带电粒子在匀强电场中的偏转运动
- 格式:doc
- 大小:417.00 KB
- 文档页数:10
带电粒子在电场中的偏转一、基础知识1、带电粒子在电场中的偏转(1)条件分析:带电粒子垂直于电场线方向进入匀强电场. (2)运动性质:匀变速曲线运动.(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动. (4)运动规律:①沿初速度方向做匀速直线运动,运动时间⎩⎪⎨⎪⎧a.能飞出电容器:t =lv 0.b.不能飞出电容器:y =12at 2=qU 2md t 2,t =2mdyqU②沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧加速度:a =F m =qE m =Uqmd 离开电场时的偏移量:y =12at 2=Uql 22mdv 2离开电场时的偏转角:tan θ=v yv 0=Uqlmdv 20特别提醒 带电粒子在电场中的重力问题(1)基本粒子:如电子、质子、α粒子、离子等除有说明或有明确的暗示以外,一般都不考虑重力(但并不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或有明确的暗示以外,一般都不能忽略重力.2、带电粒子在匀强电场中偏转时的两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的. 证明:由qU 0=12mv 20y =12at 2=12·qU 1md ·(l v 0)2 tan θ=qU 1lmdv 20得:y =U 1l 24U 0d ,tan θ=U 1l2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O 到偏转电场边缘的距离为l2.3、带电粒子在匀强电场中偏转的功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =Udy ,指初、末位置间的电势差.二、练习题1、如图,一质量为m ,带电量为+q 的带电粒子,以速度v 0垂直于电场方向进入电场,关于该带电粒子的运动,下列说法正确的是( )A .粒子在初速度方向做匀加速运动,平行于电场方向做匀加速运动,因而合运动是匀加速直线运动B .粒子在初速度方向做匀速运动,平行于电场方向做匀加速运动,其合运动的轨迹是一条抛物线C .分析该运动,可以用运动分解的方法,分别分析两个方向的运动规律,然后再确定合运动情况D .分析该运动,有时也可用动能定理确定其某时刻速度的大小 答案 BCD2、如图所示,两平行金属板A 、B 长为L =8 cm ,两板间距离d =8 cm ,A 板比B 板电势高300 V ,一带正电的粒子电荷量为q =1.0×10-10 C ,质量为m =1.0×10-20 kg ,沿电场中心线RO 垂直电场线飞入电场,初速度v 0=2.0×106 m/s ,粒子飞出电场后经过界面MN 、PS 间的无电场区域,然后进入固定在O 点的点电荷Q 形成的电场区域(设界面PS 右侧点电荷的电场分布不受界面的影响).已知两界面MN 、PS 相距为12 cm ,D 是中心线RO 与界面PS 的交点,O 点在中心线上,距离界面PS 为9 cm ,粒子穿过界面PS 做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏bc 上.(静电力常量k =9.0×109 N ·m 2/C 2,粒子的重力不计)(1)求粒子穿过界面MN 时偏离中心线RO 的距离多远?到达PS 界面时离D 点多远? (2)在图上粗略画出粒子的运动轨迹.(3)确定点电荷Q 的电性并求其电荷量的大小.