苏科版数学八年级上册课件:平面直角坐标系
- 格式:ppt
- 大小:1.08 MB
- 文档页数:23
义务教育课程标准实验教科书苏科版八年级上册§5.2 平面直角坐标系(1)一、教学目标1.理解平面直角坐标系的有关概念,会正确画出平面直角坐标系.2.会在给定的平面直角坐标系中,根据点的坐标描出点的位置,会由点的位置写出点的坐标.3.通过感受数学知识的发生和发展,让学生进一步领会“数形结合”的思想,体验将实际问题数学化的过程与方法.二、教学重点、难点【教学重点】1.理解平面直角坐标系的有关概念,会正确画出平面直角坐标系.2.会在给定的平面直角坐标系中,根据点的坐标描出点的位置,会由点的位置写出点的坐标.【教学难点】理解建立平面直角坐标系后,平面内的点与有序实数对的一一对应关系.三、教学方法与教学手段启发讲授,合作探究,学习单,多媒体辅助教学.四、教学过程(一)创设情境同学们,今天老师第一次给大家上课,对大家并不熟悉,如果课上我想有针对性的请某位同学回答问题,你能帮老师设计一个简单、可行的办法吗?【设计意图】一改惯用地复习旧知识、引入新课的手法,从学生熟悉的生活实际出发,设计一个引人入胜的生活情境,让学生获得成功的经验,消除刚上课的不适应感,并将小学曾经学过的数对加深认识,提出有序实数对的概念,通过一正一反的过程,使学生感受教室里存在着一个对应的关系,为接下来建立平面直角坐标系后,平面内的点与有序实数对一一对应作铺垫.(二)新知探究活动一你能描述点P所在的位置吗?【设计意图】将具体问题抽象成数学问题,生活的经验让学生能很快的回答,通过教师一步一步的追问,让学生体会到建立参照物(平面直角坐标系)描述点P的位置的必要性,初步形成平面直角坐标系的雏形,通过“提出问题——构建参照物——说一说对参照物的认识”的过程,让学生亲身经历概念形成的全过程,感受数学概念形成的自然性与合理性,加深学生对平面直角坐标系概念的理解.归纳一平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系.水平方向的数轴称为x轴或横轴,向右为正方向.铅直方向的数轴称为y轴或纵轴,向上为正方向.两轴的交点O是原点.请在学习单上自己构建一个平面直角坐标系.【设计意图】让学生自己先构建一个平面直角坐标系,教师通过巡视,发现学生画图时的不规范之处,再进行纠正,加深学生的印象.活动二现在给你一点A,你能精确的描述它所在的位置吗?再给你一点B,请你精确的描述它所在的位置.若我将平面直角坐标系擦掉,这四个点还能像之前一样精确的描述它们所在的位置吗?想一想,平面直角坐标系到底起到了什么作用?【设计意图】第一个点的作用既是学生巩固之前的描述方法,又是用有序实数对表示点的开始,第二个点的作用是让学生巩固用有序实数对来表示点.教师配合幽默的语言,让学生迅速感知到建立平面直角坐标系后,平面内的点可以用有序实数对来表示.再给你一点C,你能写出与它相对应的有序实数对吗?对应的有序实数对吗?【设计意图】此处的问法和之前不同,从“你能精确的描述它的位置吗?”转换成“写出与它相对应的有序实数对”,上升到规范的语言,进一步让学生掌握在平面直角坐标系中由点的位置写出与它相对应的有序实数对的方法.反过来,又会怎么样呢?带着疑问一起研究.若给你一对有序实数(3,2),你能在平面直角坐标系中,找到一个与它对应的点D吗?再给你一对有序实数(-2,4),你能在平面直角坐标系中,找到一个与它对应的点E吗?通过这个活动,你发现了什么问题?在平面直角坐标系中,用有序实数对(a,b)描述一个点的位置,如果将这点记为点P,那么它的位置如何确定?【设计意图】由于学生首次接触在平面直角坐标系中根据有序实数对画点,故需进行适当的铺垫,让学生经历由特殊到一般、具体到抽象的过程,使学生初步感知到建立平面直角坐标系后,一对有序实数可以确定一个点的位置.活动三回顾整个过程,一共总结出了两句话,你能合起来说一遍吗?归纳二在平面直角坐标系中,一对有序实数可以确定一个点的位置;反过来,任意一点的位置都可以用一对有序实数来表示.(建立平面直角坐标系后,平面内的点与有序实数对一一对应)这样的有序实数对叫做点的坐标.点的坐标通常与表示该点的大写字母写在一起.【设计意图】锻炼学生用简洁、准确的语言表达自己观点的能力.让学生进一步体会建立平面直角坐标系后,平面内的点与有序实数对一一对应的内涵.(三)例题讲解在平面直角坐标系中.(2)写出点M、N的坐标.【设计意图】通过一个简单的实例,让学生熟练掌握在给定平面直角坐标系中,根据点的坐标描出点的位置,由点的位置写出点的坐标的方法,进一步体会建立平面直角坐标系后,平面内的点与有序实数对一一对应的内涵.(四)知识运用再认识将活动和例题中的点放在一起来研究,你可以给这些点分分类吗?归纳三两条坐标轴将平面分成的4个区域称为象限,按逆时针顺序分别记为第一象限、第二象限、第三象限和第四象限.由于坐标轴是象限与象限之间的分界,因此坐标轴不属于任何象限.现在,如果我报几个点的坐标,你能迅速判断出它所在的位置吗?【设计意图】通过这个环节让学生从另一个视角再认识前面的问题,初步培养学生规范化的表达,让学生感受不同象限内的点的坐标的不同之处,之后通过几个快速回答,“逼”出学生模糊的认识:平面直角坐标系各象限内的点的坐标的符号特点及坐标轴上点的坐标的特点.练习在平面直角坐标系中画出下列各点,并指出它们所在象限或坐标轴.A(2,4),B(-3,3),C(-2.5,-2),D(0,-3).【设计意图】进一步巩固平面直角坐标系的相关概念.(五)小结思考通过今天的学习和研究,你对平面直角坐标系有了哪些认识?今天着重研究了平面内的点,若让你继续研究,你还有什么想研究的吗?【设计意图】建立平面直角坐标系的初步目的是将平面内的“形”与“数”结合起来,但最终目的是用它的思想方法解决更多的问题,达到经验的迁移、能力的提升,从而学以致用、学有所用.故小结思考处,也是拓展延伸处:“你还有想研究的问题吗?”让学生主动地提出问题、发现问题、分析问题、解决问题.此处不仅仅是单纯的知识罗列,应该是画龙点睛之笔,承前启后,适当外延,是对整堂课学习的一个提升.(六)作业布置1.书129页2、3、4;2.网络阅读笛卡尔直角坐标系.【设计意图】进一步巩固平面直角坐标系的相关概念,网络阅读笛卡尔直角坐标系,与时俱进,毕竟这是一个互联网+的时代.五、教案设计说明教学内容选自苏科版教材八年级上册第五章第一节“平面直角坐标系”. 平面直角坐标系是在数轴的基础上发展起来的,它使点与数的关系从一维过渡到二维,使有序实数对与平面内的点建立了一一对应的关系,架起了“数”与“形”之间联系的桥梁.本节课的授课内容属于规则下的概念课教学,与其它概念课不同的是本节课的概念可以看作是一个概念群,多而细,所以要逐步让学生理解相应概念,不要操之过急.本节课从学生熟悉的问题入手,让学生一开始“摸得到,看得着”,接着通过描述点P的位置体会建立平面直角坐标系的必要性,从而对其进行深入研究,通过从特殊到一般、具体到抽象的过程,体会建立平面直角坐标系后平面内的点与有序实数对一一对应的关系,最终达到经验的迁移,能力的提升.