第六章-非正弦周期信号电路备课讲稿
- 格式:ppt
- 大小:994.00 KB
- 文档页数:37
第9章非正弦周期电流电路电子技术中广泛使用着非正弦周期信号,例如脉冲信号发生器、锯齿波发生器等。
本章首先介绍了非正弦周期量产生的原因,其次讲述了非正弦周期信号的分解与合成,在此基础上对非正弦周期信号进行了谐波分析;介绍了非正弦周期信号的频谱表示法及频谱的特点;最后对非正弦周期信号作用下线性电路的分析计算进行了研究。
本章的学习重点:●非正弦周期信号的谐波分析法;●非正弦周期信号的频谱分析法;●非正弦周期信号作用下线性电路的分析与计算。
9.1 非正弦周期信号1、学习指导(1)非正弦周期信号的产生当电路中激励是非正弦周期信号时,电路中的响应也是非正弦的;当不同波形的周期信号加到电路中,在电路中产生的电压和电流当然也是非正弦波;若一个电路中同时有几个不同频率的正弦激励共同作用,电路中的响应一般也是非正弦量;电路中含有非线性元件时,即使激励是正弦量,电路中的响应也可能是非正弦周期函数。
非正弦周期信号的波形变化具有周期性,这是它们的共同特点。
(2)非正弦周期信号的合成与分解电子技术工程中大量使用着非正弦周期信号,当几个不同频率的正弦波合成时,其合成的结果是一个非正弦波,受此分析结果的启发,设想一个非正弦周期信号也一定可以分解为一系列的振幅不同、频率成整数倍的正弦波,由此引入了利用傅里叶级数表示非正弦周期信号的分析方法。
2、学习检验结果解析(1)电路中产生非正弦周期波的原因是什么?试举例说明。
解析:电路中产生非正弦周期波的原因一般有以下几个方面:①当电路中激励是非正弦周期信号时,电路中的响应当然也是非正弦的。
例如实验设备中的函数信号发生器,其中的方波和等腰三角波,它们在电路中产生的电压和电流不再是正弦的;123②同一电路中同时作用几个不同频率的正弦激励时,电路中的响应一般不再是正弦的。
例如晶体管放大电路,它工作时既有为静态工作点提供能量的直流电源,又有需要传输和放大的正弦输入信号,在它们的共同作用下,放大电路中的电压和电流既不是直流,也不是正弦交流,而是二者相叠加以后的非正弦波;③当电路中含有非线性元件时,即使激励是正弦量,电路中的响应也可能是非正弦周期函数。
《电工基础》学案
非正弦周期电路
【学习要求】
1.了解什么叫非正弦周期信号,
2.展开为傅里叶级数的条件;
3.什么叫谐波分析?
4.会求解非正弦周期电压与电流的有效值。
【学习重点、难点】
1.重点:谐波分析和会求解非正弦周期电压与电流的有效值
2.难点:了解傅里叶级数法
3.【学时安排】两学时
【学习过程】
一、课前预习
1. 上网搜索非正弦周期信号有哪些?
