【九年级】2021年温岭市中考数学一模试题(带答案)
- 格式:docx
- 大小:42.87 KB
- 文档页数:12
2021-2022中考数学模拟试卷含解析注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.若函数2m y x +=的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围是( ) A .m >﹣2B .m <﹣2C .m >2D .m <22.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是( )A .B .C .D .3.关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( ) A .6 B .7 C .8 D .94.如图,矩形ABCD 中,AB=10,BC=5,点E ,F ,G ,H 分别在矩形ABCD 各边上,且AE=CG ,BF=DH ,则四边形EFGH 周长的最小值为( )A .55B .105C .103D .1535.如图,两个一次函数图象的交点坐标为(2,4),则关于x ,y 的方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为( )A .2,4x y =⎧⎨=⎩B .4,2x y =⎧⎨=⎩C .4,0x y =-⎧⎨=⎩D .3,0x y =⎧⎨=⎩6.下列各式中,互为相反数的是( )A .2(3)-和23-B .2(3)-和23C .3(2)-和32-D .3|2|-和32- 7.如图,数轴上的A 、B 、C 、D 四点中,与数﹣3表示的点最接近的是( )A .点AB .点BC .点CD .点D 8.把不等式组11x x <-⎧⎨≤⎩的解集表示在数轴上,下列选项正确的是( ) A .B .C .D .9.下列一元二次方程中,有两个不相等实数根的是( )A .x 2+6x+9=0B .x 2=xC .x 2+3=2xD .(x ﹣1)2+1=010.已知一次函数y =(k ﹣2)x+k 不经过第三象限,则k 的取值范围是( )A .k≠2B .k >2C .0<k <2D .0≤k <2二、填空题(共7小题,每小题3分,满分21分)11.计算:cos 245°-tan30°sin60°=______. 12.如图,边长为4的正方形ABCD 内接于⊙O ,点E 是弧AB 上的一动点(不与点A 、B 重合),点F 是弧BC 上的一点,连接OE ,OF ,分别与交AB ,BC 于点G ,H ,且∠EOF=90°,连接GH ,有下列结论:①弧AE=弧BF ;②△OGH 是等腰直角三角形;③四边形OGBH 的面积随着点E 位置的变化而变化;④△GBH 周长的最小值为4+22.其中正确的是_____.(把你认为正确结论的序号都填上)13.计算(x 4)2的结果等于_____.14.如图,⊙O 的半径为2,AB 为⊙O 的直径,P 为AB 延长线上一点,过点P 作⊙O 的切线,切点为C .若3则BC 的长为______.15.如图,在平面直角坐标系xOy 中,点A ,点B 的坐标分别为(0,2),(-1,0),将线段AB 沿x 轴的正方向平移,若点B 的对应点的坐标为B'(2,0),则点A 的对应点A'的坐标为___.16.函数1x y x =-的自变量x 的取值范围是_____.17.图中圆心角∠AOB=30°,弦CA ∥OB ,延长CO 与圆交于点D ,则∠BOD= .三、解答题(共7小题,满分69分)18.(10分)如图,已知:正方形ABCD ,点E 在CB 的延长线上,连接AE 、DE ,DE 与边AB 交于点F ,FG ∥BE 交AE 于点G . (1)求证:GF=BF ;(2)若EB=1,BC=4,求AG 的长;(3)在BC 边上取点M ,使得BM=BE ,连接AM 交DE 于点O .求证:FO•ED=OD•EF .19.(5分)先化简,再求值:(1+211x -)÷2221x x x ++,其中2+1.20.(8分)在矩形纸片ABCD中,AB=6,BC=8,现将纸片折叠,使点D与点B重合,折痕为EF,连接DF.(1)说明△BEF是等腰三角形;(2)求折痕EF的长.21.(10分)先化简,再求值:22m35m23m6m m2-⎛⎫÷+-⎪--⎝⎭,其中m是方程2x3x10++=的根.22.(10分)学了统计知识后,小红就本班同学上学“喜欢的出行方式”进行了一次调查,图(1)和图(2)是她根据采集的数据绘制的两幅不完整的统计图,请根据图中提供的信息解答以下问题:(1)补全条形统计图,并计算出“骑车”部分所对应的圆心角的度数.(2)若由3名“喜欢乘车”的学生,1名“喜欢骑车”的学生组队参加一项活动,现欲从中选出2人担任组长(不分正副),求出2人都是“喜欢乘车”的学生的概率,(要求列表或画树状图)23.(12分)如图1,在△ABC中,点P为边AB所在直线上一点,连结CP,M为线段CP的中点,若满足∠ACP=∠MBA,则称点P为△ABC的“好点”.(1)如图2,当∠ABC=90°时,命题“线段AB上不存在“好点”为(填“真”或“假”)命题,并说明理由;(2)如图3,P是△ABC的BA延长线的一个“好点”,若PC=4,PB=5,求AP的值;(3)如图4,在Rt△ABC中,∠CAB=90°,点P是△ABC的“好点”,若AC=4,AB=5,求AP的值.24.(14分)为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.(1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?(3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a万元(a>0),市政府如何确定方案才能使费用最少?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】根据反比例函数的性质,可得m+1<0,从而得出m的取值范围.【详解】∵函数2myx+=的图象在其象限内y的值随x值的增大而增大,∴m+1<0,解得m<-1.故选B.2、B【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到长方形的图形.【详解】解:A、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误;B、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;C、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;D、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误.故选:B.【点睛】本题重点考查三视图的定义以及考查学生的空间想象能力.3、C【解析】方程有实数根,应分方程是一元二次方程与不是一元二次方程,两种情况进行讨论,当不是一元二次方程时,a-6=0,即a=6;当是一元二次方程时,有实数根,则△≥0,求出a的取值范围,取最大整数即可.【详解】当a-6=0,即a=6时,方程是-1x+6=0,解得x=63 =84;当a-6≠0,即a≠6时,△=(-1)2-4(a-6)×6=201-24a≥0,解上式,得263a ≈1.6,取最大整数,即a=1.故选C.4、B【解析】作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,过点G作GG′⊥AB于点G′,如图所示,∵AE=CG ,BE=BE′,∴E′G′=AB=10,∵GG′=AD=5,∴2255E G GG ''+'=∴C 四边形EFGH 5故选B .【点睛】本题考查了轴对称-最短路径问题,矩形的性质等,根据题意正确添加辅助线是解题的关键.5、A【解析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案.【详解】解:∵直线y 1=k 1x+b 1与y 2=k 2x+b 2的交点坐标为(2,4),∴二元一次方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为2,4.x y =⎧⎨=⎩ 故选A.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.6、A【解析】根据乘方的法则进行计算,然后根据只有符号不同的两个数互为相反数,可得答案.【详解】解:A. 2(3)-=9,23-=-9,故2(3)-和23-互为相反数,故正确;B. 2(3)-=9,23=9,故2(3)-和23不是互为相反数,故错误;C. 3(2)-=-8,32-=-8,故3(2)-和32-不是互为相反数,故错误;D. 3|2|-=8,32-=8故3|2|-和32-不是互为相反数,故错误.故选A.【点睛】本题考查了有理数的乘方和相反数的定义,关键是掌握有理数乘方的运算法则.7、B【解析】1.732≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.【详解】1.732≈-,()1.7323 1.268---≈ ,()1.73220.268---≈,()1.73210.732---≈,因为0.268<0.732<1.268,所以表示的点与点B 最接近,故选B.8、C【解析】求得不等式组的解集为x <﹣1,所以C 是正确的.【详解】解:不等式组的解集为x <﹣1.故选C .【点睛】本题考查了不等式问题,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9、B【解析】分析:根据一元二次方程根的判别式判断即可.详解:A、x2+6x+9=0.△=62-4×9=36-36=0,方程有两个相等实数根;B、x2=x.x2-x=0.△=(-1)2-4×1×0=1>0.方程有两个不相等实数根;C、x2+3=2x.x2-2x+3=0.△=(-2)2-4×1×3=-8<0,方程无实根;D、(x-1)2+1=0.(x-1)2=-1,则方程无实根;故选B.点睛:本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.10、D【解析】直线不经过第三象限,则经过第二、四象限或第一、二、四象限,当经过第二、四象限时,函数为正比例函数,k=0当经过第一、二、四象限时,20kk-<⎧⎨≥⎩,解得0<k<2,综上所述,0≤k<2。
2021年九年级中考模拟考试数学试题一、选择题(共12小题,每小题3分,共36分.)1.2021的相反数是()A.2021B.﹣2021C.D.2.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()A.3.386×108B.0.3386×109C.33.86×107D.3.386×1093.下列计算正确的是()A.3a+4b=7ab B.(ab3)3=ab6C.(a+2)2=a2+4D.x12÷x6=x64.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元5.关于x的一元二次方程kx2+3x﹣1=0有实数根,则k的取值范围是()A.k≤﹣B.k≤﹣且k≠0C.k≥﹣D.k≥﹣且k≠06.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.7.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16B.20C.16D.以上答案均不对8.下列命题中,原命题与逆命题均为真命题的有()①若|a|=|b|,则a2=b2;②若ma2>na2,则m>n;③垂直于弦的直径平分弦;④对角线互相垂直的四边形是菱形.A.1个B.2个C.3个D.4个9.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C.D.10.在一个不透明的口袋里有红、绿、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有6个红球,5个绿球,若随机摸出一个球是绿球的概率是,则随机摸出一个球是蓝球的概率是()A.B.C.D.11.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,点A在边B′C上,则∠B′的大小为()A.42°B.48°C.52°D.58°12.定义:点A(x,y)为平面直角坐标系内的点,若满足x=y,则把点A叫做“平衡点”.例如:M(1,1),N(﹣2,﹣2)都是“平衡点”.当﹣1≤x≤3时,直线y=2x+m上有“平衡点”,则m的取值范围是()A.0≤m≤1B.﹣3≤m≤1C.﹣3≤m≤3D.﹣1≤m≤0二、填空题(本大题共4小题,每小题5分,共20分,请把答案填在相应答题卡上)13.分解因式:x3﹣xy2=.14.在函数中,自变量x的取值范围是.15.将一矩形纸条按如图所示折叠,若∠1=40°,则∠2=°.16.如图矩形ABCD中,AD=1,CD=,连接AC,将线段AC、AB分别绕点A顺时针旋转90°至AE、AF,线段AE与弧BF交于点G,连接CG,则图中阴影部分面积为.三、解答题(本大题共5小题,共44分,解答应写出必要的文字说明或推演步骤)17.计算:.18.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC =30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.19.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).20.小明要测量公园被湖水隔开的两棵大树A和B之间的距离,他在A处测得大树B在A的北偏西30°方向,他从A处出发向北偏东15°方向走了200米到达C处,测得大树B在C的北偏西60°方向.(1)求∠ABC的度数;(2)求两棵大树A和B之间的距离(结果精确到1米)(参考数据:≈1.414,≈1.732,≈2.449)21.某水果基地计划装运甲、乙、丙三种水果到外地销售(每辆汽车规定满载,并且只装一种水果).下表为装运甲、乙、丙三种水果的重量及利润.甲乙丙423每辆汽车能装的数量(吨))每吨水果可获利润(千元)574(1)用8辆汽车装运乙、丙两种水果共22吨到A地销售,问装运乙、丙两种水果的汽车各多少辆?(2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共72吨到B地销售(每种水果不少于一车),假设装运甲水果的汽车为m辆,则装运乙、丙两种水果的汽车各多少辆?(结果用m 表示)(3)在(2)问的基础上,如何安排装运可使水果基地获得最大利润?最大利润是多少?四、填空题(本大题共4小题,每小题6分,共24分,请把答案填在相应答题卡上)22.已知关于x的分式方程=有解,则a的取值范围是.23.