基于灰色预测和层次分析法的高校招生问题
- 格式:pdf
- 大小:702.42 KB
- 文档页数:22
灰色预测和时间序列预测的优缺点和应用场景比较灰色预测和时间序列预测是常用的预测分析方法,它们在很多领域都具有广泛的应用。
本文将比较这两个方法的优缺点和应用场景,以期帮助读者更好地理解和使用它们。
一、灰色预测方法灰色预测方法是一种基于信息不完备的小样本预测方法,它可以在数据量较小时对未来趋势进行预测。
它的优点包括:1、适用范围广:灰色预测方法适用于各种经济、社会和科技等领域的短期和中长期预测,对于复杂多变的系统也有较好的适应性。
2、效果显著:灰色预测方法可以针对不平衡数据或缺少有效信息的数据进行预测,准确率较高,在实际应用中表现出较好的效果。
3、计算简单:灰色预测方法原理简单,计算量小,对计算资源的要求较低。
但是,灰色预测方法也存在一些缺点:1、数据需求严格:灰色预测方法对数据要求较高,在数据量不充足的情况下容易出现预测偏差。
2、理论基础不足:灰色预测方法的理论体系相对较弱,缺乏统一的数学架构支撑。
3、易受外部因素影响:灰色预测方法很容易受到外部因素的影响,对于具有较强周期性的数据预测,其效果可能不太理想。
二、时间序列预测方法时间序列预测方法是指将某一现象随时间变化的过程所形成的数值序列作为研究对象,通过对序列的统计特征进行分析来预测未来的趋势。
它的优点有:1、适用性广泛:时间序列预测方法适用于各种领域的数据,并可应用于多种时间序列模型,如ARIMA、ARCH、GARCH等。
2、模型复杂,预测精度高:时间序列预测方法可使用多种复杂模型进行预测,模型优化后可以得到较为精确的预测结果。
3、预测稳定可靠:时间序列预测方法通常采用样本内和样本外检验来验证预测模型的稳定性和可靠性。
但是,时间序列预测方法也存在一些缺点:1、数据需求严格:时间序列预测方法对基础数据的准确性和完整性要求非常高,只有数据质量较高时才能得到准确的结果。
2、影响因素复杂:由于各种外部和内部因素的影响,某些时间序列的预测较为困难。
3、计算资源要求高:时间序列预测方法涉及多个模型、参数和算法,因此需要更高的计算资源和算法优化,计算成本较高。
自适应过滤法和灰色预测法在高校生源分析与预测中的应用摘要本文通过查找中国年鉴中的相关数据,通过ecxel及matlab等数学软件对其进行处理分析,并运用自适应过滤法与灰色预测法对我国高校生源紧张程度进行预测,得出我国将在2015年前后出现生源危机状况。
关键词高校生源;自适应过滤法;灰色预测法中图分类号c961.9 文献标识码a 文章编号 1674-6708(2011)35-0165-02高校生源紧张程度是指,高校录取比例小于1时,即高考人数大于高校招生人数,则为生源充足;反之,录取比例大于1时,即高考人数小于高校招生人数,则为生源不足,因此高校录取比例的值的大小即可表示高校生源的紧张程度。
高考人数的变化情况将对中国教育的未来产生深远影响,因此有必要对我国未来高校生源情况作出预测,从而根据预测情况进行相应政策的制定。
1 高校生源紧张情况分析预对我国未来高考生源做出预测,首先必须要以准确的中国人口自然增长率和历年中国高考报考人数及高校招生人数作为基础。
根据查找《中国统计年鉴2010》中的相关数据,整理出《我国高考录取比例及人口自然增长率统计表》。
根据《我国高考录取比例及人口自然增长率统计表》中数据,我国高考人数从1999年开始逐年递增,到2007年达到峰值,从2007年开始,高考人数呈现下降趋势,总体呈抛物线型,可以推测,在政策不变的情况下,我国未来高考人数将继续走低。
而对于我国高考招生人数,从1999年开始呈现明显直线上升趋势,且上升幅度较小。
总体上说,高考人数的变化幅度大于高校招生人数。
影响高校生源状况的因素,除了如高校录取比例等可量化的因素外,还包括国家、政府教育政策等等。
因此,为了尽量减少不可量化因素的影响,本文将采用近几年的数据(即2007-2010年的数据)对我国高校未来生源状况进行预测分析。
2 自适应过滤法模型2.1理论依据自适应过滤法就是从自回归系数的一组初始估计值开始利用公式:逐次迭代,通过残差e值,不断调整迭代直到取得合适的系数,以实现自回归系数的最优化。
兰州交通大学数学建模论文题目:预测兰交大未来十年的招生情况队员1:姓名:杜进锋班级:*********学号:*********队员2:姓名:王传斌班级:*********学号:*********队员3:姓名:张文福班级:*********学号:*********指导老师:***二零一*年*月*日兰州交通大学未来十年的招生情况预测摘要:预测是人们根据历史或已知对未来或未知做出的推断和期望,科学的预测是做出正确决策的前提和保障。
随着改革开放的深入,我国的经济社会得到了迅猛发展,我国高等教育事业也取得了巨大发展。
兰州交通大学作为一所西北地区高校,要想提高其综合实力和知名度,就必须保证有持续稳定的优质招生,通过历年来学校的招生情况综合分析,并建立合适的模型预测未来的招生计划对学校招生工作进行指导,对其发展具有重要意义。
本文通过应用灰色系统理论及其预测模型GM(1,1), 对兰州交通大学的招生人数进行建模预测。
