当前位置:文档之家› 阻燃材料

阻燃材料

阻燃材料
阻燃材料

1.高分子材料燃烧过程

5个阶段:加热、分解、着火、燃烧、火焰传播。

加热——外部对材料加热,使温度升高。

分解——聚合物材料升温到分解温度,产生下列物质:可燃性气体(甲烷、乙烷、乙烯、甲醛、丙酮和一氧化碳等);不燃性气体(二氧化碳、氯化氢、溴化氢等);液体(部分分解的聚合物等);固体(炭化物等);固体微粒(烟)。

着火——有足够的氧气或氧化剂,可燃性气体浓度达到爆炸下限时,材料着火,也就是燃烧的开始。

燃烧——燃烧一开始,就放出热量,使气相、液相和固相温度升高,燃烧持续下去。

火焰传播——燃烧开始后,有足够的热量足以使邻接部分升温达到燃烧的程度,那么火焰就能够传播。

2.材料三大阻燃机理,详细说明卤系阻燃剂及卤-锑系统阻燃机理

(1)a 气相阻燃机理:一方面,阻燃剂被加热到高温产生自由基终止阻燃,另一方面,阻燃剂产生不可燃气(水等)阻燃

b 凝聚相阻燃机理:在凝聚相中延缓或中断固态物质产生可燃气体的分解反应

c 中断热交换机理:某些阻燃剂在高温下熔融或分解,或使固体聚合物熔融吸收热量

(2)卤系阻燃剂阻燃机理:

卤系阻燃剂的阻燃作用主要在气相中进行。其主要原因是卤系阻燃剂受热分解能生成HX,而HX能捕获传递燃烧链式反应的活性自由基(如HO·、O·、H·),生成活性较低的卤自由基,致使燃烧减缓或中止。(以溴为例)

RBr →Br·+R·

Br·+R`CH3→ HBr+R`CH2·

HBr+H·→H2+Br·

HBr+O·→HO·+Br·

HBr+HO·→H2O+Br·

HBr为密度大的气体,又难燃,它不仅能稀释空气中的氧,且能覆盖于材料表面,排代空气,致使材料的燃烧速度降低或自熄。

(3)卤—锑系统协同阻燃机理

首先是Sb2O3 与卤化氢反应生成卤氧化物,进而生成卤化锑。

其协同作用的反应历程如下:

Sb2O3 +HX→2SbOX+H2O

5SbOX(S)→Sb4O5X2(S)+SbX3 (g)↑

4Sb4O5X2→5Sb2O4X(g)+SbX3 (g)↑

3Sb2O4X→Sb2O3X(s)+SbX3 (g)↑

随着温度的升高,卤氧化锑在245~565°C范围内发生分解反应生成三卤化锑,其在气相中发挥阻隔氧的作用。此外,卤氧化锑的脱水作用及分解出的卤素游离基还具有捕捉自由基的效用。

3. 无机磷系阻燃剂中微胶囊化红磷优点,并举例说明它的应用

微胶囊化红磷系在红磷表面包覆一层或几层保护膜形成的。

(1)微胶囊红磷的优点:

a 阻燃效率高,对制品的物理、机械性能影响小,且能赋予被阻燃材料较好的

抗冲击性能,能改善阻燃剂与树脂的相容性,可使红磷均匀地分散在树脂中;

b 热稳定性好,可用于某些需高温加工成型的高聚物制品,且低烟、低毒,与

树脂混合时不放出PH3,也不易被冲击引燃,粉尘爆炸危险性在为减少;

c 包覆红磷在耐候性、电气性能、适用期及在被阻燃基材中的稳定性等方面也

远优于普通红磷。

(2)应用:微胶囊红磷广泛用于阻燃环氧树脂、PU、酚醛树脂、PA、天然橡胶、合成橡胶、丙烯酸乳液、PVC、PE、ABS、AS、PP、不饱和聚酯、聚酯、聚缩醛、聚碳酸酯、聚苯醚等。

4. 提高阻燃塑料性能的措施有哪些?如何设计并优化阻燃剂高分子材料

(1)在塑料中加入添加型阻燃剂,可提高塑料的阻燃性能,但往往同时降低塑料的物理机械性能及加工时的热稳定性。为此,可采用下述措施:

a适当降低阻燃塑料的加工温度;

b对阻燃剂进行热稳定处理;

c采用同时具有阻燃协效作用及塑料改性作用的添加剂;

d正确选用树脂基材的型号;

e 在基材中充分分散阻燃剂

(2)阻燃高分子材料设计与优化

5. 塑料阻燃剂性能测试方法包括哪些?简单说明各种测试方法设备类型及试验方法?(注:可有选择性写几种测试方法即可)

(1)塑料点燃性和可燃性的测定

①塑料极限氧指数的测定

装置:氧指数仪

测量:测试时,将试样垂直地装于试样夹上,从燃烧筒底部通入氧、氮混合气,以点火器从上端点燃试样,改变混合气中氧浓度,直至火焰前沿恰好达到试样的标线为止。由此计算材料氧指数,并以3次试验结果的算术平均值为测定值。

②塑料可燃性的测定(UL94可燃性试验)

装置:测试炉、燃烧器、金属丝网

测定:点燃燃烧器,产生25mm高的蓝色火焰。从试样的边缘到6.4mm处受火焰灼烧30S,燃烧时不改变燃烧器位置。然后,把试样从燃烧器处移开。若不到30s试样就燃烧到25mm标记处,则撤去火焰。若撤走火焰后,试样仍继续燃烧,则测定火焰前沿到25mm标记处(从试样自由端算起)所需时间,并计算燃烧速度。

每个样品应测定5个试样,并取最大的燃烧速度或燃烧长度作为材料评定标准。对厚为3-13mm的试样,如燃烧速度不大于38mm/min;或对厚小于3mm试样,燃烧速度不大于76mm/min;或试样燃烧100mm前火即熄灭,则该塑料可划归94HB 级。

(2)塑料释热性的测定

装置:锥形量热仪

测试: 测试件与加热器的距离为25cm,点火器置于试件上部13cm处,废气鼓风机流量约为0.024m3/s。测试时,通过排气罩排出全部燃烧气体。由废气采样管收集废气试样,在气体分析器中分析其中的氧、一氧化碳和二氧化碳含量。

(3)塑料生烟量的测定

根据测定原理,可将生烟量测定方法分为两类,一类是光学法,一类是质量法。前者测定烟密度,后者测定烟尘质量。另外,烟量测定可在静态或动态下进行。

①烟密度法

装置:烟密度箱

测定:试验时,令试样在箱内燃烧产生烟雾,并测定穿过烟雾的平行光束的透光率变化,再计算比光密度,即单位面积试样产生的烟扩散在单位容积烟箱单位光路长的烟密度。

②烟尘质量法

装置:Arapahoe烟尘测试仪

测定:将试样暴露在火焰中30S(也可根据材料的生烟量确定,一般以收集烟尘量10~40mg为宜),随即关掉本生灯,熄灭燃烧的试样。燃烧试样所生成的烟雾通过真空抽吸作用吸入烟卤,并收集在过滤纸表面。称出过滤纸质量即可确定沉积在过滤纸上烟雾细粒的质量。同时测定试样的总烧毁质量和炭的质量,以烟尘百分比(烟尘质量/总烧毁质量)或炭的百分比(炭质量/总烧毁质量)表征材料生烟量。

(4)塑料热裂解及燃烧产物腐蚀性的测定(ISO法)