如图,在平面直角坐标系中,点A(a,b)为第一象限内一点,且(b>a),连接AO,并以A 为旋转中心把线段AO逆时针旋转90°,得到线段AB,若点A、B恰好在同一反比例函数图象上,则的值等于.24.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,点D是边BC的中点,点E是边AB上的任意一点(点E不与点B重合),沿DE翻折△DBE使点B落在点F处,连接AF,则线段AF 的长取最小值时,BF的长为.25.如图,P1(x1,y1)、P2(x2,y2),…P n(x n,y n)在函数y=(x>0)的图象上,△OP1A1,△P2A1A2,△P3A2A3…△P n A n﹣1A n…都是等腰直角三角形,斜边OA1,A1A2…A n﹣1A n,都在x轴上,则y1+y2+…+y n=.五、解答题(本大题共3小题,每小题12分,共36分,解答应写出必要的文字说明或演算步骤)26.在边长为1的正方形ABCD中,点E是射线BC上一动点,AE与BD相交于点M,AE或其延长线与DC或其延长线相交于点F,G是EF的中点,连结CG.(1)如图1,当点E在BC边上时.求证:CG⊥CM.(2)如图2,当点E在BC的延长线上时,(1)中的结论是否成立?请说明理由.(3)在点E运动过程中,当BE的长度多少时,△MCE是等腰三角形?请说明理由.27.如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB,垂足为H,求证:CD=HF;(3)若CD=1,EH=3,求BF及AF长.28.如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x 轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.参考答案一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.2021的相反数是()A.2021B.﹣2021C.D.【分析】只有符号不同的两个数互为相反数.求一个数的相反数的方法就是在这个数的前面添加“﹣”.解:2021的相反数是﹣2021,故选:B.2.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()A.3.386×108B.0.3386×109C.33.86×107D.3.386×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:数字338 600 000用科学记数法可简洁表示为3.386×108.故选:A.3.下列计算正确的是()A.3a+4b=7ab B.(ab3)3=ab6C.(a+2)2=a2+4D.x12÷x6=x6【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则、合并同类项法则分别计算得出答案.解:A、3a+4b,无法计算,故此选项错误;B、(ab3)3=a3b9,故此选项错误;C、(a+2)2=a2+4a+4,故此选项错误;D、x12÷x6=x6,故此选项正确.故选:D.4.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元【分析】设该商品的进价为x元/件,根据“标价=(进价+利润)÷折扣”即可列出关于x的一元一次方程,解方程即可得出结论.解:设该商品的进价为x元/件,依题意得:(x+20)÷=200,解得:x=80.∴该商品的进价为80元/件.故选:C.5.关于x的一元二次方程kx2+3x﹣1=0有实数根,则k的取值范围是()A.k≤﹣B.k≤﹣且k≠0C.k≥﹣D.k≥﹣且k≠0【分析】根据方程根的情况可以判定其根的判别式的取值范围,进而可以得到关于k的不等式,解得即可,同时还应注意二次项系数不能为0.解:∵关于x的一元二次方程kx2+3x﹣1=0有实数根,∴Δ=b2﹣4ac≥0,即:9+4k≥0,解得:k≥﹣,∵关于x的一元二次方程kx2+3x﹣1=0中k≠0,则k的取值范围是k≥﹣且k≠0.故选:D.6.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形以及轴对称图形的概念对各选项分析判断即可得解.解:A.既是轴对称图形,也是中心对称图形,故本选项符合题意;B.既不是轴对称图形,也不是中心对称图形,故本选项不合题意;C.是轴对称图形,不是中心对称图形,故本选项不合题意;D.不是轴对称图形,是中心对称图形,故本选项不合题意.故选:A.7.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16B.20C.16D.以上答案均不对【分析】根据非负数的意义列出关于x、y的方程并求出x、y的值,再根据x是腰长和底边长两种情况讨论求解.解:根据题意得,解得,(1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选:B.8.下列命题中,原命题与逆命题均为真命题的有()①若|a|=|b|,则a2=b2;②若ma2>na2,则m>n;③垂直于弦的直径平分弦;④对角线互相垂直的四边形是菱形.A.1个B.2个C.3个D.4个【分析】先根据绝对值、不等式的性质、垂径定理和菱形的判定对四个命题进行判断,再分别交换命题的题设和结论得到四个逆命题,然后判断逆命题的真假.解:①若|a|=|b|,则a2=b2,此命题为真命题;它的逆命题为若a2=b2,则|a|=|b|,此逆命题为真命题;②若ma2>na2,则m>n,此命题为真命题;它的逆命题为若m>n,则ma2>na2,此逆命题为假命题;③垂直于弦的直径平分弦,此命题为真命题;它的逆命题为平方弦的直径垂直于弦,此逆命题为假命题;④对角线互相垂直的四边形是菱形,此逆命题为假命题,它的逆命题为菱形的对角线互相垂直,此逆命题为真命题.故选:A.9.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C.D.【分析】由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.解:∵PB+PC=BC,而PA+PC=BC,∴PA=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选:D.10.在一个不透明的口袋里有红、绿、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有6个红球,5个绿球,若随机摸出一个球是绿球的概率是,则随机摸出一个球是蓝球的概率是()A.B.C.D.【分析】根据摸出一个球是绿球的概率是,得出蓝球的个数,进而得出小球总数,即可得出随机摸出一个球是蓝球的概率.解:∵在一个不透明的口袋里有红、绿、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有6个红球,5个绿球,随机摸出一个球是绿球的概率是,设蓝球x个,∴=,解得:x=9,∴随机摸出一个球是蓝球的概率是:.故选:D.11.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,点A在边B′C上,则∠B′的大小为()A.42°B.48°C.52°D.58°【分析】先根据旋转的性质得出∠A′=∠BAC=90°,∠ACA′=48°,然后在直角△A′CB′中利用直角三角形两锐角互余求出∠B′=90°﹣∠ACA′=42°.解:∵在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,∴∠A′=∠BAC=90°,∠ACA′=48°,∴∠B′=90°﹣∠ACA′=42°.故选:A.12.定义:点A(x,y)为平面直角坐标系内的点,若满足x=y,则把点A叫做“平衡点”.例如:M(1,1),N(﹣2,﹣2)都是“平衡点”.当﹣1≤x≤3时,直线y=2x+m上有“平衡点”,则m的取值范围是()A.0≤m≤1B.﹣3≤m≤1C.﹣3≤m≤3D.﹣1≤m≤0【分析】根据x=y,﹣1≤x≤3可得出关于m的不等式,求出m的取值范围即可.解:∵x=y,∴x=2x+m,即x=﹣m.∵﹣1≤x≤3,∴﹣1≤﹣m≤3,∴﹣3≤m≤1.故选:B.二、填空题(本大题共4小题,每小题5分,共20分,请把答案填在相应答题卡上)13.分解因式:x3﹣xy2=x(x+y)(x﹣y).【分析】直接提取公因式x,再利用平方差公式分解因式得出答案.解:原式=x(x2﹣y2)=x(x+y)(x﹣y).故答案为:x(x+y)(x﹣y).14.在函数中,自变量x的取值范围是x≤1且x≠﹣2.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.解:根据二次根式有意义,分式有意义得:1﹣x≥0且x+2≠0,解得:x≤1且x≠﹣2.故答案为:x≤1且x≠﹣2.15.将一矩形纸条按如图所示折叠,若∠1=40°,则∠2=110°.【分析】根据平行线的性质得到∠3=∠1=40°,∠2+∠4=180°,由折叠的性质得到∠4=∠5,即可得到结论.解:∵AB∥CD,∴∠3=∠1=40°,∠2+∠4=180°,∵∠4=∠5,∴∠4=∠5=(180°﹣40°)=70°,∴∠2=110°,故答案为:110°.16.如图矩形ABCD中,AD=1,CD=,连接AC,将线段AC、AB分别绕点A顺时针旋转90°至AE、AF,线段AE与弧BF交于点G,连接CG,则图中阴影部分面积为﹣.【分析】根据勾股定理得到AC=2,由三角函数的定义得到∠CAB=30°,根据旋转的性质得到∠CAE=∠BAF=90°,求得∠BAG=60°,然后根据图形的面积即可得到结论.解:在矩形ABCD中,∵AD=1,CD=,∵AC=2,tan∠CAB==,∴∠CAB=30°,∵线段AC、AB分别绕点A顺时针旋转90°至AE、AF,∴∠CAE=∠BAF=90°,∴∠BAG=60°,∵AG=AB=,∴阴影部分面积=S△ABC+S扇形ABG﹣S△ACG=××1+﹣××2=﹣,故答案为:﹣.三、解答题(本大题共5小题,共44分,解答应写出必要的文字说明或推演步骤)17.计算:.【分析】直接利用负整数指数幂的性质以及特殊角的三角函数值、零指数幂的性质、绝对值的性质分别化简,再利用实数加减运算法则计算得出答案.解:原式=1﹣2﹣3+4×=1﹣2﹣3+2=﹣2.18.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC =30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.【分析】(1)首先由Rt△ABC中,由∠BAC=30°可以得到AB=2BC,又由△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,然后证得△AFE≌△BCA,继而证得结论;(2)根据(1)知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.【解答】证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF∴AF=BC,在Rt△AFE和Rt△BCA中,,∴Rt△AFE≌Rt△BCA(HL),∴AC=EF;(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD,∴∠DAB=∠DAC+∠BAC=90°又∵EF⊥AB,∴EF∥AD,∵AC=EF,AC=AD,∴EF=AD,∴四边形ADFE是平行四边形.19.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).【分析】(1)根据“平等”的人数除以占的百分比得到调查的学生总数即可;(2)求出“互助”与“进取”的学生数,补全条形统计图,求出“进取”占的圆心角度数即可;(3)列表或画树状图得出所有等可能的情况数,找出恰好选到“C”与“E”的情况数,即可求出所求的概率.解:(1)56÷20%=280(名),答:这次调查的学生共有280名;(2)280×15%=42(名),280﹣42﹣56﹣28﹣70=84(名),补全条形统计图,如图所示,根据题意得:84÷280=30%,360°×30%=108°,答:“进取”所对应的圆心角是108°;(3)由(2)中调查结果知:学生关注最多的两个主题为“进取”和“感恩”用列表法为:A B C D EA(A,B)(A,C)(A,D)(A,E)B(B,A)(B,C)(B,D)(B,E)C(C,A)(C,B)(C,D)(C,E)D(D,A)(D,B)(D,C)(D,E)E(E,A)(E,B)(E,C)(E,D)用树状图为:共20种情况,恰好选到“C”和“E”有2种,∴恰好选到“进取”和“感恩”两个主题的概率是.20.小明要测量公园被湖水隔开的两棵大树A和B之间的距离,他在A处测得大树B在A的北偏西30°方向,他从A处出发向北偏东15°方向走了200米到达C处,测得大树B在C的北偏西60°方向.(1)求∠ABC的度数;(2)求两棵大树A和B之间的距离(结果精确到1米)(参考数据:≈1.414,≈1.732,≈2.449)【分析】(1)先利用平行线的性质得∠ACM=∠DAC=15°,再利用平角的定义计算出∠ACB =105°,然后根据三角形内角和计算∠ABC的度数;(2)作CH⊥AB于H,如图,易得△ACH为等腰直角三角形,则AH=CH=AC=100,在Rt△BCH中利用含30度的直角三角形三边的关系得到BH=CH=100,AB=AH+BH=100+100,然后进行近似计算即可.解:(1)∵CM∥AD,∴∠ACM=∠DAC=15°,∴∠ACB=180°﹣∠BCN﹣∠ACM=180°﹣60°﹣15°=105°,而∠BAC=30°+15°=45°,∴∠ABC=180°﹣45°﹣105°=30°;(2)作CH⊥AB于H,如图,∵∠BAC=45°,∴△ACH为等腰直角三角形,∴AH=CH =AC =×200=100,在Rt△BCH中,∵∠HBC=30°,∴BH =CH=100,∴AB=AH+BH=100+100≈141.4+244.9≈386.答:两棵大树A和B之间的距离约为386米.21.某水果基地计划装运甲、乙、丙三种水果到外地销售(每辆汽车规定满载,并且只装一种水果).下表为装运甲、乙、丙三种水果的重量及利润.甲乙丙423每辆汽车能装的数量(吨))每吨水果可获利润(千元)574(1)用8辆汽车装运乙、丙两种水果共22吨到A地销售,问装运乙、丙两种水果的汽车各多少辆?(2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共72吨到B地销售(每种水果不少于一车),假设装运甲水果的汽车为m辆,则装运乙、丙两种水果的汽车各多少辆?(结果用m 表示)(3)在(2)问的基础上,如何安排装运可使水果基地获得最大利润?最大利润是多少?