解析 (1)粒子穿过界面MN 时偏离中心线RO 的距离(侧向位移): y =12at 2a =F m =qU dmL =v 0t则y =12at 2=qU 2md (L v 0)2=0.03 m =3 cm 粒子在离开电场后将做匀速直线运动,其轨迹与PS 交于H ,设H 到中心线的距离为Y ,则有12L12L +12 cm=yY,解得Y =4y =12 cm(2)第一段是抛物线、第二段是直线、第三段是圆弧(图略) (3)粒子到达H 点时,其水平速度v x =v 0=2.0×106 m/s 竖直速度v y =at =1.5×106 m/s 则v 合=2.5×106 m/s该粒子在穿过界面PS 后绕点电荷Q 做匀速圆周运动,所以Q 带负电 根据几何关系可知半径r =15 cmk qQr 2=m v 2合r解得Q ≈1.04×10-8 C答案 (1)12 cm (2)见解析 (3)负电 1.04×10-8 C3、如图所示,在两条平行的虚线内存在着宽度为L 、电场强度为E 的匀强电场,在与右侧虚线相距也为L 处有一与电场平行的屏.现有一电荷量为+q 、质量为m 的带电粒子(重力不计),以垂直于电场线方向的初速度v 0射入电场中,v 0方向的延长线与屏的交点为O .试求:(1)粒子从射入电场到打到屏上所用的时间;(2)粒子刚射出电场时的速度方向与初速度方向间夹角的正切值tan α; (3)粒子打在屏上的点P 到O 点的距离x . 答案 (1)2L v 0 (2)qEL mv 20 (3)3qEL 22mv 20解析 (1)根据题意,粒子在垂直于电场线的方向上做匀速直线运动,所以粒子从射入电场到打到屏上所用的时间t =2L v 0.(2)设粒子刚射出电场时沿平行电场线方向的速度为v y ,根据牛顿第二定律,粒子在电场中的加速度为:a =Eq m所以v y =a L v 0=qELmv 0所以粒子刚射出电场时的速度方向与初速度方向间夹角的正切值为tan α=v y v 0=qELmv 20.(3)解法一 设粒子在电场中的偏转距离为y ,则 y =12a (L v 0)2=12·qEL 2mv 20 又x =y +L tan α, 解得:x =3qEL 22mv 20解法二 x =v y ·Lv 0+y =3qEL 22mv 20.解法三 由xy =L +L2L 2得:x =3y =3qEL 22mv 20.4、如图所示,虚线PQ 、MN 间存在如图所示的水平匀强电场,一带电粒子质量为m =2.0×10-11 kg 、电荷量为q =+1.0×10-5 C ,从a 点由静止开始经电压为U =100 V 的电场加速后,垂直于匀强电场进入匀强电场中,从虚线MN 的某点b (图中未画出)离开匀强电场时速度与电场方向成30°角.已知PQ 、MN 间距为20 cm ,带电粒子的重力忽略不计.求:(1)带电粒子刚进入匀强电场时的速率v 1; (2)水平匀强电场的场强大小; (3)ab 两点间的电势差.答案 (1)1.0×104 m/s (2)1.732×103 N/C (3)400 V 解析 (1)由动能定理得:qU =12mv 21代入数据得v 1=1.0×104 m/s(2)粒子沿初速度方向做匀速运动:d =v 1t 粒子沿电场方向做匀加速运动:v y =at 由题意得:tan 30°=v 1v y由牛顿第二定律得:qE =ma 联立以上各式并代入数据得:E =3×103 N/C ≈1.732×103 N/C(3)由动能定理得:qU ab =12m (v 21+v 2y )-0联立以上各式并代入数据得:U ab =400 V .5、如图所示,一价氢离子(11H)和二价氦离子(42He)的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们( )A .同时到达屏上同一点B .先后到达屏上同一点C .同时到达屏上不同点D .先后到达屏上不同点 答案 B解析 一价氢离子(11H)和二价氦离子(42He)的比荷不同,经过加速电场的末速度不同,因此在加速电场及偏转电场的时间均不同,但在偏转电场中偏转距离相同,所以会先后打在屏上同一点,选B.6、如图所示,六面体真空盒置于水平面上,它的ABCD 面与EFGH 面为金属板,其他面为绝缘材料.ABCD 面带正电,EFGH 面带负电.从小孔P 沿水平方向以相同速率射入三个质量相同的带正电液滴a 、b 、c ,最后分别落在1、2、3三点.则下列说法正确的是( )A .三个液滴在真空盒中都做平抛运动B .三个液滴的运动时间不一定相同C .三个液滴落到底板时的速率相同D .