ,,,满足222a b c +=,那么这个三角形是直角三角形. 要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点四、如何判定一个三角形是否是直角三角形(1) 首先确定最大边(如c ).(2) 验证2c 与22a b +是否具有相等关系.若222c a b =+,则△ABC 是∠C =90°的直角三角形;若222c a b ≠+,则△ABC 不是直角三角形.要点诠释:当222a b c +<时,此三角形为钝角三角形;当222a b c +>时,此三角形为锐角三角形,其中c 为三角形的最大边.要点五、互逆命题与互逆定理如果两个命题的题设与结论正好相反,则称它们为互逆命题.如果把其中一个叫原命题,则另一个叫做它的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.要点诠释:原命题正确,逆命题未必正确;原命题不正确,其逆命题也不一定错误;正确的命题我们称为真命题,错误的命题我们称它为假命题.一个定理是真命题,每一个定理不一定有逆定理,如果这个定理存在着逆定理,则一定是真命题.要点六、直角三角形全等的判定(HL )在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简 称“斜边、直角边”或“HL ”).这个判定方法是直角三角形所独有的,一般三角形不具备. 要点诠释:(1)“HL ”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS 、ASA 、AAS 、SSS 、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt ”.【典型例题】类型一、勾股定理1、已知直角三角形斜边长为2,周长为2+【思路点拨】欲求直角三角形的面积,只需求两直角边之积,而由已知得两直角边之和为4,于是可转化为用方程求解.【答案与解析】解:设这个直角三角形的两直角边长分别为a b 、,则222222a b a b ⎧++=+⎪⎨+=⎪⎩即224a b a b ⎧+=⎪⎨+=⎪⎩①②将①两边平方,得2226a ab b ++= ③ ③-②,得22ab =,所以1122ab = 因此这个直角三角形的面积为12. 【总结升华】此题通过设间接未知数a b 、,通过变形直接得出12ab 的值,而不需要分别求出a b 、 的值.本题运用了方程思想解决问题.2、(2015春•黔南州期末)长方形纸片ABCD 中,AD=4cm ,AB=10cm ,按如图方式折叠,使点B 与点D 重合,折痕为EF ,求DE 的长.【思路点拨】在折叠的过程中,BE=DE .从而设BE 即可表示AE .在直角三角形ADE 中,根据勾股定理列方程即可求解.【答案与解析】解:设DE=xcm ,则BE=DE=x ,AE=AB ﹣BE=10﹣x ,△ADE 中,DE 2=AE 2+AD 2,即x 2=(10﹣x )2+16. ∴x=(cm ).答:DE 的长为cm.【总结升华】注意此类题中,要能够发现折叠的对应线段相等.类型二、勾股定理的逆定理3、如图所示,四边形ABCD 中,AB ⊥AD ,AB =2,AD =CD =3,BC =5,求∠ADC 的度数.【答案与解析】解:∵ AB ⊥AD ,∴ ∠A =90°,在Rt △ABD 中,22222216BD AB AD =+=+=.∴ BD =4,∴ 12AB BD =,可知∠ADB =30°, 在△BDC 中,22216325BD CD +=+=,22525BC ==,∴ 222BD CD BC +=,∴ ∠BDC =90°,∴ ∠ADC =∠ADB+∠BDC =30°+90°=120°.【总结升华】利用勾股定理的逆定理时,条件是三角形的三边长,结论是直角三角形,即由边的条件得到角的结论,所以在几何题中需要进行边角的转换时要联想勾股定理的逆定理. 举一反三:【高清课堂 勾股定理逆定理 例4】【变式1】△ABC 三边a b c ,,满足222338102426a b c a b c +++=++,则△ABC 是( )A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形【答案】D ;提示:由题意()()()222512130a b c -+-+-=,51213a b c ===,,,因为222a b c +=,所以△ABC 为直角三角形.【变式2】(2015春•厦门校级期末)在四边形ABCD 中,AB=AD=2,∠A=60°,BC=2,CD=4.求∠ADC 的度数.【答案】解:连接BD ,∵AB=AD=2,∠A=60°,∴△ABD 是等边三角形,∴BD=2,∠ADB=60°, ∵BC=2,CD=4,则BD 2+CD 2=22+42=20,BC 2=(2)2=20, ∴BD 2+CD 2=BC 2,∴∠BDC=90°,∴∠ADC=150°.类型三、勾股定理、逆定理的实际应用4、如图所示,在一棵树的10m 高的B 处有两只猴子,一只爬下树走到离树20m 处的池塘A 处,另外一只爬到树顶D 后直接跃到A 处,距离的直线计算,如果两只猴子所经过的距离相等,试问这棵树有多高?【思路点拨】其中一只猴子从B →C →A 共走了(10+20)=30m ,另一只猴子从B →D →A 也共走了30m ,并且树垂直于地面,于是这个问题可化归到直角三角形中利用勾股定理解决.【答案与解析】解:设树高CD 为x ,则BD =x -10,AD =30-(x -10)=40-x ,在Rt △ACD 中,22220(40)x x +=-,解得:x =15.答:这棵树高15m .【总结升华】本题利用距离相等用未知数来表示出DC 和DA ,然后利用勾股定理作等量关系列方程求解.举一反三:【变式】如图①,有一个圆柱,它的高等于12cm ,底面半径等于3cm ,在圆柱的底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点的食物,需要爬行的最短路程是多少?(π取3)【答案】解:如图②所示,由题意可得:12AA '=,12392A B π'=⨯⨯= 在Rt △AA ′B 中,根据勾股定理得: 22222129225AB AA A B ''=+=+=则AB =15.所以需要爬行的最短路程是15cm .5、(2015春•武昌区期中)某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口1小时后相距20海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?【答案与解析】解:1小时“远航”号的航行距离:OB=16×1=16海里;1小时“海天”号的航行距离:OA=12×1=12海里,因为AB=20海里,所以AB 2=OB 2+OA 2,即202=162+122,所以△OAB 是直角三角形,又因为∠1=45°,所以∠2=45°,故“海天”号沿西北方向航行或东南方向航行.【总结升华】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.类型四、原命题与逆命题6、下列命题中,逆命题错误的是()A.平行四边形的对角线互相平分B.有两对邻角互补的四边形是平行四边形C.平行四边形的一组对边平行,另一组对边相等D.两组对边分别相等的四边形是平行四边形【答案】C;【解析】解:A的逆命题是:对角线互相平分的四边形是平行四边形.由平行四边形的判定可知这是真命题;B的逆命题是:平行四边形的两对邻角互补,由平行四边形的性质可知这是真命题;C的逆命题是:一组对边平行,另一组对边相等的四边形是平行四边形,也可能是等腰梯形,故是错误的;D的逆命题是:平行四边形的两组对边分别相等地,由平行四边形的性质可知这是真命题;故选C.【总结升华】分别写出每个命题的逆命题,再判断其真假即可.此题主要考查学生对逆命题的定义的理解,要求学生对基础知识牢固掌握.举一反三:【变式】下列命题中,逆命题是真命题的是()A.对顶角相等B.如果两个实数相等,那么它们的平方数相等C.等腰三角形两底角相等D.两个全等三角形的对应角相等【答案】C;解:A的逆命题是:相等的角是对顶角是假命题,故本选项错误,B的逆命题是:如果两实数的平方相等,那么两实数相等是假命题,故本选项错误,C的逆命题是:两底角相等的三角形是等腰三角形是真命题,故本选项正确,D的逆命题是:对角线相等的两个三角形是全都三角形是假命题,故本选项错误,故选C.类型五、直角三角形全等的判定——“HL”7、已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.求证:AD=AE.【思路点拨】证明线段相等,可证线段所在的三角形全等,结合本题,证△ADB≌△AEB即可.【答案与解析】 证明:∵AB=AC ,点D 是BC 的中点,∴∠ADB=90°,∵AE ⊥EB ,∴∠E=∠ADB=90°,∵AB 平分∠DAE ,∴∠EAB=∠DAB ;在△ADB 与△AEB 中,90EAB DAB E ADB ABAB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△ADB ≌△AEB (AAS ),∴AD=AE .【总结升华】此题考查线段相等,可以通过全等三角形来证明,要判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.8、如图,已知在△ABC 中,AB=AC ,∠BAC=90°,分别过B 、C 向过A 的直线作垂线,垂足分别为E 、F .(1)如图①过A 的直线与斜边BC 不相交时,求证:EF=BE+CF ;(2)如图②过A 的直线与斜边BC 相交时,其他条件不变,若BE=10,CF=3,求:FE 长.【答案与解析】(1)证明:∵BE ⊥EA ,CF ⊥AF ,∴∠BAC=∠BEA=∠CFE=90°,∴∠EAB+∠CAF=90°,∠EBA+∠EAB=90°,∴∠CAF=∠EBA ,在△ABE 和△CAF 中,∠BEA=∠AFC=90°,∠EBA=∠CAF ,AB=AC ,∴△ABE ≌△CAF .∴EA=FC ,BE=AF .∴EF=EA+AF .(2)解:∵BE ⊥EA ,CF ⊥AF ,∴∠BAC=∠BEA=∠CFE=90°,∴∠EAB+∠CAF=90°,∠ABE+∠EAB=90°,∴∠CAF=∠ABE,在△ABE和△CAF中,∠BEA=∠AFC=90°,∠EBA=∠CAF,AB=AC,∴△ABE≌△CAF.∴EA=FC=3,BE=AF=10.∴EF=AF-CF=10-3=7.【总结升华】此题根据已知条件容易证明△BEA≌△AFC,然后利用对应边相等就可以证明题目的结论;(2)根据(1)知道△BEA≌△AFC仍然成立,再根据对应边相等就可以求出EF 了.此题主要考查了全等三角形的性质与判定,利用它们解决问题,经常用全等来证线段和的问题.。
2017年省市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.﹣7的倒数是()A.7 B.﹣7 C.D.﹣2.下列运算正确的是()A.a6÷a3=a2 B.2a3+3a3=5a6C.(﹣a3)2=a6D.(a+b)2=a2+b23.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.抛物线y=﹣(x+)2﹣3的顶点坐标是()A.(,﹣3)B.(﹣,﹣3)C.(,3)D.(﹣,3)5.五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C. D.6.方程=的解为()A.x=3 B.x=4 C.x=5 D.x=﹣57.如图,⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是()A.43° B.35° C.34° D.44°8.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A.B.C.D.9.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A. =B. =C. =D. =10.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900mB.小涛从家去报亭的平均速度是60m/minC.小涛从报亭返回家中的平均速度是80m/minD.小涛在报亭看报用了15min二、填空题(本大题共10小题,每小题3分,共30分)11.将57600000用科学记数法表示为.12.函数y=中,自变量x的取值围是.13.把多项式4ax2﹣9ay2分解因式的结果是.14.计算﹣6的结果是.15.已知反比例函数y=的图象经过点(1,2),则k的值为.16.不等式组的解集是.17.一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其它差别.从袋子中随机摸出一个小球,则摸出的小球是红球的概率为.18.已知扇形的弧长为4π,半径为8,则此扇形的圆心角为.19.四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E 在AC上,若OE=,则CE的长为.20.如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为.三、解答题(本大题共60分)21.先化简,再求代数式÷﹣的值,其中x=4sin60°﹣2.22.如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为底、面积为12的等腰△ABC,且点C在小正方形的顶点上;(2)在图中画出平行四边形ABDE,且点D和点E均在小正方形的顶点上,tan ∠EAB=,连接CD,请直接写出线段CD的长.23.随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚,洪祥中学开展以“我最喜欢的风景区”为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?(必选且只选一个)”的问题,在全校围随机抽取了部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若洪祥中学共有1350名学生,请你估计最喜欢太阳岛风景区的学生有多少名.24.已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.(1)如图1,求证:AE=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.25.威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B 两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?26.已知:AB是⊙O的弦,点C是的中点,连接OB、OC,OC交AB于点D.(1)如图1,求证:AD=BD;(2)如图2,过点B作⊙O的切线交OC的延长线于点M,点P是上一点,连接AP、BP,求证:∠APB﹣∠OMB=90°;(3)如图3,在(2)的条件下,连接DP、MP,延长MP交⊙O于点Q,若MQ=6DP,sin∠ABO=,求的值.27.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c交x轴于A、B两点,交y轴于点C,直线y=x﹣3经过B、C两点.(1)求抛物线的解析式;(2)过点C作直线CD⊥y轴交抛物线于另一点D,点P是直线CD下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P作PE⊥x轴于点E,PE交CD于点F,交BC于点M,连接AC,过点M作MN⊥AC于点N,设点P的横坐标为t,线段MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值围);(3)在(2)的条件下,连接PC,过点B作BQ⊥PC于点Q(点Q在线段PC上),BQ交CD于点T,连接OQ交CD于点S,当ST=TD时,求线段MN的长.2017年省市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.