【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意和表格中的数据可以用关于m的代数式表示出装运乙、丙两种水果的汽车数量;(3)根据题意可以写出利润w关于m的关系式,再根据m的取值范围即可解答本题.【解答】(1)设装运乙、丙水果的车分别为x辆,y辆,,解得,,答:装运乙种水果的车有2辆、丙种水果的汽车有6辆;(2)设装运乙、丙水果的车分别为a辆,b辆,,解得,,答:装运乙种水果的汽车是(m﹣12)辆,丙种水果的汽车是(32﹣2m)辆;(3)设总利润为w千元,w=4×5m+2×7(m﹣12)+4×3(32﹣2m)=10m+216,∵,解得,13≤m≤15.5,∵m为正整数,∴m=13,14,15,∴当m=15时,W最大=366(千元),答:当运甲水果的车15辆,运乙水果的车3辆,运丙水果的车2辆,利润最大,最大利润为366千元.四、填空题(本大题共4小题,每小题6分,共24分,请把答案填在相应答题卡上)22.已知关于x的分式方程=有解,则a的取值范围是a≥1且a≠4.【分析】解分式方程用a表示|x|,根据关于x的分式方程有解得|x|≥0且|x|﹣2≠0,列不等式组求解集.解:=,2|2x|﹣2a=|x|﹣2,4|x|﹣|x|=2a﹣2,3|x|=2a﹣2,|x|=,∵关于x的分式方程有解,∴≥0,且|x|﹣2≠0,即≠2,解得a≥1且a≠4.故答案为:a≥1且a≠4.23.如图,在平面直角坐标系中,点A(a,b)为第一象限内一点,且(b>a),连接AO,并以A 为旋转中心把线段AO逆时针旋转90°,得到线段AB,若点A、B恰好在同一反比例函数图象上,则的值等于.【分析】过A作AE⊥x轴,过B作BD⊥AE,利用同角的余角相等得到一对角相等,再由一对直角相等,且AO=AB,利用AAS得出三角形AOE与三角形ABD全等,由确定三角形的对应边相等得到BD=AE=b,AD=OE=a,进而表示出ED及OE+BD的长,即可表示出B坐标;由A与B都在反比例图象上,得到A与B横纵坐标乘积相等,列出关系式,变形后即可求出的值.解:过A作AE⊥x轴,过B作BD⊥AE,∵∠OAB=90°,∴∠OAE+∠BAD=90°,∵∠AOE+∠OAE=90°,∴∠BAD=∠AOE,在△AOE和△BAD中,,∴△AOE≌△BAD(AAS),∴AE=BD=b,OE=AD=a,∴DE=AE﹣AD=b﹣a,OE+BD=a+b,则B(a+b,b﹣a);∵A与B都在反比例图象上,得到ab=(a+b)(b﹣a),整理得:b2﹣a2=ab,即()2﹣﹣1=0,∵△=1+4=5,∴=,∵点A(a,b)为第一象限内一点,∴a>0,b>0,则=.故答案为.24.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,点D是边BC的中点,点E是边AB上的任意一点(点E不与点B重合),沿DE翻折△DBE使点B落在点F处,连接AF,则线段AF 的长取最小值时,BF的长为.【分析】由题意得:DF=DB,得到点F在以D为圆心,BD为半径的圆上,作⊙D;连接AD 交⊙D于点F,此时AF值最小,由点D是边BC的中点,得到CD=BD=3;而AC=4,由勾股定理得到AD=5,求得线段AF长的最小值是2,连接BF,过F作FH⊥BC于H,根据相似三角形的性质即可得到结论.解:由题意得:DF=DB,∴点F在以D为圆心,BD为半径的圆上,作⊙D;连接AD交⊙D于点F,此时AF值最小,∵点D是边BC的中点,∴CD=BD=3;而AC=4,由勾股定理得:AD2=AC2+CD2∴AD=5,而FD=3,∴FA=5﹣3=2,即线段AF长的最小值是2,连接BF,过F作FH⊥BC于H,∵∠ACB=90°,∴FH∥AC,∴△DFH∽△ADC,∴,∴HF=,DH=,∴BH=,∴BF==,故答案为:.25.如图,P1(x1,y1)、P2(x2,y2),…P n(x n,y n)在函数y=(x>0)的图象上,△OP1A1,△P2A1A2,△P3A2A3…△P n A n﹣1A n…都是等腰直角三角形,斜边OA1,A1A2…A n﹣1A n,都在x轴上,则y1+y2+…+y n=3.【分析】根据反比例函数图象上点的坐标特征,求出y1,y2,y3……y n,再计算即可.解:如图,过P1,P2,P3…P n,分别作x轴的垂线,垂足分别为Q1,Q2,Q3,…Q n,∵△OP1A1,△P2A1A2,△P3A2A3…△P n A n﹣1A n…都是等腰直角三角形,∴OQ1=P1Q1=Q1A1=y1,A1Q2=P2Q2=Q2A2=y2,A2Q3=P3Q3=Q3A3=y3,……A n﹣1Q n=P n Q n=Q n A n=y n,于是P1(y1,y1),P2(2y1+y2,y2),P3(2y1+2y2+y3,y3),……P n(2y i+2y2+2y3+…+2y n﹣1+y n,y n),将P1(y1,y1)代入反比例函数y=得,y1•y1=9,解得y1=3,因此P2(6+y2,y2),将P2(2y1+y2,y2),y1=3,代入反比例函数y=得,(6+y2)•y2=9,解得y2=3﹣3,同理将P3(2y1+2y2+y3,y3),P4(2y1+2y2+2y3+y4,y4),……代入反比例函数关系式可求得,y3=3﹣3,y4=3﹣3=6﹣3,y5=3﹣3=3﹣6,……所以y1+y2+…+y n=3+3﹣3+3﹣3+…+3﹣3=3,故答案为:3.五、解答题(本大题共3小题,每小题12分,共36分,解答应写出必要的文字说明或演算步骤)26.在边长为1的正方形ABCD中,点E是射线BC上一动点,AE与BD相交于点M,AE或其延长线与DC或其延长线相交于点F,G是EF的中点,连结CG.(1)如图1,当点E在BC边上时.求证:CG⊥CM.(2)如图2,当点E在BC的延长线上时,(1)中的结论是否成立?请说明理由.(3)在点E运动过程中,当BE的长度多少时,△MCE是等腰三角形?请说明理由.【分析】(1)由全等三角形的性质得出∠BAM=∠BCM,由直角三角形斜边上的中线性质得出GC=GF,证出∠GCF=∠F,由平行线的性质得出∠BAM=∠F,因此∠BCM=∠GCF,得出∠BCM+∠GCE=∠GCF+∠GCE=90°,即可得出结论;(2)同(1),即可得出结论;(3)①当点E在BC边上时,由∠MEC>90°,要使△MCE是等腰三角形,必须EM=EC,得出∠EMC=∠ECM,由三角形的外角性质得出∠AEB=2∠BCM=2∠BAE,由直角三角形的性质得出∠BAE=30°,得出BE=AB=;②当点E在BC的延长线上时,同①知BE=;即可得出结论.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=BC,∠ABM=∠CBM,在△ABM和△CBM中,,∴△ABM≌△CBM(SAS).∴∠BAM=∠BCM,又∵∠ECF=90°,G是EF的中点,∴GC=EF=GF,∴∠GCF=∠GFC,又∵AB∥DF,∴∠BAM=∠GFC,∴∠BCM=∠GCF,∴∠BCM+∠GCE=∠GCF+∠GCE=90°,∴GC⊥CM;(2)解:成立;理由如下:∵四边形ABCD是正方形,∴AB=BC,∠ABM=∠CBM,在△ABM和△CBM中,,∴△ABM≌△CBM(SAS),∴∠BAM=∠BCM,又∵∠ECF=90°,G是EF的中点,∴GC=GF,∴∠GCF=∠GFC,又∵AB∥DF,∴∠BAM=∠GFC,∴∠BCM=∠GCF,∴∠GCF+∠MCF=∠BCM+MCFE=90°,∴GC⊥CM;(3)解:分两种情况:①当点E在BC边上时,∵∠MEC>90°,要使△MCE是等腰三角形,必须EM=EC,∴∠EMC=∠ECM,∴∠AEB=2∠BCM=2∠BAE,∴2∠BAE+∠BAE=90°,∴∠BAE=30°,∴BE=AB=;②当点E在BC的延长线上时,同①知BE=.综上①②,当BE=戓BE=时,△MCE是等腰三角形.27.如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB,垂足为H,求证:CD=HF;(3)若CD=1,EH=3,求BF及AF长.【分析】(1)连接OE,由于BE是角平分线,则有∠CBE=∠OBE;而OB=OE,就有∠OBE =∠OEB,等量代换有∠OEB=∠CBE,那么利用内错角相等,两直线平行,可得OE∥BC;又∠C=90°,所以∠AEO=90°,即AC是⊙O的切线;(2)连接DE,先根据AAS证明△CDE≌△HFE,再由全等三角形的对应边相等即可得出CD=HF.(3)先证得△EHF∽△BEF,根据相似三角形的性质求得BF=10,进而根据直角三角形斜边中线的性质求得OE=5,进一步求得OH,然后解直角三角形即可求得OA,得出AF.【解答】证明:(1)如图,连接OE.∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径.∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC是⊙O的切线;(2)如图,连接DE.∵∠CBE=∠OBE,EC⊥BC于C,EH⊥AB于H,∴EC=EH.∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,∴∠CDE=∠HFE.在△CDE与△HFE中,,∴△CDE≌△HFE(AAS),∴CD=HF.(3)由(2)得CD=HF,又CD=1,∴HF=1,在Rt△HFE中,EF==,∵EF⊥BE,∴∠BEF=90°,∴∠EHF=∠BEF=90°,∵∠EFH=∠BFE,∴△EHF∽△BEF,∴=,即=,∴BF=10,∴OE=BF=5,OH=5﹣1=4,∴Rt△OHE中,cos∠EOA=,∴Rt△EOA中,cos∠EOA==,∴=,∴OA=,∴AF=﹣5=.28.如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x 轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.【分析】(1)令y=0,求出抛物线与x轴交点,列出方程即可求出a,根据待定系数法可以确定直线AB解析式.(2)由△PNM∽△ANE,推出=,列出方程即可解决问题.(3)在y轴上取一点M使得OM′=,构造相似三角形,可以证明AM′就是E′A+E′B 的最小值.解:(1)令y=0,则ax2+(a+3)x+3=0,∴(x+1)(ax+3)=0,∴x=﹣1或﹣,∵抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),∴﹣=4,∴a=﹣.∵A(4,0),B(0,3),设直线AB解析式为y=kx+b,则,解得,∴直线AB解析式为y=﹣x+3.(2)如图1中,∵PM⊥AB,PE⊥OA,∴∠PMN=∠AEN,∵∠PNM=∠ANE,∴△PNM∽△ANE,∴=,∵NE∥OB,∴=,∴AN=(4﹣m),∵抛物线解析式为y=﹣x2+x+3,∴PN=﹣m2+m+3﹣(﹣m+3)=﹣m2+3m,∴=,解得m=2或4,经检验x=4是分式方程的增根,∴m=2.(3)如图2中,在y轴上取一点M′使得OM′=,连接AM′,在AM′上取一点E′使得OE′=OE.∵OE′=2,OM′•OB=×3=4,∴OE′2=OM′•OB,∴=,∵∠BOE′=∠M′OE′,∴△M′OE′∽△E′OB,∴==,∴M′E′=BE′,∴AE′+BE′=AE′+E′M′=AM′,此时AE′+BE′最小(两点间线段最短,A、M′、E′共线时),最小值=AM′==.。
一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 下列各数中,无理数是()A. 2.5B. √9C. πD. -1/32. 已知函数f(x) = 2x + 1,若f(2) = 5,则f(x)的图象经过()A. 第一、二、四象限B. 第一、三、四象限C. 第一、二、三象限D. 第二、三、四象限3. 在直角坐标系中,点A(2, 3),点B(-3, 2)关于直线y = x对称的点分别是()A. A(-3, 2),B(2, 3)B. A(2, 3),B(-3, -2)C. A(-3, -2),B(2, 3)D. A(-3, 2),B(2, -3)4. 已知等腰三角形ABC中,AB = AC,∠BAC = 60°,则∠B =()A. 60°B. 120°C. 30°D. 45°5. 在平面直角坐标系中,点P(m, n)在直线y = 2x + 1上,则m和n之间的关系是()B. m = n/2C. m = n - 2D. m = 2n - 16. 若a > 0,b < 0,则下列不等式中正确的是()A. a + b > 0B. a - b > 0C. a - b < 0D. a + b < 07. 在△ABC中,AB = AC,∠B = 45°,则△ABC是()A. 等腰三角形B. 等边三角形C. 直角三角形D. 锐角三角形8. 已知一元二次方程x^2 - 4x + 3 = 0,下列选项中,正确的解法是()A. 因式分解法B. 完全平方公式法C. 配方法D. 迭代法9. 下列函数中,为奇函数的是()A. y = x^2B. y = |x|C. y = x^310. 已知数列{an}的通项公式an = 2n - 1,则数列的前5项之和S5 =()A. 9B. 10C. 11D. 12二、填空题(本大题共10小题,每小题3分,共30分。
中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分。