液滴c 所带电荷量最多 答案 D解析 三个液滴具有水平速度,但除了受重力以外,还受水平方向的电场力作用,不是平抛运动,选项A 错误;在竖直方向上三个液滴都做自由落体运动,下落高度又相同,故运动时间必相同,选项B 错误;在相同的运动时间内,液滴c 水平位移最大,说明它在水平方向的加速度最大,它受到的电场力最大,电荷量也最大,选项D 正确;因为重力做功相同,而电场力对液滴c 做功最多,所以它落到底板时的速率最大,选项C 错误.7、绝缘光滑水平面内有一圆形有界匀强电场,其俯视图如图所示,图中xOy 所在平面与光滑水平面重合,电场方向与x 轴正向平行,电场的半径为R =2 m ,圆心O 与坐标系的原点重合,场强E =2 N/C.一带电荷量为q =-1×10-5 C 、质量m =1×10-5 kg 的粒子,由坐标原点O 处以速度v 0=1 m/s 沿y 轴正方向射入电场(重力不计),求:(1)粒子在电场中运动的时间; (2)粒子出射点的位置坐标; (3)粒子射出时具有的动能.答案 (1)1 s (2)(-1 m,1 m) (3)2.5×10-5 J解析 (1)粒子沿x 轴负方向做匀加速运动,加速度为a ,则有: Eq =ma ,x =12at 2沿y 轴正方向做匀速运动,有y =v 0t x 2+y 2=R 2解得t =1 s.(2)设粒子射出电场边界的位置坐标为(-x 1,y 1),则有x 1=12at 2=1 m ,y 1=v 0t =1 m ,即出射点的位置坐标为(-1 m,1 m).(3)射出时由动能定理得Eqx 1=E k -12mv 20代入数据解得E k=2.5×10-5 J.8、如图所示,在正方形ABCD区域内有平行于AB边的匀强电场,E、F、G、H是各边中点,其连线构成正方形,其中P点是EH的中点.一个带正电的粒子(不计重力)从F点沿FH方向射入电场后恰好从D点射出.以下说法正确的是( )A.粒子的运动轨迹一定经过P点B.粒子的运动轨迹一定经过PE之间某点C.若将粒子的初速度变为原来的一半,粒子会由ED之间某点射出正方形ABCD区域D.若将粒子的初速度变为原来的一半,粒子恰好由E点射出正方形ABCD区域答案BD解析粒子从F点沿FH方向射入电场后恰好从D点射出,其轨迹是抛物线,则过D 点做速度的反向延长线一定与水平位移交于FH的中点,而延长线又经过P点,所以粒子轨迹一定经过PE之间某点,选项A错误,B正确;由平抛运动知识可知,当竖直位移一定时,水平速度变为原来的一半,则水平位移也变为原来的一半,所以选项C错误,D正确.9、用等效法处理带电体在电场、重力场中的运动如图所示,绝缘光滑轨道AB部分为倾角为30°的斜面,AC部分为竖直平面上半径为R的圆轨道,斜面与圆轨道相切.整个装置处于场强为E、方向水平向右的匀强电场中.现有一个质量为m的小球,带正电荷量为q=3mg3E,要使小球能安全通过圆轨道,在O点的初速度应满足什么条件?图9审题与关联解析 小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受重力、电场力、轨道作用力,如图所示,类比重力场,将电场力与重力的合力视为等效重力mg ′,大小为mg ′=qE 2+mg 2=23mg 3,tan θ=qE mg =33,得θ=30°,等效重力的方向与斜面垂直指向右下方,小球在斜面上匀速运动.因要使小球能安全通过圆轨道,在圆轨道的等效“最高点”(D 点)满足等效重力刚好提供向心力,即有:mg ′=mv 2D R,因θ=30°与斜面的倾角相等,由几何关系可知AD =2R ,令小球以最小初速度v 0运动,由动能定理知: -2mg ′R =12mv 2D -12mv 20 解得v 0= 103gR 3,因此要使小球安全通过圆轨道,初速度应满足v ≥103gR 3.。
《带电粒子在匀强电场中的偏转》知识清单一、基本概念带电粒子在匀强电场中的偏转,指的是带电粒子以一定的初速度垂直进入匀强电场后,受到电场力的作用而发生偏转的现象。
匀强电场是指电场强度的大小和方向都相同的电场。
在这种电场中,带电粒子所受的电场力是恒定的。
二、运动规律1、水平方向带电粒子在水平方向不受力,做匀速直线运动。
其水平速度 vx 保持不变,水平位移 x = vxt,其中 vx 为初速度在水平方向的分量,t 为粒子在电场中的运动时间。