考虑到统计数据较少、非线性以及招生的不确定性等问题,结合我校招生人数的特点,借助灰色预测模型对兰州交通大学未来的招生情况进行预测是比较合理的模型,论文以2005~2012年兰州交通大学招生人数数料为依据,构建GM(1,1) 招生人数预测模型预测了兰州交通大学2013~2022年招生人数。
通过模拟数据与实际数据进行残差检验以及相对误差计算,分析表明,预测方法的合理,模型精度较高。
最后,对所建模型的优缺点进行了客观的评价和分析。
关键词:灰色系统;GM(1,1) 模型;兰州交通大学;招生人数预测;高校招生等等……一、问题的背景及重述随着改革开放的深入,为适应经济社会的迅猛发展,我国高等教育事业取得了长足发展。
自高校大规模扩招以来,招生人数逐年上升,对国家社会经济发展做出巨大贡献,扩招的同时也出现了不少困难和问题,如教育质量的下降,失去核心竞争力,所以自零八年后招生增长速度放慢,使我国整体招生人数呈平缓逐步增长趋势,与我国的经济持续增长,各项改革措施密切配合。
关于高等教育学费标准的评价及建议摘要本文通过对近几年来学费变化的研究,综合分析影响学费变化的五个要素,引入了三个变因:学校属性、专业类型、地域差异对学费的影响,对其合理性进行了定量的分析和评价。
首先,我们基于层次分析法建立了模型一。
模型一以五个要素,即教育市场供求关系、全国家庭支付承受力、国家财政及相关社会捐助、个人收益率、教育成本为方案层。
对于教育市场的供求关系我们用灰色预测GM(1,1)模型预测出未来几年的招生人数,用蛛网模型求解稳定的价格点为3225.51 元;对于国家财政及相关社会捐助,我们用回归分析得出其效应关系。
模型一以效率和公平两个标准作为准则层,应用极差归一化思想,构造指标函数,综合建立成对比较矩阵。
我们定义学费合理化指数为目标层,经准则层,得出五个要素对学费合理化指数的组合权重向量。
考虑到成对比较矩阵仍有一定主观因素,我们用熵值取权法修正组合权重向量。
最后,拟合出最佳学费曲线及其波动区间,其中 2007 年的结论值为 3370.75 元。
模型一的突出优点是客观可信,美中不足的是结论为一个平均最优值,没有考虑其他变因的影响,使用的局限性较大。
然后,我们基于学校属性、专业类型、地域差异三个变因对结论的影响建立了模型二。
评价了这三个变因对五个要素的综合影响,修正了五个要素对学费合理化指数的影响,使得结论更趋于合理,应用范围更加广泛。
修正后通过若干数据的检验,得出平均最佳学费约为 3000 元。
基于这两个模型,以及对高校学费现状的了解,我们提出三点主要建议: 1.鼓励高校开拓资金来源渠道,学习国外筹款方式,如发行教育彩票等; 2.建议国家增加助学贷款发放力度,并能够分类别基于不同金额的贷款,并出台一些补贴政策弥补不同地区的差异; 3.大力扶持民办高等院校发展,实现高等教育大众化,这样不仅缓解高等院校招生压力,并且能够促进高校教育健康发展。
本文的特色在于基于翔实丰富的资料,根据五个要素及三个变因的分析,建立了一种合理的高校学费评价体系,其拥有适用性广,稳定性好,灵敏度高等特点,对三个变因,即学校属性、专业类型、地域差异进行了深入定量的分析,并根据模型结论给提出了我们的一些可行性建议。
论文题目: 关于层次分析法和灰色关联分析法的研究目录目录 (I)摘要 (I)Abstract .............................................................................................................................................. I I 1引言 (1)2层次分析法 (2)2.1 层次分析法的步骤 (2)2.1.1 层次结构的建立 (2)2.1.2 构建判断矩阵 (4)2.1.3 层次排序和一致性检验 (6)2.1.4 层次总排序及一致性检验 (10)2.2 层次分析法结论 (13)3 灰色关联分析法 (15)3.1 灰色关联的具体步骤 (15)3.1.1 确定分析序列 (15)3.1.2 无量纲化 (16)3.1.3 求关联度 (17)3.2 灰色关联结论 (20)3结论 (20)参考文献: (22)附录 (23)致谢 (25)摘要层次分析法是将半定型、半定量的问题转化为定量问题的一种行之有效的方法,是分析多目标、多准则的复杂大系统的强有力的工具有思路清晰、方法简便、使用面广、系统性强等特点。
灰色关联分析目的是寻求系统各因素之间的重要关系,而灰色关联度是灰色关联分析的基础,其算法基本思想是根据行为序列曲线几何形状的相似性来确定序列之间联系的紧密型。
本文尝试将这两种思想应用于NBA常规赛最有价值球员(MVP)的评判上。
通过结果研究层次分析法和灰色关联分析这两种思想的差异性、优缺点。