每小题给出的四个选项中,只有一个是正确的)1.(3分)下列说法不正确的是()A.0既不是正数,也不是负数B.绝对值最小的数是0C.绝对值等于自身的数只有0和1D.平方等于自身的数只有0和12.(3分)下列运算正确的是()A.m6÷m2=m3B.(x+1)2=x2+1 C.(3m2)3=9m6D.2a3•a4=2a73.(3分)如图是某几何体的三视图,则该几何体的全面积等于()A.112 B.136 C.124 D.844.(3分)一组互不相等的数据,它的中位数为80,小于中位数的数的平均数为70,大于中位数的数的平均数为96,设这组数据的平均数为,则=()A.82 B.83 C.80≤≤82 D.82≤≤835.(3分)如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.A,B之间D.B,C之间6.(3分)下面是小明按照语句画出的四个图形:(1)直线EF经过点C;(2)点A在直线l外;(3)经过点O的三条线段a、b、c;(4)线段AB、CD相交于点B.他所画图形中,正确的个数是()A.1 B.2 C.3 D.47.(3分)玩具车间每天能生产甲种玩具零件24个或乙种玩具零件12个,若甲种玩具零件一个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在60天内组装出最多的玩具设生产甲种玩具零件x天,乙种玩具零件y天,则有()A.B.C.D.8.(3分)如图,下列图形均是完全相同的点按照一定的规律所组成的,第①个图形中一共有3个点,第②个图形中一共有8个点,第③个图形中一共有15个点,…,按此规律排列下去,第9个图形中点的个数是()A.80 B.89 C.99 D.1099.(3分)如图,函数y=﹣x2+bx+c的部分图象与x轴、y轴的交点分别为A(1,0),B(0,3),对称轴是x=﹣1,在下列结论中,错误的是()A.顶点坐标为(﹣1,4)B.函数的解析式为y=﹣x2﹣2x+3C.当x<0时,y随x的增大而增大D.抛物线与x轴的另一个交点是(﹣3,0)10.(3分)如图,,∠1=∠2,则对于结论:①△ABE∽△ACF;②△ABC ∽△AEF;③;④.其中正确的结论的个数是()A.1 B.2 C.3 D.4二、填空题(本小题共6小题,每小题3分,共18分,只需要将结果直接填写在答题卡对应题号的横线上.)11.(3分)万州长江三桥位于万州主城区,于牌楼接到跨越长江,大桥连接长江两岸的过境公路交通和城区过江交通,具有公路桥梁和城市桥梁双重功能,桥梁主线总长2120米,把数据2120米用科学记数法表示为米.12.(3分)2008年北京奥运会的吉祥物是“贝贝”、“晶晶”、“欢欢”、“迎迎”、“妮妮”等五个福娃,现将三张分别印有“欢欢”、“迎迎”、“妮妮”这三个吉祥物图案的卡片(卡片形状、大小一样,质地相同)放入一个盒中,小明从盒中任取一张,取到“贝贝”这张卡片是事件(填“必然”或“不可能”或“随机”).13.(3分)如图,⊙O的直径AB与弦EF相交于点P,交角为45°,若PE2+PF2=8,则AB等于.14.(3分)如图,点P是Rt△ABC斜边AB上的任意一点(A、B两点除外),过点P作一条直线,使截得的三角形与Rt△ABC相似,这样的直线可以作条.15.(3分)如图,长为1的线段AB在x轴上移动C(0,1)、D(0,2),则AC+BD 的最小值是.16.(3分)高速公路上依次有3个标志点A、B、C,甲、乙两车分别从A、C两点同时出发,匀速行驶,甲车从A→B→C,乙车从C→B→A,甲、乙两车离B的距离y1、y2(千米)与行驶时间x(小时)之间的函数关系图象如图所示.观察图象,给出下列结论:①A、C之间的路程为690千米;②乙车比甲车每小时快30千米;③4.5小时两车相遇;④点E的坐标为(7,180),其中正确的有(把所有正确结论的序号都填在横线上).三、解答题(本题共9小题,共72分,解答应写出必要演算步骤、文字说明或证明过程.)17.(5分)计算:﹣12021+37×3﹣5+2﹣2+(π﹣2021)018.(6分)解方程: +﹣=1.19.(6分)如图,在平面直角坐标系中,反比例函数y=(x>0)的图象上有一点A(m,4),过点A作AB⊥x轴于点B,将点B向右平移2个单位长度得到点C,过点C作y轴的平行线交反比例函数的图象于点D.(1)点D的横坐标为(用户含m的代数式表示).(2)当CD=时,求反比例函数所对应的函数表达式.20.(7分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B 处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.21.(8分)为了了解成都市初中学生“数学核心素养”的掌握情况,教育科学院命题教师赴某校初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分160 分)分为 5 组:第一组85~100;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了该年级多少名学生?成绩为第五组的有多少名学生?(2)针对考试成绩情况,现各组分别派出1名代表(分别用A、B、C、D、E 表示5个小组中选出来的同学),命题教师从这5名同学中随机选出两名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名同学刚好来自第一、五组的概率.22.(8分)如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画圆,P是⊙O上一动点且在第一象限内,过点P作⊙O的切线,与x、y轴分别交于点A、B.(1)求证:△OBP与△OPA相似;(2)当点P为AB中点时,求出P点坐标;(3)在⊙O上是否存在一点Q,使得以Q,O,A、P为顶点的四边形是平行四边形.若存在,试求出Q点坐标;若不存在,请说明理由.23.(10分)某农场要建一个长方形ABCD的养鸡场,鸡场的一边靠墙,(墙长25m)另外三边用木栏围成,木栏长40m.(1)若养鸡场面积为168m2,求鸡场垂直于墙的一边AB的长.(2)请问应怎样围才能使养鸡场面积最大?最大的面积是多少?24.(10分)阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD 均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含m,n,b的式子表示).25.(12分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M (1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H最新原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列说法不正确的是()A.0既不是正数,也不是负数B.绝对值最小的数是0C.绝对值等于自身的数只有0和1D.平方等于自身的数只有0和1【解答】解:A、B、D均正确,绝对值等于它自身的数是所有非负数,所以C 错误,故选:C.2.(3分)下列运算正确的是()A.m6÷m2=m3B.(x+1)2=x2+1 C.(3m2)3=9m6D.2a3•a4=2a7【解答】解:A、原式=m4,不符合题意;B、原式=x2+2x+1,不符合题意;C、原式=27m6,不符合题意;D、原式=2a7,符合题意,故选:D.3.(3分)如图是某几何体的三视图,则该几何体的全面积等于()A.112 B.136 C.124 D.84【解答】解:如图:由勾股定理=3,3×2=6,6×4÷2×2+5×7×2+6×7=24+70+42=136.故选:B.4.(3分)一组互不相等的数据,它的中位数为80,小于中位数的数的平均数为70,大于中位数的数的平均数为96,设这组数据的平均数为,则=()A.82 B.83 C.80≤≤82 D.82≤≤83【解答】解:大于中位数与小于中位数的数个数相同,可以设都是m个.当这组数有偶数个时,则中位数不是这组数中的数,则这组数有2m个,则平均数是:=83;当这组数据的个数是奇数个时,则这组数有2m+1个,则平均数是:=83﹣,而m≥1,因而0<≤1∴83﹣≥83﹣1=82且83﹣<83.故82≤<83.故选:D.5.(3分)如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.A,B之间D.B,C之间【解答】解:①以点A为停靠点,则所有人的路程的和=15×100+10×300=4500(米),②以点B为停靠点,则所有人的路程的和=30×100+10×200=5000(米),③以点C为停靠点,则所有人的路程的和=30×300+15×200=12000(米),④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<100),则所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=4500+5m>4500,⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<200),则总路程为30(100+n)+15n+10(200﹣n)=5000+35n>4500.∴该停靠点的位置应设在点A;故选:A.6.(3分)下面是小明按照语句画出的四个图形:(1)直线EF经过点C;(2)点A在直线l外;(3)经过点O的三条线段a、b、c;(4)线段AB、CD相交于点B.他所画图形中,正确的个数是()A.1 B.2 C.3 D.4【解答】解:(1)正确,C在直线EF上;(2)正确,A不在直线l上;(3)正确,三条线段相交于O点;(4)错误,两条线段相交于B外一点.故选:C.7.(3分)玩具车间每天能生产甲种玩具零件24个或乙种玩具零件12个,若甲种玩具零件一个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在60天内组装出最多的玩具设生产甲种玩具零件x天,乙种玩具零件y天,则有()A.B.C.D.【解答】解:根据总天数是60天,可得x+y=60;根据乙种零件应是甲种零件的2倍,可列方程为2×24x=12y.则可列方程组为.故选:C.8.(3分)如图,下列图形均是完全相同的点按照一定的规律所组成的,第①个图形中一共有3个点,第②个图形中一共有8个点,第③个图形中一共有15个点,…,按此规律排列下去,第9个图形中点的个数是()A.80 B.89 C.99 D.109【解答】解:第①个图形中一共有3个点,3=2+1,第②个图形中一共有8个点,8=4+3+1,第③个图形中一共有15个点,15=6+5+3+1,…,按此规律排列下去,第n个图形中的点数一共有2n+(2n﹣1)+(2n﹣3)+…+3+1,∴当n=9时,2n+(2n﹣1)+(2n﹣3)+…+1=18+17+15+13+…+3+1=18+=18+81=99,即第9个图形中点的个数是99个,故选:C.9.(3分)如图,函数y=﹣x2+bx+c的部分图象与x轴、y轴的交点分别为A(1,0),B(0,3),对称轴是x=﹣1,在下列结论中,错误的是()A.顶点坐标为(﹣1,4)B.函数的解析式为y=﹣x2﹣2x+3C.当x<0时,y随x的增大而增大D.抛物线与x轴的另一个交点是(﹣3,0)【解答】解:将A(1,0),B(0,3)分别代入解析式得,,解得,,则函数解析式为y=﹣x2﹣2x+3;将x=﹣1代入解析式可得其顶点坐标为(﹣1,4);当y=0时可得,﹣x2﹣2x+3=0;解得,x1=﹣3,x2=1.可见,抛物线与x轴的另一个交点是(﹣3,0);由图可知,当x<﹣1时,y随x的增大而增大.可见,C答案错误.故选:C.10.(3分)如图,,∠1=∠2,则对于结论:①△ABE∽△ACF;②△ABC ∽△AEF;③;④.其中正确的结论的个数是()A.1 B.2 C.3 D.4【解答】解:∵,∠1=∠2,∴△ABE∽△ACF,∠BAC=∠EAF∴△ABC∽△AEF∴①②正确;∴,∴∴③错误∴∴④错误故2个结论都是正确的.故选:B.二、填空题(本小题共6小题,每小题3分,共18分,只需要将结果直接填写在答题卡对应题号的横线上.)11.(3分)万州长江三桥位于万州主城区,于牌楼接到跨越长江,大桥连接长江两岸的过境公路交通和城区过江交通,具有公路桥梁和城市桥梁双重功能,桥梁主线总长2120米,把数据2120米用科学记数法表示为 2.12×103米.【解答】解:2120米=2.12×103米.故答案为:2.12×103.12.(3分)2008年北京奥运会的吉祥物是“贝贝”、“晶晶”、“欢欢”、“迎迎”、“妮妮”等五个福娃,现将三张分别印有“欢欢”、“迎迎”、“妮妮”这三个吉祥物图案的卡片(卡片形状、大小一样,质地相同)放入一个盒中,小明从盒中任取一张,取到“贝贝”这张卡片是不可能事件(填“必然”或“不可能”或“随机”).【解答】解:盒子中没有“贝贝”所以取到“贝贝”这张卡片是不可能事件.13.(3分)如图,⊙O的直径AB与弦EF相交于点P,交角为45°,若PE2+PF2=8,则AB等于4.【解答】解:作OG⊥EF于G,连接OE,根据垂径定理,可设EG=FG=x,则PE=x+PG,PF=x﹣PG,又∵PE2+PF2=8,∴(x+PG)2+(x﹣PG)2=8,整理得2x2+2PG2=8,x2+PG2=4,∵交角为45°,∴OG=PG,∴OE2=OG2+EG2=4,即圆的半径是2,∴直径是4.14.(3分)如图,点P是Rt△ABC斜边AB上的任意一点(A、B两点除外),过点P作一条直线,使截得的三角形与Rt△ABC相似,这样的直线可以作3条.【解答】解:过点P可作PE∥BC或PE∥AC,可得相似三角形;过点P还可作PE⊥AB,可得:∠EPA=∠C=90°,∠A=∠A,∴△APE∽△ACB;所以共有3条.15.(3分)如图,长为1的线段AB在x轴上移动C(0,1)、D(0,2),则AC+BD 的最小值是.【解答】解:如图所示,以AB,BD为边构造平行四边形ABDE,作点C最新x 轴的对称点F,连接AF,则DE⊥y轴,OF=OC=1,∵四边形ABDE是平行四边形,∴BD=AE,DE=AB=1,∵AB垂直平分线CF,∴AC=AF,∴AC+BD=AE+AF,如图,当点E,A,F在同一直线上时,AE+AF=EF(最短),此时,∵Rt△DEF中,DE=1,DF=2+1=3,∴EF===,∴AC+BD的最小值是.故答案为:.16.(3分)高速公路上依次有3个标志点A、B、C,甲、乙两车分别从A、C两点同时出发,匀速行驶,甲车从A→B→C,乙车从C→B→A,甲、乙两车离B的距离y1、y2(千米)与行驶时间x(小时)之间的函数关系图象如图所示.观察图象,给出下列结论:①A、C之间的路程为690千米;②乙车比甲车每小时快30千米;③4.5小时两车相遇;④点E的坐标为(7,180),其中正确的有①②④(把所有正确结论的序号都填在横线上).【解答】解:①450+240=690(千米).故A、C之间的路程为690千米是正确的;②450÷5﹣240÷4=90﹣60=30(千米/小时).故乙车比甲车每小时快30千米是正确的;③690÷(450÷5+240÷4)=690÷(90+60)=690÷150=4.6(小时).故4.6小时两车相遇,原来的说法是错误的;④(450﹣240)÷(450÷5﹣240÷4)=210÷(90﹣60)=210÷30=7(小时),450÷5×7﹣450=630﹣450=180(千米).故点E的坐标为(7,180)是正确的,故其中正确的有①②④.故答案为:①②④.三、解答题(本题共9小题,共72分,解答应写出必要演算步骤、文字说明或证明过程.)17.(5分)计算:﹣12021+37×3﹣5+2﹣2+(π﹣2021)0【解答】解:原式=﹣1+9++1=9.18.(6分)解方程: +﹣=1.【解答】解:方程两边同乘(x+2)(x﹣2)得x﹣2+4x﹣2(x+2)=x2﹣4,整理,得x2﹣3x+2=0,解这个方程得x1=1,x2=2,经检验,x2=2是增根,舍去,所以,原方程的根是x=1.19.(6分)如图,在平面直角坐标系中,反比例函数y=(x>0)的图象上有一点A(m,4),过点A作AB⊥x轴于点B,将点B向右平移2个单位长度得到点C,过点C作y轴的平行线交反比例函数的图象于点D.(1)点D的横坐标为m+2(用户含m的代数式表示).(2)当CD=时,求反比例函数所对应的函数表达式.【解答】解:(1)∵A(m,4),AB⊥x轴于点B,∴B的坐标为(m,0),∵将点B向右平移2个单位长度得到点C,∴点C的坐标为:(m+2,0),∵CD∥y轴,∴点D的横坐标为:m+2;故答案为:m+2;(2)∵CD∥y轴,CD=,∴点D的坐标为:(m+2,),∵A,D在反比例函数y=(x>0)的图象上,∴4m=(m+2),解得:m=1,∴点A的坐标为(1,4),∴k=4m=4,∴反比例函数的解析式为:y=.20.