2、竖直方向带电粒子在竖直方向受到恒定的电场力,做匀加速直线运动。
其加速度 a = Eq/m,其中 E 为电场强度,q 为粒子的电荷量,m 为粒子的质量。
竖直速度 vy = at,竖直位移 y = 1/2at²三、偏转角度带电粒子离开电场时的偏转角度可以通过正切值来表示,tanθ =vy/vx四、偏移量粒子在电场中的偏移量 y 与粒子的初速度 v0、电场强度 E、粒子的电荷量 q、质量 m 以及极板长度 L 和极板间距 d 等因素有关。
偏移量的表达式为:y = qEL²/2mv₀²d五、应用实例1、示波器示波器是利用带电粒子在匀强电场中的偏转来显示电信号的变化。
电子枪发射的电子经过加速后,垂直进入偏转电场,通过控制电场的强度和方向,使电子束在荧光屏上产生不同的偏转,从而显示出信号的波形。
2、喷墨打印机在喷墨打印机中,带电的墨滴在匀强电场的作用下发生偏转,准确地喷射到纸张的指定位置,形成文字或图像。
六、解题思路与方法1、分析受力首先要明确带电粒子在匀强电场中所受的电场力,根据电场力的方向和大小,判断粒子在竖直方向的运动情况。
2、运动分解将带电粒子的运动分解为水平方向的匀速直线运动和竖直方向的匀加速直线运动,分别列出相应的运动方程。
3、联立方程求解根据已知条件,联立水平和竖直方向的运动方程,求解出粒子的偏转角度、偏移量等物理量。
七、常见错误与注意事项1、忽略粒子的重力在一些情况下,粒子的重力相比电场力可以忽略不计,但在某些特殊问题中,重力可能不能忽略,需要具体情况具体分析。
带电粒子在匀强电场中的运动(一)一、知识点击:1.带电粒子的加速(或减速)运动(1)从运动状态分析:带电粒子沿与电场线平行的方向进入匀强电场,受到的电场力与运动方向在同一直线上,做匀加(减)速直线运动,可以用牛顿第二定律求解。
(2)从功能观点分析:粒子动能的变化量等于电场力所做的功(电场可以是匀强电场或非匀强电场,即:qU mv mv t =-2022121 2.带电粒子的偏转(仅限于匀强电场)运动(1)从运动状态分析:带电粒子以速度垂直于电场线方向飞入匀强电场时,受到恒定的与初速度方向垂直的电场力的作用而做匀变速曲线运动,其轨迹一定是一条抛物线,是类平抛运动。
此时可用平抛运动的相关公式求解。
(2)运动的几个特点:①运动过程中速度的偏转角度的正切为位移偏转角度正切的两倍;②带电粒子飞出电场好像是从电场的中点飞出一样;3.平衡带电粒子在电场中处于平衡状态,则一定所受合力为零,mg=qE=qU/d 。
二、能力激活:题型一:电场力做功是粒子动能增加的原因:示例1:氢核(质子)和氦核(α粒子)由静止开始经相同的电压加速后,则有( )A .α粒子速度较大,质子的动能较大;B .α粒子动能较大,质子的速度较大;C .α粒子速度和动能都较大;D .质子的速度和动能都较大。
题型二:以用动力学方法解决:示例2:一个质量为m 电量为e 的电子,以初速度v 0与电场线平行的方向射入匀强电场,经过t 秒时间,电子具有的电势能与刚好入射到电场的动能相同(取电子刚进入电场时的位置为零电势能处),则此匀强电场的电场强度E =_____________;带电粒子在电场中所通过的总路程是__________。
题型三:用平抛的运动规律解决: 示例3:水平放置的两块平行金属板A 、B 、,板长L ,相距为d ,使它们分别带上等量的异种电荷,两板间的电压为U ,有一质量为m ,带电量为-q 的粒子以速度v 0沿水平方向紧靠着B 板射入电场,如图所示,在电场中,粒子受的电场力F =___,方向___,带电粒子在电场中做____,在水平方向上做____运动,在竖直方向上做___运动,加速度a =_____,方向_____,带电粒子飞越电场的时间t =______,水平方向的分速度v x =_________带电粒子离开电场时在竖直方向上的分速度v y =_____,带电粒子离开电场时的速度v =______,其方向与水平方向的夹角θ=_______,带电粒子离开电场时在竖直方向的侧位移y=__________。
专题带电粒子在匀强电场中的偏转问题【专题简介】带电粒子在匀强电场中的偏转问题是一种特殊的曲线运动,是高考的高频考点。