教学设计突出以下特点:1.以活动为主线本节课的教学中,以学生作为活动的主体,创设恰当的问题情境、环环相扣的活动,引导学生积极思考,大胆探索,最大限度地调动了学生积极参与教学的活动.纵观本节课,共有1个情境,3个活动,情境从学生熟悉的生活情境入手,贯穿一节课,活动一从数学背景切入,凸显出建立平面直角坐标系的必要性,与最后的小结部分首尾呼应,活动二环环相扣,通过从特殊到一般、具体到抽象的过程,让学生归纳出在给定的平面直角坐标系中,根据点的坐标描出点的位置,由点的位置写出点的坐标的方法,初步感受建立平面直角坐标系后,平面内的点与有序实数对一一对应的关系,活动三是对难点的再认识,进一步感受建立平面直角坐标系后,平面内的点与有序实数对一一对应的关系,最终与例题结合再次研究每个象限内的点的坐标的特点.3个活动可谓用“足”、用“透”,以活动开始,以活动结束,贯穿整堂课.2.以方法为支撑课堂上,只有让学生真正“动”起来、“活”起来,学生的学习热情才会高涨,创造力才会加强.所以本节课在教学时,尽可能让学生多说、多做、多悟,让学生充分体会概念的形成过程,力求达到“概念的得出是水到渠成的、自然的,而不是强加于人的”教学境界.3.以思想为灵魂本节课最主要的数学思想就是数形结合的思想,而在整节课的教学时,教师很少提及抽象的“数”、“形”二字,取而代之的是用通俗的语言与学生交流,慢慢渗透“数”与“形”的关系,尊重了学生的认知规律.4.以能力为归宿荷兰数学家弗莱登塔尔提出:学习数学唯一正确的方法是实行“再创造”,也就是由学生本人把要学的东西自己发现或创造出来.本节课多次给予学生发现、创造的机会,如一开始描述点P的位置,让学生体会构建参照物描述点P位置的必要性,创造出平面直角坐标系的雏形,在最后小结环节,实际也是拓展延伸环节,让学生尽情的说,提出一个又一个精彩的问题,如“空间内的点如何描述”,充分给予学生思考、比较、类比、抽象、概括等一系列能力提升的机会.。
知识点总结第一章三角形全等一、全等三角形的定义1、全等三角形:能够完全重合的两个三角形叫做全等三角形。
2、理解:(1)全等三角形形状与大小完全相等,与位置无关;(2)一个三角形经过平移、翻折、旋转后得到的三角形,与原三角形仍然全等;(3)三角形全等不因位置发生变化而改变。
二、全等三角形的性质1、全等三角形的对应边相等、对应角相等。
理解:(1)长边对长边,短边对短边;最大角对最大角,最小角对最小角;(2)对应角的对边为对应边,对应边对的角为对应角。
2、全等三角形的周长相等、面积相等。
3、全等三角形的对应边上的对应中线、角平分线、高线分别相等。
三、全等三角形的判定1、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等。
2、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等。
3、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等。
4、边边边公理(SSS) 有三边对应相等的两个三角形全等。
5、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等。
四、证明两个三角形全等的基本思路1、已知两边:(1)找第三边(SSS);(2)找夹角(SAS);(3)找是否有直角(HL)。
2、已知一边一角:(1)找一角(AAS或ASA);(2)找夹边(SAS)。
3、已知两角:(1)找夹边(ASA);(2)找其它边(AAS)。
第二章轴对称一、轴对称图形相对一个图形的对称而言;轴对称是关于直线对称的两个图形而言。
二、轴对称的性质1、轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。
2、如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线。
三、线段的垂直平分线1、性质定理:线段垂直平分线上的点到线段两个端点的距离相等。
2、判定定理:到线段两个端点距离相等的点在这条线段的垂直平分线上。
3、拓展:三角形三条边的垂直平分线的交点到三个顶点的距离相等。
四、角的角平分线1、性质定理:角平分线上的点到角两边的距离相等。
苏科版数学八年级上册说课稿《5-2平面直角坐标系(2)》一. 教材分析《5-2平面直角坐标系(2)》这一节的内容,是在学生已经掌握了平面直角坐标系的基本概念和初步应用的基础上进行讲解的。
本节课的主要内容是让学生进一步理解坐标系的性质,能够熟练地在坐标系中进行点的坐标计算,并且能够解决一些实际问题。
教材通过引入实际例子,让学生感受到坐标系在生活中的应用,提高学生的学习兴趣和积极性。
二. 学情分析八年级的学生已经具备了一定的数学基础,对于平面直角坐标系的概念和基本性质已经有了一定的了解。
但是,学生在应用坐标系解决实际问题时,还存在一些困难。
因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高学生的解决问题的能力。
三. 说教学目标1.知识与技能目标:让学生进一步理解平面直角坐标系的性质,能够在坐标系中进行点的坐标计算,并解决一些实际问题。
2.过程与方法目标:通过实际例子,让学生感受坐标系在生活中的应用,培养学生的观察能力和思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和解决问题的能力。
四. 说教学重难点1.教学重点:让学生掌握平面直角坐标系的性质,能够在坐标系中进行点的坐标计算。
2.教学难点:引导学生将理论知识与实际问题相结合,解决一些复杂的实际问题。
五. 说教学方法与手段在本节课的教学过程中,我将采用讲授法、引导法、实践法等多种教学方法。
通过引导学生观察实际例子,让学生自主探索和合作交流,提高学生的学习兴趣和积极性。
同时,利用多媒体课件和教具,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入新课:通过一个实际问题,引导学生回顾平面直角坐标系的基本概念和性质。
2.讲解与示范:讲解平面直角坐标系的性质,并通过示例让学生在坐标系中进行点的坐标计算。
3.实践与探究:让学生分组讨论,解决一些实际问题,并分享解题过程和心得。
4.总结与拓展:总结本节课的主要内容,布置一些拓展练习,让学生进一步巩固知识。