(7分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B 处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.【解答】解:由题意得:BE=,AE=,∵AE﹣B E=AB=m米,∴﹣=m(米),∴CE=(米),∵DE=n米,∴CD=+n(米).∴该建筑物的高度为:(+n)米.21.(8分)为了了解成都市初中学生“数学核心素养”的掌握情况,教育科学院命题教师赴某校初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分160 分)分为 5 组:第一组85~100;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了该年级多少名学生?成绩为第五组的有多少名学生?(2)针对考试成绩情况,现各组分别派出1名代表(分别用A、B、C、D、E 表示5个小组中选出来的同学),命题教师从这5名同学中随机选出两名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名同学刚好来自第一、五组的概率.【解答】解:(1)本次调查的学生总数为20÷40%=50(名),成绩在第5组的学生人数为50﹣(4+8+20+14)=4(人);(2)画树状图如下:由树状图知,共有20种等可能结果,其中所选两名同学刚好来自第一、五组的情况有2种结果,所以所选两名同学刚好来自第一、五组的概率为.22.(8分)如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画圆,P是⊙O上一动点且在第一象限内,过点P作⊙O的切线,与x、y轴分别交于点A、B.(1)求证:△OBP与△OPA相似;(2)当点P为AB中点时,求出P点坐标;(3)在⊙O上是否存在一点Q,使得以Q,O,A、P为顶点的四边形是平行四边形.若存在,试求出Q点坐标;若不存在,请说明理由.【解答】解:(1)证明:∵AB是过点P的切线,∴AB⊥OP,∴∠OPB=∠OPA=90°;(1分)∴在Rt△OPB中,∠1+∠3=90°,又∵∠BOA=90°∴∠1+∠2=90°,∴∠2=∠3;(1分)在△OPB中△APO中,∴△OPB∽△APO.(2分)(2)∵OP⊥AB,且PA=PB,∴OA=OB,∴△AOB是等腰三角形,∴OP是∠AOB的平分线,∴点P到x、y轴的距离相等;(1分)又∵点P在第一象限,∴设点P(x,x)(x>0),∵圆的半径为2,∴OP=,解得x=或x=﹣(舍去),(2分)∴P点坐标是(,).(1分)(3)存在;①如图设OAPQ为平行四边形,∴PQ∥OA,OQ∥PA;∵AB⊥OP,∴OQ⊥OP,PQ⊥OB,∴∠POQ=90°,∵OP=OQ,∴△POQ是等腰直角三角形,∴OB是∠POQ的平分线且是边PQ上的中垂线,∴∠BOQ=∠BOP=45°,∴∠AOP=45°,设P(x,x)、Q(﹣x,x)(x>0),(2分)∵OP=2代入得,解得x=,∴Q点坐标是(﹣,);(1分)②如图示OPAQ为平行四边形,同理可得Q点坐标是(,﹣).(1分)23.(10分)某农场要建一个长方形ABCD的养鸡场,鸡场的一边靠墙,(墙长25m)另外三边用木栏围成,木栏长40m.(1)若养鸡场面积为168m2,求鸡场垂直于墙的一边AB的长.(2)请问应怎样围才能使养鸡场面积最大?最大的面积是多少?【解答】解:(1)设鸡场垂直于墙的一边AB的长为x米,则x(40﹣2x)=168,整理得:x2﹣20x+84=0,解得:x1=14,x2=6,∵墙长25m,∴0≤BC≤25,即0≤40﹣2x≤25,解得:7.5≤x≤20,∴x=14.答:鸡场垂直于墙的一边AB的长为14米.(2)围成养鸡场面积为S米2,则S=x(40﹣2x)=﹣2x2+40x=﹣2(x2﹣20x)=﹣2(x2﹣20x+102)+2×102=﹣2(x﹣10)2+200,∵﹣2(x﹣10)2≤0,∴当x=10时,S有最大值200.即鸡场垂直于墙的一边AB的长为10米时,围成养鸡场面积最大,最大值200米2.24.(10分)阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD 均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择A或B题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=或(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=b或b(用含m,n,b的式子表示).【解答】解:(1)∵点H是AD的中点,∴AH=AD,∵正方形AEOH∽正方形ABCD,∴相似比为:==;故答案为:;(2)在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD与△ABC相似的相似比为:=,故答案为:;(3)A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,∴a=b;故答案为:②每个小矩形都是全等的,则其边长为b和a,则b:a=a:b,∴a=b;故答案为:B、①如图2,由①②可知纵向2块矩形全等,横向3块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a=a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD解得FD=,∴AF=a﹣=,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:或;②如图3,由①②可知纵向m块矩形全等,横向n块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:b或b.25.(12分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M (1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H最新原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,∴y=2x﹣2,则,得ax2+(a﹣2)x﹣2a+2=0,∴(x﹣1)(ax+2a﹣2)=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),∵a<b,即a<﹣2a,∴a<0,如图1,设抛物线对称轴交直线于点E,∵抛物线对称轴为x=﹣=﹣,∴E(﹣,﹣3),∵M (1,0),N (﹣2,﹣6),设△DMN 的面积为S ,∴S=S △DEN +S △DEM =|(﹣2)﹣1|•|﹣﹣(﹣3)|=,(3)当a=﹣1时,抛物线的解析式为:y=﹣x 2﹣x +2=﹣(x ﹣)2+, 有, ﹣x 2﹣x +2=﹣2x ,解得:x 1=2,x 2=﹣1,∴G (﹣1,2),∵点G 、H 最新原点对称,∴H (1,﹣2),设直线GH 平移后的解析式为:y=﹣2x +t ,﹣x 2﹣x +2=﹣2x +t ,x 2﹣x ﹣2+t=0,△=1﹣4(t ﹣2)=0, t=,当点H 平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x +t ,t=2,∴当线段GH 与抛物线有两个不同的公共点,t 的取值范围是2≤t <.。
2021年九年级中考模拟考试数 学 试 题一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.(3分)2-的相反数是( )A .12-B .12C .2D .2-2.(3分)下列运算正确的是( )A .236a a a =B .222()a b a b +=+C .33(2)8a a -=-D .224a a a +=3.(3分)下列二次根式中与2是同类二次根式的是( )A .12B .32C .23D .184.(3分)如图,将直尺与三角尺叠放在一起,如果128∠=︒,那么2∠的度数为( )A .62︒B .56︒C .28︒D .72︒5.(3分)多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( )A .极差是47B.众数是42C.中位数是58D.每月阅读数量超过40的有4个月6.(3分)春节燃放爆竹是中华民族辞旧迎新的习俗,然而因春节期间全国各地雾霾天气频现,各地纷纷出台禁止燃放烟花爆竹的通知,如图所示的是一种爆竹的示意图,则爆竹的俯视图是()A.B.C.D.7.(3分)若关于x的分式方程21mx x=-有正整数解,则整数m的值是()A.3B.5C.3或5D.3或48.(3分)如图,在平面直角坐标系中,Q是直线122y x=-+上的一个动点,将Q绕点(1,0)P顺时针旋转90︒,得到点Q',连接OQ',则OQ'的最小值为()A 45B5C52D65二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程)9.(32x-x的取值范围是.10.(3分)若点(,2)M a和(1,)N b关于原点对称,则a b+的值是.11.(3分)已知方程组2425x yx y+=⎧⎨-=-⎩,则3x y+的值为.12.(3分)点(,)P a b在函数32y x=+的图象上,则代数式621a b-+的值等于.13.(3分)已知圆锥的底面圆半径是1,母线是3,则圆锥的侧面积是 . 14.(3分)如图,四边形ABCD 内接于O ,AB 为O 的直径,点C 为弧BD 的中点,若40DAB ∠=︒,则ABC ∠= .15.(3分)如图,在扇形AOB 中,90AOB ∠=︒,AC BC =,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为42时,则阴影部分的面积为 .16.(3分)如图,以点(0,1)C 为位似中心,将ABC ∆按相似比1:2缩小,得到DEC ∆,则点(1,1)A -的对应点D 的坐标为 .17.(3分)如图所示,已知1(1,)A y ,2(3,)B y 为反比例函数1y x=图象上的两点,动点(,0)P x 在x 轴正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是 .18.(3分)如图,已知ABC ∆中,90ACB ∠=︒,4AC =,3BC =.点M 是线段CB 上一动点,过点M 作MN AM ⊥交AB 于点N ,当点M 从点C 运动到点B 的过程中,点N 经过的路径长是 .三、解答题(共10小题,满分96分)19.(8分)计算或化简:(1)020171(32)(1)sin 452---+-︒;(2)先化简,再求值:21(1)11a a a -÷+-,其中51a =+. 20.(8分)解不等式组2102323x x x +>⎧⎪-+⎨⎪⎩并在数轴上表示解集. 21.(8分)为了解同学们对垃圾分类知识的知晓情况,我区某校环保社团的同学们进行了抽样调查,对收集的信息进行整理,绘制了如图两幅尚不完整的统计图.请你根据统计图所提供的数据,解答下列问题:图中A 表示“很了解”, B 表示“了解”, C 表示“一般”, D 表示“不了解”.(1)被调查的总人数是 人,补全频数分布直方图;(2)扇形统计图中C 部分所对应的扇形圆心角的度数为 ;(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中B 类有多少人.22.(8分)如图是某教室里日光灯的四个控制开关(分别记为A 、B 、C 、)D ,每个开关分别控制一排日光灯(开关序号与日光灯的排数序号不一定一致).某天上课时,王老师在完全不知道哪个开关对应控制哪排日光灯的情况下先后随机按下两个开关.(1)王老师按下第一个开关恰好能打开第一排日光灯的概率是 ;(2)王老师按下两个开关恰好能打开第一排与第三排日光灯的概率是多少?请用列表法或画树状图法加以分析.23.(10分)为迎接今年的植树节,某乡村进行了持续多天的植树活动.计划在规定期限植树4000棵,由于志愿者的支援,工作效率提高了20%,结果提前3天完成,并且多植树80棵,求规定期限.24.(10分)如图,菱形ABCD的对角线AC,BD相交于点O,60ABC∠=︒,过点B作AC的平行线交DC的延长线于点E.(1)求证:四边形ABEC为菱形;(2)若6AB=,连接OE,求OE的值.25.(10分)如图,ABC∆中,AB AC=,点D为BC上一点,且AD DC=,过A,B,D三点作O,AE是O的直径,连接DE.(1)求证:AC是O的切线;(2)若4sin5C=,6AC=,求O的直径.26.(10分)定义:有一组对边相等且这一组对边所在直线互相垂直的凸四边形叫做“等垂四边形”.(1)如图①,四边形ABCD 与四边形AEEG 都是正方形,135180AEB ︒<∠<︒,求证:四边形BEGD 是“等垂四边形”;(2)如图②,四边形ABCD 是“等垂四边形”, AD BC ≠,连接BD ,点E ,F ,G 分别是AD ,BC ,BD 的中点,连接EG ,FG ,EF .试判定EFG ∆的形状,并证明;(3)如图③,四边形ABCD 是“等垂四边形”, 4AD =,6BC =,试求边AB 长的最小值.27.(12分)将正方形ABCD 的边AB 绕点A 逆时针旋转至AB ',记旋转角为α.连接BB ',过点D 作DE 垂直于直线BB ',垂足为点E ,连接DB ',CE ,(1)如图1,当60α=︒时,DEB '∆的形状为 ,连接BD ,可求出BB CE'的值为 ; (2)当0360α︒<<︒且90α≠︒时.①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B ',E ,C ,D 为顶点的四边形是平行四边形时,请求出BE B E '的值.28.(12分)已知二次函数2(2)y x a x a =-++的图象为C .(1)当4a =时,图象的顶点坐标为 ;(2)求证:不论a 为任何实数,图象C 恒过定点P ,并出点P 的坐标;(3)设图象C 的顶点为M ,图象C 与x 轴的两个交点为A ,B ,()i 求证:ABM ∆不可能是钝角三角形;()ii若2(其中点P为(2)中的定点),求实数a的值.AP BP参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.(3分)2-的相反数是( )A .12-B .12C .2D .2-【解答】解:20-<,2∴-相反数是2.故选:C .2.(3分)下列运算正确的是( )A .236a a a =B .222()a b a b +=+C .33(2)8a a -=-D .224a a a +=【解答】解:A 、235a a a =,原计算错误,故此选项不符合题意;B 、222()2a b a ab b +=++,原计算错误,故此选项不符合题意;C 、33(2)8a a -=-,原计算正确,故此选项符合题意;D 、2222a a a +=,原计算错误,故此选项不符合题意.