此类运动往往与平抛运动类似,故也称之为“类平抛运动”,故在处理此类问题时的方法和思想也是——“化曲为直”,即将运动分解为初速度方向的匀速直线运动和合外力方向的匀变速直线运动。
它与平抛的不同之处就在于要通过受力分析来求解合外力,从而根据牛顿第二定律求出加速度。
带电粒子在匀强电场中的偏转问题的特征:所受合外力为恒力且与初速度垂直。
带电粒子在匀强电场中的偏转问题的相关公式:1.牛顿第二定律:F合=ma2.匀强电场:E=Ud3.水初速度方向:x =v 0t,v x=v04.合外力方向:y=12at2,v y=at5.合运动:v=√v02+v y2,s=√x2+y26.角度问题:(1)速度夹角α:tanα=v yv0;(2)位移夹角θ:tanα=yx【高考真题】1.(2013广东卷)喷墨打印机的简化模型如图所示,重力可忽略的墨汁微滴,经带电室带负电后,以速度v垂直匀强电场飞入极板间,最终打在纸上,则微滴在极板间电场中()A.向负极板偏转B.电势能逐渐增大C.运动轨迹是抛物线D.运动轨迹与带电量无关2.(2022浙江卷)如图所示,带等量异种电荷的两正对平行金属板M、N间存在匀强电场,板长为L(不考虑边界效应)。
t=0时刻,M板中点处的粒子源发射两个速度大小为v0的相同粒子,垂直M板向右的粒子,到达N板时速度大小为√2v0;平行M板向下的粒子,刚好从N板下端射出。
不计重力和粒子间的相互作用,则()A.M板电势高于N板电势B.两个粒子的电势能都增加C.粒子在两板间的加速度a=2v02LD.粒子从N板下端射出的时间t=(√2−1)L2v0速度关系位移关系2.(2007海南卷)一平行板电容器中存在匀强电场,电场沿竖直方向。
两个比荷(即粒子的电荷量与质量之比)不同的带正电的粒子a和b,从电容器的P点(如图)以相同的水平速度射入两平行板之间。
带电粒子在三种典型电场中的运动问题解析张路生淮安贝思特实验学校 江苏 淮安 邮编:211600淮安市经济开发区红豆路8号 tel:带电粒子在电场中的运动是每年高考的热点和重点问题,带电粒子在电场中的运动主要有直线运动、往复运动、类平抛运动等。
考查的类型主要有:带电粒子在点电荷电场中的运动、带电粒子在匀强电场中的运动和带电粒子在交变电场中的运动。
这类试题可以拟定不同的题设条件,从不同角度提出问题,涉及力学、电学的很多关键知识点,要求学生具有较强的综合分析能力。
下面笔者针对三种情况分别归纳总结。
初速度与场强方向的关系 运动形式 υ0∥E 做变速直线运动 υ0⊥E 可能做匀速圆周运动 υ0与E 有夹角 做曲线运动【例1】如图1所示,在O 点放置正点电荷Q ,a 、b 两点连线过O 点,且Oa=ab ,则下列说法正确的是A 将质子从a 点由静止释放,质子向b 点做匀加速运动B 将质子从a 点由静止释放,质子运动到b 点的速率为υ,则将α粒子从a 点由静止释放后运动到b 点的速率为2/2υC 若电子以Oa 为半径绕O 做匀速圆周运动的线速度为υ,则电子以Ob 为半径绕O 做匀速圆周运动的线速度为2υD 若电子以Oa 为半径绕O 做匀速圆周运动的线速度为υ,则电子以Ob 为半径绕O 做匀速圆周运动的线速度为2/2υ 〖解析〗:由于库仑力变化,因此质子向b 做变加速运动,故A 错;由于a 、b 之间电势差恒定,根据动能定理有2/2qU m υ=,可得2/qU m υ=,由此可判断B 正确;当电子以O 为圆心做匀速圆周运动时,有22Qq k m r r υ=成立,可得/kQq mr υ=,据此判断C 错D 对。
答案:BD2、根据带电粒子在电场的运动判断点电荷的电性【例2】 如图2所示,实线是一簇未标明方向的由点电荷Q 产生的电场线,若带电粒子q (|Q|>>|q |)由a 运动到b ,电场力做正功。