装置:石英管式燃烧炉

测定:将600mg粒状阻燃材料试样在坩埚内用电阻法加热至800℃,燃烧产物密闭于一容积为20L的密闭室内,室内温度为50℃,相对湿度为65%。室内置

有腐蚀性检测仪,当检测仪的铜线路遭受燃烧产物的腐蚀时,电阻发生变化,此变化值即可表征燃烧产物的腐蚀程度。

(5)塑料热裂解及燃烧产物毒性的测定

材料燃烧产物的毒性可用化学法、生理法及生物法测定,但最常用的是生物试验法。

匹兹堡大学生物试验法

基本原理:燃烧一定量的材料,并将大鼠置于燃烧气态产物中,再观察大鼠的受害情况。

装置:包括动物暴露室、燃烧炉及其他部件(如泵、流量计、过滤器、冰浴、重量敏感元件、程序装置及记录器。

测定:试验开始前,4只大鼠均先在暴露室停留10min,此时应往暴露室鼓入新鲜空气。此举的目的是使大鼠适应暴露室的环境。

第一次试验用试样量为10g。当试样失重达1%时(应记录此时温度),将暴露室与燃烧炉相连,并开始计算暴露时间(总暴露时间曾30min)。以负压往暴露室吸入空气,流速为20L/min,其中11L来自空气。大鼠在暴露室中停留30min后,将其猁出,检验其眼睛角膜的不透明度,记录大鼠死亡数。

重复上述试验,但改变试样用量,以求得试样量与燃烧产物毒性的关系曲线(至少应求得4点),并用Weil法计算LC50[以试样量(g)g表示]

6. 膨胀型阻燃剂三大组成?阻燃机理?并分析膨胀型阻燃剂阻燃的聚丙烯(PP)在产品整体平衡分析的几个环节中的优势

(1)膨胀型阻燃体系一般由以下三个部分组成

a 酸源(脱水剂),一般可以是无机酸或加至100~250℃时生成无机酸的化合物,如磷酸、硫酸、硼酸、各种磷酸盐、磷酸酯和硼酸盐等。

b 炭源(成炭剂),它是形成泡沫炭化层的基础,主要是一些含碳量高的多羟基化合物,如淀粉、季戊四醇和它的二聚体、三聚物以及含有羟基的有机树脂等。

c 气源(氮源、发泡源):常用的发泡源一般为三聚氰胺、双氰胺、聚磷酸铵等。(2)阻燃机理:

膨胀型阻燃剂主要通过形成多孔泡沫炭层而在凝聚相起阻燃作用,此炭层是经历以下几步形成的:⑴在较低温度(150℃左右,具体温度取决于酸源和其他组分的性质)下,由酸源放出能酯化多元醇和可作为脱水剂的无机酸;⑵在稍高于释放酸的温度下,无机酸与多元醇(碳源)进行酯化反应,而体系中的胺则作为此酯化反应的催化剂,使酯化反应加速进行;⑶体系在酯化反应前或酯化过程中熔化;⑷反应过程中产生的水蒸汽和由气源产生的不燃性气体使已处于熔融状态的体系膨胀发泡;⑸反应接近完成时,体系胶化和固化,最后形成多孔泡沫炭层。

(3)优势:

a 设计费用低,材料品种少

b 流动性好

c 对环境友好

d 重复加多次,材料无明显变化

7. 举例说明阻燃剂聚酰胺(PA)的阻燃剂种类及其性能特点

(1)一般溴系阻燃剂阻燃的聚酰胺

阻燃效率高,且可同时在气相及凝聚相起阻燃作用,这样可减少阻燃剂用量,从而不致过多恶化基材的物理机械及电气性能。

(2)反应型二溴苯乙烯共聚物阻燃的聚酰胺

与多种聚合物相容性好,能和氧化锑、氧化镁、氧化铁等共用,起阻燃协效作用,阻燃效果好,产品力学性能优良。

(3)聚丙烯酸五溴苄酯(PBB-PA)阻燃的聚酰胺

具有高的阻燃效率和优异的热稳定性,良好的加工性,优异的抗大气性和化学稳定性,令人满意的电气性能,它与高聚物及增强材料能很好的相容,在基材中不迁移,不起霜。另外,PBB-PA中的五溴苄基可赋予聚酰胺以优异的抗紫外线性能。(4)反应型磷系阻燃剂阻燃的聚酰胺

材料燃烧时可生成较多的焦炭,并可减少可燃性挥发物的生成量,且聚酰胺的质量损失率大大降低,但燃烧时生成的烟量增大。

8. 添加型阻燃不饱和聚酯的种类包括哪些?并说明其性能特点

(1)氢氧化铝为填料的阻燃不饱和聚酯

以AL(OH)阻燃的不饱和热固性聚酯是一种重要的工业产品。高品位的AL(OH)用于制造卫士设备时,可使制品具有良好的外观和阻燃性,也可降低制品成本。AL(OH)的表面处理可改善最终制品的抗腐蚀性、阻燃性和抑烟性。

(2)红磷或微胶囊化红磷对不饱和聚酯具有良好的阻燃性,但它常与AL(OH)并用,以产生阻燃协调效应,有时还可同时加入金属氧化物。有些卤系添加型阻燃剂也可改善红磷的阻燃效能,但卤与磷的摩尔比至少应为1:1。对通用的不含卤不饱和聚酯,以60%~79%AL(OH)及5%~7%红磷阻燃后,在100°C下固化2h,材料的阻燃性可达UL94V-0级。

(3)硼酸锌阻燃的不饱和聚酯

硼酸锌能降低某些含卤不饱和聚酯的生烟量,对含卤不饱和聚酯Hetron92A,以五份硼酸锌代替等量的氧化锑时,明燃生烟量可减少40%。

(4)三聚氰胺阻燃的不饱和聚酯

以三聚氰胺磷酸盐阻燃含氯不饱和聚酯时,不仅能赋予材料阻燃性,且不干扰聚酯的固化。当以三聚氰胺为阻燃剂时,材料在UL94试验中第一次点燃时燃烧时间极短,而第二次点燃时燃烧时间则增长,火源移走后不发生阴燃。

(5)含磷阻燃剂阻燃的不饱和聚酯

以三乙基磷酸酯和甲基膦酸二甲酯作为含AL(OH)不饱和聚酯的低粘度液体添加剂的方法,可允许在不饱和聚酯中加入较多量的AL(OH),而材料所含的挥发性磷(膦)酸脂则可固结于热固性的固化不饱和聚酯中,而不至于对水敏感,所以这种聚酯可用于制造澡盆及淋浴装置。采用三乙基磷酸酯和甲基膦酸二甲酯的一个缺点是延缓了不饱和聚酯的固化过程。

(6)磷化合物-三聚氰胺阻燃的不饱和聚酯

该阻燃剂阻燃的不饱和聚酯具有抗化学腐蚀性,且制品颜色较白、外观较美、着色力极佳。此外该体系与石膏及碳酸钙相容,制的极廉价的阻燃剂。

高分子材料阻燃技术的应用分析

高分子材料阻燃技术的应用分析 随着科学技术的不断发展,纳米技术也逐步应用于高分子材料阻燃技术中,以下是搜集的一篇探究高分子材料阻燃技术应用的,供大家阅读查看。 原有阻燃技术在处理工艺方面存有一定的缺陷,出现排烟量大、滴落面积大、毒害气体,严重威胁着人们的身体健康。而现有技术通过高分子加聚反应产生的化合物,不但能够降低反应温度,而且还不会产生有害产物。为了降低物质易燃特性,笔者针对高分子材料阻燃技术进行了分析。其中包括:无机阻燃剂、卤系阻燃剂以及磷系阻燃剂,这几种阻燃剂不但能够隔断物质与空气的接触面积,而且还能降低物质燃烧时的温度,以此达到较为理想的阻燃效果。 高分子材料的阻燃机理是破坏原有高分子成分,形成新的保护膜或隔离层,达到抑制分子燃烧的效果。一般阻燃性质从两个原理中进行分析,分别为隔氧及温度,隔氧采用凝聚相阻燃机理,高分子阻燃材料在燃烧过程中,形成阻燃细微分子,中断该链式反应。链式反应中断后,分子热分解的温度较高,所以燃烧后期会形成水蒸气,阻燃材料高分子中含有大量的氢氧元素,与空气接触后,便会形成水雾覆盖在材料表层。其次便是能隔断与空气的接触,形成的水雾除了降低表层温度外,还能堵塞阻燃材料的气孔,形成密闭环境,隔断与空气的接触。凝聚相在作用机理中有4种阻燃模式,阻