关键词:层次分析法;灰色关联分析;NBA;MVPAbstractAnalytic Hierarchy Process is a semi-stereotypes, semi-quantitative problem into an effective method of quantitative problems, is to analyze the multi-objective, multi-criteria large complex system a powerful tool for clear thinking, method is simple, using the surfacewide systemic. Gray relational analysis seeks the important relationship between the factors of the system, and the gray relational grade gray relational analysis. The basic idea of the algorithm is based on the similarity of behavior sequence curve geometry to determine the sequence of the link between compact. This paper attempts to apply these two ideas on the judgment of the NBA regular season Most Valuable Player (MVP). By the results of analytic hierarchy process and gray relational analysis of these two ideological differences, advantages and disadvantages.Key words: Analytic Hierarchy Process;Grey Relational Analysis;NBA;MVP1引言在日常生活中,人们要对许多较为复杂、较为模糊的问题做出决策。
层次分析法在报考学校中的应用摘要每年都有大量的高考毕业生面临着择校问题,大部分都没有经验总是会有些茫然失措顾此失彼,据问卷调查可知有一大部分大学生对自己当初的选择不尽如意。
为了减少这种心态下的种种决策失误,所以需要一种可靠的定量的容易操作的,并且具有说服力的方法来作出决策。
本文提出了定性定量相结合的层次分析法步骤,构成了学校满意度的评价指标,根据数据解决问题。
关键词:选学、层次分析法、决策、目标、权向量一、问题的提出刚高考完面临选择学校的学生甲,根据其分数可能被录取的学校有c1甲学校、c2乙学校、c3丙学校、c4丁学校。
如何在填报志愿中对着这四个学校进行排序并选择他比较满意的学校?这是目前需要解决的。
通过研究,最终确定了六个准则作为参照依据,来判断出最适合且让他满意的学校。
准则:B1师资力量B2学校声誉B3就业前景B4录取几率B5食宿条件B6地理位置二、模型的假设1、四个学校相当,各有利弊2、该学生仅在这四个学校中进行选择三、符号说明四、 模型的建立与求解 1、层次结构的建立第一层:目标层,即对可供选择的学校满意度A ;第二层:准则层,即B1师资力量B2学校声誉B3就业前景B4录取几率B5食宿条件B6地理位置第三层:方案层,即c1甲学校、c2乙学校、c3丙学校、c4丁学校 目标层准则层 方案层2、通过相互比较确定个准则对于目标的权重,及各方案对于每一准则的权重,这些权重在人的思维过程中通常是定性的,而在层次分析中则要给出得到权重的定量方法。
综上运用1-9尺度ij a 的含义构造两两比较矩阵并给出RI表1随机一致性指标RI 的数值一致性检验:成对比阵通常不是一致阵,但为了能用它的对应于特征根λ的特征向量作为比较因素的权向量,其不一致程度应在容许范围内即CI=1n n λ--,CR=CIRI<0.1 构造成对比较矩阵和计算权向量 准则层对目标层的成对比矩阵AA=111421/2112421/211/21531/21/41/41/511/31/31/21/21/3311/3222331⎛⎫⎪⎪ ⎪⎪⎪ ⎪⎪⎪⎝⎭方案层对准则层的成对比较阵B1;即B1=方案层对准则层的成对比较阵B2;即B2=方案层对准则层的成对比较阵B3;即B3=方案层对准则层的成对比较阵B4;即B4=方案层对准则层的成对比较阵B5;即B5=12321/2141/21/31/411/41/2241⎛⎫⎪⎪ ⎪⎪⎝⎭115311431/51/411/21/31/321⎛⎫⎪⎪ ⎪⎪⎝⎭11/21/31/7211/21/53211/57551⎛⎫ ⎪ ⎪⎪⎪⎝⎭13541/3121/31/51/211/51/4351⎛⎫⎪ ⎪ ⎪⎪⎝⎭11/231/221511/31/511/62161⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭方案层对准则层的成对比较阵B6;即B6=3、 将方案层对准则层的权重及准则层对目标层的权重进行综合分析并作一致性检验运用matlab 软件求解各成对比阵的最大特征根及对应向量,ω12=[ 0.3876; 0.4519; 0.4025; 0.1099; 0.2093;0.6540]归一化后得作为[0.1750;0.2040;0.1817;0.0496;0.0945;0.2952];λ=6.2620一致性检验; CI= 0.26205=0.0524一致性比率,CR=CI RI =0.05241.24=0.0422<0.1,则一致性检验通过,ω13可以作为权重向量。