带电粒子在匀强电场中的偏转1.运动规律沿初速度方向为匀速直线运动,运动时间 vl t 0=沿电场力方向为初速度为零的匀加速直线运动,加速度:a = F/m = qU/dm 离开电场时的偏移量 222mdv qULy =离开电场时的偏转角:L ymdV qUL 2tan 2==θ2.分析带电粒子在匀强电场中的偏转问题的关键(1)条件分析:不计重力,且带电粒子的初速度v 0与电场方向垂直,则带电粒子将在电场中只受电场力作用做类平抛运动.(2)运动分析:一般用分解的思想来处理,即将带电粒子的运动分解为沿电场力方向上的匀加速直线运动和垂直电场力方向上的匀速直线运动.3.两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时的偏转角度总是相同的. (2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点为粒子水平位移的中点. 【典例1】如图所示,虚线MN 左侧有一场强为E 1=E 的匀强电场,在两条平行的虚线MN 和PQ 之间存在着宽为L 、电场强度为E 2=2E 的匀强电场,在虚线PQ 右侧相距为L 处有一与电场E 2平行的屏。
现将一电子(电荷量为e ,质量为m )无初速度地放入电场E 1中的A 点,A 与虚线MN 的间距为L2,最后电子打在右侧的屏上,AO 连线与屏垂直,垂足为O ,求:(1)电子从释放到打到屏上所用的时间;(2)电子刚射出电场E 2时的速度方向与AO 连线夹角θ的正切值tan θ; (3)电子打到屏上的点P ′到点O 的距离x 。
【答案】 (1)3mLeE(2)2 (3)3L 【解析】 (1)电子在电场E 1中做初速度为零的匀加速直线运动,设加速度为a 1,时间为t 1,由牛顿第解得:tan θ=2。
(3)如图,设电子在电场E 2中的偏转距离为x 1 x 1=12a 2t 32tan θ=x 2L解得:x =x 1+x 2=3L 。
【典例2】 如图甲所示,长为L 、间距为d 的两金属板A 、B 水平放置,ab 为两板的中心线,一个带电粒子以速度v 0从a 点水平射入,沿直线从b 点射出,若将两金属板接到如图乙所示的交变电压上,欲使该粒子仍能从b 点以速度v 0射出,求:(1)交变电压的周期T 应满足什么条件?(2)粒子从a 点射入金属板的时刻应满足什么条件? 【答案】 (1)T =L nv 0,其中n 取大于等于L2dv 0qU 02m的整数 (2)t =2n -14T (n =1,2,3,…)【解析】 (1)为使粒子仍从b 点以速度v 0穿出电场,在垂直于初速度方向上,粒子的运动应为:加速,减速,反向加速,反向减速,经历四个过程后,回到中心线上时,在垂直于金属板的方向上速度正好等于零,这段时间等于一个周期,故有L =nTv 0,解得T =Lnv 0粒子在14T 内离开中心线的距离为y =12a ⎝⎛⎭⎫14T 2所以粒子的周期应满足的条件为 T =L nv 0,其中n 取大于等于L 2dv 0qU 02m的整数. (2)粒子进入电场的时间应为14T ,34T ,54T ,…故粒子进入电场的时间为t =2n -14T (n =1,2,3,…). 【跟踪短训】1.如图所示,真空中水平放置的两个相同极板Y 和Y ′长为L ,相距为d ,足够大的竖直屏与两板右侧相距b .在两板间加上可调偏转电压U YY ′,一束质量为m 、带电荷量为+q 的粒子(不计重力)从两板左侧中点A 以初速度v 0沿水平方向射入电场且能穿出.(1)证明粒子飞出电场后的速度方向的反向延长线交于两板间的中心O 点; (2)求两板间所加偏转电压U YY ′的范围; (3)求粒子可能到达屏上区域的长度.【答案】 (1)见【解析】 (2)-d 2mv 20qL 2≤U YY ′≤d 2mv 20qL 2 (3)d L +2b L【解析】 (1)设粒子在电场中的加速度大小为a ,离开偏转电场时偏转距离为y ,沿电场方向的速度为v y ,偏转角为θ,其反向延长线通过O 点,O 点与板右端的水平距离为x ,如图所示,则有y =12at 2L =v 0tv y =at ,tan θ=v y v 0=y x ,联立解得x =L2故粒子在屏上可能到达的区域的长度为 H =2y 0=d L +2bL.2. 如图甲所示,热电子由阴极飞出时的初速度忽略不计,电子发射装置的加速电压为U 0,电容器板长和板间距离均为L =10 cm ,下极板接地,电容器右端到荧光屏的距离也是L =10 cm ,在电容器两极板间接一交变电压,上极板的电势随时间变化的图象如图乙所示.