燃材料在燃烧过程中,会产生惰性气体,延缓阻燃材料的燃烧;燃烧期间会产生多碳气孔,使其阻燃材料难以燃烧;反应过程中会吸收大量的热量,降低反应温度;其次无机比热容较大的分子,在燃烧过程中,通过分子之间的氧化还原反应,使分子发生质变,促使反应中断停止。该两种反应在作用机理中大致相同,但在反应中作用的机理很多,所以在划分高分子阻燃体系结构上仍十分复杂。 2.1 无机阻燃剂 无机阻燃剂作用机理便是通过无机化合物的热分解,产生保护膜或水蒸气,隔断与空气接触及降低燃烧温度。无机阻燃剂在燃烧过程中会产生结晶水,温度升高后,吸收周围热量,降低其燃烧温度,阻断其物质的燃烧;另一种便是通过阻燃剂燃烧形成保护膜,例如:Al(OH)3燃烧过程中,产生致密的氧化层薄膜,隔断物质与空气的接触面积。无机阻燃剂化学性质稳定,不会产生较为污染有害气体,一般常用作防火无机阻燃剂。 2.2 卤系阻燃剂 在元素周期表中,卤系元素包括:氟、氯、溴、碘,该元素形成的化合物具有高效的阻燃效果。化合物中含有氟利昂,该化合物易散发,破坏臭氧层。在该物质中分别添加氯元素及氟元素,然后对

聚丙烯新型阻燃材料

PP新型阻燃材料的制备研究 摘要:聚丙烯(PP)已经成为各行各业的功能材料,但是其易燃的特点使其应用受到限制,国内外专家不断致力于PP阻燃技术的研究,而金属氧化物就是在阻燃体系中被广泛使用的一种。金属人氧化物的阻燃效率高,但是存在一些问题,比如相容性差、容易团聚等,这些问题对其阻燃效率的影响很大。本文通过采用纳米材料对金属氧化物阻燃剂完成改性,以纳米材料的优越性质解决上述问题。本文采用水热法制备了一维材料ZnO和MoO 3 纳米线(nanowires,NWs),并通过SEM和XRD对纳米线的形貌和结构进行了表征。将一维纳米线和纳米氢氧化铝(ATH)与聚丙烯(PP)熔融共混制备 了ZnO/MoO 3/Al(OH) 3 /PP复合材料(NWs/ATH/PP)。利用TGA、极限氧指数(LOI)测定 仪和锥形量热仪(CCT)表征了复合材料的热稳定性和燃烧性能,利用万能材料试验机测试了复合材料的力学性能。结果表明:复合材料中ZnO纳米线、MoO 3 纳米线和纳米ATH的质量分数对材料的性能影响较大,当三者的质量分数分别为3.75%、3.25%以及21.00%时,相对于纯PP材料,复合材料的初始分解温度增加了17.8℃,分解后的残重率为24.6%,复合材料的总热释放量(THR)下降了25.7%,而峰值热释放速率(PHRR)的下降幅度更是达到了54.3%,其LOI提高7.1%。SEM结果显示:NWs/ATH/PP的残炭 表面致密、连续且平整。通过对ZnO/MoO 3/Al(OH) 3 /PP复合材料的结构表征以及性能 研究,探索了复合材料的阻燃作用机理,本文的研究结论为制备新型高效的纳米金属杂化阻燃材料奠定了理论基础。 关键词:ZnO纳米线;MoO 3 纳米线;纳米氢氧化铝;聚丙烯;阻燃性能

装修材料防火等级划分(20210119100909)

装修材料防火等级划分如下: 一、目前防火材料等级主要有5个: A级:不燃性建筑材料,几乎不发生燃烧的材料。 I I 八 1 - ―~ j | f A1级:不燃,不起明火 I ?I 丨j ( A2级:不燃,要测量烟,要合格。 B1级:难燃性建筑材料:难燃类材料有较好的阻燃作用。其在空气中遇 明火或在高温作用下难起火,不易很快发生蔓延,且当火源移开后燃烧立〈\\ \\ 丨I 即停止。 B2级:可燃性建筑材料:可燃类材料有一定的阻燃作用。在空气中遇明 火或在高温作用下会立即起火燃烧,易导致火灾的蔓延,如木柱、木屋架、木梁、木楼梯等。 B3级:易燃性建筑材料,无任何阻燃效果,极易燃烧,火灾危险性很大。

另外,根据不同的标准,防火材料等级的划分也不一样: DIN4102: A1、A2、B1、B2、B3 I / S j| 『"T y' X 1 - ―""

无卤阻燃材料TPU

无卤阻燃材料TPU/TPE前沿技术交流探讨论坛--安拓普(ATP) 序篇众所周知:电线电缆行业的发展目前正处在由PVC材料向无卤环保材料的转型期。环保意识已经成为世界性的共识。美国、日本、欧盟等发达地区明确规定进口的电线电缆产品须符合无卤、低毒、阻燃的要求,要求线缆燃烧时发烟量低、不产生或少产生腐蚀性气体和有害卤素气体、不含铅等重金属、不污染土壤、耐热温度高、废旧电线电缆材料可回收使用等特点。尤其是对产品的安全性、无毒性、难燃性等指标格外重视。应用于3C、医疗、风能、采矿设备等领域的电线电缆(Cable & wire)的“去卤阻燃”化浪潮正从西方滚滚而来。作为全球电线电缆制造业基地,中国的电线电缆制造企业将面临极大的机遇和挑战。一方面,当大多数传统的以PVC、交联聚烯烃等原材料为主的电线电缆制造企业,正因为国际铜价的波动、汇率变动、人力资源的成本的上升,以及原材料价格的透明和恶性竞争而饱受困扰、踯躅不前时,一部分有远见、有技术积累的企业则瞄准了高附加值、高利润的新产品的开发。而有一定技术壁垒,且成本仍处于相对模糊状态的“无卤阻燃电线电缆”的研发和生产,非常有可能成为这部分企业新的利润增长点。另一方面,居高不下的成本和产品质量的不稳定,导致很多规模化的产业客户对3C产品周边线缆的全面“去卤阻燃”化,还处于谨慎的观望状态。但是,在全球环保潮流浩浩荡荡、不可逆转的大趋势之下,应用于3C等领域的电线电缆的“去卤阻燃”化的进程,必将会渐行渐近。Microsoft、Motorola、HP、Nokia、Sony、Samsun、、LG等知名产业客户都已制订了明确的无卤化进程时间表。那么,当这些知名产业客户结束观望,引领3C产品的电线电缆全面“去卤阻燃”化的时候,在中国大陆地区上万家3C、医疗、风能等领域的周边线缆制造企业,谁能在这个利润相对丰厚、竞争相对薄弱、难得的产品升级换代阶段及早受益呢?答案显而易见:哪些有远见、有技术储备且产品极具性价比优势的电线电缆制造企业将会赢得先机,进入企业快速发展的全新里程。同时,在PP、PE等传统的绝缘材料和国际铜价已经非常透明的情况下,线缆制造企业又如何让自己的“无卤阻燃电线电缆”既有较高的附加值、又具备很好的性价比优势呢?答案亦十分明朗:与产品质量优异、产品价格低廉、服务响应迅速、实力雄厚的“无卤阻燃”护套材料制造商建立最亲密的战略合作伙伴关系,在不需要支出任何成本、不承担任何风险的情况下,把优秀的“无卤阻燃”护套材料供应商变成自己的“研发部和生产部”,从而大幅度提高自己的成本优势、产品质量优势、交期优势及技术服务优势,最终形成全方位的竞争优势,让竞争者望尘莫及。作为专业的“无卤阻燃TPE/TPU”制造商,ATP期望在此抛砖引玉,搭建一个平台,真诚希望和业内人士共同探讨无卤阻燃技术发展,共享行业知识,推动我国无卤阻燃材料的发展。我们也会不定期发表最新的研究成果及此类材料加工等方面技术的浅显认识,和大家共勉。希望业内、外人士积极参与,发表自己的高见,为我国无卤阻燃材料发展尽一份自己的力量。