初中数学试卷《第5章平面直角坐标系》一、填空1.如图所示,在平面直角坐标系中各点的坐标分别是A ,B ,C ,D ,E ,F ,G .这些点中,点A与点B的坐标相同,线段AB 横轴,纵轴.2.已知点P(3,﹣4),它到x轴的距离是,到y轴的距离是.3.已知点A(2,3)在第一象限,则与点A关于x轴对称的点的坐标为,与点A关于y轴对称的点的坐标为,与点A关于原点对称的点的坐标为.4.已知点P(m﹣3,m+4)在第一象限,则m的取值范围是;如在第二象限,则m的取值范围是.5.在平面直角坐标系中,点A是y轴上一点,若点A的坐标为(a+1,a﹣2),则a= ,另一点B的坐标(a+2,a+3)为.6.已知点P(3k﹣9,1﹣k)在第三象限,且点P的横纵坐标都是整数,求点P关于y轴对称的点的坐标和与关于原点对称的点的坐标为.7.如果讲一个三角形的各顶点的横、纵坐标分别乘以﹣1,则所得的图案与原图案将.8.若点P(x,y)在第二象限角平分线上,则x与y的关系是.9.若将三角形各顶点的纵坐标保持不变,横坐标均乘以﹣1,则所得三角形的形状与原三角形相比;若让纵坐标不变,横坐标均增加2,则所得三角形的形状与原三角形相比;若让横坐标不变,纵坐标均乘以2,则所得三角形的形状与原三角形相比.二、选择:10.在x轴上到点A(3,0)的距离为4的点一定是()A.(7,0) B.(﹣1,0)C.(7,0)和(﹣1,0) D.以上都不对11.在坐标轴上与点M(3,﹣4)距离等于5的点共有()A.2个B.3个C.4个D.1个12.已知一个点的横坐标与纵坐标都是整数,并且它们的乘积等于9,满足这样条件的点共有()A.3个B.6个C.8个D.9个13.在平面直角坐标系中,点(﹣1,m2+1)一定在()A.第一象限 B.第二象限 C.第三象限 D.第四象限14.在平面直角坐标系中,点P(﹣1,2)的位置在()A.第一象限 B.第二象限 C.第三象限 D.第四象限15.在平面直角坐标系中,点A(5,﹣3)关于原点对称的点的坐标为()A.(﹣5,﹣3) B.(5,3) C.(﹣5,3)D.(5,﹣3)16.点(﹣l,4)关于坐标原点对称的点的坐标是()A.(﹣1,﹣4) B.(1,﹣4)C.(1,4) D.(4,﹣1)17.已知直角坐标系内有一点M(a,b),且ab=0,则点M的位置一定在()A.原点上B.x轴上C.y轴上D.坐标轴上18.若,则点P(x,y)的位置是()A.在数轴上 B.在去掉原点的横轴上C.在纵轴上 D.在去掉原点的纵轴上19.在平面直角坐标系中,点P(3,2)向下平移两个单位长度后的坐标为()A.(1,2) B.(3,0) C.(5,2) D.(3,4)20.在平面直角坐标系中,点Q(﹣1,3)向右平移3个单位长度后的坐标为()A.(﹣1,0)B.(﹣1,6)C.(2,3) D.(2,6)21.在平面直角坐标系中,将某三角形纵向拉长了2倍,又向右平移了3个单位长度,则所得三角形三个顶点坐标与原来三角形三个顶点坐标相比有何变化()A.先纵坐标不变,横坐标均扩大2倍,横坐标均增加3B.先横坐标不变,纵坐标均扩大2倍,再横坐标不变,纵坐标均增加3C.先横坐标不变,纵坐标均扩大2倍,再纵坐标不变,横坐标均增加3D.先横坐标不变,纵坐标均增加2,再纵坐标不变,横坐标均增加322.在平面直角坐标系中,若一图形各点的横坐标不变,纵坐标分别减3,那么图形与原图形相比()A.向右平移了3个单位长度B.向左平移了3个单位长度C.向上平移了3个单位长度D.向下平移了3个单位长度23.点P(﹣3,4)关于y轴的对称点的坐标是()A.(﹣3,﹣4) B.(3,﹣4)C.(3,4) D.(﹣4,3)24.A为平面直角坐标系内任意一点,顺次连接A点与它关于x轴,y轴和原点的对称点所组成的图形是()A.任意四边形B.正方形C.矩形 D.菱形25.已知点P关于y轴的对称点为(2,y),关于x轴的对称点是(x,﹣2),则点P的坐标是()A.(y,﹣x)B.(x,﹣y)C.(﹣2,2)D.(2,﹣2)三、解答:26.在如图所示的直角坐标系中,描出下列各点:(0,4),(﹣1,1),(﹣4,1),(﹣2,﹣1),(﹣3,﹣4),(0,﹣2),(3,﹣4)(2,﹣1),(4,1),(1,1),(0,4).依次连接各点,观察得到图形,你觉得它像什么?27.已知两点P(﹣3,m),Q(n,5),若PQ平行y轴,求m和n的值.28.已知A(﹣2,0),B(2,0),C(3,2),且A,B,C为一个平行四边形的三个顶点,求第四个顶点D的坐标.29.在平面直角坐标系中,三角形ABC的三个顶点的坐标分别为A(﹣5,0),B(4,0),C(2,5),求S.△ABC30.已知点A(k﹣3,k﹣7)在二、四象限的角平分线上,且点A关于x轴、y轴和原点的对称点分别为B、D、C.(1)在同一坐标系里分别描出四点.(2)判断四边形ABCD的形状.31.如图是某市区部分简图,请你建立适当的坐标系,并分别写出各地的坐标.32.如图,在△ABC中,已知AB=6,AC=BC=5,建立适当的坐标系,把△ABC的各顶点坐标写出来.33.如图所示,是一个菱形衣帽架,建立适当的坐标系,表示菱形个顶点的位置.(菱形的一个角是60°,边长为2)34.在平面直角坐标系中有一个平行四边形ABCD,如果将此平行四边形沿x轴正方向移动3个单位,则各点坐标的变化特征是怎样的?35.在平行四边形ABCD中,AB=3,BC=4,∠A=60°,建立适当的平面直角坐标系,把平行四边形ABCD的各个顶点的坐标写出来.(要求写出一组坐标即可)36.如图一、图二,在两个平面直角坐标系只能够分别有一个四边形.(1)分别写出图一和图二中的四边形的四个顶点坐标.(2)与图一相比,图二中的四边形发生了怎样的变化?(3)与图一相比,图二中的四边形顶点的坐标发生了怎样的变化?37.将一个梯形各顶点的横坐标变为原来的2倍,纵坐标变为原来的,(1)则所得的图形仍为梯形么?(2)它与原梯形相比发生了哪些变化?(3)它的面积与原来梯形的面积之间有什么关系?《第5章平面直角坐标系》参考答案与试题解析一、填空1.如图所示,在平面直角坐标系中各点的坐标分别是A (3,0),B (3,3),C (0,3),D (0,0),E (﹣1,﹣2),F (2,﹣3),G (﹣3,1).这些点中,点A与点B的横坐标相同,线段AB 垂直于横轴,平行于纵轴.【考点】坐标与图形性质.【分析】利用坐标系中各点的位置直接得出各点坐标以及A,B两点的特点和线段AB与横纵坐标的性质.【解答】解:由图象可得出:在平面直角坐标系中各点的坐标分别是:A (3,0),B(3,3),C(0,3),D(0,0),E (﹣1,﹣2),F (2,﹣3),G (﹣3,1).这些点中,点A与点B的横坐标相同,线段AB垂直于横轴,平行于纵轴.故答案为:(3,0),(3,3),(0,3),(0,0),(﹣1,﹣2),(2,﹣3),(﹣3,1).横,垂直于,平行于.【点评】此题主要考查了坐标与图形的性质,根据已知坐标系得出各点坐标是解题关键.2.已知点P(3,﹣4),它到x轴的距离是 4 ,到y轴的距离是 3 .【考点】点的坐标.【分析】根据点的坐标的几何意义即可解答.【解答】解:∵点P(3,﹣4),∴它到x轴的距离是|﹣4|=4,到y轴的距离是|3|=3.故答案填:4、3.【点评】本题主要考查了点的坐标的几何意义,横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.3.已知点A(2,3)在第一象限,则与点A关于x轴对称的点的坐标为(2,﹣3),与点A关于y轴对称的点的坐标为(﹣2,3),与点A关于原点对称的点的坐标为(﹣2,﹣3).