(每个电子穿过平行板的时间都极短,可以认为电压是不变的)求:(1)在t =0.06 s 时刻,电子打在荧光屏上的何处. (2)荧光屏上有电子打到的区间有多长?【答案】 (1)打在屏上的点位于O 点上方,距O 点13.5 cm (2)30 cm【解析】 (1)电子经电场加速满足qU 0=12mv 2经电场偏转后侧移量y =12at 2=12·qU 偏mL ⎝⎛⎭⎫L v 2所以y =U 偏L4U 0,由图知t =0.06 s 时刻U 偏=1.8U 0,所以y =4.5 cm设打在屏上的点距O 点的距离为Y ,满足Yy =L +L 2L2所以Y =13.5 cm.(2)由题知电子侧移量y 的最大值为L2,所以当偏转电压超过2U 0,电子就打不到荧光屏上了,所以荧光屏上电子能打到的区间长为3L =30 cm.课后作业1. 喷墨打印机的简化模型如图所示,重力可忽略的墨汁微滴,经带电室带负电后,以速度v 垂直匀强电场飞入极板间,最终打在纸上,则微滴在极板间电场中( ).A .向负极板偏转B .电势能逐渐增大C .运动轨迹是抛物线D .运动轨迹与带电量无关【答案】 C2. 如图,带电粒子由静止开始,经电压为U 1的加速电场加速后,沿垂直电场方向进入电压为U 2的平行板电容器,经偏转落在下板的中间位置。
高二物理期末综合复习(特训专题+提升模拟)专题07 带电粒子在匀强电场中的偏转、带电粒子在交变电场中的运动一、带电粒子在匀强电场中的偏转1.如图所示,偏转电场可看作匀强电场,极板间电压为U ,极板长度为L ,间距为d =0.125L 。
质子由静止开始经加速电场加速后。
沿平行于极板的方向射入偏转电场,并从另一侧射出。
已知质子的比荷为k ,加速电场电压为U 0,忽略质子所受重力。
质子射入偏转电场时的初速度v 0和从偏转电场射出时沿垂直板面方向的偏转距离Δy 分别是( )A2ULU B 04ULU C2ULU D 04ULU 【答案】C【详解】质子在加速电场中,根据动能定理有20012mv qU = ①解得0v =②根据牛顿第二定律可得质子在偏转电场中的加速度大小为qUa md= ③根据运动学规律可得质子在偏转电场中的运动时间为0L t v = ④并且21Δ2y at = ⑤由题意知d =0.125L ⑥联立①③④⑤⑥解得2ΔULy U =⑦故选C 。
2.示波器是一种多功能电学仪器,如图所示。
大量电性相同的带电粒子在电压为U 1的电场中由静止开始加速,从M 孔射出,然后水平射入电压为U 2的平行金属板间的电场中,在满足带电粒子能射出平行板电场区域的条件下(不计粒子重力和粒子之间的相互作用),下列说法正确的是( )A .若电荷量q 相等,则带电粒子在偏转场板间的加速度大小相等B .若电荷量q 相等,则带电粒子从M 孔射出的动能不相等C .无论比荷qm是否相等,全过程中电场力做功均相同 D .无论比荷qm是否相等,带电粒子均从偏转电场中同位置射出 【答案】D【详解】A .根据牛顿第二定律得带电粒子在偏转电场中的加速度大小2qU qE a m md==知电荷量相等,质量未知,则带电粒子在偏转电场中的加速度大小不一定相等,故A 错误;B .带电粒子在加速度电场中加速过程,根据动能定理得21k 012qU E mv ==解得0v =电粒子电荷量相等,则带电粒子从M 孔射出的动能相等,故B 错误;D .带电粒子进入平行金属板间做类平抛运动,设极板长度为L ,板间距离为d ,粒子在水平方向做匀速直线运动,则有0L v t =得0Lt v =粒子射出电场时偏转角度正切值00tan y v at v v θ==结合0v =2qU a md =;0L t v =联立得21tan 2U L U d θ=可知tan θ与q m 无关,因为位移偏转角的正切值总为速度偏转角正切值的二分之一,即tan 2tan θα=可得无论比荷qm是否相等,带电粒子均从偏转电场中同位置射出,故D 正确;C .由D 选项可知,所有带电粒子在电场偏转电场中沿着电场方向的位移相等设为y ,则电场力对带电粒子所做的功为21qU yW qU d=+知只有电荷量相等时,电场力做功相等,故C 错误。
考点5.2 带电粒子在匀强电场中的偏转运动
1.带电粒子在电场中的偏转
(1)条件分析:带电粒子垂直于电场线方向进入匀强电场.