﹣7的倒数是()A.7 B.﹣7 C.D.﹣【考点】17:倒数.【分析】根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣7的倒数是﹣,故选:D.2.下列运算正确的是()A.a6÷a3=a2 B.2a3+3a3=5a6C.(﹣a3)2=a6D.(a+b)2=a2+b2【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a3,不符合题意;B、原式=5a3,不符合题意;C、原式=a6,符合题意;D、原式=a2+2ab+b2,不符合题意,故选C3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是轴对称图形,不是中心对称图形,不合题意;C、不是轴对称图形,是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,符合题意.故选:D.4.抛物线y=﹣(x+)2﹣3的顶点坐标是()A.(,﹣3)B.(﹣,﹣3)C.(,3)D.(﹣,3)【考点】H3:二次函数的性质.【分析】已知抛物线解析式为顶点式,可直接写出顶点坐标.【解答】解:y=﹣(x+)2﹣3是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(﹣,﹣3).故选B.5.五个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C. D.【考点】U2:简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二层左边是一个小正方形,故选:C.6.方程=的解为()A.x=3 B.x=4 C.x=5 D.x=﹣5【考点】B3:解分式方程.【分析】根据分式方程的解法即可求出答案.【解答】解:2(x﹣1)=x+3,2x﹣2=x+3,x=5,令x=5代入(x+3)(x﹣1)≠0,故选(C)7.如图,⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是()A.43° B.35° C.34° D.44°【考点】M5:圆周角定理.【分析】由同弧所对的圆周角相等求得∠A=∠D=42°,然后根据三角形外角的性质即可得到结论.【解答】解:∵∠D=∠A=42°,∴∠B=∠APD﹣∠D=35°,故选B.8.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A.B.C.D.【考点】T1:锐角三角函数的定义.【分析】利用锐角三角函数定义求出cosB的值即可.【解答】解:∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC==,则cosB==,故选A9.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A. =B. =C. =D. =【考点】S9:相似三角形的判定与性质.【分析】根据相似三角形的判定与性质即可求出答案.【解答】解:(A)∵DE∥BC,∴△ADE∽△ABC,∴,故A错误;(B)∵DE∥BC,∴,故B错误;(C)∵DE∥BC,,故C正确;(D))∵DE∥BC,∴△AGE∽△AFC,∴=,故D错误;故选(C)10.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900mB.小涛从家去报亭的平均速度是60m/minC.小涛从报亭返回家中的平均速度是80m/minD.小涛在报亭看报用了15min【考点】E6:函数的图象.【分析】根据特殊点的实际意义即可求出答案.【解答】解:A、由纵坐标看出小涛家离报亭的距离是1200m,故A不符合题意;B、由纵坐标看出小涛家离报亭的距离是1200m,由横坐标看出小涛去报亭用了15分钟,小涛从家去报亭的平均速度是80m/min,故B不符合题意;C、返回时的解析式为y=﹣60x+3000,当y=1200时,x=30,由横坐标看出返回时的时间是50﹣30=20min,返回时的速度是1200÷20=60m/min,故C不符合题意;D、由横坐标看出小涛在报亭看报用了30﹣15=15min,故D符合题意;故选:D.二、填空题(本大题共10小题,每小题3分,共30分)11.将57600000用科学记数法表示为 5.67×107.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:57600000用科学记数法表示为5.67×107,故答案为:5.67×107.12.函数y=中,自变量x的取值围是x≠2 .【考点】E4:函数自变量的取值围.【分析】根据分式有意义的条件:分母不为0进行解答即可.【解答】解:由x﹣2≠0得,x≠2,故答案为x≠2.13.把多项式4ax2﹣9ay2分解因式的结果是a(2x+3y)(2x﹣3y).【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=a(4x2﹣9y2)=a(2x+3y)(2x﹣3y),故答案为:a(2x+3y)(2x﹣3y)14.计算﹣6的结果是.【考点】78:二次根式的加减法.【分析】先将二次根式化简即可求出答案.【解答】解:原式=3﹣6×=3﹣2=故答案为:15.已知反比例函数y=的图象经过点(1,2),则k的值为 1 .【考点】G6:反比例函数图象上点的坐标特征.【分析】直接把点(1,2)代入反比例函数y=,求出k的值即可.【解答】解:∵反比例函数y=的图象经过点(1,2),∴2=3k﹣1,解得k=1.故答案为:1.16.不等式组的解集是2≤x<3 .【考点】CB:解一元一次不等式组.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:,由①得:x≥2,由②得:x<3,则不等式组的解集为2≤x<3.故答案为2≤x<3.17.一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其它差别.从袋子中随机摸出一个小球,则摸出的小球是红球的概率为.【考点】X4:概率公式.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵不透明的袋子中装有17个小球,其中6个红球、11个绿球,∴摸出的小球是红球的概率为;故答案为:.18.已知扇形的弧长为4π,半径为8,则此扇形的圆心角为90°.【考点】MN:弧长的计算.【分析】利用扇形的弧长公式计算即可.【解答】解:设扇形的圆心角为n°,则=4π,解得,n=90,故答案为:90°.19.四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E 在AC上,若OE=,则CE的长为4或2.【考点】L8:菱形的性质.【分析】由菱形的性质证出△ABD是等边三角形,得出BD=AB=6,OB=BD=3,由勾股定理得出OC=OA==3,即可得出答案.【解答】解:∵四边形ABCD是菱形,∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,∵∠BAD=60°,∴△ABD是等边三角形,∴BD=AB=6,∴OC=OA==3,∴AC=2OA=6,∵点E在AC上,OE=,∴CE=OC+或CE=OC﹣,∴CE=4或CE=2;故答案为:4或2.20.如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为.【考点】LB:矩形的性质;KD:全等三角形的判定与性质.【分析】由AAS证明△ABM≌△DEA,得出AM=AD,证出BC=AD=3EM,连接DM,由HL证明Rt△DEM≌Rt△DCM,得出EM=CM,因此BC=3CM,设EM=CM=x,则BM=2x,AM=BC=3x,在Rt△ABM中,由勾股定理得出方程,解方程即可.【解答】解:∵四边形ABCD是矩形,∴AB=DC=1,∠B=∠C=90°,AD∥BC,AD=BC,∵DE=DC,∴AB=DE,∵DE⊥AM,∴∠DEA=∠DEM=90°,在△ABM和△DEA中,,∴△ABM≌△DEA(AAS),∴AM=AD,∵AE=2EM,∴BC=AD=3EM,连接DM,如图所示:在Rt△DEM和Rt△DCM中,,∴Rt△DEM≌Rt△DCM(HL),∴EM=CM,∴BC=3CM,设EM=CM=x,则BM=2x,AM=BC=3x,在Rt△ABM中,由勾股定理得:12+(2x)2=(3x)2,解得:x=,∴BM=;故答案为:.三、解答题(本大题共60分)21.先化简,再求代数式÷﹣的值,其中x=4sin60°﹣2.【考点】6D:分式的化简求值;T5:特殊角的三角函数值.【分析】根据分式的除法和减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:÷﹣===,当x=4sin60°﹣2=4×=﹣2时,原式=.22.如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为底、面积为12的等腰△ABC,且点C在小正方形的顶点上;(2)在图中画出平行四边形ABDE,且点D和点E均在小正方形的顶点上,tan ∠EAB=,连接CD,请直接写出线段CD的长.【考点】N4:作图—应用与设计作图;KQ:勾股定理;L6:平行四边形的判定;T7:解直角三角形.【分析】(1)因为AB为底、面积为12的等腰△ABC,所以高为4,点C在线段AB的垂直平分线上,由此即可画出图形;(2)扇形根据tan∠EAB=的值确定点E的位置,由此即可解决问题,利用勾股定理计算CD的长;【解答】解:(1)△ABC如图所示;(2)平行四边形ABDE如图所示,CD==.23.随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚,洪祥中学开展以“我最喜欢的风景区”为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?(必选且只选一个)”的问题,在全校围随机抽取了部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若洪祥中学共有1350名学生,请你估计最喜欢太阳岛风景区的学生有多少名.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据条形统计图与扇形统计图求出总人数即可;(2)根据题意作出图形即可;(3)根据题意列出算式,计算即可得到结果.【解答】解:(1)10÷20%=50(名),答:本次调查共抽取了50名学生;(2)50﹣10﹣20﹣12=8(名),补全条形统计图如图所示,(3)1350×=540(名),答:估计最喜欢太阳岛风景区的学生有540名.24.已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.(1)如图1,求证:AE=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】(1)根据全等三角形的性质即可求证△ACE≌△BCD,从而可知AE=BD;(2)根据条件即可判断图中的全等直角三角形;【解答】解:(1)∵△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,DC=EC,∴∠ACB+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,在△ACE与△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,(2)∵AC=DC,∴AC=CD=EC=CB,△ACB≌△DCE(SAS);由(1)可知:∠AEC=∠BDC,∠EAC=∠DBC∴∠DOM=90°,∵∠AEC=∠CAE=∠CBD,∴△EMC≌△BCN(ASA),∴CM=CN,∴DM=AN,△AON≌△DOM(AAS),∵DE=AB,AO=DO,∴△AOB≌△DOE(HL)25.威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B 两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y 元.由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;(2)设购进A种商品a件,则购进B种商品(34﹣a)件.根据获得的利润不低于4000元,建立不等式求出其解就可以了.【解答】解:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由题意,得,解得:答:A种商品售出后所得利润为200元,B种商品售出后所得利润为100元.(2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得200a+100(34﹣a)≥4000,解得:a≥6答:威丽商场至少需购进6件A种商品.26.已知:AB是⊙O的弦,点C是的中点,连接OB、OC,OC交AB于点D.(1)如图1,求证:AD=BD;(2)如图2,过点B作⊙O的切线交OC的延长线于点M,点P是上一点,连接AP、BP,求证:∠APB﹣∠OMB=90°;(3)如图3,在(2)的条件下,连接DP、MP,延长MP交⊙O于点Q,若MQ=6DP,sin∠ABO=,求的值.【考点】MR:圆的综合题.【分析】(1)如图1,连接OA,利用垂径定理和圆周角定理可得结论;(2)如图2,延长BO交⊙O于点T,连接PT,由圆周角定理可得∠BPT=90°,易得∠APT=∠APB﹣∠BPT=∠APB﹣90°,利用切线的性质定理和垂径定理可得∠ABO=∠OMB,等量代换可得∠ABO=∠APT,易得结论;(3)如图3,连接MA,利用垂直平分线的性质可得MA=MB,易得∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG上截取MN=MP,连接PN,BN,易得△APM≌△BNM,由全等三角形的性质可得AP=BN,∠MAP=∠MBN,延长PD至点K,使DK=DP,连接AK、BK,易得四边形APBK是平行四边形,由平行四边形的性质和平行线的性质可得∠PAB=∠ABK,∠APB+∠PBK=180°,由(2)得∠APB﹣(90°﹣∠MBA)=90°,易得∠NBP=∠KBP,可得△PBN≌△PBK,PN=2PH,利用三角函数的定义可得sin ∠PMH=,sin∠ABO=,设DP=3a,则PM=5a,可得结果.【解答】(1)证明:如图1,连接OA,∵C是的中点,∴,∴∠AOC=∠BOC,∵OA=OB,∴OD⊥AB,AD=BD;(2)证明:如图2,延长BO交⊙O于点T,连接PT ∵BT是⊙O的直径∴∠BPT=90°,∴∠APT=∠APB﹣∠BPT=∠APB﹣90°,∵BM是⊙O的切线,∴OB⊥BM,又∠OBA+∠MBA=90°,∴∠ABO=∠OMB又∠ABO=∠APT∴∠APB﹣90°=∠OMB,∴∠APB﹣∠OMB=90°;(3)解:如图3,连接MA,∵MO垂直平分AB,∴MA=MB,∴∠MAB=∠MBA,作∠PMG=∠AMB,在射线MG上截取MN=MP,连接PN,BN,则∠AMP=∠BMN,∴△APM≌△BNM,∴AP=BN,∠MAP=∠MBN,延长PD至点K,使DK=DP,连接AK、BK,∴四边形APBK是平行四边形;AP∥BK,∴∠PAB=∠ABK,∠APB+∠PBK=180°,由(2)得∠APB﹣(90°﹣∠MBA)=90°,∴∠APB+∠MBA=180°∴∠PBK=∠MBA,∴∠MBP=∠ABK=∠PAB,∴∠MAP=∠PBA=∠MBN,∴∠NBP=∠KBP,∵PB=PB,∴△PBN≌△PBK,∴PN=PK=2PD,过点M作MH⊥PN于点H,∴PN=2PH,∴PH=DP,∠PMH=∠ABO,∵sin∠PMH=,sin∠ABO=,∴,∴,设DP=3a,则PM=5a,∴MQ=6DP=18a,∴.27.如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c交x轴于A、B两点,交y轴于点C,直线y=x﹣3经过B、C两点.