【考点】关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.【分析】利用关于原点对称点的坐标性质和关于x轴、y轴对称点的性质分别得出即可.【解答】解:∵点A(2,3)在第一象限,∴与点A关于x轴对称的点的坐标为:(2,﹣3),与点A关于y轴对称的点的坐标为:(﹣2,3),与点A关于原点对称的点的坐标为:(﹣2,﹣3).故答案为:(2,﹣3),(﹣2,3),(﹣2,﹣3).【点评】此题主要考查了关于原点对称点的坐标性质和关于x轴、y轴对称点的性质,熟练掌握相关的性质是解题关键.4.已知点P(m﹣3,m+4)在第一象限,则m的取值范围是m>3 ;如在第二象限,则m的取值范围是﹣4<m<3 .【考点】点的坐标;解一元一次不等式组.【分析】根据第一象限的点的横坐标与纵坐标都是正数列不等式组求解即可;根据第二象限的点的横坐标是负数,纵坐标是正数列不等式组求解即可.【解答】解:∵点P(m﹣3,m+4)在第一象限,∴,解不等式①得,m>3,解不等式②得,m>﹣4,所以,不等式组的解集是m>3;∵点P(m﹣3,m+4)在第二象限,∴,解不等式①得,m<3,解不等式②得,m>﹣4,所以,不等式组的解集是﹣4<m<3.故答案为:m>3;﹣4<m<3.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.在平面直角坐标系中,点A是y轴上一点,若点A的坐标为(a+1,a﹣2),则a= ﹣1 ,另一点B的坐标(a+2,a+3)为(1,2).【考点】点的坐标.【分析】根据y轴上点的横坐标是0列式求出a的值,然后求出点B的坐标即可.【解答】解:∵点A(a+1,a﹣2)在y轴上,∴a+1=0,解得a=﹣1,∴a+2=﹣1+2=1,a+3=﹣1+3=2,所以,点B的坐标为(1,2).故答案为:﹣1;(1,2).【点评】本题考查了点的坐标,主要利用了y轴上点的横坐标是0,需熟记.6.已知点P(3k﹣9,1﹣k)在第三象限,且点P的横纵坐标都是整数,求点P关于y轴对称的点的坐标和与关于原点对称的点的坐标为(3,﹣1),(3,1).【考点】关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.【分析】首先利用第三象限点的坐标性质和不等式的解法得出k的值,进而利用关于y轴对称的点的坐标和与关于原点对称的点的坐标的特点得出即可.【解答】解:∵点P(3k﹣9,1﹣k)在第三象限,且点P的横纵坐标都是整数,∴,解得:1<k<3,∴k=2,∴P点坐标为:(﹣3,﹣1),∴点P关于y轴对称的点的坐标和与关于原点对称的点的坐标分别为:(3,﹣1),(3,1).故答案为:(3,﹣1),(3,1).【点评】此题主要考查了关于原点对称点和关于y轴对称点的坐标性质和不等式的解法等知识,根据已知得出P点坐标是解题关键.7.如果讲一个三角形的各顶点的横、纵坐标分别乘以﹣1,则所得的图案与原图案将关于坐标原点中心对称.【考点】关于原点对称的点的坐标.【分析】利用横、纵坐标均乘以﹣1,即横、纵坐标变为相反数,图形关于原点中心对称.【解答】解:∵横、纵坐标均乘以﹣1,∴对应点的横、纵坐标互为相反数,∴对应点关于原点对称,∴所得图形关于坐标原点中心对称,故答案为:关于坐标原点中心对称.【点评】此题主要考查了关于原点对称点的坐标性质,利用横、纵坐标都乘以﹣1,图形关于原点中心对称得出是解题关键.8.若点P(x,y)在第二象限角平分线上,则x与y的关系是x+y=0 .【考点】坐标与图形性质.【分析】根据二四象限角平分线上点的特点即横纵坐标互为相反数解答.【解答】解:∵点P(x,y)在第二象限角平分线上,∴x,y互为相反数,即x+y=0.【点评】解答此题的关键是熟知二四象限角平分线上点的坐标特征.9.若将三角形各顶点的纵坐标保持不变,横坐标均乘以﹣1,则所得三角形的形状与原三角形相比关于y轴对称;若让纵坐标不变,横坐标均增加2,则所得三角形的形状与原三角形相比向右平移2个单位长度;若让横坐标不变,纵坐标均乘以2,则所得三角形的形状与原三角形相比纵向拉长为原来的2倍.【考点】坐标与图形变化-平移;关于x轴、y轴对称的点的坐标.【分析】将三角形各顶点的纵坐标保持不变,横坐标均乘以﹣1,即横坐标都为原来的相反数,由此得到所得三角形的形状与原三角形关于y轴对称;当把原三角形向右平移2个单位长度得到的新三角形的各点的纵坐标不变,横坐标均增加2;若让横坐标不变,纵坐标均乘以2,则所得三角形由原三角形纵向拉长2倍得到.【解答】解:将三角形各顶点的纵坐标保持不变,横坐标均乘以﹣1,则所得三角形的形状与原三角形关于y轴对称;若让纵坐标不变,横坐标均增加2,则所得三角形由原三角形向右平移2个单位长度得到;若让横坐标不变,纵坐标均乘以2,则所得三角形由原三角形纵向拉长2倍得到.故答案为关于y轴对称;向右平移2个单位长度;纵向拉长为原来的2倍.【点评】本题考查了坐标与图象变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a 个单位长度(即:横坐标,右移加,左移减;纵坐标,上移加,下移减).二、选择:10.在x轴上到点A(3,0)的距离为4的点一定是()A.(7,0) B.(﹣1,0)C.(7,0)和(﹣1,0) D.以上都不对【考点】点的坐标.【专题】分类讨论.【分析】x轴上的点纵坐标是0,这点有可能在点A的左边,也有可能在点A的右边.【解答】解:∵3+4=7,3﹣4=﹣1,∴点的横坐标是7或﹣1,∴在x轴上到点A(3,0)的距离为4的点为(7,0)和(﹣1,0).故选C.【点评】本题考查了点到坐标轴距离的含义,到x轴上到一定点等于定长的点的有2个.11.在坐标轴上与点M(3,﹣4)距离等于5的点共有()A.2个B.3个C.4个D.1个【考点】两点间的距离公式.【分析】符合题意的点即在以M为圆心,5为半径画圆上,找圆与坐标轴的交点即可.【解答】解:在坐标轴上与点M(3,﹣4)距离等于5的点在以M为圆心,5为半径画圆上,而圆与坐标轴的交点为(0,0),(0,﹣8),(6,0),共3个,故选B.【点评】本题主要考查了点的坐标的意义以及与图形相结合的具体运用,要把点的坐标和图形有机结合起来求解.12.已知一个点的横坐标与纵坐标都是整数,并且它们的乘积等于9,满足这样条件的点共有()A.3个B.6个C.8个D.9个【考点】点的坐标.【分析】把9分解质因数,然后根据点的坐标解答.【解答】解:∵1×9=(﹣1)×(﹣9)=3×3=(﹣3)×(﹣3)=9,∴点的坐标为(1,9)、(9,1)、(﹣1,﹣9)、(﹣9,﹣1)、(3,3)、(﹣3,﹣3)共6个.故选B.【点评】本题考查了点的坐标,根据乘积是9求出点的横坐标和纵坐标的值是解题的关键.13.在平面直角坐标系中,点(﹣1,m2+1)一定在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限.