新型阻燃剂

磷酸盐结合剂 磷酸盐结合剂(phosphate binder) 以酸性正磷酸盐或缩聚磷酸盐为主要化合物并具有胶凝性能的无机材料。它是由磷酸与氧化物或氢氧化物或碱反应生成的耐火材料结合剂。磷酸盐结合剂的结合形式属化学反应结合或聚合结合。磷酸与碱金属或碱土金属氧化物及其氢氧化物反应生成的结合剂多数为气硬性结合剂,即不须加热在常温下即可发生凝结与硬化作用。磷酸与两性氧化物及其氢氧化物或酸性氧化物反应生成的结合剂多数为热硬性结合剂,即须经加热到一定温度发生反应后方可产生凝结与硬化作用。磷酸盐用作耐火材料的结合剂在产生陶瓷结合之前的中、低温范围内具有较强的结合强度,所以被广泛用作不定形和不烧耐火材料的结合剂。 分类磷酸盐的分类一般是以其化合物中所含的金属氧化物(M2O)与五氧化二磷(P2O5)的摩尔比(R=M2O//P2O5)来区分,其分类见表1。 表1磷酸盐结合剂的分类 但作为耐火材料结合剂的磷酸盐则分为两类:(1)正磷酸盐结合剂,即含一个磷原子化合物的结合剂,如磷酸二氢铝(AL(H2PO4)3)、磷酸一氢铝(Al2HPO4)3);(2)缩聚磷酸盐结合剂,即含2个磷原子以上的磷酸盐化合物,如三聚磷酸钠(Na5P3O10)、六偏磷酸钠((NaPO3)6)等。正磷酸盐结合剂又可按其化合物名称命名,主要有以下几种:磷酸铝结合剂,磷酸锆结合剂,磷酸镁结合剂,磷酸铬结合剂和复合磷酸盐结合剂等。适合作耐火材料结合剂的缩聚

磷酸盐主要有:焦磷酸钠(Na4P2O7),三聚磷酸钠,六偏磷酸钠、超聚磷酸钠(Na2P4O11)等。 磷酸铝结合剂用氢氧化铝与磷酸反应而制得,其反应式如下: 反应生成的铝的磷酸盐也可用如下方式表示: 由此可计算出所生成的不同磷酸盐中AL2O3与P2O5摩尔比,一般用此摩尔比的百分数来表示磷酸铝结合剂的中和度(Nm): 纯正磷酸的Nm=0,Al(H2PO4)3的Nm≈33%,AL2(HPO4)3的Nm≈67%,AlPO2的Nm≈100%。中和度对正磷酸铝结合剂的胶凝性能影响很大。一般Nm在33%~67%之间的磷酸铝结合剂具有较好的胶结性能,也即具有胶结性能的磷酸铝化合物主要为磷酸二氢铝(又称一代磷酸铝或双氢磷酸铝)和(磷酸一氢铝)(又称二代磷酸铝)。这类磷酸盐结合剂有液体状的和固态粉末状的。 液体状的是用活性Al(OH)3与H3PO4直接反应制得。中和度Nm<45%的磷酸铝结合剂是透明的粘稠溶液,Nm>45%的是乳白色粘稠悬浮液,一般以Nm=35%~45%,水分含量不大于60%的磷酸铝结合剂的胶结性能为最好。此种结合剂为Al(H2PO4)3与Al2(HPO4)3或AlH3(PO4)3?3H2O的混合物。固态粉末状磷酸铝结合剂是用液状磷酸二氢铝为主要的溶液在常温下真空蒸发,之后在空气中于95℃左右蒸发制得,工业上是用喷雾干燥器喷雾干燥制得。固体磷酸二氢铝结晶形态为斜方六面体结晶,有极强的吸水性,遇水易溶解。

常用保温材料与阻燃材料

EPS板 EPS板(可发性聚苯乙烯板)具有质轻、价廉、导热率低、吸水性小、电绝缘性能好、隔音、防震、防潮、成型工艺简单等优点,因而被广泛用作建筑、船舶、汽车、火车、冷藏、冷冻等保温绝热、隔音、抗震材料。 EPS板(又称苯板)是可发性聚苯乙烯板的简称。由可发性聚苯乙烯珠粒经加热预发泡后在模具中加热成型而制得的具有闭孔结构的聚苯乙烯泡沫塑料板材。是由原料经过预发、熟化、成型、烘干和切割等制成。它既可制成不同密度、不同形状的泡沫制品,又可以生产出各种不同厚度的泡沫板材。广泛用于建筑、保温、包装、冷冻、日用品,工业铸造等领域。也可用于展示会场、商品橱、广告招牌及玩具之制造。为适应国家建筑节能要求主要应用于墙体外墙外保温、外墙内保温、地暖。 应用:又称苯板,广泛用于建筑、保温、包装、冷冻、日用品,工业铸造等领域。也可用于展示会场、商品橱、广告招牌及玩具之制造。为适应国家建筑节能要求主要应用于墙体外墙外保温、外墙内保温、地暖。EPS板保温体系是由特种聚合胶泥、EPS板,耐碱玻璃纤维网格布料和饰面材料组成。集保温、防水、防火,装饰功能为一体的新型建筑构造体系。该技术将保温材料置于建筑物外墙外侧,不占用室内空间,保温效果明显,便于设计建筑外形。

保温机理:EPS泡沫是一种热塑性材料,每立方米体积内含有300-600万个独立密闭气泡,内含空气的体积为98%以上,由于空气的热传导性很小,且又被封闭于泡沫塑料中而不能对流,所以EPS是一种隔热保温性能非常优良的材料。 挤塑聚苯乙烯泡沫塑料(XPS) 与EPS板相比,该产品具有以下两个突出特点:⑴密度和机械强度高;⑵长期吸水率低。不足之处是不易粘贴,且价格高。 执行标准:GB/《绝热用挤塑聚苯乙烯泡沫塑料(XPS)》 主要特点:(1) 具有特有的微细闭孔蜂窝状结构,与EPS板相比,具有密度大、压缩性能高、导热系数小、吸水率低、水蒸气渗透系数小等特点。在长期高湿度或浸水环境下,XPS 板仍能保持其优良的保温性能,在各种常用保温材料中,是目前唯一能在70%相对湿度下两年后热阻保留率仍在80%以上的保温材料。 (2) 由于XPS板长期吸水率低,特别适用于倒置式屋面和空调风管。 (3) 还具有很好的耐冻融性能及较好的抗压缩蠕变性能。 硬质聚氨酯泡沫塑料(PUR) 性能特点:⑴导热系数小。在至今已有的保温材料中,该产品的导热系数是最低的;⑵使用温度较高;⑶抗压强度较高;⑷化学稳定性好,耐酸碱。 执行标准:QB/T3806-1999《建筑物隔热用硬质聚氨酯泡沫塑料》 主要特点及设计选用要点 (1) 使用温度高,一般可达100℃,添加耐温辅料后,使用温度可达120℃。 (2) 聚氨酯中发泡剂会因扩散作用不断与环境中的空气进行置换,致使导热系数随时间而逐渐增大。为了克服这一缺点,可采用压型钢板等不透气材料做面层将其密封,以限制或减缓这种置换作用。 (3) 现场喷涂聚氨酯泡沫塑料使用温度高,压缩性能高,施工简便,较EPS板更适于屋面保温。 (4) 用于管道(尤其是地下直埋管道)和屋面保温时,应采取可靠的防水、防潮措施。同时应考虑导热系数会随时间而增大,尽量采用密封材料作保护层。 (5) 由于使用温度较高,多用于供暖管道保温。