(1)求抛物线的解析式;(2)过点C作直线CD⊥y轴交抛物线于另一点D,点P是直线CD下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P作PE⊥x轴于点E,PE交CD于点F,交BC于点M,连接AC,过点M作MN⊥AC于点N,设点P的横坐标为t,线段MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值围);(3)在(2)的条件下,连接PC,过点B作BQ⊥PC于点Q(点Q在线段PC上),BQ交CD于点T,连接OQ交CD于点S,当ST=TD时,求线段MN的长.【考点】HF:二次函数综合题.【分析】(1)首先求出点B、C的坐标,然后利用待定系数法求出抛物线的解析式;(2)根据S△ABC=S△AMC+S△AMB,由三角形面积公式可求y与m之间的函数关系式;(3)如图2,由抛物线对称性可得D(2,﹣3),过点B作BK⊥CD交直线CD 于点K,可得四边形OCKB为正方形,过点O作OH⊥PC交PC延长线于点H,OR ⊥BQ交BQ于点I交BK于点R,可得四边形OHQI为矩形,可证△OBQ≌△OCH,△OSR≌△OGR,得到tan∠QCT=tan∠TBK,设ST=TD=m,可得SK=2m+1,CS=2﹣2m,TK=m+1=BR,SR=3﹣m,RK=2﹣m,在Rt△SKR中,根据勾股定理求得m,可得tan∠PCD=,过点P作PE′⊥x轴于E′交CD于点F′,得到P(t,﹣ t ﹣3),可得﹣t﹣3=t2﹣2t﹣3,求得t,再根据MN=d求解即可.【解答】解:(1)∵直线y=x﹣3经过B、C两点,∴B(3,0),C(0,﹣3),∵y=x2+bx+c经过B、C两点,∴,解得,故抛物线的解析式为y=x2﹣2x﹣3;(2)如图1,y=x2﹣2x﹣3,y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),∴OA=1,OB=OC=3,∴∠ABC=45°,AC=,AB=4,∵PE⊥x轴,∴∠EMB=∠EBM=45°,∵点P的横坐标为1,∴EM=EB=3﹣t,连结AM,∵S△ABC=S△AMC+S△AMB,∴AB•OC=AC•MN+AB•EM,∴×4×3=×d+×4(3﹣t),∴d=t;(3)如图2,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴对称轴为x=1,∴由抛物线对称性可得D(2,﹣3),∴CD=2,过点B作BK⊥CD交直线CD于点K,∴四边形OCKB为正方形,∴∠OBK=90°,CK=OB=BK=3,∴DK=1,∵BQ⊥CP,∴∠CQB=90°,过点O作OH⊥PC交PC延长线于点H,OR⊥BQ交BQ于点I交BK于点R,∴∠OHC=∠OIQ=∠OIB=90°,∴四边形OHQI为矩形,∵∠OCQ+∠OBQ=180°,∴∠OBQ=∠OCH,∴△OBQ≌△OCH,∴QG=OS,∠GOB=∠SOC,∴∠SOG=90°,∴∠ROG=45°,∵OR=OR,∴△OSR≌△OGR,∴SR=GR,∴SR=CS+BR,∵∠BOR+∠OBI=90°,∠IBO+∠TBK=90°,∴∠BOR=∠TBK,∴tan∠BOR=tan∠TBK,∴=,∴BR=TK,∵∠CTQ=∠BTK,∴∠QCT=∠TBK,∴tan∠QCT=tan∠TBK,设ST=TD=m,∴SK=2m+1,CS=2﹣2m,TK=m+1=BR,SR=3﹣m,RK=2﹣m,在Rt△SKR中,∵SK2+RK2=SR2,∴(2m+1)2+(2﹣m)2=(3﹣m)2,解得m1=﹣2(舍去),m2=;∴ST=TD=,TK=,∴tan∠TBK==÷3=,∴tan∠PCD=,过点P作PE′⊥x轴于E′交CD于点F′,∵CF′=OE′=t,∴PF′=t,∴PE′=t+3,∴P(t,﹣ t﹣3),∴﹣t﹣3=t2﹣2t﹣3,解得t1=0(舍去),t2=.∴MN=d=t=×=.2017年7月5日。
中考数学几何压轴题(有关三角形、四边形)的综合专题1、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.2、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△,可推证△CEF是三角形,从而求得∠DCE=.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.3、(2019秋•锦江区校级期末)在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.4、(2019•镇平县三模)如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为;∠EFC的度数为;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.5、(2017春•西城区校级期末)如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.6、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.7、(1)如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.8、【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.9、(2018•大东区一模)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.10、模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于时,线段BC的长取得最大值,且最大值为(用含b,c的式子表示)(直接填空).模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.12、已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.13、已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.14、如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)16、在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线上时,线段PC、PG又有怎样的数量关系,请直接写出你的结论,并画出论证过程中需要添加的辅助线.17、在△ABC中,∠BAC=60°,点D、E分别在边AC、AB上,AD=AE,连接CE、BD相交于点F,且∠BEC=∠ADF,连接AF.(1)如图1,连接ED,求证:∠ABD=∠CED;(2)如图2,求证:EF+FD=AF;(3)如图3,取BC的中点G,连接AG交BD于点H,若∠GAC=3∠ABD,BH=7,求△ABH的面积.18、点D,E分别在△ABC的边AC,BD上,BD,CE交于点F,连接AF,∠F AE=∠F AD,FE=FD.(1)如图1,若∠AEF=∠ADF,求证:AE=AD;(2)如图2,若∠AEF≠∠ADF,FB平分∠ABC,求∠BAC的度数;(3)在(2)的条件下,如图3,点G在BE上,∠CFG=∠AFB若AG=6,△ABC的周长为20,求BC长.中考数学几何压轴题(有关三角形、四边形)的综合专题参考答案1、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.证明:(1)如图1,∵∠ACB=90°,AC=BC,∴∠A=45°,∵CG平分∠ACB,∴∠ACG=∠BCG=45°,∴∠A=∠BCG,在△BCG和△CAF中,∵,∴△BCG≌△CAF(ASA),∴CF=BG;(2)如图2,∵PC∥AG,∴∠PCA=∠CAG,∵AC=BC,∠ACG=∠BCG,CG=CG,∴△ACG≌△BCG,∴∠CAG=∠CBE,∵∠PCG=∠PCA+∠ACG=∠CAG+45°=∠CBE+45°,∠PGC=∠GCB+∠CBE=∠CBE+45°,∴∠PCG=∠PGC,∴PC=PG,∵PB=BG+PG,BG=CF,∴PB=CF+CP;(3)解法一:如图3,过E作EM⊥AG,交AG于M,∵S△AEG=AG•EM=3,由(2)得:△ACG≌△BCG,∴BG=AG=6,∴×6×EM=3,EM=,设∠FCH=x°,则∠GAC=2x°,∴∠ACF=∠EBC=∠GAC=2x°,∵∠ACH=45°,∴2x+x=45,x=15,∴∠ACF=∠GAC=30°,在Rt△AEM中,AE=2EM=2,AM==3,∴M是AG的中点,∴AE=EG=2,∴BE=BG+EG=6+2,在Rt△ECB中,∠EBC=30°,∴CE=BE=3+,∴AC=AE+EC=2+3+=3+3.解法二:同理得:∠CAG=30°,AG=BG=6,如图4,过G作GM⊥AC于M,在Rt△AGM中,GM=3,AM===3,∵∠ACG=45°,∠MGC=90°,∴GM=CM=3,∴AC=AM+CM=3+3.2、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△ADB,可推证△CEF是等腰直角三角形,从而求得∠DCE=135°.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.解:[问题初探]如图2,过点E作EF⊥BC交直线BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=135°,故答案为:ADB,等腰直角,135;[继续探究]如图3,过点E作EF⊥BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=45°;[拓展延伸]如图4,在△ABC中,∠ABC=90°,AB=BC=,∴∠ACB=45°当点D在射线BC上时,由[问题初探]知,∠BCM=135°,∴∠ACM=∠BCM﹣∠ACB=90°,当点D在线段CB的延长线上时,由[继续探究]知,∠BCE=45°,∴∠ACN=∠ACB+∠BCM=90°,∴点E是过点C垂直于AC的直线上的点,∴当BE⊥MN时,BE最小,∵∠BCE=45°,∴∠CBE=45°=∠BCE,∴BE=CE,∴BE最小=BC=,即:BE的最小值为.3、在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.证明:(1)如图1,过点D作DE⊥AB,∵BD是△ABC的角平分线,DE⊥AB,∠ACB=90°,∴DC=DE,∵∠A=30°,DE⊥AB,∴AD=2DE,∴AD=2DC;(2)如图2,过点M作ME∥BD,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=30°,∵BM平分∠CBD,∴∠CBM=15°=∠DBM,∵ME∥BD,∴∠MEC=∠CBD=30°,∠EMB=∠DBM=∠MBE,∴ME=BE,∵∠MEC=30°,∠C=90°∴CE=MC=,ME=2MC=2=BE,∴BC=+2,∵∠CBD=30°,∠C=90°,∴BC=CD,∴CD=1+,∴DM=,∴△DBM的面积=××(+2)=1+;(3)若点N在CD上时,AD=DG+DN,理由如下:如图3所示:延长ED使得DW=DN,连接NW,∵∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E,∴∠ADE=∠BDE=60°,AD=BD,∵DN=DW,且∠WDN=60°∴△WDN是等边三角形,∴NW=DN,∠W=∠WND=∠BNG=∠BDN=60°,∴∠WNG=∠BND,在△WGN和△DBN中,∴△WGN≌△DBN(SAS),∴BD=WG=DG+DN,∴AD=DG+DN.(3)若点N在AD上时,AD=DG﹣DN,理由如下:如图4,延长BD至H,使得DH=DN,连接HN,由(1)得DA=DB,∠A=30°.∵DE⊥AB于点E.∴∠2=∠3=60°.∴∠4=∠5=60°.∴△NDH是等边三角形.∴NH=ND,∠H=∠6=60°.∴∠H=∠2.∵∠BNG=60°,∴∠BNG+∠7=∠6+∠7.即∠DNG=∠HNB.在△DNG和△HNB中,∴△DNG≌△HNB(ASA).∴DG=HB.∵HB=HD+DB=ND+AD,∴DG=ND+AD.∴AD=DG﹣ND.4、如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为EF=CF;∠EFC的度数为120°;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.解:(1)如图1中,∵DE⊥AB,∴∠BED=90°,∵∠BCD=90°,BF=DF,∴FE=FB=FD=CF,∴∠FBE=∠FEB,∠FBC=∠FCB,∴∠EFC=∠EFD+∠CFD=∠FBE+∠FEB+∠FBC+∠FCB=2(∠FBE+∠FBC)=2∠ABC=120°,故答案为:EF=CF,120°.(2)结论成立.理由:如图2中,取AB的中点M,AD的中点N,连接MC,MF,ED,EN,FN.∵BM=MA,BF=FD,∴MF∥AD,MF=AD,∵AN=ND,∴MF=AN,MF∥AN,∴四边形MFNA是平行四边形,∴NF=AM,∠FMA=∠ANF,在Rt△ADE中,∵AN=ND,∠AED=90°,∴EN=AD=AN=ND,同理CM=AB=AM=MB,在△AEN和△ACM中,∠AEN=∠EAN,∠MCA=∠MAC,∵∠MAC=∠EAN,∴∠AMC=∠ANE,又∵∠FMA=∠ANF,∴∠ENF=∠FMC,在△MFC和△NEF中,,∴△MFC≌△NEF(SAS),∴FE=FC,∠NFE=∠MCF,∵NF∥AB,∴∠NFD=∠ABD,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,△BMC是等边三角形,∠MCB=60°∴∠EFC=∠EFN+∠NFD+∠DFC=∠MCF+∠ABD+∠FBC+∠FCB=∠ABC+∠MCB=60°+60°=120°.(3)如图3中,作EH⊥AB于H.在Rt△ABC中,∵∠BAC=30°,BC=3,∴AB=2BC=6,在Rt△AED中,∠DAE=30°,AD=2,∴DE=AD=1,在Rt△DEH中,∵∠EDH=60°,DE=1,∴EH=ED•sin60°=,DH=ED•cos60°=,在Rt△EHG中,EG==.5、如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.解:(1)BC=2BD,理由:如图2,连接CD,由旋转可得,CP=DP,∠CPD=60°,∴△CDP是等边三角形,∴∠CDP=60°=∠PCD,又∵P是AB的中点,AB=AC,∠A=60°,∴等边三角形ABC中,∠PCB=30°,CP⊥AB,∴∠BCD=30°,即BC平分∠PCD,∴BC垂直平分PD,∴∠BDC=∠BPC=90°,∴Rt△BCD中,BC=2BD.(2)如图3,取BC中点F,连接PF,∵∠A=90°,AB=AC,∴△ABC是等腰直角三角形,∵P是AB的中点,F是BC的中点,∴PF是△ABC的中位线,∴PF∥AC,∴∠PFB=∠ACB=45°,∠BPF=∠A=90°,∴△BPF是等腰直角三角形,∴BF=BP,BP=PF,∵∠DPC=∠BPF=90°,∴∠BPD=∠FPC,又∵PD=PC,∴△BDP≌△FCP,∴BD=CF,∵BC=BF+FC,∴BC=BD+BP.6、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.【发现问题】解:延长CA到M,作∠MAC的平分线AN,在AN上截取AD=AC,连接CD,即可得到等腰直角△ACD;连接BD、CE,如图1所示:∵△ABE与△ACD都是等腰直角三角形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE,【拓展探究】解:BD=CE;理由如下:∵四边形AEFB与四边形ACGD都是正方形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;【解决问题】解:以AB为边向外作等边三角形ABE,连接CE,如图3所示:则∠BAE=60°,BE=AB=AE=8,∵AD=CD,∠ADC=60°,∴△ACD是等边三角形,∴∠CAD=60°,AC=AD,∴∠CAD+∠BAC=∠BAE+∠BAC,即∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;当C、B、E三点共线时,CE最大=BC+BE=15+8=23,∴BD的最大值为23.7、如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为a+b(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.