【解答】解:因为点(﹣1,m2+1),横坐标<0,纵坐标m2+1一定大于0,所以满足点在第二象限的条件.故选B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).14.在平面直角坐标系中,点P(﹣1,2)的位置在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】应先判断出所求点P的横坐标、纵坐标的符号,进而判断其所在的象限.【解答】解:∵点P(﹣1,2)的横坐标﹣1<0,纵坐标2>0,∴点P在第二象限.故选:B.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).15.在平面直角坐标系中,点A(5,﹣3)关于原点对称的点的坐标为()A.(﹣5,﹣3) B.(5,3) C.(﹣5,3)D.(5,﹣3)【考点】关于原点对称的点的坐标.【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),然后直接作答即可.【解答】解:根据中心对称的性质,可知:点A(5,﹣3)关于原点O中心对称的点的坐标为(﹣5,3).故选:C.【点评】本题考查关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形.16.点(﹣l,4)关于坐标原点对称的点的坐标是()A.(﹣1,﹣4) B.(1,﹣4)C.(1,4) D.(4,﹣1)【考点】关于原点对称的点的坐标.【专题】常规题型.【分析】让两点的横纵坐标均互为相反数可得所求的坐标.【解答】解:∵两点关于原点对称,∴横坐标为1,纵坐标为﹣4.故选B.【点评】考查关于原点对称的坐标的特点:两点的横坐标互为相反数;纵坐标互为相反数.17.已知直角坐标系内有一点M(a,b),且ab=0,则点M的位置一定在()A.原点上B.x轴上C.y轴上D.坐标轴上【考点】点的坐标.【分析】根据坐标轴上的点的特征:至少一个坐标为0解答.【解答】解:若ab=0,则a=0,或b=0,或a,b均为0.当a=0,M在y轴上;当b=0,M在x轴上;当a,b均为0,M在原点;即点M在坐标轴上.故选D.【点评】本题主要考查了点在坐标轴上时点的符号特点,注意考虑问题要全面,坐标轴上的点的特点要记清.18.若,则点P(x,y)的位置是()A.在数轴上 B.在去掉原点的横轴上C.在纵轴上 D.在去掉原点的纵轴上【考点】点的坐标.【分析】根据分式值为0的条件求出y=0,再根据点在x轴上坐标的特点解答.【解答】解:∵,x不能为0,∴y=0,∴点P(x,y)的位置是在去掉原点的横轴上.故选B.【点评】本题考查了点在x轴上时坐标的特点,特别注意要保证条件中的式子有意义.19.在平面直角坐标系中,点P(3,2)向下平移两个单位长度后的坐标为()A.(1,2) B.(3,0) C.(5,2) D.(3,4)【考点】坐标与图形变化-平移.【专题】数形结合.【分析】把点P(3,2)向下平移两个单位长度后,横坐标不变,纵坐标减去2即可得到平移后点的坐标.【解答】解:点P(3,2)向下平移两个单位长度后的坐标为(3,0).故选B.【点评】本题考查了坐标与图象变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a 个单位长度(即:横坐标,右移加,左移减;纵坐标,上移加,下移减).20.在平面直角坐标系中,点Q(﹣1,3)向右平移3个单位长度后的坐标为()A.(﹣1,0)B.(﹣1,6)C.(2,3) D.(2,6)【考点】坐标与图形变化-平移.【专题】数形结合.【分析】把点Q(﹣1,3)向右平移3个单位长度后,所得点的纵坐标不变,横坐标加上3即可.【解答】解:点Q(﹣1,3)向右平移3个单位长度后的坐标为(2,3).故选C.【点评】本题考查了坐标与图象变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a 个单位长度(即:横坐标,右移加,左移减;纵坐标,上移加,下移减).21.在平面直角坐标系中,将某三角形纵向拉长了2倍,又向右平移了3个单位长度,则所得三角形三个顶点坐标与原来三角形三个顶点坐标相比有何变化()A.先纵坐标不变,横坐标均扩大2倍,横坐标均增加3B.先横坐标不变,纵坐标均扩大2倍,再横坐标不变,纵坐标均增加3C.先横坐标不变,纵坐标均扩大2倍,再纵坐标不变,横坐标均增加3D.先横坐标不变,纵坐标均增加2,再纵坐标不变,横坐标均增加3【考点】坐标与图形变化-平移.【分析】将某三角形纵向拉长了2倍,就是把原来三角形三个顶点的纵坐标扩大2倍,当再向右平移了3个单位长度,就是在纵坐标扩大2倍后,横坐标都增加3.【解答】解:将某三角形纵向拉长了2倍,又向右平移了3个单位长度,则把原来三角形三个顶点的纵坐标扩大2倍后,再把纵坐标不变,横坐标都增加3.故选C.【点评】本题考查了坐标与图象变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a 个单位长度(即:横坐标,右移加,左移减;纵坐标,上移加,下移减).22.在平面直角坐标系中,若一图形各点的横坐标不变,纵坐标分别减3,那么图形与原图形相比()A.向右平移了3个单位长度B.向左平移了3个单位长度C.向上平移了3个单位长度D.向下平移了3个单位长度【考点】坐标与图形变化-平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:此题规律是(x,y﹣3),照此规律可知图形与原图形相比向下平移了3个单位长度.故选D.【点评】本题考查了图形的平移变换,在平面直角坐标系中,图形的平移与图形上某点的平移相同.23.点P(﹣3,4)关于y轴的对称点的坐标是()A.(﹣3,﹣4) B.(3,﹣4)C.(3,4) D.(﹣4,3)【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:点P(﹣3,4)关于y轴的对称点的坐标是(3,4).故选C.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.24.A为平面直角坐标系内任意一点,顺次连接A点与它关于x轴,y轴和原点的对称点所组成的图形是()A.任意四边形B.正方形C.矩形 D.菱形【考点】关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),关于x 轴、y轴的对称点分别是(x,﹣y),(﹣x,y),然后直接作答即可.【解答】解:∵A为平面直角坐标系内任意一点,顺次连接A点与它关于x轴,y轴和原点的对称点,∴对应点横、纵坐标绝对值相等,只是符号不同,∴这4个点所组成的图形是矩形.故选:C.【点评】本题考查了关于x轴、y轴以及关于原点对称的点坐标的关系,是需要熟记的基本问题,记忆方法可以结合平面直角坐标系的图形.25.