故选:C .3.(3是同类二次根式的是( )A B C D【解答】解:A 的被开方数不同,不是同类二次根式,故A 选项错误;B 、B 选项错误;C 、C 选项错误;D D 选项正确.故选:D .4.(3分)如图,将直尺与三角尺叠放在一起,如果128∠=︒,那么2∠的度数为( )A.62︒B.56︒C.28︒D.72︒【解答】解:如图,标注字母,由题意可得:90DAC BAC∠=∠-∠=︒,∠=︒,162BACEF AD,//∴∠=∠=︒,DAC262故选:A.5.(3分)多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.极差是47B.众数是42C.中位数是58D.每月阅读数量超过40的有4个月【解答】解:A、极差为:832855-=,故本选项错误;B 、58出现的次数最多,是2次,∴众数为:58,故本选项错误;C 、中位数为:(5858)258+÷=,故本选项正确;D 、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误; 故选:C .6.(3分)春节燃放爆竹是中华民族辞旧迎新的习俗,然而因春节期间全国各地雾霾天气频现,各地纷纷出台禁止燃放烟花爆竹的通知,如图所示的是一种爆竹的示意图,则爆竹的俯视图是( )A .B .C .D .【解答】解:从上面看,是一个有圆心的圆,故选:B .7.(3分)若关于x 的分式方程21m x x =-有正整数解,则整数m 的值是( ) A .3 B .5C .3或5D .3或4 【解答】解:解分式方程,得2m x m =-, 经检验,2m x m =-是分式方程的解, 因为分式方程有正整数解,则整数m 的值是3或4.故选:D .8.(3分)如图,在平面直角坐标系中,Q 是直线122y x =-+上的一个动点,将Q 绕点(1,0)P 顺时针旋转90︒,得到点Q ',连接OQ ',则OQ '的最小值为( )A 45B 5C 52D 65【解答】解:作QM x ⊥轴于点M ,Q N x '⊥轴于N ,90PMQ PNQ QPQ ∠=∠'=∠'=︒,QPM NPQ PQ N NPQ ∴∠+∠'=∠'+∠',QPM PQ N ∴∠=∠'在PQM ∆和△Q PN '中,90PMQ PNQ QPM PQ NPQ PQ ∠=∠'=︒⎧⎪∠=∠'⎨⎪='⎩PQM ∴∆≅△()Q PN AAS ',PN QM ∴=,Q N PM '=, 设1(,2)2Q m m -+, |1|PM m ∴=-,1|2|2QM m =-+, 1|3|2ON m ∴=-, 1(32Q m ∴'-,1)m -, 22222155(3)(1)510(2)5244OQ m m m m m ∴'=-+-=-+=-+, 当2m =时,2OQ '有最小值为5,OQ ∴'5,故选:B .二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程)9.(32x-x的取值范围是2x.【解答】解:由题意得:20x-,解得:2x,故答案为:2x.10.(3分)若点(,2)M a和(1,)N b关于原点对称,则a b+的值是3-.【解答】解:点(,2)M a和(1,)N b关于原点对称,1a∴=-,2b=-,123a b∴+=--=-.故答案为:3-.11.(3分)已知方程组2425x yx y+=⎧⎨-=-⎩,则3x y+的值为9.【解答】解:2425x yx y+=⎧⎨-=-⎩①②,①-②得,39x y+=.故答案为:9.12.(3分)点(,)P a b在函数32y x=+的图象上,则代数式621a b-+的值等于3-.【解答】解:点(,)P a b在函数32y x=+的图象上,32b a∴=+,则32a b-=-.6212(3)1413a b a b∴-+=-+=-+=-,故答案为3-.13.(3分)已知圆锥的底面圆半径是1,母线是3,则圆锥的侧面积是3π.【解答】解:圆锥的底面圆半径是1,∴圆锥的底面圆的周长2π=,则圆锥的侧面积12332ππ=⨯⨯=, 故答案为:3π.14.(3分)如图,四边形ABCD 内接于O ,AB 为O 的直径,点C 为弧BD 的中点,若40DAB ∠=︒,则ABC ∠= 70︒ .【解答】解:连接AC ,点C 为弧BD 的中点,1202CAB DAB ∴∠=∠=︒, AB 为O 的直径,90ACB ∴∠=︒,70ABC ∴∠=︒,故答案为:70︒.15.(3分)如图,在扇形AOB 中,90AOB ∠=︒,AC BC =,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为42时,则阴影部分的面积为 816π- .【解答】解:在扇形AOB 中90AOB ∠=︒,且AC BC =,45COD ∴∠=︒,4228OC ∴=,ODC BOC S S S ∆∴=-阴影扇形224581(42)3602π⨯=-⨯ 816π=-.故答案为:816π-.16.(3分)如图,以点(0,1)C 为位似中心,将ABC ∆按相似比1:2缩小,得到DEC ∆,则点(1,1)A -的对应点D 的坐标为 1(2-,2) .【解答】解:把ABC ∆向下平移1个单位得到A 点的对应点的坐标为(1,2)-,点(1,2)-以原点为位似中心,在位似中心两侧的对应点的坐标为1(2-,1),把点1(2-,1)先上平移1个单位得到1(2-,2), 所以D 点坐标为1(2-,2). 故答案为1(2-,2). 17.(3分)如图所示,已知1(1,)A y ,2(3,)B y 为反比例函数1y x=图象上的两点,动点(,0)P x 在x 轴正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是 (4,0) .【解答】解:把1(1,)A y ,2(3,)B y 代入1y x =得11y =,213y =,则A 点坐标为(1,1),B 点坐标为1(3,)3, 设直线AB 的解析式为y kx b =+,把(1,1)A ,1(3,)3B 代入得1133k b k b +=⎧⎪⎨+=⎪⎩,解得1343k b ⎧=-⎪⎪⎨⎪=⎪⎩, 所以直线AB 的解析式为1433y x =-+, 因为||PA PB AB -,所以当点P 为直线AB 与x 轴的交点时,线段AP 与线段BP 之差达到最大,把0y =代入1433y x =-+得14033x -+=,解得4x =, 所以P 点坐标为(4,0).故答案为(4,0).18.(3分)如图,已知ABC ∆中,90ACB ∠=︒,4AC =,3BC =.点M 是线段CB 上一动点,过点M 作MN AM ⊥交AB 于点N ,当点M 从点C 运动到点B 的过程中,点N 经过的路径长是 109.【解答】解:如图,过点N 作NJ BC ⊥于J ,设BN y =,CM x =.90C ∠=︒,AC =,3BC =,2222435AB AC BC ∴=+=+=,//NJ AC ,∴BN BJ NJ AB CB AC ==, ∴534y BJ NJ ==, 35BJ y ∴=,45NJ y =, 335MJ BC CM BJ x y ∴=--=--, 90C AMN NJM ∠=∠=∠=︒,90AMC NMJ ∴∠+∠=︒,90NMJ MNJ ∠+∠=︒,AMC MNJ ∴∠=∠,ACM MJN ∴∆∆∽, ∴AC CM MJ NJ=, ∴434355x x y y =--, 2316(3)055x y x y ∴+-+=, △0,2364(3)055y y ∴--, 294102250y y ∴-+,(95)(45)0y y ∴--, 59y ∴或45y , 45y 不符合题意, 59y ∴, BN ∴的最大值为59, 当点M 从点C 运动到点B 的过程中,点N 经过的路径长是2倍的BN 的最大值, ∴点N 经过的路径长是109, 故答案为:109. 三、解答题(共10小题,满分96分)19.(8分)计算或化简:(1)020172)(1)sin 45--+︒; (2)先化简,再求值:21(1)11a a a -÷+-,其中1a =. 【解答】(1)原式11=+ 2=; (2)原式2111()11a a a a a+-=-⋅-+(1)(1)1a a a a a +-=⋅+ 1a =-, 当51a =+时,原式5115=+-=.20.(8分)解不等式组2102323x x x +>⎧⎪-+⎨⎪⎩并在数轴上表示解集.【解答】解:解不等式210x +>,得:12x >-, 解不等式2323xx -+,得:0x , 则不等式组的解集为102x -<, 将不等式组的解集表示在数轴上如下:21.(8分)为了解同学们对垃圾分类知识的知晓情况,我区某校环保社团的同学们进行了抽样调查,对收集的信息进行整理,绘制了如图两幅尚不完整的统计图.请你根据统计图所提供的数据,解答下列问题:图中A 表示“很了解”, B 表示“了解”, C 表示“一般”, D 表示“不了解”.(1)被调查的总人数是 50 人,补全频数分布直方图;(2)扇形统计图中C 部分所对应的扇形圆心角的度数为 ;(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中B 类有多少人.【解答】解:(1)因为被调查的总人数是510%50÷=(人),所以50530510---=(人),补全的频数分布直方图如下:故答案为:50;(2)3036021650︒⨯=︒;答:扇形统计图中C部分所对应的扇形圆心角的度数为216︒;故答案为:216︒;(3)503010180036050--⨯=人.答:该校1800名学生中B类有360人.22.(8分)如图是某教室里日光灯的四个控制开关(分别记为A、B、C、)D,每个开关分别控制一排日光灯(开关序号与日光灯的排数序号不一定一致).某天上课时,王老师在完全不知道哪个开关对应控制哪排日光灯的情况下先后随机按下两个开关.(1)王老师按下第一个开关恰好能打开第一排日光灯的概率是14;(2)王老师按下两个开关恰好能打开第一排与第三排日光灯的概率是多少?请用列表法或画树状图法加以分析.【解答】解:(1)由题意可知王老师按下第一个开关恰好能打开第一排日光灯的概率为14,故答案为:14;(2)画树状图如下:所有出现的等可能性结果共有12种,其中满足条件的结果有2种.P∴(两个开关恰好能打开第一排与第三排日光灯)21 126==.23.(10分)为迎接今年的植树节,某乡村进行了持续多天的植树活动.计划在规定期限植树4000棵,由于志愿者的支援,工作效率提高了20%,结果提前3天完成,并且多植树80棵,求规定期限.【解答】解:设规定期限为x天,则实际(3)x-天完成植树任务,依题意得:4000804000(120%)3x x+=+⨯-,解得:20x=,经检验,20x=是原方程的解,且符合题意.答:规定期限为20天.24.(10分)如图,菱形ABCD的对角线AC,BD相交于点O,60ABC∠=︒,过点B作AC的平行线交DC的延长线于点E.(1)求证:四边形ABEC为菱形;(2)若6AB=,连接OE,求OE的值.【解答】解:(1)菱形ABCD,AB BC∴=,//AB DE,//BE AC,∴四边形ABEC为平行四边形,AB BC=,60ABC∠=︒,ABC∴∆为等边三角形,AB AC∴=,∴平行四边形ABEC 为菱形;(2)6AB =,60ABC ∠=︒,ABC ∆为等边三角形,30OBC ∴∠=︒,33OB =, 306090OBE ∴∠=︒+︒=︒,2222(33)66337OE OB BE ∴=+=+==.25.(10分)如图,ABC ∆中,AB AC =,点D 为BC 上一点,且AD DC =,过A ,B ,D 三点作O ,AE 是O 的直径,连接DE .(1)求证:AC 是O 的切线;(2)若4sin 5C =,6AC =,求O 的直径.【解答】(1)证明:AB AC =,AD DC =, C B ∴∠=∠,1C ∠=∠,1B ∴∠=∠,又E B ∠=∠,1E ∴∠=∠,AE 是O 的直径,90ADE ∴∠=︒,90E EAD ∴∠+∠=︒,190EAD ∴∠+∠=︒,即90EAC ∠=︒,AE AC ∴⊥,AC ∴是O 的切线;(2)解:过点D 作DF AC ⊥于点F ,如图, DA DC =,132CF AC ∴==, 在Rt CDF ∆中,4sin 5DF C DC ==, 设4DF x =,5DC x =,223CF CD DF x ∴=-=,33x ∴=,解得1x =,5DC ∴=,5AD ∴=,90ADE DFC ∠=∠=︒,E C ∠=∠,ADE DFC ∴∆∆∽,∴AE AD DC DF =,即554AE =,解得254AE =, 即O 的直径为254.26.(10分)定义:有一组对边相等且这一组对边所在直线互相垂直的凸四边形叫做“等垂四边形”.(1)如图①,四边形ABCD 与四边形AEEG 都是正方形,135180AEB ︒<∠<︒,求证:四边形BEGD 是“等垂四边形”;(2)如图②,四边形ABCD 是“等垂四边形”, AD BC ≠,连接BD ,点E ,F ,G 分别是AD ,BC ,BD 的中点,连接EG ,FG ,EF .试判定EFG ∆的形状,并证明;(3)如图③,四边形ABCD 是“等垂四边形”, 4AD =,6BC =,试求边AB 长的最小值.【解答】解:(1)如图①,延长BE ,DG 交于点H ,四边形ABCD 与四边形AEFG 都为正方形,AB AD ∴=,AE AG =,90BAD EAG ∠=∠=︒.BAE DAG ∴∠=∠.()ABE ADG SAS ∴∆≅∆.BE DG ∴=,ABE ADG ∠=∠.90ABD ADB ∠+∠=︒,90ABE EBD ADB DBE ADB ADG ∴∠+∠+∠=∠+∠+∠=︒,即90EBD BDG ∠+∠=︒,90BHD ∴∠=︒.BE DG ∴⊥.又BE DG =,∴四边形BEGD 是“等垂四边形”.(2)EFG ∆是等腰直角三角形.理由如下:如图②,延长BA ,CD 交于点H ,四边形ABCD 是“等垂四边形”, AD BC ≠,AB CD ∴⊥,AB CD =,90HBC HCB ∴∠+∠=︒,点E ,F ,G 分别是AD ,BC ,BD 的中点,∴12EG AB =,12GF CD =,//EG AB ,//GF DC , BFG C ∴∠=∠,EGD HBD ∠=∠,EG GF =.90EGF EGD FGD ABD DBC GFB ABD DBC C HBC HCB ∴∠=∠+∠=∠+∠+∠=∠+∠+∠=∠+∠=︒. EFG ∴∆是等腰直角三角形.(3)延长BA ,CD 交于点H ,分别取AD ,BC 的中点E ,F .连接HE ,EF ,HF ,则1132122EF HF HE BC AD -=-=-=, 由(2)可知22AB EF =.AB ∴227.(12分)将正方形ABCD 的边AB 绕点A 逆时针旋转至AB ',记旋转角为α.