(1)解:∵点C为线段AB外一动点,且AC=b,AB=a,∴当点C位于BA的延长线上时,线段BC的长取得最大值,且最大值为AC+AB=a+b,(2)①证明:如图2中,∵△ACD与△BCE是等边三角形,∴CD=AC,CB=CE,∠ACD=∠BCE=60°,∴∠DCB=∠ACE,在△CAD与△EAB中,,∴△CAD≌△EAB(SAS),∴AE=BD.②∵线段AE长的最大值=线段BD的最大值,由(1)知,当线段BD的长取得最大值时,点D在BA的延长线上,∴最大值为AD+AB=3+10=13;(3)如图3中,连接BN,∵将△AMN绕着点M顺时针旋转90°得到△PBM,连接AP,则△APM是等腰直角三角形,∴MA=MP=2,BP=AN,∴P A=2,∵AB=6,∴线段AN长的最大值=线段BP长的最大值,∴当P在线段BA的延长线时,线段BP取得最大值最大值=AB+AP=6+2.8、【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是∠BAE+∠F AD=∠EAF;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.解:(1)∠BAE+∠F AD=∠EAF.理由:如图1,延长FD到点G,使DG=BE,连接AG,根据SAS可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再根据SSS可判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF.故答案为:∠BAE+∠F AD=∠EAF;(2)仍成立,理由:如图2,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)∠EAF=180°﹣∠DAB.证明:如图3,在DC延长线上取一点G,使得DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,又∵AB=AD,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠F AE=∠F AG,∵∠F AE+∠F AG+∠GAE=360°,∴2∠F AE+(∠GAB+∠BAE)=360°,∴2∠F AE+(∠GAB+∠DAG)=360°,即2∠F AE+∠DAB=360°,∴∠EAF=180°﹣∠DAB.9、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.解:(1)CP=BQ,理由:如图1,连接OQ,由旋转知,PQ=OP,∠OPQ=60°⊅∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(2)CP=BQ,理由:如图2,连接OQ,由旋转知,PQ=OP,∠OPQ=60°∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(3)如图3,在Rt△ABC中,∠A=30°,AC=,∴BC=AC•tan∠A=,过点O作OH⊥BC,∴∠OHB=90°=∠BCA,∴OH∥AB,∵O是AB中点,∴CH=BC=,OH=AC=,∵∠BPQ=45°,∠OHP=90°,∴∠BPQ=∠PQH,∴PH=OH=,∴CP=PH﹣CH=﹣=,连接BQ,同(1)的方法得,BQ=CP=.10、模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于线段BA的延长线上时,线段BC的长取得最大值,且最大值为b+c(用含b,c的式子表示)(直接填空)模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为5.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.解:当点C位于线段BA的延长线上时,线段BC的长取得最大值,最大值为b+c,故答案为:线段BA的延长线上;b+c;模型应用:(1)证明:∵△ACD、△BCE都是等边三角形,∴CD=CA=AD,CB=CE,∠ACD=60°,∠BCE=60°,∴∠DCB=∠ACE,在△DCB和△ACE中,,∴△DCB≌△ACE(SAS)∴BD=AE;(2)当点D位于线段BA的延长线上时,线段BD的长取得最大值,最大值为AB+AD=AB+AC=3+2=5,∵AE=BD,∴线段AE长的最大值为5,模型拓展:取AB的中点G,连接OG、CG,在Rt△AOB中,G为AB的中点,∴OG=AB=4,在Rt△CAG中,CG===5,当点O、G、C在同一条直线上时,OC最大,最大值为4+5=9.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.(1)证明:如图1中,∵BE⊥AD于E,∴∠AEF=∠BCF=90°,∵∠AFE=∠CFB,∴∠DAC=∠CBF,∵BC=CA,∴△BCF≌△ACD,∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∵∠AHE=∠ACD=∠DAE=90°,∴∠DAC+∠ADC=90°,∠DAC+∠EAH=90°,∴∠DAC=∠AEH,∵AD=AE,∴△ACD≌△EHA,∴CD=AH,EH=AC=BC,∵CB=CA,∴BD=CH,∵∠EHF=∠BCF=90°,∠EFH=∠BFC,EH=BC,∴△EHF≌△BCF,∴FH=CF,∴BD=CH=2CF.(3)如图3中,同法可证BD=2CM.∵AC=3CM,设CM=a,则AC=CB=3a,BD=2a,∴==.12、已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴=2.13、已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.(1)解:如图1中,在AB上取一点M,使得BM=ME,连接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM=x,∵AB2+AE2=BE2,∴(2x+x)2+x2=22,∴x=(负根已经舍弃),∴AB=AC=(2+)•,∴BC=AB=+1.方法二:作EH⊥BC于H,求出BH,CH即可解决问题.(2)证明:如图2中,作CP⊥AC,交AD的延长线于P,GM⊥AC于M.∵BE⊥AP,∴∠AHB=90°,∴∠ABH+∠BAH=90°,∵∠BAH+∠P AC=90°,∴∠ABE=∠P AC,在△ABE和△CAP中,,∴△ABE≌△CAP,∴AE=CP=CF,∠AEB=∠P,在△DCF和△DCP中,,∴△DCF≌△DCP,∴∠DFC=∠P,∴∠GFE=∠GEF,∴GE=GF,∵GM⊥EF,∴FM=ME,∵AE=CF,∴AF=CE,∴AM=CM,在△GAH和△GAM中,,∴△AGH≌△AGM,∴AH=AM=CM=AC(3)解:结论:AG=EF.理由:如图3中,作CM⊥AC交AD的延长线于M,连接PG交AC于点O.由(2)可知△ACM≌△BAE,△CDF≌△CDM,∴∠AEB=∠M=∠GEF,∠M=∠CFD=∠GFE,AE=CM=CF,∴∠GEF=∠GFE,∴GE=GF,∵△EFP是由△EFG翻折得到,∴EG=EP=GF=PF,∴四边形EGFP是菱形,∴PG⊥AC,OE=OF,∵AE=CF,∴AO=OC,∵AB∥OP,∴BP=PC,∵PF∥BE,∴EF=CF=AE,∵PB=PC,AO=OC,∴PO=OG=AB,∴AB=PG,AB∥PG,∴四边形ABPG是平行四边形,∴AG∥BC,∴∠GAO=∠ACB=45°,设EO=OF=a,则OA=OG=3a,AG=3a,∴==,∴AG=EF14、如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.解:(1)∵E为AC中点,作ED⊥AC交AB于D,∴AD=CD,∵∠ACB=90°,∴BC∥DE,∴AD=BD,∴CD=BD,∴AB=2CD;(2)如图2,连接CH,∵点E是AC的中点,∴AE=CE,∵DE⊥AC,∴CH=AH,∴∠ACH=∠CAH,∵∠ACB=90°,∴∠B+∠BAC=90°,∵CF⊥AB,∴∠BAC+∠ACF=90°,∴∠ACF=∠B,∴∠HCG=∠ACH+∠ACF=∠CAH+∠B,∠AHG=2∠B∴在四边形AHGF中,∠AFG+∠FGH+∠AHG+∠F AH=360°,∴∠FGH=360°﹣(∠AFG+∠AHG+∠F AH)=360°﹣(90°+2∠B+∠CAH+∠BAC)=360°﹣(90°+2∠B+∠CAH+90°﹣∠B)=360°﹣(180°+∠B+∠CAH)=180°﹣(∠B+∠CAH),∵∠CGH=180°﹣∠FGH=∠B+∠CAH=∠HCG,∴CH=GH,∵CH=AH,∴AH=GH;(3)如图3,由(1)知,DE∥BC,∴∠B=∠ADE,在△BFC和△DEA中,,∴△BFC≌△DEA,∴BC=AD,∵AD=BD=CD,∴BC=BD=CD,∴△BCD是等边三角形,∴∠B=60°,在Rt△ABC中,AC=6,∴BC=2,AB=4,∵CF⊥BD,∴DF=,CF=3,∵∠BAC=30°,∴∠ADE=60°,∵∠EDG=90°,∠FDG=30°,在Rt△DFG中,DF=,∴FG=1,DG=2,∴CG=CF﹣FG=2过点H作HN⊥CF,由(2)知,CH=GH,∴NG=CG=1,∴FN=NG+FG=2,过点H作HM⊥AB,∴∠FMH=∠NFM=∠HNF=90°,∴四边形NFMH是矩形,∴HM=FN=2,在Rt△DMH中,∠ADE=60°,HM=2,∴DH=,在Rt△HDG中,根据勾股定理得,HG==.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)(1)证明:∵AC=BC,∠ACB=90°,∴∠A=∠B=45°,∵CD⊥AB,∴∠CDB=90°,∴∠DCB=45°,∵∠ECF=∠DCB+∠1=45°+∠1,∠EFC=∠B+∠2=45°+∠2,∠1=∠2,∴∠ECF=∠EFC,∴CE=EF,∵CD⊥AB,FG⊥AB,∴∠CDE=∠EGF=90°,在△CDE和△EGF中,,∴△CDE≌△EGF(AAS);(2)证明:由(1)得:CE=EF,∠A=∠B,∵CE平分∠ACD,∴∠ACE=∠1,∵∠1=∠2,∴∠ACE=∠2,在△ACE和△BEF中,,∴△ACE≌△BEF(AAS),∴AE=BF;(3)AE=BF,作EH⊥BC与H,如图3所示:设DE=x,根据题意得:BE=DE=x,AD=BD=2x,CD=AD=2x,AE=3x,根据勾股定理得:BC=AC=2x,∵∠ABC=45°,EH⊥BC,∴BH=x,∴CH=BC﹣BH=x,∵EC=EF,∴FH=CH=x,∴BF=x﹣x=x,∴=,∴AE=.16、在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线。
等腰三角形一、选择题1.(2016·山东烟台)如图,Rt△ABC 的斜边AB 与量角器的直径恰好重合,B 点与0刻度线的一端重合,∠ABC=40°,射线CD 绕点C 转动,与量角器外沿交于点D ,若射线CD 将△ABC分割出以BC 为边的等腰三角形,则点D 在量角器上对应的度数是( )A .40°B .70°C .70°或80°D .80°或140°【考点】角的计算.【分析】如图,点O 是AB 中点,连接DO ,易知点D 在量角器上对应的度数=∠DOB=2∠BCD,只要求出∠BCD 的度数即可解决问题.【解答】解:如图,点O 是AB 中点,连接DO .∵点D 在量角器上对应的度数=∠DOB=2∠BCD,∵当射线CD 将△ABC 分割出以BC 为边的等腰三角形时,∠BCD=40°或70°,∴点D 在量角器上对应的度数=∠DOB=2∠BCD=80°或140°,故选D .2.(2016·山东枣庄)如图,在△ABC 中,AB = AC ,∠A = 30°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,则∠D 等于A .15°B .17. 5°C .20°D .22.5°【答案】A.【解析】试题分析:在△ABC 中,AB=AC ,∠A=30°,根据等腰三角形的性质可得∠ABC=∠ACB=75°,DA B 第4题图所以∠ACE=180°-∠ACB=180°-75°=105°,根据角平分线的性质可得∠DBC=37.5°,∠ACD=52.5°,即可得∠BCD=127.5°,根据三角形的内角和定理可得∠D=180°-∠DBC-∠BCD=180°-37.5°-127.5°=15°,故答案选A.考点:等腰三角形的性质;三角形的内角和定理.3.(2016.山东省泰安市,3分)如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°【分析】根据等腰三角形的性质得到∠A=∠B,证明△AMK≌△BKN,得到∠AMK=∠BKN,根据三角形的外角的性质求出∠A=∠MKN=44°,根据三角形内角和定理计算即可.【解答】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=44°,∴∠P=180°﹣∠A﹣∠B=92°,故选:D.【点评】本题考查的是等腰三角形的性质、全等三角形的判定和性质、三角形的外角的性质,掌握等边对等角、全等三角形的判定定理和性质定理、三角形的外角的性质是解题的关键.4.(2016·江苏省扬州)如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是()A.6 B.3 C.2.5 D.2【考点】几何问题的最值.【分析】以BC 为边作等腰直角三角形△EBC,延长BE 交AD 于F ,得△ABF 是等腰直角三角形,作EG⊥CD 于G ,得△EGC 是等腰直角三角形,在矩形ABCD 中剪去△ABF,△BCE,△ECG 得到四边形EFDG ,此时剩余部分面积的最小【解答】解:如图以BC 为边作等腰直角三角形△EBC,延长BE 交AD 于F ,得△ABF 是等腰直角三角形,作EG⊥CD 于G ,得△EGC 是等腰直角三角形,在矩形ABCD 中剪去△ABF,△BCE,△ECG 得到四边形EFDG ,此时剩余部分面积的最小=4×6﹣×4×4﹣×3×6﹣×3×3=2.5.故选C .二、填空题1.(2016·湖北黄冈)如图,已知△ABC, △DCE, △FEG, △HGI 是4个全等的等腰三角形,底边BC ,CE ,EG ,GI 在同一条直线上,且AB=2,BC=1. 连接AI ,交FG 于点Q ,则QI=_____________.A D F HQB C E G I(第14题)【考点】相似三角形的判定和性质、勾股定理、等腰三角形的性质.【分析】过点A 作AM ⊥BC. 根据等腰三角形的性质,得到MC=21BC=21,从而MI=MC+CE+EG+GI=27.再根据勾股定理,计算出AM 和AI 的值;根据等腰三角形的性质得出角相等,从而证明AC ∥GQ ,则△IAC ∽△IQG ,故AI QI=CI GI,可计算出QI=34.A D F HQB MC E G I【解答】解:过点A 作AM ⊥BC.根据等腰三角形的性质,得 MC=21BC=21. ∴MI=MC+CE+EG+GI=27. 在Rt △AMC 中,AM 2=AC 2-MC 2= 22-(21)2=415. AI=MI AM22+=)(272415+=4. 易证AC ∥GQ ,则△IAC ∽△IQG ∴AI QI =CI GI即4QI=31∴QI=34.故答案为:34.2. (2016·四川资阳)如图,在3×3的方格中,A 、B 、C 、D 、E 、F 分别位于格点上,从C 、D 、E 、F 四点中任取一点,与点A 、B 为顶点作三角形,则所作三角形为等腰三角形的概率是 .【考点】概率公式;等腰三角形的判定.【分析】根据从C 、D 、E 、F 四个点中任意取一点,一共有4种可能,选取D 、C 、F 时,所作三角形是等腰三角形,即可得出答案.