已知点P关于y轴的对称点为(2,y),关于x轴的对称点是(x,﹣2),则点P的坐标是()A.(y,﹣x)B.(x,﹣y)C.(﹣2,2)D.(2,﹣2)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解答】解:设P(m,n),∵点P关于y轴的对称点为(2,y),∴m=﹣2,∵关于x轴的对称点是(x,﹣2),∴n=2,∴P(﹣2,2)故选:C.【点评】此题主要考查了关于x、y轴对称的点的坐标特点,关键是掌握点的坐标的变化规律.三、解答:26.在如图所示的直角坐标系中,描出下列各点:(0,4),(﹣1,1),(﹣4,1),(﹣2,﹣1),(﹣3,﹣4),(0,﹣2),(3,﹣4)(2,﹣1),(4,1),(1,1),(0,4).依次连接各点,观察得到图形,你觉得它像什么?【考点】坐标与图形性质.【分析】根据各点坐标,在坐标系中描出即可,进而确定它的形状.【解答】解:如图所示:是五角星.【点评】此题主要考查了确定点的坐标,根据坐标系中点的确定位置得出是解题关键.27.已知两点P(﹣3,m),Q(n,5),若PQ平行y轴,求m和n的值.【考点】坐标与图形性质.【分析】根据平行于y轴点的坐标横坐标相等,纵坐标不同进而得出即可.【解答】解:∵两点P(﹣3,m),Q(n,5),PQ平行y轴,∴n=﹣3,m≠5.【点评】此题主要考查了坐标与图形的性质,利用平行于y轴点的坐标性质得出是解题关键.28.已知A(﹣2,0),B(2,0),C(3,2),且A,B,C为一个平行四边形的三个顶点,求第四个顶点D的坐标.【考点】坐标与图形性质.【分析】建立平面直角坐标系,然后根据平行四边形的性质找出点D的位置即可.【解答】解:如图,点D的坐标为(﹣1,2)或(﹣3,﹣2)或(7,2).【点评】本题考查了坐标与图形性质,熟练掌握平行四边形的性质是解题的关键,作出图形更形象直观.29.在平面直角坐标系中,三角形ABC的三个顶点的坐标分别为A(﹣5,0),B(4,0),C(2,5),求S.△ABC【考点】坐标与图形性质;三角形的面积.【分析】利用已知点的坐标画出图形进而求出图形面积即可.【解答】解:如图所示:∵A(﹣5,0),B(4,0),C(2,5),=×9×5=22.5.∴S△ABC【点评】此题主要考查了坐标与图形的性质,利用已知点得出在坐标系中位置是解题关键.30.已知点A(k﹣3,k﹣7)在二、四象限的角平分线上,且点A关于x轴、y轴和原点的对称点分别为B、D、C.(1)在同一坐标系里分别描出四点.(2)判断四边形ABCD的形状.【考点】坐标与图形性质.【分析】(1)根据第二四象限角平分线上的点的横坐标与纵坐标互为相反数列方程求出k值,从而求出点A的坐标,再根据关于x轴、y轴对称点的坐标和关于原点的对称点的位置,顺次连接即可;(2)根据图形判断即可.【解答】解:(1)∵点A(k﹣3,k﹣7)在二、四象限的角平分线上,∴k﹣3+k﹣7=0,解得k=5,所以,点A(2,﹣2);如图所示;(2)四边形ABCD是正方形.【点评】本题考查了坐标与图形性质,主要利用了平面直角坐标系中描出点的位置的方法.31.如图是某市区部分简图,请你建立适当的坐标系,并分别写出各地的坐标.【考点】坐标确定位置.【分析】以超市为坐标原点,建立平面直角坐标系,然后写出各地的坐标即可.【解答】解:如图,超市(0,0),医院(3,1),文化宫(0,3),体育馆(﹣1,5),火车站(4,3.8).【点评】本题考查了坐标位置的确定,是开放型题目,根据坐标原点位置的不同,答案也不相同,但熟练掌握平面直角坐标系的特点是解题的关键.32.(2013秋•乐清市期末)如图,在△ABC中,已知AB=6,AC=BC=5,建立适当的坐标系,把△ABC 的各顶点坐标写出来.【考点】坐标与图形性质.【分析】首先以A点为原点建立坐标系,过点C作CD⊥BA于点D,根据等腰三角形的性质可得AD=BD=AB,再利用勾股定理可计算出CD的长,进而得到答案.【解答】解:以A点为原点建立坐标系,过点C作CD⊥BA于点D,∵AB=6,∴AD=BD=3,∴CD==4,∴A点坐标为:(0,0),C点坐标为;(3,4),B点坐标为:(0,6),。
苏科版数学八年级上册《5.2 平面直角坐标系》教学设计一. 教材分析《苏科版数学八年级上册》第五章第二节“平面直角坐标系”是学生在学习了坐标概念、坐标系的初步知识后,进一步深化对坐标系的理解和应用。
本节内容主要包括平面直角坐标系的定义、坐标轴、坐标点的特征等,旨在帮助学生掌握平面直角坐标系的基本知识,能够熟练地在坐标系中进行点的表示和坐标运算。
二. 学情分析学生在学习本节内容前,已经初步掌握了坐标的概念,对坐标系有了一定的认识。
但是,对于平面直角坐标系的定义、坐标轴的特点、坐标点的表示方法等,还需要进一步的学习和理解。
同时,学生需要通过实例感受和理解坐标系在实际问题中的应用。
三. 教学目标1.知识与技能:理解平面直角坐标系的定义,掌握坐标轴的特点,能够熟练地在坐标系中表示点的位置,进行简单的坐标运算。
2.过程与方法:通过实例分析,培养学生在实际问题中运用坐标系解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的抽象思维能力。
四. 教学重难点1.重点:平面直角坐标系的定义,坐标轴的特点,坐标点的表示方法。
2.难点:坐标系在实际问题中的应用。
五. 教学方法采用讲授法、案例分析法、小组合作法等,结合多媒体教学,引导学生通过观察、思考、实践,理解并掌握平面直角坐标系的知识。
六. 教学准备1.多媒体教学设备。
2.平面直角坐标系的模型或图片。
3.相关案例资料。
七. 教学过程导入(5分钟)教师通过展示生活中的实例,如地图、飞机导航等,引导学生思考坐标系的作用,引出平面直角坐标系的概念。
呈现(10分钟)教师利用多媒体展示平面直角坐标系的模型或图片,同时讲解坐标轴的特点,坐标点的表示方法。
在此过程中,引导学生观察、思考,理解并掌握平面直角坐标系的基本知识。
操练(10分钟)教师给出一些简单的实例,让学生在坐标系中表示点的位置,进行坐标运算。
如给出点的坐标,让学生在坐标系中找到对应的位置;或者给出实际问题,让学生用坐标系解决。
平面直角坐标系教学目标】1.认识并能画出平面直角坐标系,知道点的坐标及象限的含义2.能在给定的直角坐标系中,由点的位置写出它的坐标和由点的坐标指出它的位置.3.经历画坐标系、由点找坐标等过程,发展数形结合意识.【教学重点】能在给定的直角坐标系中,由点的位置写出它的坐标和由点的坐标指出它的位置.【教学难点】理解平面内点的坐标的意义知识一、坐标系的理解1.平面内点的坐标是( )A 一个点B 一个图形C 一个数D 一个有序数对2.在平面内要确定一个点的位置,一般需要________个数据;在空间内要确定一个点的位置,一般需要________个数据.3.在平面直角坐标系内,下列说法错误的是( )A 原点O 不在任何象限内B 原点O 的坐标是0C 原点O 既在X 轴上也在Y 轴上D 原点O 在坐标平面内知识二、已知坐标系中特殊位置上的点,求点的坐标1. 点P 在x 轴上对应的实数是3 ,则点P 的坐标是 ,若点Q 在y 轴上对应的实数是31,则点Q 的坐标是 , 3.点P (a-1,2a-9)在x 轴负半轴上,则P 点坐标是 。