连接BB ',过点D 作DE 垂直于直线BB ',垂足为点E ,连接DB ',CE ,(1)如图1,当60α=︒时,DEB '∆的形状为 等腰直角三角形 ,连接BD ,可求出BB CE'的值为 ;(2)当0360α︒<<︒且90α≠︒时.①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;②当以点B ',E ,C ,D 为顶点的四边形是平行四边形时,请求出BE B E '的值.【解答】解:(1)如图1所示:四边形ABCD 是正方形,45BDC ∴∠=︒,2CD BD =90BAD ∠=︒,AB AD =, 由旋转的性质得:AB AB =',60BAB ∠'=︒,AB AD AB ∴==',ABB ∆'为等边三角形,906030B AD ∠'=︒-︒=︒,60AB B '∴∠=︒,1(18030)752AB D ∠'=︒-︒=︒, 180607545DB E '∴∠=︒-︒-︒=︒,DE BB '⊥,90DEB '∴∠=︒,45B DE '∴∠=︒,DEB '∴∆为等腰直角三角形,45BDC B DE '∴∠=∠=︒,2DE DB =', BDC B DC B DE B DC '''∴∠-∠=∠-∠,即BDB CDE '∠=∠,2CD DE BD DB ==' BDB CDE '∴∆∆∽, ∴2BB BD CE CD'==, 2;(2)①两个结论仍然成立,理由如下:连接BD ,如图2所示:由旋转的性质得:AB AB '=,BAB α'∠=,1(180)9022AB B αα∴∠'=︒-=︒-,90B AD α'∠=-︒,AD AB '=,1(18090)13522AB D αα∴∠'=︒-+︒=︒-, 135904522EB D AB D AB B αα'''∴∠=∠-∠=︒--︒+=︒,DE BB '⊥,45EDB EB D ''∴∠=∠=︒,DEB '∴∆是等腰直角三角形,∴DB DE'= 四边形ABCD 为正方形,∴BD CD =45BDC ∠=︒, ∴BD DB CD DE'=, EDB BDC '∠=∠,B DB EDC '∴∠=∠,∴△B DB EDC '∆∽,∴BB BD CE CD'==, ∴(1)中的两个结论不变,依然成立;②若以点B ',E ,C ,D 为顶点的四边形是平行四边形时,分两种情况讨论: 第一种:以CD 为边时,则//CD B E ',此时点B '在线段BA 的延长线上,如图3所示:此时点E 与点A 重合,BE CD B E ∴==', ∴1BE B E='; 第二种:当以CD 为对角线时,如图4所示:四边形CB DE '是平行四边形,12B F EF B E ∴'==',点F 为CD 中点, 2BC CD CF ∴==,DE BB '⊥,CB BB ''∴⊥,90BB C CB F ∴∠'=∠'=︒,90BCF ∠=︒,BCF CB F BB C ∴∠=∠'=∠',CBF B BC ∠=∠',BFC CFB ∠=∠',BCF ∴∆∽△CB F '∽△BB C ', ∴2BC CB BB CF B F CB ''==='', 4BB B F ''∴=,6BE B F '∴=,2B E B F ''=,∴632BE B F B E B F'=='', 综上所述,BE B E '的值为3或1.28.(12分)已知二次函数2(2)y x a x a =-++的图象为C .(1)当4a =时,图象的顶点坐标为 (3,5)- ;(2)求证:不论a 为任何实数,图象C 恒过定点P ,并出点P 的坐标;(3)设图象C 的顶点为M ,图象C 与x 轴的两个交点为A ,B ,()i 求证:ABM ∆不可能是钝角三角形;()ii 若2AP BP =(其中点P 为(2)中的定点),求实数a 的值. 【解答】解:(1)把4a =代入2(2)y x a x a =-++中,得2264(3)5y x x x =-+=--,∴二次函数2(2)y x a x a =-++的图象的顶点为(3,5)-,故答案为(3,5)-;(2)22(2)(1)(1)1y x a x a x a x =-++=-+--,∴当10x -=时,1y =-,∴当1x =时,1y =-,∴定点P 的坐标为(1,1)-;(3)()i 证明:如图,过点M 作MH x ⊥轴于H ,则90AHM ∠=︒,点M 是抛物线的顶点,MA MB ∴=,MAB MBA ∴∠=∠,12AH BH AB==,2 22222224(2)()()()2224a a a ay x a x a x a x++++ =-++=-+-=--,2(2aM+∴,24)4a+-,244aMH+∴=,设点1(A x,0),2(B x,0),令2(2)0x a x a-++=,122x x a∴+=+,12x x a=,12||AB x x∴=-在Rt AHM∆中,244tan112aMH MHBAMAH AB+∠====,20a,244a∴+,∴1,tan1BAM∴∠,45BAM∴∠︒,90ABM BAM∴∠+∠︒,90AMB∴∠︒,ABM∴∆不可能是钝角三角形;()ii由(1)知(1,1)P-,对于2(2)y x a x a=-++,设0y=,则2(2)0x a x a-++=,解得x=x=,224(2a a A +-+∴,0),224(2a a B +++,0)或224(2a a A +++,0),224(2a a B +-+,0), 2222222222424[(1)1][(1)1]422a a a a AP BP a ++++-+∴+=-++-+=+, 由()i 知,24AB a =+,224AB a ∴=+,222AP BP AB ∴+=,ABF ∴∆是以AB 为斜边的直角三角形,2AP PB =,1tan 2BP A AP ∴==, 如图,过点P 作PG x ⊥轴于G ,则1PG =,1tan 2PG A AG ∴==, 2AG ∴=,当点A 在点B 的左边时,224(a a A +-+,0), 2224412a a a a AG +-++-∴==, 32a ∴=-, 当点A 在B 的右边时,224(a a A +++0),12AG ∴=-==, 32a ∴=, a ∴的值为32±.。
中考全真模拟测试数学试卷一、选择题:1. 我市南水北调配套工程建设进展顺利,工程运行调度有序.截止2015年12月底,已累计接收南水北调来水812000000立方米.使1100余万市民喝上了南水;通过“存水”增加了约550公顷水面,密云水库蓄水量稳定在10亿立方米左右,有效减缓了地下水位下降速率.将812000000用科学记数法表示应为A. 812×106B. 81.2×107C. 8.12×108D. 8.12×1092. 下列运算正确的是()A. 3a2+5a2=8a4B. a6•a2=a12C. (a+b)2=a2+b2D. (a2+1)0=13. 如图所示的标志中,是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个4. 为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是()A. 15mB. 17mC. 20mD. 28m5. 如图,已知AB∥CD,∠A=40°,∠D=45°,则∠1的度数是( )A. 80°B. 85°C. 90°D. 95°6. 估计7+1的值( ) A. 在1和2之间B. 在2和3之间C. 3和4之间D. 在4和5之间7. 在平面直角坐标系中,点(-1,2)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限8. 已知一次函数y =kx -k ,y 随x 的增大而减小,则该函数的图像不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9. 计算8-2的结果是( )A. 6B. 6C. 2D. 210. 一个暗箱里装有10个黑球,8个红球,12个白球,每个球除颜色外都相同,从中任意摸出一球,不是白球的概率是( )A . 415B. 13C. 25D. 35 11. 如图,1l ∥2l ∥3l ,两条直线与这三条平行线分别交于点A 、B 、C 和D 、E 、F .已知32AB BC ,则DE DF 的值为( )A. 32B. 23C. 25D. 3512. 如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD 最大面积是( )A. 60 m2B. 63 m2C. 64 m2D. 66 m2二、填空题:13. 分解因式:x3y﹣2x2y+xy=______.14. 函数y=12 -x的自变量x的取值范围是_____.15. 化简221(1)11x x-÷+-的结果是.16. 某直角三角形三条边的平方和为200,则这个直角三角形的斜边长为.17. 如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为.18. 已知⊙O的半径为5,AB是⊙O的直径,D是AB延长线上一点,DC是⊙O的切线,C是切点,连接AC,若∠CAB=30°,则BD的长为____.三、计算题:19. 解方程组:3(1)4(4)05(1)3(5)x yy x---=⎧⎨-=+⎩20. 解不等式组2102323xx x+>⎧⎪-+⎨≥⎪⎩.四、解答题:21. 如图,四边形ABCD中,90,1,3A ABC AD BC︒∠=∠===,E是边CD中点,连接BE并延长与AD的延长线相较于点F.(1)求证:四边形BDFC是平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.22. 如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.23. 为了更好的治理西流湖水质,保护环境,市治污公司决定购买10 台污水处理设备.现有A、B 两种型号的设备,其中每台的价格,月处理污水量如下表:A 型B 型价格(万元/台) a b处理污水量(吨/月)240 200经调查:购买一台A 型设备比购买一台B 型设备多2 万元,购买2 台A 型设备比购买3 台B 型设备少6 万元.(1)求a,b 值;(2)经预算:市治污公司购买污水处理设备的资金不超过105 万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于2040 吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.24. 对于某一函数给出如下定义:若存在实数p,当其自变量值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q的取值范围;(3) 记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为 .答案与解析一、选择题:1. 我市南水北调配套工程建设进展顺利,工程运行调度有序.截止2015年12月底,已累计接收南水北调来水812000000立方米.使1100余万市民喝上了南水;通过“存水”增加了约550公顷水面,密云水库蓄水量稳定在10亿立方米左右,有效减缓了地下水位下降速率.将812000000用科学记数法表示应为A. 812×106B. 81.2×107C. 8.12×108D. 8.12×109【答案】C【解析】试题解析:将812000000用科学记数法表示为:8.12×108.故选C.考点:科学记数法—表示较大的数.2. 下列运算正确的是()A. 3a2+5a2=8a4B. a6•a2=a12C. (a+b)2=a2+b2D. (a2+1)0=1【答案】D【解析】试题分析:A、原式合并同类项得到结果,即可做出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用完全平方公式展开得到结果,即可做出判断;D、原式利用零指数幂法则计算得到结果,即可做出判断.解:A、原式=8a2,故A选项错误;B、原式=a8,故B选项错误;C、原式=a2+b2+2ab,故C选项错误;D、原式=1,故D选项正确.故选D.点评:此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及零指数幂,熟练掌握公式及法则是解本题的关键.3. 如图所示的标志中,是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【详解】试题分析:四个标志中是轴对称图形的有:,所以共有3个.故应选C.考点:轴对称图形4. 为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是()A. 15mB. 17mC. 20mD. 28m【答案】D【解析】试题分析:根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得16﹣12<AB<16+12,再解即可.解:根据三角形的三边关系可得:16﹣12<AB<16+12,即4<AB<28,故选D.考点:三角形三边关系.5. 如图,已知AB∥CD,∠A=40°,∠D=45°,则∠1的度数是( )A. 80°B. 85°C. 90°D. 95°【答案】B【解析】试题分析:∵AB∥CD,∴∠A=∠C=40°,∵∠1=∠D+∠C,∵∠D=45°,∴∠1=∠D+∠C=45°+40°=85°,故选B.考点:平行线的性质.6. 7+1的值()A. 在1和2之间B. 在2和3之间C. 在3和4之间D. 在4和5之间【答案】C【解析】∵7,∴7,7在在3和4之间.故选C.7. 在平面直角坐标系中,点(-1,2)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】∵点(-1,2)的横坐标为负数,纵坐标为正数,∴点(-1,2)在第二象限.故选B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8. 已知一次函数y=kx-k,y随x的增大而减小,则该函数的图像不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】解:∵一次函数y=kx﹣k的图象y随x的增大而减小,∴k<0.即该函数图象经过第二、四象限,∵k<0,∴﹣k>0,即该函数图象与y轴交于正半轴.综上所述:该函数图象经过第一、二、四象限,不经过第三象限.故选C.点睛:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b 所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.9. 的结果是( )A. 6 C. 2【答案】D【解析】-==D.考点:二次根式的加减法.10. 一个暗箱里装有10个黑球,8个红球,12个白球,每个球除颜色外都相同,从中任意摸出一球,不是白球的概率是()A.415B.13C.25D.35【答案】D【解析】1231305-=,故选D.11. 如图,1l∥2l∥3l,两条直线与这三条平行线分别交于点A、B、C和D、E、F.