(2)运动性质:匀变速曲线运动.
(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动.
(4)运动规律: ①沿初速度方向做匀速直线运动,运动时间
⎩⎨⎧ a.能飞出电容器:t =l v 0.
b.不能飞出电容器:y =12at 2=qU 2md t 2,t = 2mdy qU .
②沿电场力方向,做匀加速直线运动
⎩⎪⎨⎪⎧ 加速度:a =F m =qE m =qU md 离开电场时的偏移量:y =12at 2=qUl 22mdv
20.离开电场时的偏转角:tan θ=v y
v 0=qUl mdv 20.
2.带电粒子在匀强电场中偏转时的两个结论
(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.
证明:由qU 0=12
mv 20 y =12at 2=12·qU 1md ·(l v 0
)2 tan θ=qU 1l mdv 2
0 得:y =U 1l 24U 0d ,tan θ=U 1l 2U 0d
(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,
即O 到偏转电场边缘的距离为l 2
. 3.带电粒子在匀强电场中偏转的功能关系
当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20
,其中U y =U d y ,指初、末位置间的电势差.
1. 喷墨打印机的简化模型如图4所示,重力可忽略的墨汁微滴,经带电室带负电后,以速
度v 垂直匀强电场飞入极板间,最终打在纸上,则微滴在极板间电场中( C )
A. 向负极板偏转
B. 电势能逐渐增大
C. 运动轨迹是抛物线
D. 运动轨迹与所带电荷量无关
2. 如图所示,两极板与电源相连接,电子从负极板边缘垂直电场方向射
入匀强电场,且恰好从正极板边缘飞出,现在使电子的入射速度变为
原来的2倍,而电子仍从原来位置射入,且仍从正极板边缘飞出,则
两极板间的距离应变为原来的( C )
A.2倍
B.4倍
C.12
D.14
3. 如图所示,分别将带正电、负电和不带电的三个等质量小球,以相同的水平速度由P 点
射入水平放置的平行金属板间,已知上板带负电,三小球分别落在图中A 、B 、C 三点,其中小球B 不带电,则( D )
A. A 带负电、C 带正电
B. 三小球在电场中加速度大小关系是:a A >a B >a C
C. 三小球在电场中运动时间相等
D. 三小球到达下板时的动能关系是E k C >E k B >E k A
4. 一束带有等量电荷的不同离子从同一点垂直电场线进入同一匀强偏转电场,飞离电场后
打在荧光屏上的同一点,则( C )
A. 离子进入电场的v 0相同
B. 离子进入电场的mv 0相同
C. 离子进入电场的初动能相同
D. 离子在电场中的运动时间相同
5. 如图所示,氕、氘、氚的原子核自初速度为零经同一电场加速后,又经同一匀强电场偏
转,最后打在荧光屏上,那么( D )
A.经过加速电场的过程中,电场力对氚核做的功最多
B.经过偏转电场的过程中,电场力对氚核做的功最多
C.三种原子核打在屏上的速度一样大
D.三种原子核都打在屏的同一位置上
6.(多选)真空中的某装置如图所示,现有质子、氘核和α粒子都从O点由静止释放,经过
相同加速电场和偏转电场,射出后都打在同一个与OO′垂直的荧光屏上,使荧光屏上出现亮点(已知质子、氘核和α粒子质量之比为1∶2∶4,电荷量之比为1∶1∶2,重力不计).下列说法中正确的是(CD)
A.三种粒子在偏转电场中运动时间之比为2∶1∶1
B.三种粒子出偏转电场时的速度相同
C.在荧光屏上将只出现1个亮点
D.偏转电场的电场力对三种粒子做功之比为1∶1∶2
7.(多选)示波管是示波器的核心部件,它由电子枪、偏转电极和荧光屏组成,如图所示.如
果在荧光屏上P点出现亮斑,那么示波管中的(AC)
A.极板X应带正电
B.极板X′应带正电
C.极板Y应带正电
D.极板Y′应带正电
8.示波器是一种常见的电学仪器,可以在荧光屏上显示
出被检测的电压随时间变化的情况.电子经电压u1
加速后进入偏转电场.下列关于所加竖直偏转电压
u2、水平偏转电压u3与荧光屏上所得的图形的说法中
不正确的是()。