4.点P(m+2,m-1)在y 轴上,则点P 的坐标是 .5.已知点A (m ,-2),点B (3,m-1),且直线AB ∥x 轴,则m 的值为 。
6. 已知:A(1,2),B(x,y),AB ∥x 轴,且B 到y 轴距离为2,则点B 的坐标是 .7.平行于x 轴的直线上的点的纵坐标一定( )A .大于0B .小于0C .相等D .互为相反数8.若点(a ,2)在第二象限,且在两坐标轴的夹角平分线上,则a= .9.已知点P (x 2-3,1)在一、三象限夹角平分线上,则x= .10.过点A (2,-3)且垂直于y 轴的直线交y 轴于点B ,则点B 坐标为( ).A .(0,2)B .(2,0)C .(0,-3)D .(-3,0)11.如果直线AB 平行于y 轴,则点A ,B 的坐标之间的关系是( ).A .横坐标相等B .纵坐标相等C .横坐标的绝对值相等D .纵坐标的绝对值相等知识点三:点符号特征。
5.2平面直角坐标系教学设计一、新课导入:1、请同学们观看教学小视频,思考以下问题:(1).在平面内两条互相、重合的数轴,组成平面直角坐标系。
(2).水平的数轴称为或,取为正方向。
(3).竖直的数轴称为或,取为正方向。
(4).两坐标轴的交点为平面直角坐标系的坐标。
2、练一练下面四个图形中,是平面直角坐标系的是()从学生感兴趣的视频导入新课,在上课一开始抓住学生眼球。
同时设置问题,让学生带着问题观看视频,改变以往讲授为主的概念课模式。
此练习题,旨在让学生真正认识平面直角坐标系,对横轴、纵轴、原点等概念有初步的认识。
二、点的坐标的定义如图,平面直角坐标系内,如何用有序数对来表示点P呢?小试牛刀写出下图中的多边形ABCDEF各个顶点的坐标.例1.在平面直角坐标系中描出下列各点A(4,5),B(-2,3),C(-4,-1),D(2.5,-2),E(0,-4)点的坐标是较重要的定义,点与坐标的对应关系是本小节的教学重点。
此练习题旨在巩固本节课的教学重点,能根据点的位置写出点的坐标.让学生在做题中体会数形结合思想。
例1,已知点的坐标,让学生在平面直角坐标系内找到对应点的位置。
三、象限讲解1、请同学们观看教学小视频,观看后用“+”、“-”、“0”填写以下表格2、练一练:下列各点分别在平面直角坐标系的什么位置?A(3,2)B(0,-2)C(-3,-2)D(-3,0)E(-1.5,3.5)F(2,-3)动手实践如图,如果用(0,0)表示点A,用(2,1)表示点B的坐标,请同学们建立平面直角坐标系,写出点C,D,E,F,G的坐标?同时指出A,B,C,D,E, F,G在平通过小视频,让学生自主学习位于不同象限和不同坐标轴上的点的坐标特征,并总结规律。
此练习旨在巩固点的位置不同,坐标也不同。
动手实践需要根据条件,根据已知点的坐标建立平面真角面直角坐标系的位置?四、平面直角坐标系的来源早在1637年以前,法国数学家、几何学创始人笛卡尔受到蜘蛛网的启发,将水平的丝当做x轴,竖直的丝当做叫y轴,发明了平面直角坐标系。
苏科版八年级数学上册《平面直角坐标系》评课稿一、前言本文是对苏科版八年级数学上册中《平面直角坐标系》这一章节进行评课的稿件。
该章节是八年级数学的重要内容之一,通过学习平面直角坐标系,能够培养学生的空间想象能力,提高解决实际问题的能力。
二、教材分析1. 教材内容概述《平面直角坐标系》这一章节主要介绍了平面直角坐标系的概念、表示方法、性质及其应用。
学生会学习如何在平面上用直角坐标系表示点的位置,了解坐标系的正方向和单位长度。
同时,还会学习如何用坐标系表示图形、计算距离和中点等基本操作。
2. 教材内容难点和重点在该章节中,学生需要掌握以下几个难点和重点:•理解并掌握平面直角坐标系的概念和表示方法;•掌握点在平面直角坐标系中的表示和位置关系;•理解并掌握计算距离和中点的方法。
3. 教材与实际生活的联系平面直角坐标系是我们日常生活中广泛应用的数学工具。
通过学习平面直角坐标系,学生可以更好地理解和解决与空间位置相关的问题,例如地图测量、路径规划、物体运动轨迹等。
这些知识和技能对学生的日常生活和学习具有实际意义。
三、教学目标根据教材内容的特点,本节课的教学目标如下:1.理解平面直角坐标系的概念与表示方法;2.掌握点在平面直角坐标系中的位置关系;3.掌握计算距离和中点的方法;4.能够运用平面直角坐标系解决实际问题。
四、教学方法与教学过程设计1. 教学方法本节课采用讲授、示范和练习相结合的教学方法。
通过教师的讲解、示范和学生的练习,使学生对平面直角坐标系的概念、应用及操作方法有更深入的理解。
同时,教师还要引导学生主动思考和发现问题,培养其独立解决问题的能力。
2. 教学过程设计本节课的教学过程可以分为以下几个步骤:步骤一:导入教师可以通过引入一个与学生生活相关的问题,让学生思考如何解决该问题,从而引出平面直角坐标系的概念和作用。
步骤二:概念介绍教师通过讲解的方式介绍平面直角坐标系的概念、表示方法和符号的含义。
同时,可以结合图示和实例讲解,帮助学生更好地理解和掌握。
(新)苏科版八年级数学上册5.2《平面直角坐标系》(一)教案(全国一等奖)课题:平面直角坐标系(一)教材:义务教育教材《数学》(八年级第一册)(苏科版)p120-122【教学目标】1.在引导学生探究的过程中,将实际问题抽象为数学问题,构造平面直角坐标系,正确绘制平面直角坐标系;2.会在给定的平面直角坐标系中根据点的坐标标出点的位置,会根据点的位置写出点的坐标;3.让学生感受“数形结合”的数学思想,感受“类比”和“坐标”的思想,体验实际问题数学化的过程和方法[教学要点]1.理解并掌握平面直角坐标系的有关概念;2.在平面直角坐标系中,根据点的坐标标注点的位置,并根据点的位置书写点的坐标【教学难点】1.将实际问题抽象成数学问题,体验从数轴到平面直角坐标系的转化过程;2.感受“数形结合”与“类比”的思想与方法;3.使学生理解平面内的点与有序实数对的一一对应关系.【教学方法与教学手段】启发式教学结合学生的探究、类比和教师的实践,并使用多媒体信息技术[教学过程]第一环节:重温数轴的抽象过程(教师主讲)老师:1小明走在淮海东路,从红绿灯路口向东走了500米。
我们规定“上去”北下南、左西右东”,在生活中,如何描述小明现在所处的位置?(在淮海东路,距红绿灯路口东面500m处,此时我们可以用一句话来描述小明的位置)一2.⑴此时,我们如何运用之前学过的数学知识将这个实际问题抽象成一个数学术问题?(在数学中,我们经常把道路抽象成一条直线。
这时,我们也可以把淮海东路抽象成一条直线。
如果以红绿灯交叉口为原点,将东方向指定为正方向,并记录100米的单位长度,则可以将道路抽象成一个数字。
)是的。