阻燃高分子材料的发展

阻燃高分子材料的发展 摘要: In today's rapid development of high performance material, the flame retardant materials research has been paid more and more attention, all kinds of novel flame retardant emerge as the times require, polymer flame retardant agent is one 's class. As a result of polymer flame retardant has the advantages of convenient use, good flame retardant effect, low smoke, low toxicity, solubility, good dispersion, with engineering plastics blends easily with itself, the high heat resistance, chemical resistance properties, therefore has the flame retardant effect. And the composite effect. Only on the base of plastic mechanical properties and processing properties of impact is very small, for some of the basic physical and mechanical properties of plastics and processing performance can be improved. Because of low molecular polymer flame retardant and flame retardant has many advantages, so that the domestic and international research more and more people. 在高性能材料发展迅猛的今天,关于阻燃材料的研究越来越受到人们的重视,各类新型的阻燃剂应运而生,高分子阻燃剂就是其中的一太类。 由于高分子阻燃剂使用方便,阻燃效果好,低烟低毒,相溶性,分散性好,同工程塑料共混容易,加之本身耐热温度高,耐化学药品性能好,因此既具有阻燃的作用.又有共混复合的效果。不仅对基体塑料的物理机械性能和加工性能影响很小,对于一些基本塑料的物理机械性能和加工性能还能有所改善。由于高分子阻燃剂与低分子阻燃剂相比具有许多优越性,以致于国内外在这方面研究的人越来越多。 正文: 一、高分子材料的燃烧、阻燃机理以及制备 高分子材料在空气中受热时,会分解生成挥发性可燃物,当可燃物浓度和体系温度足够高时,即可燃烧。所以高分子材料的燃烧可分为热氧降解和燃烧两个过程,涉及传热、高分子材料在凝聚相的热氧降解、分解产物在固相及气相中的扩散、与空气混合形成氧化反应场及气相中的链式燃烧反应等一系列环节。当高分子材料受热的热源热量能够使高分子材料分解,且分解产生的可燃物达到一定浓度,同时体系被加热到点燃温度后,燃烧才能发生。而己被点燃的高分子材料在点燃源稳定后能否继续燃烧则取决于燃烧过程的热量平衡。当供给燃烧产生的热量等于或大于燃烧过程各阶段所需的总热量时,高分子材料燃烧才能继续,否则将中止或熄灭。从高分子材料的燃烧机理可看出,阻燃作用的本质是通过减缓或阻止其中一个或几个要素实现的。其中包括六个方面:提高材料热稳定性、捕捉游离基、形成非可燃性保护膜、吸收热量、形成重质气体隔离层、稀释氧气和可燃性气体。目前常采用的阻燃剂行为主要是通过冷却、稀释、形成隔离膜的物理途径和终止自由基的化学途径来实现。一般阻燃机理分为气相阻燃机理、凝聚

材料的阻燃特性

2-2-3.材料地阻燃特性 1.常用在塑料制品中地两类阻燃剂 1)卤素+锑 卤素包括一下材料;氟,氯,溴,碘,其中常用地材料为溴化物,因为其比较廉价而且效果非常好.锑作为配合剂时必不可少地,锑增强了阻燃剂地效果,常用这种阻燃剂地塑料材料是ABS和PS等. 2)磷+氮 其中氮是作为磷地配合剂,常用这种阻燃剂地塑料材料是PC和PPO等材料. 2.阻燃剂地划分标准 我们在设计中比较关心这个问题,我们常见地划分方法主要有以下三种方法: 其一,GB/T 2406-93《塑料燃烧性能实验方法氧指数法》,其中氧指数是在规定条件下 试样在氧、氮混合气体中维持平稳燃烧所需地最低氧气浓度,以氧所占地体积百分比来表示. 其二,GB/T 4610-84《塑料燃烧性能实验方法点着温度地测定》,点着温度是在规定地实验条件下,从材料中分解出地可燃气体,经外火焰点燃并燃烧一定时间地最低温度,它地试样是粒度为0.5-1.0mm地颗粒塑料. 其三,美国专业协会地UL 94燃烧标准,目前被广泛地引用,我们主要用这种方法来衡量材料地燃烧性能,他是将试样水平和垂直放置,用本生灯点燃,观察试样燃烧速度、自熄和滴落物,依阻燃性提高地顺序:94HB(水平),94V-2,94V-1,94V-0,94V-5V A,94V-5VB(均为垂直).大部分地工程用热塑性塑料均不用添加阻燃剂就可以通过HB级地测试,下面是UL 94 垂直燃烧实验常用地部分表格: 图 2-1 对于重量超过18kg地移动设备和所有地固定设备,如果采用防火等级为5V地材料同时 通过上面地说明,可以知道防火等级是与材料厚度有密切关系地,不能简单地描述某种材料是何种防火等级地材料,必须与厚度挂钩才能确定其地防火等级.

阻燃材料

1.高分子材料燃烧过程 5个阶段:加热、分解、着火、燃烧、火焰传播。 加热——外部对材料加热,使温度升高。 分解——聚合物材料升温到分解温度,产生下列物质:可燃性气体(甲烷、乙烷、乙烯、甲醛、丙酮和一氧化碳等);不燃性气体(二氧化碳、氯化氢、溴化氢等);液体(部分分解的聚合物等);固体(炭化物等);固体微粒(烟)。 着火——有足够的氧气或氧化剂,可燃性气体浓度达到爆炸下限时,材料着火,也就是燃烧的开始。 燃烧——燃烧一开始,就放出热量,使气相、液相和固相温度升高,燃烧持续下去。 火焰传播——燃烧开始后,有足够的热量足以使邻接部分升温达到燃烧的程度,那么火焰就能够传播。 2.材料三大阻燃机理,详细说明卤系阻燃剂及卤-锑系统阻燃机理 (1)a 气相阻燃机理:一方面,阻燃剂被加热到高温产生自由基终止阻燃,另一方面,阻燃剂产生不可燃气(水等)阻燃 b 凝聚相阻燃机理:在凝聚相中延缓或中断固态物质产生可燃气体的分解反应 c 中断热交换机理:某些阻燃剂在高温下熔融或分解,或使固体聚合物熔融吸收热量 (2)卤系阻燃剂阻燃机理: 卤系阻燃剂的阻燃作用主要在气相中进行。其主要原因是卤系阻燃剂受热分解能生成HX,而HX能捕获传递燃烧链式反应的活性自由基(如HO·、O·、H·),生成活性较低的卤自由基,致使燃烧减缓或中止。(以溴为例) RBr →Br·+R· Br·+R`CH3→ HBr+R`CH2· HBr+H·→H2+Br· HBr+O·→HO·+Br· HBr+HO·→H2O+Br· HBr为密度大的气体,又难燃,它不仅能稀释空气中的氧,且能覆盖于材料表面,排代空气,致使材料的燃烧速度降低或自熄。 (3)卤—锑系统协同阻燃机理 首先是Sb2O3 与卤化氢反应生成卤氧化物,进而生成卤化锑。 其协同作用的反应历程如下: Sb2O3 +HX→2SbOX+H2O 5SbOX(S)→Sb4O5X2(S)+SbX3 (g)↑ 4Sb4O5X2→5Sb2O4X(g)+SbX3 (g)↑ 3Sb2O4X→Sb2O3X(s)+SbX3 (g)↑ 随着温度的升高,卤氧化锑在245~565°C范围内发生分解反应生成三卤化锑,其在气相中发挥阻隔氧的作用。此外,卤氧化锑的脱水作用及分解出的卤素游离基还具有捕捉自由基的效用。 3. 无机磷系阻燃剂中微胶囊化红磷优点,并举例说明它的应用 微胶囊化红磷系在红磷表面包覆一层或几层保护膜形成的。 (1)微胶囊红磷的优点:

阻燃性

阻燃性 百科名片 阻燃性 英文标准译名:flame retardance,物质具有的或材料经处理后具有的明显推迟火焰蔓延的性质。这在材料使用范围选择上起指导作用,特别用于建材、船舶,车辆,家电上的材料要求阻燃性高。目前评价阻燃性方法很多,如氧指数测定法、水平或垂直燃烧试验法等。 目录[隐藏] 阻燃性测试 阻燃技术 评价标准 相关产品 阻燃性工程塑料 优质阻燃性材料 塑料添加剂对制品阻燃性的影响 阻燃性测试 阻燃技术 评价标准 相关产品 阻燃性工程塑料 优质阻燃性材料 塑料添加剂对制品阻燃性的影响 [编辑本段] 阻燃性测试 服装

US CPSC 16 CFR PART 1610 衣用纺织品阻燃性标准—16 CFR 1610,适用于成人和儿童服装。通过提供美国国家标准以对服装和纺织品的阻燃性测试和评级,阻止任何危险的易燃纺织品的使用,其目的在于减少伤害和危害生命的危险。 FMVSS 302 美国联邦汽车安全内部材料的阻燃性标准。其适用于各种汽车如轿车、多功能车、卡车和客车等的任何组件如坐垫、靠背、窗帘等。 儿童睡衣- 16 CFR Part 1615/1616 1996年9月16日美国消费品安全委员会(CPSC)发布了儿童睡衣阻燃性标准(16 CFR Part 1615/1616)的修订本。该法规对婴儿和儿童睡衣作出了严格的要求。其适用于儿童睡衣,例如便装(nightgowns)、宽松睡衣(pajamas)和长袍(r obe)等等,其穿着以睡觉或和睡觉有关的活 相关报告 动为目的。 美国加利福尼亚州家具阻燃性法规(California Flammability Law) 美国加利福尼亚州要求所有家用纺织品的填充物必须阻燃,此类产品须贴“阻燃”(flame resistant),“延缓燃烧”(flame retardant)和/或类似词句的标签,且必须按加利福尼亚州家具阻燃性法规通过测试。 该法规适用于: 装软垫的家具(upholstered furniture)包括坐垫. 大于26英寸的枕头 床垫 英国家具防火安全法规(UK Furniture & Furnishings (Fire) (Safety) Regulati ons) 英国家具防火安全法规要求所有进口到英国的家用装软垫的家具、家具和其他装软垫的产品必须达到阻燃要求,此类产品包括: 室内和其他居住(包括篷车)等私人用途的家具,例如沙发、床、儿童家具、坐垫、

耐热阻燃

阻燃性有机硅高分子材料的研究进展 常文绪高分子08-20802030230 摘要:介绍了有机硅/ 聚合物阻燃改性的应用和研究进展。通过有机硅对聚合物进行物理(共混) 和化学改性(共聚、交联和接枝) ,聚合物的阻燃性能、加工性能、热稳定性和力学性能均得到改善。有机硅还和一些阻燃剂存在协效作用,能在阻燃材料中起到阻燃协效剂、加工助剂和分散剂的作用。 关键词:有机硅,阻燃,阻燃机理,高分子材料,阻燃改性 阻燃剂是合成高分子材料的重要助剂之一。添加阻燃剂到高分子材料中, 可以阻止材料燃烧或者延缓火势的蔓延, 使合成材料具有难燃性、自熄性和消烟性[ 1 ] 。阻燃剂可分为有卤阻燃剂和无卤阻燃剂。随着人们环保意识的不断增强, 无卤阻燃剂成为阻燃剂发展的必然趋势。常见的无卤阻燃剂有氢氧化铝、氢氧化镁、磷系阻燃剂、氮系阻燃剂和有机硅阻燃剂。 有机硅阻燃剂是一种新型高效、低毒、防熔滴、环境友好的无卤阻燃剂, 也是一种成炭型抑烟剂。有机硅阻燃剂在赋予基材优异的阻燃性能之外, 还能改善基材的加工性能、耐热性能等;因此, 作为阻燃剂的后起之秀, 从20 世纪80 年代开始得到迅速发展。本文主要介绍了近年来有机硅阻燃剂及硅烷偶联剂改性阻燃剂的研究状况, 并评述了其发展趋势和应用前景。 有机硅高分子材料是以S→i O键为主链, 侧基为甲基、乙烯基、苯基等有机基团的高分子化合物[1 ] 。由于结构的特殊性, 决定了其具有优良的热稳定性、介电性、耐候性和生理惰性, 广泛应用于宇航、汽车制造、电子电气及医疗用品等领域。但有机硅高分子材料存在可燃的缺点,例如填充有40 份气相法白炭黑的甲基乙烯基硅橡胶(110 - 2) 的极限氧指数为24 %[2 ] ; 既使用超细二氧化硅或碳酸钙填充, 将其点燃, 仍可以100 %完全燃烧[3 ] 。但目前应用于宇航、电子电气及输电线路等方面的有机硅高分子材料都要求具有良好的阻燃性能。因此, 研究及制备具有阻燃性的有机硅高分子材料在理论和应用上都具有重要意义。 有机硅高分子材料的燃烧过程 虽然有机硅高分子材料的阻燃性与热稳定性之间没有必然联系, 但了解有机硅高分子材料的热分解过程可以为研究有机硅高分子材料及其添加剂的燃烧行为提供有用信息[4 ] 。对有机硅高分子材料来说, 其热分解主要经历两个过程: 热氧化反应引起的侧链有机基团的氧化分解(见式1 、式2) ; 聚硅氧烷主链断裂,生成低摩尔质量的环状聚硅氧烷(见式3) 。

新型高分子阻燃材料介绍

新型高分子阻燃材料介绍 陈希 摘要本文主要介绍聚合物/无机物纳米复合材料、水合金属氧化物复合材料、硅添加复合材料三种新型高分子复合材料,列举它们的阻燃原理和性能,同时结合各自的优缺点进行了简述。 关键词阻燃材料高分子碳纳米管 POSS 1、新型高分子阻燃材料的种类 进入21世纪之后,火灾对于人们生活的危害越来越大,人们都在探索如何研究出阻燃性能更好的材料。同时,新型环保社会的理念深入人心,含卤素的阻燃材料由于燃烧后释放出有害气体,对环境和人类的健康影响都很大。因此,十几年来涌现出了不少高分子无卤的阻燃材料。 高分子阻燃材料有很多种,其中比较常用的有三类,有聚合物/碳类纳米复合材料,水合金属氧化物复合材料,磷硅添加复合材料。 2、聚合物/无机物纳米复合材料 聚合物/无机物纳米复合材料又称作塑料阻燃技术的革命[1]。所谓聚合物/ 无机物纳米复合材料是以特殊技术制得的纳米级无机物分散于聚合物基体(连续相)中形成的复合材料。当其中无机物组分含量为5%-10%时,由于纳米材料极大的比表面积而产生的一系列效应,使它们具有较常规聚合物/填料复合材料无法比拟的优点,如密度小,机械强度高,吸气性和透气性低等,特别是这类材料的耐热性和阻燃性也大为提高[2]。所以,它不仅可以改变材料的阻燃性能,另一方面也是材料的应用更加广泛,是阻燃材料发展未来最有希望的分支。 其中碳纳米管/聚丙烯是代表性的物质,由于碳纳米管尺寸小,无需进行处理即可分散在聚丙烯中;同时PP分子与MWNT均为非极性物质,它们表面之间有极强的物理吸附作用,相容性好,不必添加其他的成分即可混合[3]。热重量分析法(TGA)研究发现含MWNT质量分数为 1wt.%,3wt.%和5wt.%,PP/MWNT纳米复合材料的微分热重曲线峰值分别比纯PP高54℃,66℃和61℃,显然可以看出MWNT显著增加了PP基体的热稳定性。当然,有人通过机械共混法和原位聚合法制备了PP/CNT复合材料,采用热失重仪测定了PP/CNT复合材料热失重行为。结果表明,采用机械共混法所得PP/5wt.%CNT复合材料的起始分解温度比纯PP 提高了41℃;采用原位聚合法所得PP/5wt.%CNT复合材料起始分解温度比纯PP 提高80℃[4]。这都证明了这个材料的发展前景非常的好,但对其工业化产品化的最大限制因素就是碳纳米管的价格较高,还需要探索新的途径降低成本。 3、水合金属氧化物复合材料 水合金属氧化物是现在兴起的一种新型阻燃填充剂。它成本低廉,原料来源广,低烟无毒,受到了广泛的关注。其原理是水合金属氧化物受热后会释放出结晶水,吸收大量的热量,从而抑制聚合物温度的上升,阻止延燃;与此同时,脱水分解反应产生的大量水蒸气可稀释可燃性气体,起到阻燃效果。所以,用作无卤阻燃剂的水合金属氧化物释放结晶水时的温度必须在聚合物的混合成型温度和分解温度之间的特点,这样才能有阻燃效果。目前通常使用的阻燃剂为Al(OH)3和Mg(OH)2。