【解答】解:根据从C 、D 、E 、F 四个点中任意取一点,一共有4种可能,选取D 、C 、F 时,所作三角形是等腰三角形,故P (所作三角形是等腰三角形)=;故答案为:.3. (2016·四川成都·4分)如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE 垂直平分OB于点E,则AD的长为3.【考点】矩形的性质;线段垂直平分线的性质;等边三角形的判定与性质.【分析】由矩形的性质和线段垂直平分线的性质证出OA=AB=OB=3,得出BD=2OB=6,由勾股定理求出AD即可.【解答】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD===3;故答案为:3.4. (2016·四川达州·3分)如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连接BQ.若PA=6,PB=8,PC=10,则四边形APBQ的面积为24+9.【考点】旋转的性质;等边三角形的性质.【分析】连结PQ,如图,根据等边三角形的性质得∠BAC=60°,AB=AC,再根据旋转的性质得AP=PQ=6,∠PAQ=60°,则可判断△APQ为等边三角形,所以PQ=AP=6,接着证明△APC≌△ABQ得到PC=QB=10,然后利用勾股定理的逆定理证明△PBQ为直角三角形,再根据三角形面积公式,利用S四边形APBQ=S△BPQ+S△APQ进行计算.【解答】解:连结PQ,如图,∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∵线段AP绕点A顺时针旋转60°得到线段AQ,∴AP=PQ=6,∠PAQ=60°,∴△APQ为等边三角形,∴PQ=AP=6,∵∠CAP+∠BAP=60°,∠BAP+∠BAQ=60°,∴∠CAP=∠BAQ,在△APC和△ABQ中,,∴△APC≌△ABQ,∴PC=QB=10,在△BPQ中,∵PB2=82=64,PQ2=62,BQ2=102,而64+36=100,∴PB2+PQ2=BQ2,∴△PBQ为直角三角形,∠BPQ=90°,∴S四边形APBQ=S△BPQ+S△APQ=×6×8+×62=24+9.故答案为24+9.5.(2016江苏淮安,16,3分)已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是10 .【考点】等腰三角形的性质;三角形三边关系.【分析】根据任意两边之和大于第三边,知道等腰三角形的腰的长度是4,底边长2,把三条边的长度加起来就是它的周长.【解答】解:因为2+2<4,所以等腰三角形的腰的长度是4,底边长2,周长:4+4+2=10,答:它的周长是10,故答案为:10【点评】此题考查等腰三角形的性质,关键是先判断出三角形的两条腰的长度,再根据三角形的周长的计算方法,列式解答即可.6.(2016·广东广州)如图3,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿CB方向平移7cm得到线段EF,点E、F分别落在边AB、BC上,则△EBF的周长是 cm.[难易] 容易[考点] 平移 ,等腰三角形等角对等边[解析] ∵CD 沿CB 平移7cm 至EF∴=∴=-===∠=∠=∴∠=∠∴==∴=++=++=V Q //,75,4,,444513EBF EF CD CF BF BC CF EF CD EFB CAB AC B C EB EF C EB EF BF[参考答案] 137.(2016·广西贺州)如图,在△A BC 中,分别以AC 、BC 为边作等边三角形ACD 和等边三角形BCE ,连接AE 、BD 交于点O ,则∠AOB的度数为 120° .【考点】全等三角形的判定与性质;等边三角形的性质.【分析】先证明∴△DCB≌△ACE,再利用“8字型”证明∠AOH=∠DCH=60°即可解决问题.【解答】解:如图:AC 与BD 交于点H .∵△ACD,△BCE 都是等边三角形,∴CD=CA,CB=CE ,∠ACD=∠BCE=60°,∴∠DCB=∠ACE,在△DCB 和△ACE 中,,∴△DCB≌△ACE,∴∠CAE=∠CDB,∵∠DCH+∠CHD+∠BDC=180°,∠AOH+∠AHO+∠CAE=180°,∠DHC=∠OHA,∴∠AOH=∠DCH=60°,∴∠AOB=180°﹣∠AOH=120°.故答案为120°【点评】本题考查全等三角形的判定和性质、等边三角形的性质等知识,解题的关键是正确寻找全等三角形,学会利用“8字型”证明角相等,属于中考常考题型.8.(2016·山东烟台)如图,O为数轴原点,A,B两点分别对应﹣3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为.【考点】勾股定理;实数与数轴;等腰三角形的性质.【分析】先利用等腰三角形的性质得到OC⊥AB,则利用勾股定理可计算出OC=,然后利用画法可得到OM=OC=,于是可确定点M对应的数.【解答】解:∵△ABC为等腰三角形,OA=OB=3,∴OC⊥AB,在Rt△OBC中,OC===,∵以O为圆心,CO长为半径画弧交数轴于点M,∴OM=OC=,∴点M对应的数为.故答案为.9.(2016.山东省青岛市,3分)如图,以边长为20cm的正三角形纸板的各顶点为端点,在各边上分别截取4cm长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为448﹣480 cm3.【考点】剪纸问题.【分析】由题意得出△ABC为等边三角形,△OPQ为等边三角形,得出∠A=∠B=∠C=60°,AB=BC=AC.∠POQ=60°,连结AO,作QM⊥OP于M,在Rt△AOD中,∠OAD=∠OAK=30°,得出OD=AD=2cm,AD=OD=2cm,同理:BE=AD=2cm,求出PQ、QM,无盖柱形盒子的容积=底面积×高,即可得出结果.【解答】解:如图,由题意得:△ABC为等边三角形,△OPQ为等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC,∠POQ=60°,∴∠ADO=∠AKO=90°.连结AO,作QM⊥OP于M,在Rt△AOD中,∠OAD=∠OAK=30°,∴OD=AD=2cm,∴AD=OD=2cm,同理:BE=AD=2cm,∴PQ=DE=20﹣2×2=20﹣4(cm),∴QM=OP•sin60°=(20﹣4)×=10﹣6,(cm),∴无盖柱形盒子的容积=×(20﹣4)(10﹣6)×4=448﹣480(cm3);故答案为:448﹣480.10.(2016·江苏泰州)如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于20°.【考点】等边三角形的性质;平行线的性质.【分析】过点A作AD∥l1,如图,根据平行线的性质可得∠BAD=∠β.根据平行线的传递性可得AD∥l2,从而得到∠DAC=∠α=40°.再根据等边△ABC可得到∠BAC=60°,就可求出∠DAC,从而解决问题.【解答】解:过点A作AD∥l1,如图,则∠BAD=∠β.∵l1∥l2,∴AD∥l2,∵∠DAC=∠α=40°.∵△ABC是等边三角形,∴∠BAC=60°,∴∠β=∠BAD=∠BAC﹣∠DAC=60°﹣40°=20°.故答案为20°.三.解答题1.(2016年浙江省宁波市)从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB 的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.【考点】相似三角形的判定与性质.【专题】新定义.【分析】(1)根据完美分割线的定义只要证明①△ABC不是等腰三角形,②△ACD是等腰三角形,③△BDC∽△BCA即可.(2)分三种情形讨论即可①如图2,当AD=CD时,②如图3中,当AD=AC时,③如图4中,当AC=CD时,分别求出∠ACB即可.(3)设BD=x,利用△BCD∽△BAC,得=,列出方程即可解决问题.【解答】解:(1)如图1中,∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC不是等腰三角形,∵CD平分∠ACB,∴∠ACD=∠BCD=∠ACB=40°,∴∠ACD=∠A=40°,∴△ACD为等腰三角形,∵∠DCB=∠A=40°,∠CBD=∠ABC,∴△BCD∽△BAC,∴CD是△ABC的完美分割线.(2)①当AD=CD时,如图2,∠ACD=∠A=45°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.②当AD=AC时,如图3中,∠ACD=∠ADC==66°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.③当AC=CD时,如图4中,∠ADC=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∵∠ADC>∠BCD,矛盾,舍弃.∴∠ACB=96°或114°.(3)由已知AC=AD=2,∵△BCD∽△BAC,∴=,设BD=x,∴()2=x(x+2),∵x>0,∴x=﹣1,∵△BCD∽△BAC,∴==,∴CD=×2=﹣.【点评】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是理解题意,学会分类讨论思想,属于中考常考题型.2.(2016·上海)如图所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DAB.(1)求线段CD的长;(2)如果△AEC是以EG为腰的等腰三角形,求线段AE的长;(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.【考点】四边形综合题.【专题】综合题.【分析】(1)作DH⊥AB于H,如图1,易得四边形BCDH为矩形,则DH=BC=12,CD=BH,再利用勾股定理计算出AH,从而得到BH和CD的长;(2)分类讨论:当EA=EG时,则∠AGE=∠GAE,则判断G点与D点重合,即ED=EA,作EM⊥AD 于M,如图1,则AM=AD=,通过证明Rt△AME∽Rt△AHD,利用相似比可计算出此时的AE长;当GA=GE时,则∠AGE=∠AEG,可证明AE=AD=15,(3)作DH⊥AB于H,如图2,则AH=9,HE=AE﹣AH=x﹣9,先利用勾股定理表示出DE=,再证明△EAG∽△EDA,则利用相似比可表示出EG=,则可表示出DG,然后证明△DGF∽△EGA,于是利用相似比可表示出x和y的关系.【解答】解:(1)作DH⊥AB于H,如图1,易得四边形BCDH为矩形,∴DH=BC=12,CD=BH,在Rt△ADH中,AH===9,∴BH=AB﹣AH=16﹣9=7,∴CD=7;(2)当EA=EG时,则∠AGE=∠GAE,∵∠AGE=∠DAB,∴∠GAE=∠DAB,∴G点与D点重合,即ED=EA,作EM⊥AD于M,如图1,则AM=AD=,∵∠MAE=∠HAD,∴Rt△AME∽Rt△AHD,∴AE:AD=AM:AH,即AE:15=:9,解得AE=;当GA=GE时,则∠AGE=∠AEG,∵∠AGE=∠DAB,而∠AGE=∠ADG+∠DAG,∠DAB=∠GAE+∠DAG,∴∠GAE=∠ADG,∴∠AEG=∠ADG,∴AE=AD=15,综上所述,△AEC是以EG为腰的等腰三角形时,线段AE的长为或15;(3)作DH⊥AB于H,如图2,则AH=9,HE=AE﹣AH=x﹣9,在Rt△ADE中,DE==,∵∠AGE=∠DAB,∠AEG=∠DEA,∴△EAG∽△EDA,∴EG:AE=AE:ED,即EG:x=x:,∴EG=,∴DG=DE﹣EG=﹣,∵DF∥AE,∴△DGF∽△EGA,∴DF:AE=DG:EG,即y:x=(﹣):,∴y=(9<x<).【点评】本题考查了四边形的综合题:熟练掌握梯形的性质等等腰三角形的性质;常把直角梯形化为一个直角三角形和一个矩形解决问题;会利用勾股定理和相似比计算线段的长;会运用分类讨论的思想解决数学问题.3.(2016·江苏省宿迁)如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为 4 .【分析】如图,当AB=AD时,满足△PBC是等腰三角形的点P有且只有3个.【解答】解:如图,当AB=AD时,满足△PBC是等腰三角形的点P有且只有3个,△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),则AB=AD=4,故答案为4.【点评】本题考查矩形的性质,等腰三角形的性质等知识,解题的关键是理解题意,属于中考常考题型.4.(2016·江苏省宿迁)如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:BE=CF.【分析】先利用平行四边形性质证明DE=CF,再证明EB=ED,即可解决问题.【解答】证明:∵ED∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.【点评】本题考查平行四边形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用直线知识解决问题,属于基础题,中考常考题型.5.(2016·江苏省宿迁)已知△ABC是等腰直角三角形,AC=BC=2,D是边AB上一动点(A、B两点除外),将△CAD绕点C按逆时针方向旋转角α得到△CEF,其中点E是点A的对应点,点F是点D的对应点.(1)如图1,当α=90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF∥AC;(2)如图2,当90°≤α≤180°时,AE与DF相交于点M.①当点M与点C、D不重合时,连接CM,求∠CMD的度数;②设D为边AB的中点,当α从90°变化到180°时,求点M运动的路径长.【分析】(1)欲证明GF∥AC,只要证明∠A=∠FGB即可解决问题.(2)①先证明A、D、M、C四点共圆,得到∠CMF=∠CAD=45°,即可解决问题.②利用①的结论可知,点M在以AC为直径的⊙O上,运动路径是弧CD,利用弧长公式即可解决问题.【解答】解:(1)如图1中,∵CA=CB,∠ACB=90°,∴∠A=∠ABC=45°,∵△CEF是由△CAD旋转逆时针α得到,α=90°,∴CB与CE重合,∴∠CBE=∠A=45°,∴∠ABF=∠ABC+∠CBF=90°,∵BG=AD=BF,∴∠BGF=∠BFG=45°,∴∠A=∠BGF=45°,∴GF∥AC.(2)①如图2中,∵CA=CE,CD=CF,∴∠CAE=∠CEA,∠CDF=∠CFD,∵∠ACD=∠ECF,∴∠ACE=∠CDF,∵2∠CAE+∠ACE=180°,2∠CDF+∠DCF=180°,∴∠CAE=∠CDF,∴A、D、M、C四点共圆,∴∠CMF=∠CAD=45°,∴∠CMD=180°﹣∠CMF=135°.②如图3中,O是AC中点,连接OD、CM.∵AD=DB,CA=CB,∴CD⊥AB,∴∠ADC=90°,由①可知A、D、M、C四点共圆,∴当α从90°变化到180°时,点M在以AC为直径的⊙O上,运动路径是弧CD,∵OA=OC,CD=DA,∴DO⊥AC,∴∠DOC=90°,∴的长==.∴当α从90°变化到180°时,点M运动的路径长为.【点评】本题考查几何变换综合题、等腰直角三角形的性质、平行线的判定和性质、弧长公式、四点共圆等知识,解题的关键是发现A、D、M、C四点共圆,最后一个问题的关键,正确探究出点M的运动路径,记住弧长公式,属于中考压轴题.6.(2016•辽宁沈阳)在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.【考点】三角形综合题.【分析】(1)①由旋转性质知AB=AD,∠BAD=60°即可得证;②由BA=BD、EA=ED根据中垂线性质即可得证;③分别求出BF、EF的长即可得;(2)由∠ACB+∠BAC+∠ABC=180°、∠DAG+∠DAE+∠BAE=180°、∠DAG=∠ACB、∠DAE=∠BAC 得∠BAE=∠BAC且AE=AC,根据三线合一可得CE⊥AB、AC=5、AH=3,继而知CE=2CH=8、BE=5,即可得答案.【解答】解:(1)①∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AB=AD,∠BAD=60°,∴△ABD是等边三角形;②由①得△ABD是等边三角形,∴AB=BD,∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AC=AE,BC=DE,又∵AC=BC,∴EA=ED,∴点B、E在AD的中垂线上,∴BE是AD的中垂线,∵点F在BE的延长线上,∴BF⊥AD,AF=DF;③由②知BF⊥AD,AF=DF,∴AF=DF=3,∵AE=AC=5,∴EF=4,∵在等边三角形ABD 中,BF=AB•sin∠BAF=6×=3,∴BE=BF﹣EF=3﹣4;(2)如图所示,∵∠DAG=∠ACB,∠DAE=∠BAC,∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,又∵∠DAG+∠DAE+∠BAE=180°,∴∠BAE=∠ABC,∵AC=BC=AE,∴∠BAC=∠ABC,∴∠BAE=∠BAC,∴AB⊥CE,且CH=HE=CE,∵AC=BC,∴AH=BH=AB=3,则CE=2CH=8,BE=5,∴BE+CE=13.【点评】本题主要考查旋转的性质、等边三角形的判定与性质、中垂线的性质、三角形内角和定理等知识点,熟练掌握旋转的性质是解题的关键.21。