2.上网搜索傅里叶级数法
二、课堂学习任务
任务一:非正弦周期电压和电流
任务二:非正弦周期函数展开为傅里叶级数
1.条件:
2.谐波分析
任务三:求解非正弦周期电压与电流的有效值
三、课堂小结(教师引导,学生归纳总结)
四、作业布置。
非正弦周期电流电路分析简介非正弦周期电流电路是一种电路,其中电流的波形不是正弦曲线。
这种电路通常由非线性元件或者非理想元件构成,导致电流波形发生变化。
本文将对非正弦周期电流电路进行分析,探讨其中的特点和应用。
非正弦周期电流的产生非正弦周期电流可以由多种方式产生,包括以下几种常见情况:1.非线性元件的非线性特性导致电流波形变化。
例如,二极管在反向偏置时会产生非线性特性,导致电流波形不是正弦曲线。
2.非理想元件的特性导致电流波形变化。
例如,电感元件的饱和和饱和恢复会导致电流波形非正弦。
3.控制信号或输入信号的特性导致电流波形变化。
例如,方波、脉冲或其他非正弦的控制信号输入到电路中时,会引起电流波形的变化。
非正弦周期电流的特点非正弦周期电流具有以下几个特点:1.波形失真:由于非线性元件或非理想元件的特性,非正弦周期电流的波形会失真。
这种失真包括高次谐波的增加或者波形畸变。
2.频谱分布:非正弦周期电流的频谱分布比正弦电流更加复杂。
由于波形的非线性和不规则,频谱中会包含多个谐波成分。
3.能量损耗:非正弦周期电流的能量损耗比正弦电流更大。
由于电流波形的非正弦特性,导致电路中存在额外的损耗。
4.信号干扰:非正弦周期电流会产生更多的信号干扰。
由于频谱中存在多个谐波成分,这些谐波会干扰其他电路或设备的正常运行。
非正弦周期电流电路分析方法对于非正弦周期电流电路的分析,可以采用以下方法:1.线性电路分析:首先将非正弦周期电流分解为多个谐波成分,然后对每个谐波成分进行线性电路分析。
通过将各个谐波成分的响应叠加,可以得到整个非正弦周期电流电路的响应。
2.时域分析:使用时域分析方法,通过观察电流波形的变化来理解非正弦周期电流电路的工作情况。
这种方法适用于简单的电路,可以直接观察电流波形的特点。
3.频域分析:使用频域分析方法,对非正弦周期电流的频谱进行分析。
通过观察频谱中的谐波成分,可以了解电流波形的非正弦特性。
4.仿真分析:使用电路仿真软件,对非正弦周期电流电路进行仿真分析。
单元四非正弦周期电流电路一、非正弦周期信号二、非正弦周期量的有效值、平均值及三、非正弦周期电流电路的平均功率四、非正弦周期电流电路的计算一、非正弦周期信号1.非正弦周期信号:随时间周期性地按非正弦规律变化的信号。
2.非正弦周期函数的分解傅里叶级数:若周期为T ,角频率ω=2π/T 的周期函数,满足狄里赫利条件,则的可展开为∑∞=++=++++++++=1022110)sin cos ( sin cos 2sin 2cos sin cos )(k k k k k t k b t k a a t k b t k a t b t a t b t a a t f ωωωωωωωω ∵)t k (sin A sin cos k k ψ+=+ωωωt k b t k a k k ∴+++++=)2sin()sin()(22m 11m 0θωθωt A t A A t f 直流分量基波二次谐波∑∞=++=10)sin(k k k t k A A ψω(K=1、2、3、4…)几种非正弦周期函数的傅里叶级数名称波形傅里叶级数有效值平均值梯形波f (t) =απmA4(sinαsinωt +91sin3αsin3ωt+251sin5αsin5ωt +…+2k1sinkαsinkωt +…)(式中α =Td2π,k为奇数)A mπα-341A m(1-πα)三角波f (t) =2mA8π(sinωt-91sin3ωt+251sin5ωt +…+221kk)1(--sinkωt +…)(k为奇数)3A m2A m名称波形傅里叶级数有效值平均值矩形波f (t) =πmA4(sinωt+31sin3ωt+51sin5ωt +k1sinkωt +…)(k为奇数)A m A m半波整流波f (t) =πmA2(21+4πcosωt+311⨯cos2ωt -531⨯cos4ωt+751⨯cos6ωt -…)2A mπmA全波整流波f (t) =πmA4(21+311⨯cos2ωt-531⨯cos4ωt +751⨯cos6ωt-…)2A mπmA2名称波形傅里叶级数有效值平均值锯齿波f (t) = A m [21-π1(sinωt+21sin2ωt+31sin3ωt +…) ]3A m2A m矩形脉冲波f (t) =A m [ α+π2(sinαπcosωt+21sin2απcos2ωt+31sin3απcos3ωt +…) ]αA mαA m3.几种波形具有对称性的周期函数的傅里叶级数1. 奇函数的傅里叶级数奇函数:f (t )=-f (-t );奇函数的波形对称于坐标系的原点。