阻燃材料

阻燃材料

阻燃材料 1简介 材料的耐燃性通常以其氧指数(OI)来划分。氧指数在22%~27%的为难燃材料,高于27%为高难燃材料。二者统称防火阻燃材料。防火阻燃材料是一种保护材料,它是能够阻止燃烧而自己并不容易燃烧的材料,有固体的如说水泥、钢材、玻璃等材料;有液态的,也简称为阻燃剂,在需防火墙体等各种材料表面上如果涂上阻燃剂,它能保证在起火的时候不被烧着,也不会使得燃烧范围加剧、扩大。 2阻燃机理 2.1凝聚相阻燃机理 这是指在凝聚相中通过延缓或中断固相材料的分解与可燃性气体的产生而达到阻止燃烧的目的。下面几种情况均属于凝聚相阻燃。a)阻燃剂在固相延缓或阻止聚合物的热分解,这种热分解可产生可燃性气体以及维持链式反应进行的自由基。 b)在被阻燃固态物质中加入大量的无机填料,此类填料热容较大。在受热时这类填料可以起到蓄热和导热的作用,因而使被阻燃物不易达到热分解温度。 C) 在高温情况下阻燃剂先于被阻燃材料受热分解,吸收大量的热量,防止被阻燃物质温度升高。工业上大量使用的氢氧化铝及氢氧化镁均

属于此类阻燃材料。 d)加有阻燃剂的聚合物在燃烧时其表面生成很厚的多孔炭层,该层可以起到隔热、隔空气的作用,同时可以阻止可燃性气体进入燃烧气相中,中断燃烧反应的进行。膨胀型阻燃剂是最为典型的此类阻燃材料。2.2气相阻燃机理 气相阻燃是指在燃烧气相环境中进行的阻燃反应,该类型阻燃材料在气相环境中发挥中断或延缓可燃性气体链式燃烧反应的作用。下述几种情况的阻燃效果均发生于气相阶段。 a)阻燃剂受热后产生能够捕捉促进燃烧反应链增长的自由基。广泛使用的卤系阻燃剂即为典型的该类阻燃剂。 b)阻燃剂受热生成能促进自由基结合以终止链或燃烧反应的微粒子。 C) 阻燃剂受热分解能释放出大量的惰性气体,从而稀释空气中氧气和由聚合物分解生成的气态可燃性物质的浓度,并带走部分热量,降低可燃气体的温度,致使燃烧终止。 d)阻燃剂受热释放出高密度的蒸气,此蒸气覆盖于可燃性气体上,隔绝其与空气中氧的接触,从而使燃烧窒息。 2.3.中断热交换阻燃机理 这是指将聚合物燃烧产生的部分热量带走而降低被阻燃材料的吸热量,致使被阻燃材料不能维持热分解温度,不能持续提供燃烧赖以

新型阻燃材料

新型阻燃材料在纺织领域的应用 易燃性纺织品一直以来是引起火灾的主要源头之一,每年都造成很多人员伤亡和财产损失,如何使纺织品燃烧时更环保,并减少有害气体的释放,提高安全性能,降低损失成为人类研究和探讨的问题。阻燃类纺织品作为安全防护类纺织品的重要品种之一,目前已广泛应用于服装、石油、化工、冶金、造船、消防、国防等领域…。因此,本文着重介绍安全防护类阻燃类纺织品的开发和应用,探讨和研究阻燃类纺织品的阻燃机理和各种新型阻燃材料的性能特征。 1 阻燃机理 1.1 阻燃机理 最近的研究表明纤维材料的燃烧需要具备四个因素:燃料、热源、氧气和链反应。通常织物的燃烧又包括热分解、热引燃(自燃)和热点燃(燃烧传播) 三个阶段,针对四要素在不同的燃烧阶段,分别采取与之相应的阻燃方式,由此采取的各种阻燃措施,就形成了中断相阻燃机理及其他各种阻燃机理。阻燃方法和阻燃材料的开发与使用有着密切的联系,不同类型的阻燃材料对应于不同的阻燃机理,阻燃纤维材料的阻燃机理的共性是使纤维制品经阻燃改性或处理之后,增加燃烧难度,提高其极限氧指数,使织物燃烧不容易达到临界条件从而实现阻燃的效果。 常见的合成纤维阻燃处理方法是把某种阻燃剂共混后加入合成纤维的纺丝原液中(如涤纶、锦纶、腈纶),在燃烧期间,使其中的游离基团被抑制;或者使纤维热分解的过程被改变,促使其发生脱水炭化;另一种方法是使阻燃剂发生分解,产生一定量的不燃气体覆盖纤维表面,以此来达到隔绝空气实现阻燃。 1.2阻燃整理方式 1.2.1 成纤高聚物的热稳定性能的优化 (1)将芳环或芳杂环引入成纤高聚物的大分子链中,使大分子链的密集度提高,从而使分子链的内聚力和刚性得到提升,并采用湿法纺丝的方法将具有高热稳定性能的高聚物纺成纤维。 (2)纤维结构中的线形大分子链间发生交联反应会形成三维交联结构,通过这种交联反应阻止纤维结构中的碳链断裂,从而使制备的纤维具有不收缩,不熔融等阻燃的特性。 (3)纤维放置在200~300 oC的空气氧化炉内,经过一定的时间的高温炭化处理,从而得到具备阻燃性能的纤维-o 。 1.2.2 原丝的阻燃改性 (1)物理共混法:在纺丝熔体中添加阻燃剂或具有阻燃性能的成纤高聚物进行物理共混,是一种原丝改性的方法。 (2)化学共聚法:在制备成纤高聚物的过程中,将含有磷、卤素等阻燃元素的化合物作为共聚的单体添加到大分子链上,利用磷、卤等元素的阻燃特性使纤维的阻燃性能得到优化。 (3)接枝改性法:让乙烯基型的阻燃单体与放射热、化学引发剂或高能的电子束使纤维(或织物)发生接枝共聚反应,这种改善纤维阻燃性能的方法持久