专题17 三角形与多边形考点总结【思维导图】【知识要点】知识点一三角形的概念三角形的概念:由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。
三角形特性(1)三角形有三条线段(2)三条线段不在同一直线上三角形是封闭图形(3)首尾顺次相接三角形用符号“Δ”表示,顶点是A、B、C的三角形记作“ΔABC”,读作“三角形ABC”。
三角形按边分类:等腰三角形:有两条边相等的三角形叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰与底边的夹角叫做底角。
等边三角形:底边与腰相等的等腰三角形叫做等边三角形,即三边都相等。
三角形三边的关系(重点)(1)三角形的任意两边之和大于第三边。
三角形的任意两边之差小于第三边。
(这两个条件满足其中一个即可)用数学表达式表达就是:记三角形三边长分别是a,b,c,则a+b>c或c-b<a。
(2)已知三角形两边的长度分别为a,b,求第三边长度的范围:|a-b|<c<a+b考查题型一三角形的三边关系1.(2018·湖南中考真题)下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm 2.(2018·湖南中考真题)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1 B.2 C.8 D.113.(2018·贵州中考真题)已知一个三角形的两边长分别为8和2,则这个三角形的第三边长可能是()A.4 B.6 C.8 D.104.(2018·四川中考模拟)已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为() A.2a+2b-2c B.2a+2b C.2c D.0三角形的分类:三角形按边的关系分类如下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形锐角三角形(三个角都是锐角的三角形)钝角三角形(有一个角为钝角的三角形)1.(2018·湖南中考模拟)下列说法正确的是()A.按角分类,三角形可以分为钝角三角形、锐角三角形和等腰直角三角形B.按边分类,三角形可分为等腰三角形、不等边三角形和等边三角形C.三角形的外角大于任何一个内角D.一个三角形中至少有一个内角不大于60°2.(2019·陕西中考模拟)等腰三角形两边长分别是2 cm和5 cm,则这个三角形周长是()A.9 cm B.12 cm C.9 cm或12 cm D.14 cm三角形的稳定性➢三角形具有稳定性➢四边形及多边形不具有稳定性要使多边形具有稳定性,方法是将多边形分成多个三角形,这样多边形就具有稳定性了。
2017年中考数学专题练习解直角三角形(含解析)(1)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年中考数学专题练习解直角三角形(含解析)(1))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年中考数学专题练习解直角三角形(含解析)(1)的全部内容。
解直角三角形一、选择题(共13小题,每小题4分,满分52分)1.在△ABC中,已知AB=5,AC=3,BC=4,则下列结论中正确的是()A.sinA=B.cosB=C.tanA=D.tanB=2.如图,△ABC为边长是5的等边三角形,点E在AC边上,点F在AB边上,ED⊥BC,且ED=AE,DF=AF,则CE的长是()A.B.C.20+10D.20﹣103.正方形网格中,∠AOB如图放置,则cos∠AOB的值为()A. B.C.D.24.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边,下列关系式中错误的是()A.b=c•cosB B.b=a•tanB C.a=c•sinA D.a=b•cotB5.如图,已知▱ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,BF、AD的延长线相交于G,下面结论:①DB=BE;②∠A=∠BHE;③AB=BH;④△BHD∽△BDG.其中正确的结论是()A.①②③④B.①②③ C.①②④ D.②③④6.如图,点A的坐标为(﹣1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为( )A.(0,0)B.(,﹣)C.(﹣,﹣)D.(﹣,﹣)7.如图,AB为⊙O的直径,CA切⊙O于A,CB交⊙O于D,若CD=2,BD=6,则sinB=()A.B.C. D.8.在Rt△ABC中,∠C=90°,AB=13,BC=5,则tanA=()A.B.C.D.9.已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.10.如图为了测量某建筑物AB的高度,在平地上C处测得建筑物顶端A的仰角为30°,沿CB 方向前进12m到达D处,在D处测得建筑物顶端A的仰角为45°,则建筑物AB的高度等于()A.6(+1)m B.6(﹣1)m C.12(+1)m D.12(﹣1)m11.已知α为等边三角形的一个内角,则cosα等于()A.B. C. D.12.王英同学从A地沿北偏西60°方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地()A. m B.100m C.150m D. m13.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于( )A. B.C.D.二、填空题(共10小题,每小题5分,满分50分)14.化简= .15.如图,铁路的路基的横断面为等腰梯形,其腰的坡度为1:1.5,上底宽为6m,路基高为4m,则路基的下底宽为m.16.如图,某公园入口处原有三阶台阶,每级台阶高为20cm,深为30cm.为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现将斜坡的坡度设计为i=1:4.5,则AC的长为cm.17.身高1。
一、选择题 1. 9.(2017浙江温州,9,4分)四个全等的直角三角形按图示方式围成正方形ABCD ,过各较长直角边的中点作垂线,围成面积为S 的小正方形EFGH .己知AM 为Rt △ABM 较长直角边,AM =2,则正方形ABCD 的面积为A .12SB .10SC .9SD .8S答案:C ,解析:由题意可知小正方形边长: EF =EH =HG =GF =, 4个白色的矩形全等,且矩形的长均为,宽为(),则直角三角形的短直角边长为:.由勾股定理得AB ==3所以正方形ABCD 的面积为9S .2. (2017·辽宁大连,8,3分)如图,在△ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,点E 是AB 的中点,CD =DE =a ,则AB 的长为A . 2aB .22aC .3aD .334a答案:B 解析:由于CD ⊥AB ,CD =DE =a ,所以CE =22DE CD +=22a a +=2a ,又△ABC 中,∠ACB =90°,点E 是AB 的中点,所以AE =BE =CE ,所以AB =2CE =22a ,故选B .3. (2017山东淄博,12,4分)如图,在Rt △ABC 中,∠ABC =90°,AB =6,BC =8,∠BAC ,∠ACB 的平分第8题CABDEM第9题HGFEDCBA线相交于点E ,过点E 作EF ∥BC 交AC 于点F ,则EF 的长为 ( )AM A设故4.’C=A .5. (2017黑龙江大庆,8,3分)如图,ABD ∆是以BD 为斜边的等腰直角三角形,BCD ∆中,090=∠DBC ,060=∠BCD ,DC 中点为E ,AD 与BE 的延长线交于点F ,则AFB ∠的度数为( )FE CBA(第12题图)A .030B .015C .045D .025答案:B ,解析:AFB ∠=∠ADE -∠DEB =75°- 60°=15°.6. (2017湖北黄石,7,3分)如图,△ABC 中,E 为BC 边的中点,CD ⊥AB ,AB =2,AC =1,则∠CDE +∠ACD =( )BEDCAA .60︒B .75︒C .90︒D .105︒答案:C ,解析:因为E 为BC 边的中点,CD ⊥AB ,,DE =32,所以BE =CE =DE =23,即∠CDE =∠DCE ,BC =3.在△ABC 中,AC 2+BC 2=1+(3)2=4=AB 2,故∠CDE +∠ACD =90°,选C .7.(2017内蒙古包头)如图,在Rt ABC ∆中,090,ACB CD AB ∠=⊥,垂足为D ,AF 平分CAB ∠,交CD 于点E ,交CB 于点F ,若3,5AC AB ==,则CE 的长为( )(第12题)FE DCB AM ABCEF(第12题)A .32 B . 43 C . 53 D .85答案:A ,解析:考点直角三角形的性质与三角形相似的性质的应用.。
专题17 判定三角形形状的十种常用方法【专题综述】三角形既可以按边分类也可以按角分类,当我们得到了它们的边(或角)之间的关系或最大角的度数时,就能据此判定三角形的形状.这也是考试中的常考题型,本文就判定三角形形状的常用方法归纳介绍如下,供参考.【方法解读】一、利用因式分解例1 在△A BC中,∠A、∠B、∠C所对的边分别为a、b、c,且a2+2ab=c2+2bc,试判定△ABC的形状。
【举一反三】(2017秋•分宜县校级月考)已知a,b,c是△ABC的三边,且满足a2﹣b2+ac﹣bc=0,判断三角形的形状.二、利用配方法例2 已知a、b、c是△ABC的三边,且满足a4+b4+c4=a2b2+b2c2+c2a2,试判定三角形的形状.【举一反三】(2015春•六合区期末)已知a、b、c是△ABC的三边,且满足a2+b2+c2﹣ab﹣bc﹣ac=0,请你根据此条件判断这个三角形的形状,并说明理由.三、利用根的判别式例3 已知a、b、c是△ABC的三边,且方程(a2+b2+c2)x2-(a+b+c)x+34=0有实根,试判定△ABC的形状.【举一反三】已知a、b、c为△ABC的三边,且方程(x﹣a)(x﹣b)+(x﹣b)(x﹣c)+(x﹣c)(x﹣a)=0有两个相等的实根,试判断△ABC的形状.四、利用构造方程例4 已知k>1,b=2k,a+c=2k2,ac=k4-1,试判定以a、b、c为边的三角形形状.【举一反三】(2016春•雁塔区校级期末)已知△ABC的三条边a、b、c满足关系|a2﹣b2﹣c2|+=0,那么△ABC的形状为.五、利用公共根例5 设a、b、c是△ABC的三边长,方程x2+2ax+b2=0与x2+2cx-b2=0有一个相同的根,求证:△ABC是直角三角形.【举一反三】已知△ABC的∠A,∠B,∠C所对的边分别为a,b,c,且关于x的方程a(x2﹣1)﹣2bx+c(x2+1)=0有两个相等的实数根,判断△ABC的形状并说明理由.六、利用韦达定理例6 如果方程x2-xbcos A+acosB=0的两根之积等于两根之和,a、b、c为三角形的三边,试判定△ABC 的形状.【举一反三】(2017秋•余干县校级月考)已知关于x的方程(a+c)x2+2bx﹣(c﹣a)=0的两根之和为﹣1,两根之差为1,其中a,b,c是△ABC的三边长.(1)求方程的根;(2)试判断△ABC的形状.七、利用三角形面积公式例7 已知△ABC中,若h a+h b+h c=9r,其中h a、h b、h c为三边上的高,r为三角形内切圆的半径,试判定△ABC的形状.【举一反三】(2015•潍坊)如图,三角形ABC的两个顶点B、C在圆上,顶点A在圆外,AB、AC分别交圆于E、D两点,连接EC、BD.(1)求证:△ABD∽△ACE;(2)若△BEC与△BDC的面积相等,试判定三角形ABC的形状.八、利用解方程组例8 已知△ABC的三条边是a、b、c,三个角是A、B、C.若b是a、c的比例中项,且a-b=b-c,试判定这个三角形的形状【举一反三】(2015春•相城区期末)(1)若a、b、c为一个三角形的三边,且满足(a﹣b)2+(b﹣c)2+(c﹣a)2=0.探索这个三角形的形状,并说明理由;(2)若x、y、z为一个三角形的三个内角的度数,且满足36x2+9y2+4z2﹣18xy﹣6yz﹣12zx=0.探索这个三角形的形状,并说明理由.九、利用二次函数性质例9 设二次函数y=(a+b)x2+2cx-(a-b),当x=-12时,其最小值为-12b.若a、b、c是△ABC的三边长,试判定△A BC的形状.【举一反三】(2016•西湖区一模)设a,b,c是△ABC的三边长,二次函数(其中2a≠b),(1)当b=2a+8c时,求二次函数的对称轴;(2)当x=1时,二次函数最小值为b,试判断△ABC的形状,并说明理由.十、综合运用判定方法例10 已知:如图,D为△ABC的边AC上一点,F为AB延长线上一点,DF交BC于E.若E是DF的中点,CD=BF,试判定△ABC的形状.【举一反三】(2014秋•长清区期中)如图,在△ABC中,AB=13,BC=10,BC边上的中线AD=12,试判定△ABC的形状()A.直角三角形B.等边三角形C.等腰三角形D.以上都不对【强化训练】1.(2013秋•吴起县校级期中)△ABC中,三边长a、b、c满足,且关于x的方程有两个相等的实数根.(1)试判断△ABC的形状;(2)求△ABC的面积.2.已知在△ABC中,∠A、∠B、∠C的对边依次为a、b、c,且a2:b2:c2=1:2:3,判定△ABC的形状,并求出∠A、∠B、∠C的度数.3.(2015秋•自贡校级月考)已知a、b、c是△ABC的三边长,且满足a(x2﹣1)﹣2bx+c(x2+1)=0有两个相等的实数根,试判断△ABC的形状.4.已知关于x的一元二次方程(a+c)x2﹣2b x﹣a+c=0有两个相等的实数根,试求以a、b、c为边能否构成三角形?若能,请判断三角形的形状.5.已知a,b,c是△ABC的三条边长,且方程(a2+b2)x2﹣2cx+1=0有两个相等的实数根,试判断△ABC 的形状.6.(2015秋•金乡县期末)已知a,b,c是△A BC的三边,且满足关系式a2+c2=2ab+2bc﹣2b2,试判断△ABC 的形状.7.已知a、b、c是△ABC的三边,且关于x的一元二次方程x2+2(b﹣c)x=(b﹣c)(a﹣b)有两个相等的实数根,试判断△ABC的形状.8.(2016秋•简阳市期中)已知a、b、c是△ABC的三边的长,且满足a2+2b2+c2﹣2b(a+c)=0,试判断此三角形的形状.9.(2017春•惠民县校级月考)已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.10.(2016秋•荣成市期中)设a,b,c是△ABC的三边长,二次函数在x=1时取最小值,则△ABC是()A.等腰三角形B.锐角三角形C.钝角三角形D.直角三角形。