)⑵在数轴上,如何用数字来表示小明所处的位置?(小明所处的位置可用(由500人代表)3.刚才我们将一个实际问题抽象成了数学问题,在一条规定了原点、正方向、单位长度的直线即数轴上,用一个点表示了小明的位置,进而用一个数来刻画了这个位置。
这就是我们利用数轴来解决的一个数学问题,在数轴上的一个点可以用一个数来表示,反之任何一个数都可以找到数轴上的一个点对应于它,也就是说,数轴上的点一个接一个地对应于数第二环节:类比学习引导学生构建平面直角坐标系(学生探究活动)老师:1现在我们有一个新问题:如果小明从红绿灯路口开始向东走500米,然后转向正北走300米,如果我们给另一条与淮海东路垂直的路直的淮海北路,又可以如何来描述小明此时的位置?(我们可以说小明在淮海北路的东边500m,淮海东路的北边300m处),那么这个问题是不是也可以抽象成一个数学问题呢?在数学中,又如何描述这个位置?用一条数轴,一个数字还能描述小明所处的位置吗?怎么办?(显然一条数轴已不够用,一个数字500已不能准确描述小明的位置,我们刚才是用两句话来描述小明的位置的)请大家讨论,可以小组讨论,也可以独立思考.2.老师发现绝大多数同学在原来一条数轴的基础上,又以红绿灯位置为原点,画另一个垂直于它的数字轴(实际上,垂直于它的“淮海北路”被抽象为一个数字轴),这样他就可以清楚地表达小明的立场(让学生表达)。
八年级数学上册知识点:平面直角坐标系一、平面直角坐标系1平面直角坐标系:在平面内两条有公共点而且相互垂直的数轴就组成了平面直角坐标系,通常把其中水平的一条数轴叫横轴或轴,取向右的方向为正方向;铅直的数轴叫纵轴或轴,取向上的方向为正方向;两数轴的交点叫做坐标原点。
成立了直角坐标系的平面叫坐标平面x轴和轴把坐标平面分成四个部份,称为四个象限,按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限,如下图说明:两条坐标轴不属于任何一个象限。
2点的坐标:关于平面直角坐标系内任意一点P,过点P别离向x轴和轴作垂线,垂足在x轴,轴对应的数a,b别离叫做点P的横坐标,纵坐标,有序数对叫做P的坐标。
3点与有序实数对的关系:坐标平面内的点能够用有序实数对来表示,反过来每一个有序实数对应着坐标平面内的一个点,即坐标平面内的点和有序实数对是一一对应的关系。
常见考法由点的位置确信点的坐标,由点的坐标确信点的位置;求某些特殊点的坐标。
误区提示求点的坐标时,容易将横、纵坐标弄反,还容易忽小坐标符号;试探问题不周,容易显现漏解。
【典型例题】(XX江苏常州)点p关于x轴的对称点p1的坐标是,点p关于原点的对称点P2的坐标是。
【解析】关于x轴的对称点的坐标是横坐标不变,纵坐标相反,关于原点对称的点的坐标,横、纵坐标都要乘以-1,故此题应当填,。
一、目标与要求1解有序数对的应用意义,了解平面上确信点的经常使用方式。
2培育学生用数学的意识,激发学生的学习爱好。
3把握坐标转变与图形平移的关系;能利用点的平移规律将平面图形进行平移;会依照图形上点的坐标的转变,来判定图形的移动进程。
4进展学生的形象思维能力,和数形结合的意识。
坐标表示平移表现了平面直角坐标系在数学中的应用。
二、重点把握坐标转变与图形平移的关系;有序数对及平面内确信点的方式。
三、难点利用坐标转变与图形平移的关系解决实际问题;利用有序数对表示平面内的点。
四、知识框架五、知识点、概念总结1有序数对:用含有两个数的词表示一个确信的位置,其中各个数表示不同的含义,咱们把这种有顺序的两个数a 与b组成的数对,叫做有序数对,记作其中a表示横轴,b 表示纵轴。
苏科版数学八年级上册教学设计《5-2平面直角坐标系(2)》一. 教材分析《5-2平面直角坐标系(2)》这一节的内容是在学生已经掌握了平面直角坐标系的初步知识的基础上进行进一步的深入学习。
本节主要让学生进一步理解平面直角坐标系中点的坐标与图形之间的相互关系,学会在实际问题中运用坐标知识,提高解决问题的能力。
二. 学情分析学生在学习这一节之前,已经对平面直角坐标系有了初步的了解,能够简单的判断点在平面直角坐标系中的位置,但是对坐标与图形之间的相互关系理解不够深入,对实际问题中的坐标知识的应用还不够熟练。
三. 教学目标1.让学生进一步理解平面直角坐标系中点的坐标与图形之间的相互关系。
2.培养学生解决实际问题的能力,提高学生的数学素养。
四. 教学重难点1.平面直角坐标系中点的坐标与图形之间的相互关系。
2.实际问题中坐标知识的应用。
五. 教学方法采用问题驱动法,引导学生通过自主学习、合作交流的方式来探究坐标与图形之间的关系,培养学生的动手操作能力和解决问题的能力。
六. 教学准备1.教学课件七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题,例如:“某商店在平面直角坐标系中的位置是(2,3),如果商店要搬到坐标系中的点(x,y)处,那么x和y的值应该是多少?”让学生思考并回答,从而引出本节课的主题。
2.呈现(10分钟)通过课件呈现平面直角坐标系中点的坐标与图形之间的相互关系,让学生直观的理解坐标与图形之间的关系。
3.操练(10分钟)让学生通过自主学习,理解并掌握点的坐标与图形之间的关系。
期间教师可以通过提问的方式引导学生思考,帮助学生理解。
4.巩固(10分钟)通过一些练习题让学生巩固所学知识,教师可以在这个过程中发现学生存在的问题,及时进行讲解和指导。
5.拓展(10分钟)让学生通过小组合作,解决一些实际问题,例如:“某学生在平面直角坐标系中的位置是(3,4),他想知道他的位置在坐标系中的哪个象限?”让学生通过合作交流,解决问题。
5.2 平面直角坐标系-苏科版八年级数学上册教案
一、教学目标
1.理解平面直角坐标系的概念并掌握其基本用法;
2.掌握坐标系中点、斜率和距离的计算方法;
3.能够应用所学知识解决实际问题。
二、教学重点
1.平面直角坐标系的概念;
2.坐标系中点的计算方法;
3.坐标系中两点间的距离公式和斜率计算方法。
三、教学难点
1.坐标系中两点间的距离公式和斜率计算方法;
2.对坐标系的绘制和使用的实际理解。
四、教学过程
1. 导入新知识
1.通过提问或演示图片等方式,引导学生认识平面直角坐标系的基本概念,讲解坐标系中的横坐标和纵坐标的含义。
2.演示如何在平面直角坐标系内绘制点,并通过练习让学生掌握点的坐标表示方法。
2. 讲解思路和方法
1.讲解坐标系中点的概念和如何求解中点坐标。
2.引导学生思考和探究两点间的距离公式,并辅以例题演示如何运用公式进行计算。
3.讲解斜率的概念和计算方法,并通过例题演示如何应用斜率解决实际问题。
3. 练习和应用
1.给学生提供大量的实际问题,引导学生运用所学知识解决问题。
2.安排小组活动,让学生分组进行相关的问题分析和研究,推动学生主动学习和交流。
五、教学作业
1.完成课堂练习;
2.阅读相关教材,并完成相关练习。
六、拓展阅读
1.小学数学中平面直角坐标系的基本概念和使用方法;
2.中学数学中平面直角坐标系和三角函数的结合应用;
3.了解相关应用程序软件绘制坐标系的方法和操作技巧。