高分子材料阻燃性能的研究

高分子材料因其性能优异、价格低廉而被广泛地应用于国民经济和人民生活的各个领域,但是大多数高分子材料属于易燃、可燃材料,在燃烧时热释放速率大,热值高,火焰传播速度快,不易熄灭,有时还产生浓烟和有毒气体,对人们生命安全和环境造成巨大的危害。因此,如何提高高分子材料的阻燃性,已经成为当前消防工作一个急需解决的问题。 一、高分子材料的燃烧及阻燃机理 高分子材料在空气中受热时,会分解生成挥发性可燃物,当可燃物浓度和体系温度足够高时,即可燃烧。所以高分子材料的燃烧可分为热氧降解和燃烧两个过程,涉及传热、高分子材料在凝聚相的热氧降解、分解产物在固相及气相中的扩散、与空气混合形成氧化反应场及气相中的链式燃烧反应等一系列环节。当高分子材料受热的热源热量能够使高分子材料分解,且分解产生的可燃物达到一定浓度,同时体系被加热到点燃温度后,燃烧才能发生。而己被点燃的高分子材料在点燃源稳定后能否继续燃烧则取决于燃烧过程的热量平衡。当供给燃烧产生的热量等于或大于燃烧过程各阶段所需的总热量时,高分子材料燃烧才能继续,否则将中止或熄灭。从高分子材料的燃烧机理可看出,阻燃作用的本质是通过减缓或阻止其中一个或几个要素实现的。其中包括六个方面:提高材料热稳定性、捕捉游离基、形成非可燃性保护膜、吸收热量、形成重质气体隔离层、稀释氧气和可燃性气体。目前常采用的阻燃剂行为主要是通过冷却、稀释、形成隔离膜的物理途径和终止自由基的化学途径来实现。一般阻燃机理分为气相阻燃机理、凝聚相阻燃机理和中断热交换阻燃机理。燃烧和阻燃都是十分复杂的过程,涉及很多影响和制约因素,将一种阻燃体系的阻燃机理严格划分为某一种是很难的,一种阻燃体系往往是几种阻燃机理同时起作用。 二、高分子材料阻燃剂的分类 阻燃剂是用于提高材料抗燃性,即阻止材料被引燃及抑制火焰传播的助剂。按阻燃剂与被阻燃基材的关系,阻燃剂可分为添加型及反应型两大类。前者与基材的其他组分不发生化学反映,只是以物理方式分散于基材中,多用于热塑性高分子材料。后者或者为高分子材料的单体,或者作为辅助试剂而参与合成高分子材料的化学反应,最后成为高分子材料的结构单元,多用于热固性高分子材料。按阻燃元素种类,阻燃剂常分为卤系、有机磷系及卤-磷系、氮系、磷-氮系、锑系、铝-镁系、无机磷系、硼系、钼系等。 (一)卤系阻燃剂 卤系阻燃剂是目前世界上产量最大的有机阻燃剂之一,添加量少、阻燃效果显著。含氯的阻燃剂主要有氯化石蜡、氯化聚乙烯等;含溴阻燃剂因阻燃效果较好,应用极为广泛,逐渐取代氯系阻燃剂。卤系阻燃剂阻燃机理比较清楚,但其阻燃的同时,也带来了一些严重的问题,放出大量的有毒气体(如HCl,HBr等),卤化氢气体易吸收空气中的水分形成氢卤酸,具有很强的腐蚀作用,并产生大量的烟雾,这些烟雾、有毒气体和腐蚀性气体给灭火、逃离和恢复工作带来很大的困难。

常用保温材料与阻燃材料教学文案

常用保温材料与阻燃 材料

EPS板 EPS板(可发性聚苯乙烯板)具有质轻、价廉、导热率低、吸水性小、电绝缘性能好、隔音、防震、防潮、成型工艺简单等优点,因而被广泛用作建筑、船舶、汽车、火车、冷藏、冷冻等保温绝热、隔音、抗震材料。 EPS板(又称苯板)是可发性聚苯乙烯板的简称。由可发性聚苯乙烯珠粒经加热预发泡后在模具中加热成型而制得的具有闭孔结构的聚苯乙烯泡沫塑料板材。是由原料经过预发、熟化、成型、烘干和切割等制成。它既可制成不同密度、不同形状的泡沫制品,又可以生产出各种不同厚度的泡沫板材。广泛用于建筑、保温、包装、冷冻、日用品,工业铸造等领域。也可用于展示会场、商

品橱、广告招牌及玩具之制造。为适应国家建筑节能要求主要应用于墙体外墙外保温、外墙内保温、地暖。 应用:又称苯板,广泛用于建筑、保温、包装、冷冻、日用品,工业铸造等领域。也可用于展示会场、商品橱、广告招牌及玩具之制造。为适应国家建筑节能要求主要应用于墙体外墙外保温、外墙内保温、地暖。EPS板保温体系是由特种聚合胶泥、EPS板,耐碱玻璃纤维网格布料和饰面材料组成。集保温、防水、防火,装饰功能为一体的新型建筑构造体系。该技术将保温材料置于建筑物外墙外侧,不占用室内空间,保温效果明显,便于设计建筑外形。 保温机理:EPS泡沫是一种热塑性材料,每立方米体积内含有300-600万个独立密闭气泡,内含空气的体积为98%以上,由于空气的热传导性很小,且又被封闭于泡沫塑料中而不能对流,所以EPS是一种隔热保温性能非常优良的材料。 挤塑聚苯乙烯泡沫塑料(XPS) 与EPS板相比,该产品具有以下两个突出特点:⑴密度和机械强度高; ⑵长期吸水率低。不足之处是不易粘贴,且价格高。 执行标准:GB/T10801.2-2002《绝热用挤塑聚苯乙烯泡沫塑料(XPS)》主要特点:(1) 具有特有的微细闭孔蜂窝状结构,与EPS板相比,具有密度大、压缩性能高、导热系数小、吸水率低、水蒸气渗透系数小等特点。在长期高湿度或浸水环境下,XPS板仍能保持其优良的保温性能,在各种常用保温材料中,是目前唯一能在70%相对湿度下两年后热阻保留率仍在80%以上的保温材料。 (2) 由于XPS板长期吸水率低,特别适用于倒置式屋面和空调风管。

常用保温材料与阻燃材料报告

常用保温材料与阻燃材料报告

EPS板 EPS板(可发性聚苯乙烯板)具有质轻、价廉、导热率低、吸水性小、电绝缘性能好、隔音、防震、防潮、成型工艺简单等优点,因而被广泛用作建筑、船舶、汽车、火车、冷藏、冷冻等保温绝热、隔音、抗震材料。 EPS板(又称苯板)是可发性聚苯乙烯板的简称。由可发性聚苯乙烯珠粒经加热预发泡后在

模具中加热成型而制得的具有闭孔结构的聚苯乙烯泡沫塑料板材。是由原料经过预发、熟化、成型、烘干和切割等制成。它既可制成不同密度、不同形状的泡沫制品,又可以生产出各种不同厚度的泡沫板材。广泛用于建筑、保温、包装、冷冻、日用品,工业铸造等领域。也可用于展示会场、商品橱、广告招牌及玩具之制造。为适应国家建筑节能要求主要应用于墙体外墙外保温、外墙内保温、地暖。 应用:又称苯板,广泛用于建筑、保温、包装、冷冻、日用品,工业铸造等领域。也可用于展示会场、商品橱、广告招牌及玩具之制造。为适应国家建筑节能要求主要应用于墙体外墙外保温、外墙内保温、地暖。EPS板保温体系是由特种聚合胶泥、EPS板,耐碱玻璃纤维网格布料和饰面材料组成。集保温、防水、防火,装饰功能为一体的新型建筑构造体系。该技术将保温材料置于建筑物外墙外侧,不占用室内空间,保温效果明显,便于设计建筑外形。 保温机理:EPS泡沫是一种热塑性材料,每立方米体积内含有300-600万个独立密闭气泡,内含空气的体积为98%以上,由于空气的

热传导性很小,且又被封闭于泡沫塑料中而不能对流,所以EPS是一种隔热保温性能非常优良的材料。 挤塑聚苯乙烯泡沫塑料(XPS) 与EPS板相比,该产品具有以下两个突出特点:⑴密度和机械强度高;⑵长期吸水率低。不足之处是不易粘贴,且价格高。 执行标准:GB/T10801.2-2002《绝热用挤塑聚苯乙烯泡沫塑料(XPS)》 主要特点:(1) 具有特有的微细闭孔蜂窝状结构,与EPS板相比,具有密度大、压缩性能高、导热系数小、吸水率低、水蒸气渗透系数小等特点。在长期高湿度或浸水环境下,XPS板仍能保持其优良的保温性能,在各种常用保温材料中,是目前唯一能在70%相对湿度下两年后热阻保留率仍在80%以上的保温材料。 (2) 由于XPS板长期吸水率低,特别适用于倒置式屋面和空调风管。 (3) 还具有很好的耐冻融性能及较好的抗压 缩蠕变性能。 硬质聚氨酯泡沫塑料(PUR) 性能特点:⑴导热系数小。在至今已有的保温材

相关主题
文本预览
相关文档 最新文档