"2017-2018中考数学复习专题-直角三角形"一.选择题〔每题3分,共计36分〕1.直角三角形的两个锐角平分线的夹角是〔〕A.45°B.135°C.45°或135°D.由两个锐角的大小决定2.直角三角形三边的长分别为3、4、*,则*可能取的值为〔〕A.5 B.C.5或D.不能确定3.如图,在△ABC中,∠ACB=90°,CD是高,∠A=30°,AB=4,则以下结论中不正确的选项是〔〕A.BC=2 B.BD=1 C.AD=3 D.CD=24.将一副三角板按如下图方式放置,则∠1与∠2的和是〔〕A.60°B.45°C.30°D.25°第3题图第4题图第5题图5.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处,假设∠A=25°,则∠BDC等于〔〕A.44°B.60°C.67°D.70°6.如图,在△ABC中,BD⊥AC于点D,点E为AB的中点,AD=6,DE=5,则线段BD的长为〔〕A.5 B.6 C.8 D.107.如图,△ABC是等腰直角三角形,点D是斜边AB上一点,DE⊥AC于点E,DF⊥BC于点F,AC=4,则EF的最小值是〔〕A.4B.4 C.2 D.2第6题图第7题图第8题图8.如图,△ABC中,AB=AC,∠BAC=90°,P为BC中点,∠EPF=90°,给出四个结论:①∠B=∠BAP;②AE=CF;③PE=PF;④S四边形AEPF=S△ABC,其中成立的有〔〕A.4个B.3个 C.2个 D.1个9.以下条件:〔1〕∠A+∠B=∠C,〔2〕∠A:∠B:∠C=1:2:3,〔3〕∠A=90°﹣∠B,〔4〕∠A=∠B=∠C中,其中能确定△ABC是直角三角形的条件有〔〕个.A.1 B.2 C.3 D.410.如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有〔〕A.1 B.2 C.3 D.411.如图,OP=1,过点P作PP1⊥OP且PP1=1,得OP1=;再过点P1作P1P2⊥OP1且P1P2=1得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2…依此法继续作下去,得OP2017=A.B.C.D.12.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2016的值为〔〕A.〔〕2013B.〔〕2014C.〔〕2013D.〔〕2014第11题图第12题图"2017-2018中考数学复习专题-直角三角形"题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二.填空题〔每题4分,共计24分〕13.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,假设EC=2,则EF=.14.如图,△ABC中,AB=AC,D为AB中点,E在AC上,且BE⊥AC,假设DE=5,AE=8,则BC的长度为.第13题图第14题图第15题图15.如图,在△ABC中,AB=AC=10,BC=12,BD是高,则BD的长为.16.如下图的一块地,∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,则这块地的面积为m2.17.如图,长方体的长为15cm,宽为10cm,高为20cm,点B距离C点5cm,一只蚂蚁如果要沿着长方体的外表从点A爬到点B,徐亚爬行的最短距离是cm.第16题图第17题图18.观察一下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…请你写出有以上规律的第⑤组勾股数:,第n〔n为正整数〕组勾股数:.三.解答题〔共7小题,共计60分〕19.〔8分〕如图,在△ABCC中,∠ACB=90°,CD⊥AB,AF是角平分线,交CD于点E.求证:∠1=∠2.20.〔8分〕:如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,垂足为E,BD=4cm.求AC的长.21.〔8分〕如图,在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD 的中点,求证:〔1〕MD=MB;〔2〕MN平分∠DMB.22.〔8分〕如图,长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.23.〔8分〕如图,△ABC中,AB>AC,BE、CF都是△ABC的高,P是BE上一点且BP=AC,Q是CF延长线上一点且CQ=AB,连接AP、AQ、QP,判断△APQ的形状.24.〔10分〕如图:△ABC中,∠BAC=90°,AB=AC,点D是斜边BC的中点.〔1〕如图1,假设E、F分别是AB、AC上的点,且AE=CF.求证:①△AED≌△CFD;②△DEF为等腰直角三角形.〔2〕如图2,点F、E分别D在CA、AB的延长线上,且AE=CF,猜测△DEF是否为等腰直角三角形?如果是请给出证明.25.〔10分〕∠MAN,AC平分∠MAN.〔1〕在图1中,假设∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;〔2〕在图2中,假设∠MAN=120°,∠ABC+∠ADC=180°,则〔1〕中的结论是否仍然成立?假设成立,请给出证明;假设不成立,请说明理由."中考专题---直角三角形"参考答案与试题解析一.选择题〔共12小题〕1.直角三角形的两个锐角平分线的夹角是〔〕A.45°B.135°C.45°或135°D.由两个锐角的大小决定【解答】解:如图,∠ACB=90°,OA、OB分别平分∠BAC和∠ABC,∵OA、OB分别平分∠BAC和∠ABC,∴∠OAB=BAC,∠OBA=∠ABC,∴∠OAB+∠OBA=〔∠BAC+∠ABC〕,∵∠C=90°,∴∠BAC+∠ABC=90°,∴∠OAB+∠OBA=45°,∴∠AOB=180°﹣45°=135°,∴直角三角形的两个锐角平分线的夹角是135°或45°.应选C.2.直角三角形三边的长分别为3、4、*,则*可能取的值为〔〕A.5 B.C.5或 D.不能确定【解答】解:当*为斜边时,*==5;当4为斜边时,*==.∴*的值为5或;应选:C.3.如图,在△ABC中,∠ACB=90°,CD是高,∠A=30°,AB=4,则以下结论中不正确的选项是〔〕A.BC=2 B.BD=1 C.AD=3 D.CD=2【解答】解:∵∠ACB=90°,∠A=30°,∴BC=AB=2,∵CD⊥AB,∴CD<AB,即CD<2,则CD=2错误,应选:D.4.将一副三角板按如下图方式放置,则∠1与∠2的和是〔〕A.60°B.45°C.30°D.25°【解答】解:∵图中是一副直角三角板,∴∠B=∠ACB=45°,∠BAC=∠EDF=90°,∠E=30°,∠F=60°,∴∠BCA+∠BAC=45°+90°=135°.∵∠EDF=90°,∴∠DCA+∠DAC=90°,∴∠1+∠2=〔∠BCA+∠BAC〕﹣〔∠DCA+∠DAC〕=135°﹣90°=45°.应选B.5.如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC 边上的点E处,假设∠A=25°,则∠BDC等于〔〕A.44°B.60°C.67°D.70°【解答】解:∵△ABC中,∠ACB=90°,∠A=25°,∴∠B=90°﹣∠A=65°,由折叠的性质可得:∠CED=∠B=65°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=40°,∴∠BDC=〔180°﹣∠ADE〕=70°.应选D.6.如图,在△ABC中,BD⊥AC于点D,点E为AB的中点,AD=6,DE=5,则线段BD的长为〔〕A.5 B.6 C.8 D.10【解答】解:∵BD⊥AC于D,点E为AB的中点,∴AB=2DE=2×5=10,∴在Rt△ABD中,BD==8.应选C.7.如图,△ABC是等腰直角三角形,点D是斜边AB上一点,DE⊥AC于点E,DF⊥BC于点F,AC=4,则EF的最小值是〔〕A.4B.4 C.2D.2【解答】解:连接DC.∵DE⊥AC,DF⊥BC,∴∠DEC=∠DFC=∠C=90°;又∵∠ACB=90°,∴四边形ECFD是矩形,∴EF=DC,∴当DC最小时,EF也最小,即当CD⊥AB时,PC最小,∵AC=BC=4,∴AB=4,∴AC•BC=AB•DC,∴DC=2.∴线段EF长的最小值为2;应选C.8.如图,△ABC中,AB=AC,∠BAC=90°,P为BC中点,∠EPF=90°,给出四个结论:①∠B=∠BAP;②AE=CF;③PE=PF;④S四边形AEPF=S△ABC,其中成立的有〔〕A.4个B.3个C.2个D.1个【解答】解:∵AB=AC,∠BAC=90°,P为BC中点,∴①正确;∠B=∠PAC=45°∵∠BPE+∠EPA=90°,∠EPA+∠APF=90°∴∠BPE=∠APF,又AP为公共边,∴△PBE≌△PAF,∴BE=AF,又AB=AC,∴AE=CF,∴②正确;②中,△PBE≌△PAF,∴PE=PF,∴③正确,∵△PFC≌△PEA,△PBE≌△PAF,∴④也正确所以①②③④都正确,应选A.9.以下条件:〔1〕∠A+∠B=∠C,〔2〕∠A:∠B:∠C=1:2:3,〔3〕∠A=90°﹣∠B,〔4〕∠A=∠B=∠C中,其中能确定△ABC是直角三角形的条件有〔〕个.A.1 B.2 C.3 D.4【解答】解:A是,因为根据三角形角和定理可求出∠C=90°,所以是直角三角形;B是,因为根据三角形角和定理可求出三个角分别为30°,60°,90°,所以是直角三角形;C是,因为由题意得∠C=90°,所以是直角三角形;D是,因为根据三角形角和定理可求出∠C=90°,所以是直角三角形.应选D.10.如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有〔〕A.1 B.2 C.3 D.4【解答】解:〔1〕S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.〔2〕S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.〔3〕S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.〔4〕S1=a2,S2=b2,S3=c2,∵a2+b2=c2,123综上,可得面积关系满足S1+S2=S3图形有4个.应选:D.11.如图,OP=1,过点P作PP1⊥OP且PP1=1,得OP1=;再过点P1作P1P2⊥OP1且P1P2=1,得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2…依此法继续作下去,得OP2017=〔〕A.B.C.D.【解答】解:∵OP=1,OP1=,OP2=,OP3==2,∴OP4==,…,OP2017=.应选:D.12.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2016的值为〔〕A.〔〕2013B.〔〕2014C.〔〕2013D.〔〕2014【解答】解:在图中标上字母E,如下图.∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察,发现规律:S1=22=4,S2=S1=2,S3=S2=1,S4=S3=,…,n当n=2016时,S2016==.应选C.二.填空题〔共6小题〕13.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,假设EC=2,则EF= 4 .【解答】解:作EG⊥OA于G,如下图:∵EF∥OB,∠AOE=∠BOE=15°∴∠OEF=∠COE=15°,EG=CE=2,∵∠AOE=15°,∴∠EFG=15°+15°=30°,∴EF=2EG=4.故答案为:4.14.如图,△ABC中,AB=AC,D为AB中点,E在AC上,且BE⊥AC,假设DE=5,AE=8,则BC的长度为2.【解答】解:∵BE⊥AC,∴∠AEB=90°,∵D为AB中点,∴AB=2DE=2×5=10,∵AE=8,∴BE==6.∴BC===2,故答案为:2.15.如图,在△ABC中,AB=AC=10,BC=12,BD是高,则BD的长为9.6 .【解答】解:设AD=*,由勾股定理得,AB2﹣AD2=BC2﹣CD2,即102﹣*2=122﹣〔10﹣*〕2,解得,*=2.8,BD==9.6,故答案为:9.6.16.如下图的一块地,∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,则这块地的面积为96 m2.【解答】解:如图,连接AC.在△ACD中,∵AD=12m,CD=9m,∠ADC=90°,∴AC=15m,又∵AC2+BC2=152+202=252=AB2,∴△ABC是直角三角形,∴这块地的面积=△ABC的面积﹣△ACD的面积=×15×20﹣×9×12=96〔平方米〕.故答案为:96.17.如图,长方体的长为15cm,宽为10cm,高为20cm,点B距离C点5cm,一只蚂蚁如果要沿着长方体的外表从点A爬到点B,徐亚爬行的最短距离是25 cm.【解答】解:只要把长方体的右侧外表剪开与前面这个侧面所在的平面形成一个长方形,如第1个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=10+5=15,AD=20,在直角三角形ABD中,根据勾股定理得:∴AB=;只要把长方体的右侧外表剪开与上面这个侧面所在的平面形成一个长方形,如第2个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:∴AB=;只要把长方体的上外表剪开与后面这个侧面所在的平面形成一个长方形,如第3个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴AC=CD+AD=20+10=30,在直角三角形ABC中,根据勾股定理得:∴AB=;∵25<5,∴蚂蚁爬行的最短距离是25.故答案为:2518.观察一下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…请你写出有以上规律的第⑤组勾股数:11,60,61 ,第n〔n为正整数〕组勾股数:2n+1,2n〔n+1〕,2n〔n+1〕+1 .【解答】解:∵①3=2×1+1,4=2×1×〔1+1〕,5=2×1×〔1+1〕+1,②5=2×2+1,12=2×2×〔2+1〕,13=2×2×〔2+1〕+1,③7=2×3+1,24=2×3×〔3+1〕,25=2×3×〔3+1〕+1,…,∴第n组勾股数为:2n+1,2n〔n+1〕,2n〔n+1〕+1,∴第⑤组勾股数为2×5+1=11,2×5×〔5+1〕=60,2×5×〔5+1〕+1=61,即11,60,61.故答案为:11,60,61;2n+1,2n〔n+1〕,2n〔n+1〕+1.三.解答题〔共7小题〕19.如图,在△ABCC中,∠ACB=90°,CD⊥AB,AF是角平分线,交CD 于点E.求证:∠1=∠2.【解答】证明:∵AF是角平分线,∴∠CAF=∠BAF,∵∠ACB=90°,CD⊥AB,∴∠CAF+∠2=90°,∠BAF+∠AED=90°,∴∠2=∠AED,∵∠1=∠AED,∴∠1=∠2.20.:如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,垂足为E,BD=4cm.求AC的长.【解答】解:连接AD,∵ED是AB的垂直平分线,∴DB=DA=4cm,∵∠B=30°,∴∠ADC=2∠B=60°,∴∠DAC=30°,∴DC=2,∵在△ABC中,∠C=90°∴由勾股定理得:AC=2cm.21.如图,在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,求证:〔1〕MD=MB;〔2〕MN平分∠DMB.【解答】证明:〔1〕∵,∠ABC=∠ADC=90°,M是AC的中点,∴BM=AC,DM=AC,∴MD=MB;〔2〕∵MD=MB,N是BD的中点,∴MN平分∠DMB〔等腰三角形三线合一〕.22.如图,长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.【解答】解:∵四边形ABCD是矩形,∴AD=BC=10cm,CD=AB=8cm,根据题意得:Rt△ADE≌Rt△AFE,∴∠AFE=90°,AF=10cm,EF=DE,设CE=*cm,则DE=EF=CD﹣CE=8﹣*,在Rt△ABF中由勾股定理得:AB2+BF2=AF2,即82+BF2=102,∴BF=6cm,∴CF=BC﹣BF=10﹣6=4〔cm〕,在Rt△ECF中由勾股定理可得:EF2=CE2+CF2,即〔8﹣*〕2=*2+42,∴64﹣16*+*2=*2+16,∴*=3〔cm〕,即CE=3cm.23.如图,△ABC中,AB>AC,BE、CF都是△ABC的高,P是BE上一点且BP=AC,Q是CF延长线上一点且CQ=AB,连接AP、AQ、QP,判断△APQ 的形状.【解答】解:△APQ是等腰直角三角形.∵BE、CF都是△ABC的高,∴∠1+∠BAE=90°,∠2+∠CAF=90°〔同角〔可等角〕的余角相等〕∴∠1=∠2又∵AC=BP,CQ=AB,在△ACQ和△PBA中,∴△ACQ≌△PBA∴AQ=AP,∴∠CAQ=∠BPA=∠3+90°∴∠QAP=∠CAQ﹣∠3=90°∴AQ⊥AP∴△APQ是等腰直角三角形24.如图:△ABC中,∠BAC=90°,AB=AC,点D是斜边BC的中点.〔1〕如图1,假设E、F分别是AB、AC上的点,且AE=CF.求证:①△AED ≌△CFD;②△DEF为等腰直角三角形.〔2〕如图2,点F、E分别D在CA、AB的延长线上,且AE=CF,猜测△DEF 是否为等腰直角三角形?如果是请给出证明.【解答】〔1〕证明:①∵∠BAC=90°,AB=AC,D为BC中点,∴∠BAD=∠DAC=∠B=∠C=45°,∴AD=BD=DC,∵在△AED和△CFD中,,∴△AED≌△CFD〔SAS〕;②∵△AED≌△CFD,∴DE=DF,∠ADE=∠CDF,又∵∠CDF+∠ADF=90°,∴△DEF为等腰直角三角形;〔2〕△DEF为等腰直角三角形,理由:∵∠BAC=90° AB=AC,D为BC中点∴∠BAD=∠DAC=∠B=∠C=45°,∴AD=BD=DC,∵在△AED和△CFD中,,∴△AED≌△CFD〔SAS〕;∴DE=DF∠ADE=∠CDF,又∵∠CDF﹣∠ADF=90°,∴△DEF为等腰直角三角形.25.∠MAN,AC平分∠MAN.〔1〕在图1中,假设∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;〔2〕在图2中,假设∠MAN=120°,∠ABC+∠ADC=180°,则〔1〕中的结论是否仍然成立?假设成立,请给出证明;假设不成立,请说明理由.【解答】〔1〕证明:∵∠MAN=120°,AC平分∠MAN,∴∠CAD=∠CAB=60°.又∠ABC=∠ADC=90°,∴AD=AC,AB=AC,∴AB+AD=AC.〔2〕解:结论仍成立.理由如下:作CE⊥AM、CF⊥AN于E、F.则∠CED=∠CFB=90°,∵AC平分∠MAN,∴CE=CF.∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°∴∠CDE=∠ABC,在△CDE和△CBF中,,∴△CDE≌△CBF〔AAS〕,∴DE=BF.∵∠MAN=120°,AC平分∠MAN,∴∠MAC=∠NAC=60°,∴∠ECA=∠FCA=30°,在Rt△ACE与Rt△ACF中,则有AE=AC,AF=AC,则AD+AB=AD+AF+BF=AD+AF+DE=AE+AF=AC+AC=AC.∴AD+AB=AC.。
三角形面积小专题亲爱的老师,给学生设计题目一定要注意归类训练,抓住重点题型要训练透彻亲爱的老师,亲爱的同学们,做题一定要注意反思总结:这个题用了什么知识点,给我们什么启示,以后遇到此类问题怎么办?一、面积问题的通法是求底和高1.如图所示,要判断△ABC 的面积是△DBC 的面积的几倍,只有一把仅有刻度的直尺,需要测量( )A .1次 B .2次 C .3次 D .3次以上2.如图,在四边形ABCD 中,∠ABC=90°,AB=BC=2,E 、F 分别是AD 、CD 的中点,连接BE 、BF 、EF .若四边形ABCD 的面积为6,求△BEF 的面积3.如图,在△ABC 中,AD 是它的角平分线,AB=8cm ,AC=6cm ,求S △ABD :S △ACD =4.在△ABC 中,AD 是BC 边上的中线,点E 是AD 中点,过点E 作垂线交BC 于点F ,已知BC=10,△ABD 的面积为12,求EF 的长根据底和高之间的关系求面积之间的关系5.如图,△ABC的面积为16,点D是BC边上一点,且BD=BC,点G是AB上一点,点H在△ABC内部,且四边形BDHG是平行四边形,求图中阴影部分的面积6.如图,D,E分别是△ABC边AB,BC上的点,AD=2BD,BE=CE,若S△ABC=30,求四边形BEFD的面积7.△ABC的两条中线AD、BE交于点F,连接CF,若△ABC的面积为24,求△ABF的面积8.如图,延长△ABC的边BC到点D,使CD=BC,延长边CA到点E,使AE=AC,=168,延长AB到点F,使FB=AB,连接DE,FD,FE,得到△DEF,若S△EFD求S△ABC9.如图,三角形ABC被分成三角形BEF和四边形AEFC两部分,BE=3,BF=4,FC=5,AE=6,求三角形BEF面积和四边形AEFC面积的比10.如图,三角形ABC内的线段BD、CE相交于点O,已知OB=OD,OC=2OE.若△BOC的面积=2,求四边形AEOD的面积11.如图,△PBC的面积为10cm2,AP垂直∠B的平分线BP于P,求△ABC的面积答案及解析1.(2016•翔安区模拟)如图所示,要判断△ABC的面积是△DBC的面积的几倍,只有一把仅有刻度的直尺,需要测量()A.1次B.2次C.3次D.3次以上【分析】连接AD并延长交BC于M,一次测量AM和AD的长(在同一直线上,可以一次就测出),然后求出DM,再根据等高的三角形的面积的比等于底边的比求解.【解答】解:连接AD并延长交BC于M,一次测量AM(AD)即可得AD,AM 长,即可算出DM长,由AM:DM=AP:PF,即可求出△ABC的面积是△DBC的面积的几倍.∴只量一次.故选A.【点评】本题考查了三角形的面积,主要利用了等底的三角形的面积的比等于高线的比.2.(2016•苏州)如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E、F分别是AD、CD的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2B.C.D.3【分析】连接AC,过B作EF的垂线,利用勾股定理可得AC,易得△ABC的面积,可得BG和△ADC的面积,三角形ABC与三角形ACD同底,利用面积比可得它们高的比,而GH又是△ACD以AC为底的高的一半,可得GH,易得BH,由中位线的性质可得EF的长,利用三角形的面积公式可得结果.【解答】解:连接AC,过B作EF的垂线交AC于点G,交EF于点H,∵∠ABC=90°,AB=BC=2,∴AC===4,∵△ABC为等腰三角形,BH⊥AC,∴△ABG,△BCG为等腰直角三角形,∴AG=BG=2=•AB•AC=×2×2=4,∵S△ABC∴S=2,△ADC∵=2,∴GH=BG=,∴BH=,又∵EF=AC=2,=•EF•BH=×2×=,∴S△BEF故选C.【点评】此题主要考查了三角形面积的运算,作出恰当的辅助线得到三角形的底和高是解答此题的关键.3.(2016秋•抚宁县期末)如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD:S△ACD=()A.3:4B.4:3C.16:9D.9:16【分析】利用角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=8:6=4:3,故选:B.【点评】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.4.(2016秋•和县期中)在△ABC中,AD是BC边上的中线,点E是AD中点,过点E作垂线交BC于点F,已知BC=10,△ABD的面积为12,则EF的长为()A.1.2B.2.4C.3.6D.4.8【分析】根据三角形的中线的性质和三角形面积公式进行解答即可.【解答】解:∵AD是BC边上的中线,△ABD的面积为12,∴△ADC的面积=12,∵点E是AD中点,∴△CDE的面积=6,∵BC=10,AD是BC边上的中线,∴DC=5,∴EF=,故选B.【点评】此题考查三角形面积问题,关键是根据三角形的中线把三角形分成面积相等的两部分解答.5.(2016•淄博)如图,△ABC的面积为16,点D是BC边上一点,且BD=BC,点G是AB上一点,点H在△ABC内部,且四边形BDHG是平行四边形,则图中阴影部分的面积是()A.3B.4C.5D.6【分析】设△ABC底边BC上的高为h,△AGH底边GH上的高为h1,△CGH底边GH上的高为h2,根据图形可知h=h1+h2.利用三角形的面积公式结合平行四边形的性质即可得出S阴影=S△ABC,由此即可得出结论.【解答】解:设△ABC底边BC上的高为h,△AGH底边GH上的高为h1,△CGH 底边GH上的高为h2,则有h=h1+h2.S△ABC=BC•h=16,S阴影=S△AGH+S△CGH=GH•h1+GH•h2=GH•(h1+h2)=GH•h.∵四边形BDHG是平行四边形,且BD=BC,∴GH=BD=BC,∴S阴影=×(BC•h)=S△ABC=4.故选B.【点评】本题考查了三角形的面积公式以及平行四边形的性质,解题的关键是找出S阴影=S△ABC.本题属于基础题,难度不大,解决该题型题目时,根据三角形的面积公式找出阴影部分的面积与△ABC的面积之间的关系是关键.6.(2016•历城区二模)如图,D,E分别是△ABC边AB,BC上的点,AD=2BD,BE=CE,若S△ABC=30,则四边形BEFD的面积为()A.5B.7C.9D.10【分析】作DM∥AE,交BC于M,根据平行线分线段成比例定理求得三角形ADF的面积,进而根据已知条件求得三角形ABE的面积,根据S四边形BDFE =S△ABE﹣S△ADF即可求得.【解答】解:作DM∥AE,交BC于M,∴=,∵AD=2BD,∴=,∴EM=BE,∴BE=CE,∴=,∵DM∥AE,∴==,∴=,∴∴,∵AD=2BD,∴S△ADC =S△ABC=×30=20,∴S△ADF=×20=8,∵S △ABE =S △ACE =S △ABC =15,∴S 四边形BDFE =S △ABE ﹣S △ADF =15﹣8=7.故选B .【点评】本题考查三角形的面积,关键知道当高相等时,面积等于底边的比,底相等时,面积等于高的比,根据此可求出三角形的面积,然后求出差.7.(2016春•泰兴市期末)△ABC 的两条中线AD 、BE 交于点F ,连接CF ,若△ABC 的面积为24,则△ABF 的面积为( )A .10B .8C .6D .4【分析】由中线得:S △ABD =S △ADC 得S △ABD =S △ABE ,由已知S △ABC =24,得出△ABE 和△ABD 的面积为12,根据等式性质可知S △AEF =S △BDF ,结合中点得:S △AEF =S △EFC =S △DFC =,相当于把△ADC 的面积平均分成三份,每份为4,由此可得S △ABF =S △ABD ﹣S △BDF .【解答】解∵AD 是中线,∴S △ABD =S △ADC =S △ABC ,∵S △ABC =24,∴S △ABD =S △ADC =×24=12,同理S △ABE =12,∴S △ABD =S △ABE ,∴S △ABD ﹣S △ABF =S △ABE ﹣S △ABF ,即S △AEF =S △BDF ,∵D 是中点,∴S △BDF =S △DFC ,同理S △AEF =S △EFC ,∴S △AEF =S △EFC =S △DFC =S △ADC =×12=4,∴S △ABF =S △ABD ﹣S △BDF =12﹣4=8,故选B .【点评】本题考查了三角形的面积问题,应用了三角形的中线将三角形分成面积相等的两部分,与各三角形面积的和与差相结合,分别求出各三角形的面积;本题是求三角形的面积,思考的方法有两种:①直接利用面积公式求;②利用面积的和与差求;本题采用了后一种方法.8.(2016春•青岛校级期末)如图,延长△ABC 的边BC 到点D ,使CD=BC ,延长边CA 到点E ,使AE=AC ,延长AB 到点F ,使FB=AB ,连接DE ,FD ,FE ,得到△DEF ,若S △EFD =168,则S △ABC 为( )A .42B .28C .24D .21【分析】分别连接AD 、BE 、CF ,利用△DEA 与△ACD 等底同高,求出S △AED =S △ACD ,然后利用△ABC 与△ACD 等底同高,求出S △ABC =S △ACD ,求出S △AED =S △ACD =S △ABC ;同理可求出S △ABE =S △FBE =S △FDC =S △BCF =S △ABC ,即可得出答案.【解答】解:分别连接AD 、BE 、CF ,∵CD=BC ,AE=AC ,FB=AB ,∴S △AED =S △ACD ,S △ABC =S △ACD ,∴S △AED =S △ACD =S △ABC ;同理可求出S △ABE =S △FBE =S △FDC =S △BCF =S △ABC ,∵S=168,△EFD∴S=168÷7=24.△ABC故选:C.【点评】此题主要考查学生对三角形面积的理解和掌握,解答此题的关键是分别连接AD、BE、CF,求出各三角形的面积.9.(2016春•宝应县期末)如图,三角形ABC被分成三角形BEF和四边形AEFC 两部分,BE=3,BF=4,FC=5,AE=6,那么三角形BEF面积和四边形AEFC面积的比是()A.4:23B.4:25C.5:26D.1:6【分析】连接AF,根据△BEF的边BE上的高和△ABF边AB上的高相等,推出=,推出S△BEF=S△ABF,同理得出S△ABF=S△ABC,推出S△BEF=S△ABC,即可得出答案.【解答】解:连接AF,∵BE=3,AE=6,∴AB=9,∵△BEF 的边BE 上的高和△ABF 边AB 上的高相等,∴=,即S △BEF =S △ABF ,同理BF=4,CF=5,BC=9,得出S △ABF =S △ABC ,推出S △BEF =S △ABC , ∴S △BEF :S 四边形AEFC =4:23,故选A【点评】本题考查了面积与等积变形的应用,主要考查学生能否灵活运用等高的三角形的面积比等于对应边之比.10.(2016春•惠山区期中)如图,三角形ABC 内的线段BD 、CE 相交于点O ,已知OB=OD ,OC=2OE .若△BOC 的面积=2,则四边形AEOD 的面积等于( )A .4B .5C .6D .7【分析】连接AO ,利用等高不等底的三角形面积比等于底长的比,可求出△COD 与△BOE 的面积.列出关于△AOE 与△AOD 的面积的方程即可求出四边形AEOD 的面积.【解答】解:连接OA ,∵OB=OD ,∴S △BOC =S △COD =2,∵OC=2OE ,∴S △BOE =S △BOC =1,∵OB=OD ,∴S △AOB =S △AOD ,∴S △BOE +S △AOE =S △AOD ,即:1+S △AOE =S △AOD ①,∵OC=2OE ,∴S △AOC =2S △AOE ,∴S △AOD +S △COD =2S △AOE ,即:S △AOD +2=2S △AOE ②,联立①和②:解得:S △AOE =3,S △AOD =4,S 四边形AEOD =S △AOE +S △AOD =7,故选(D )【点评】本题考查三角形面积问题,涉及方程组的解法,注意灵活运用等高不等底的三角形面积比等于底长的比这一结论.11.(2016秋•江阴市期中)如图,△PBC 的面积为10cm 2,AP 垂直∠B 的平分线BP 于P ,则△ABC 的面积为( )A .10cm 2B .12cm 2C .16cm 2D .20cm 2【分析】延长AP 交BC 于点Q ,则由条件可知S △ABP =S △BQP ,S △APC =S △PQC ,则阴影部分面积为△ABC 的一半,可得出答案.【解答】解:如图,延长AP 交BC 于点Q ,∵AP 垂直∠ABC 的平分线BP 于P ,∴AP=QP ,∴S△ABP =S△BQP,S△APC=S△PQC,∴S△ABC =2S阴影=20cm2,故选D.【点评】本题主要考查垂直平分线的定义及三角形的面积,由条件得出阴影部分面积为△ABC的一半是解题的关键.。