已知32ABBC=,则DEDF的值为()A. 32B.23C.25D.35【答案】D 【解析】试题分析:∵1l∥2l∥3l,32ABBC=,∴DEDF=ABAC=332+=35,故选D.考点:平行线分线段成比例.12. 如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD最大面积是()A. 60 m2B. 63 m2C. 64 m2D. 66 m2【答案】C【解析】试题分析:设BC=xm,表示出AB,矩形面积为ym2,表示出y与x的关系式为y=(16﹣x)x=﹣x2+16x=﹣(x﹣8)2+64,,利用二次函数性质即可求出求当x=8m时,y max=64m2,即所围成矩形ABCD的最大面积是64m2.故答案选C.考点:二次函数的应用.二、填空题:13. 分解因式:x3y﹣2x2y+xy=______.【答案】xy(x﹣1)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=xy(x2-2x+1)=xy(x-1)2.故答案为:xy (x-1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 14. 函数y=12-x x 的自变量x 的取值范围是_____. 【答案】x≤12且x≠0 【解析】【详解】根据题意得x≠0且1﹣2x≥0,所以12x ≤且0x ≠. 故答案为12x ≤且0x ≠. 15. 化简221(1)11x x -÷+-的结果是 . 【答案】(x-1)2.【解析】试题解析:原式=11x x -+•(x+1)(x-1) =(x-1)2.考点:分式的混合运算.16. 某直角三角形三条边的平方和为200,则这个直角三角形的斜边长为 .【答案】10.【解析】解:∵一个直角三角形的三边长的平方和为200,∴斜边长的平方为100,则斜边长为:10.故答案为10. 17. 如图,△ABC 中,AB=AC=10,BC=8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长为 .【答案】14.【解析】试题解析:∵AB=AC ,AD 平分∠BAC ,BC=8,∴AD⊥BC,CD=BD=12BC=4,∵点E为AC的中点,∴DE=CE=12AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.18. 已知⊙O的半径为5,AB是⊙O的直径,D是AB延长线上一点,DC是⊙O的切线,C是切点,连接AC,若∠CAB=30°,则BD的长为____.【答案】5.【解析】解:连接OC,BC.∵AB是圆O的直径,DC是圆O的切线,C是切点,∴∠ACB=∠OCD=90°.∵∠CAB=30°,∴∠COD=2∠A=60°,∴OD=2OC=10,∴BD=OD-OB=10-5=5.故答案为5.三、计算题:19. 解方程组:3(1)4(4)0 5(1)3(5)x yy x---=⎧⎨-=+⎩【答案】x=5,y=7.【解析】试题分析:先把组中的方程化简后,再求方程组的解.试题解析:解:原方程化简得:3413 5320x yy x-=-⎧⎨-=⎩①②①+②,得:y=7,把y=7代入①,得:x=5,所以原方程组的解为:57 xy=⎧⎨=⎩.20. 解不等式组210 23 23xx x+>⎧⎪-+⎨≥⎪⎩.【答案】﹣0.5<x≤0.【解析】【分析】先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【详解】解:2102323xx x+>⎧⎪⎨-+≥⎪⎩①②由①得:x>﹣0.5,由②得:x≤0,则不等式组的解集是﹣0.5<x≤0.【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.四、解答题:21. 如图,四边形ABCD中,90,1,3A ABC AD BC︒∠=∠===,E是边CD的中点,连接BE并延长与AD的延长线相较于点F.(1)求证:四边形BDFC平行四边形;(2)若△BCD是等腰三角形,求四边形BDFC的面积.【答案】(1)见解析;(2)2或35【解析】【分析】(1)根据平行线的性质和中点的性质证明三角形全等,然后根据对角线互相平分的四边形是平行四边形完成证明;(2)由等腰三角形的性质,分三种情况:①BD=BC,②BD=CD,③BC=CD,分别求四边形的面积.【详解】解:(1)证明:∵∠A=∠ABC=90°∴AF∥BC∴∠CBE=∠DFE,∠BCE=∠FDE∵E是边CD的中点∴CE=DE∴△BCE≌△FDE(AAS)∴BE=EF∴四边形BDFC是平行四边形(2)若△BCD是等腰三角形①若BD=BC=3 在Rt△ABD中,AB=229122BD AD-=-=∴四边形BDFC的面积为S=22×3=62;②若BC=DC=3 过点C作CG⊥AF于G,则四边形AGCB是矩形,所以,AG=BC=3,所以,DG=AG-AD=3-1=2,在Rt△CDG中,由勾股定理得,2222325CG CD DG=-=-=∴四边形BDFC的面积为S=35③BD=CD时,BC边上的中线应该与BC垂直,从而得到BC=2AD=2,矛盾,此时不成立;综上所述,四边形BDFC的面积是2或35【点睛】本题考查了平行四边形的判定与性质,等腰三角形的性质,全等三角形的判定与性质,(1)确定出全等三角形是解题的关键,(2)难点在于分情况讨论.22. 如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.(1)求证:AE=BE;(2)求证:FE是⊙O的切线;(3)若FE=4,FC=2,求⊙O的半径及CG的长.【答案】(1)详见解析;(2)详见解析;(3)6 5 .【解析】(1)证明:连接CE,如图1所示:∵BC是直径,∴∠BEC=90°,∴CE⊥AB;又∵AC=BC,∴AE=BE.(2)证明:连接OE,如图2所示:∵BE=AE,OB=OC,∴OE是△ABC的中位线,∴OE∥AC,AC=2OE=6.又∵EG⊥AC,∴FE⊥OE,∴FE是⊙O的切线.(3)解:∵EF是⊙O的切线,∴FE2=FC•FB.设FC=x,则有2FB=16,∴FB=8,∴BC=FB﹣FC=8﹣2=6,∴OB=OC=3,即⊙O的半径为3;∴OE=3.∵OE∥AC,∴△FCG∽△FOE,∴CG FCOE FO=,即2323CG=+,解得:CG=65.点睛:本题利用了等腰三角形三线合一定理,三角形中位线的判定,切割线定理,以及勾股定理,还有平行线分线段成比例定理,切线的判定等知识.23. 为了更好的治理西流湖水质,保护环境,市治污公司决定购买10 台污水处理设备.现有A、B 两种型号的设备,其中每台的价格,月处理污水量如下表:A 型B 型价格(万元/台) a b处理污水量(吨/月)240 200经调查:购买一台A 型设备比购买一台B 型设备多2 万元,购买2 台A 型设备比购买3 台B 型设备少6 万元.(1)求a,b 的值;(2)经预算:市治污公司购买污水处理设备的资金不超过105 万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理西流湖的污水量不低于2040 吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.【答案】(1)1210ab==⎧⎨⎩;(2)①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台. ;(3)为了节约资金,应选购A型设备1台,B型设备9台.【解析】【分析】(1)根据“购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元”即可列出方程组,继而进行求解;(2)可设购买污水处理设备A型设备x台,B型设备(10-x)台,则有12x+10(10-x)≤105,解之确定x 的值,即可确定方案;(3)因为每月要求处理流溪河两岸的污水量不低于2040吨,所以有240x+200(10-x)≥2040,解之即可由x的值确定方案,然后进行比较,作出选择.【详解】(1)根据题意得:2326a bb a-=-=⎧⎨⎩,∴1210ab==⎧⎨⎩;(2)设购买污水处理设备A型设备x台,B型设备(10−x)台,则:12x+10(10−x)⩽105,∴x⩽2.5,∵x取非负整数,∴x=0,1,2,∴有三种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台.(3)由题意:240x+200(10−x)⩾2040,∴x⩾1,又∵x⩽2.5,x取非负整数,∴x为1,2.当x=1时,购买资金为:12×1+10×9=102(万元),当x=2时,购买资金为:12×2+10×8=104(万元),∴为了节约资金,应选购A型设备1台,B型设备9台.【点睛】此题考查一元一次不等式的应用,二元一次方程组的应用,解题关键在于理解题意列出方程.24. 对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q取值范围;(3) 记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为 .【答案】详见解析.【解析】试题分析:(1)根据定义分别求解即可求得答案;(2)①首先由函数y=2x2﹣bx=x,求得x(2x﹣b﹣1)=0,然后由其不变长度为零,求得答案;②由①,利用1≤b≤3,可求得其不变长度q的取值范围;(3)由记函数y=x2﹣2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,可得函数G的图象关于x=m对称,然后根据定义分别求得函数的不变值,再分类讨论即可求得答案.试题解析:解:(1)∵函数y=x﹣1,令y=x,则x﹣1=x,无解;∴函数y=x﹣1没有不变值;∵y=x-1 =1x,令y=x,则1xx=,解得:x=±1,∴函数1yx=的不变值为±1,q=1﹣(﹣1)=2.∵函数y=x2,令y=x,则x=x2,解得:x1=0,x2=1,∴函数y=x2的不变值为:0或1,q=1﹣0=1;(2)①函数y=2x2﹣bx,令y=x,则x=2x2﹣bx,整理得:x(2x﹣b﹣1)=0.∵q=0,∴x=0且2x﹣b﹣1=0,解得:b=﹣1;②由①知:x(2x﹣b﹣1)=0,∴x=0或2x﹣b﹣1=0,解得:x 1=0,x 2=12b +.∵1≤b ≤3,∴1≤x 2≤2,∴1﹣0≤q ≤2﹣0,∴1≤q ≤2; (3)∵记函数y =x 2﹣2x (x ≥m )的图象为G 1,将G 1沿x =m 翻折后得到的函数图象记为G 2,∴函数G 的图象关于x =m 对称,∴G :y =22)22()(2(2)()m x x x x m m x x m -⎧-≥⎨--<⎩ .∵当x 2﹣2x =x 时,x 3=0,x 4=3; 当(2m ﹣x )2﹣2(2m ﹣x )=x 时,△=1+8m ,当△<0,即m <﹣18时,q =x 4﹣x 3=3;当△≥0,即m ≥﹣18时,x 5x 6 ①当﹣18≤m ≤0时,x 3=0,x 4=3,∴x 6<0,∴x 4﹣x 6>3(不符合题意,舍去); ②∵当x 5=x 4时,m =1,当x 6=x 3时,m =3;当0<m <1时,x 3=0(舍去),x 4=3,此时0<x 5<x 4,x 6<0,q =x 4﹣x 6>3(舍去);当1≤m ≤3时,x 3=0(舍去),x 4=3,此时0<x 5<x 4,x 6>0,q =x 4﹣x 6<3;当m >3时,x 3=0(舍去),x 4=3(舍去),此时x 5>3,x 6<0,q =x 5﹣x 6>3(舍去);综上所述:m 的取值范围为1≤m ≤3或m <﹣18. 点睛:本题属于二次函数的综合题,考查了二次函数、反比例函数、一次函数的性质以及函数的对称性.注意掌握分类讨论思想的应用是解答此题的关键.。
2021年温岭市初中毕业升学模拟考试数学试卷亲爱的考生:欢迎参加考试!请你认真审题,仔细答題,发挥最佳水平.答题时,请注意以下几点:1.全卷共4页,满分150分,考试时间120分钟.2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上无效. 3.答题前,请认真阅读答题纸上的《注意事项》,按规定答题. 4.本次考试不得使用计算器,请耐心解答.祝你成功!一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.下列各数中,位于1-到0之间的是() A .2- B .0.5- C .0.5 D .12.新疆棉以绒长、品质好、产量高著称于世,2020年度新疆棉产量520万吨,数据5200000用科学计数法可以表示为()A .70.5210⨯B .65.210⨯C .55210⨯D .452010⨯ 3.下列计算中,正确的是()A .33a a ÷=B .23a a a += C .()235aa = D .426a a a ⋅=4.小明同学分5次测得某条线段的长度为4.9cm 5.0cm 5.0cm 5.1cm 5.2cm ,,,,,记录时把最后一个数据5.2cm 错写成了5.1cm ,则这组数据的以下统计量不受影响的是()A .平均数B .方差C .众数D .中位数 5.正n 边形的一个外角为30︒,则n =() A .9 B .10 C .12 D .146.如图,////,AB CD EF AF 与BE 相交于点G ,且2,1,5AG GD DF ===,则:BC CE =()A .3:5B .1:3C .5:3D .2:37.用一块彩泥制作圆柱体(无剩余无浪费),则圆柱的高h 关于底面面积S 的函数图象可能为()A .B .C .D .8.将矩形纸片ABCD 按如图方式折叠,若DFG 刚好是等边三角形,则矩形的两边,AD AB 的比为()A .2:1BC .2: D9.如图,某函数图象由双曲线(0)ky k x=≠上点(1,2)C --左侧部分和射线AB (不含端点A )组成,点A 与点C 关于x 轴对称,射线AB 交y 轴于点(0,1)B ,则下列关于此函数性质描述正确..的是()A .最大值为2B .y 随x 的增大而减小C .当1y =-时,2x =-D .当1x 时,22y -< 10.台州1S 轻轨在紧张施工中,现在已开始隧道挖掘作业,如图1,圆弧形混凝土管片是构成圆形隧道的重要部件,如图2,有一圆弧形混凝土管片放置在水平地面上,底部用两个完全相同的长方体木块固定,为估计隧洞开挖面的大小,甲、乙两个小组对相关数据进行测量,方案如右表,利用数据能够估算隧道外径大小的小组是()A .甲小组B .乙小组C .两组都可以D .两组测量数据都不足二、填空题(本题有6小题,每小题5分,共30分)11.函数13y x =-中,自变量x 的取值范围为_________. 12.圆锥的底面半径为3,母线长为5,则这个圆锥的侧面积为_______.13.从甲、乙、丙三位志愿者中随机选出两位去敬老院献爱心,则甲被选中的概率是______.14.如图,已知26ABC D ∠=︒,是BC 上一点,分别以B D ,为圆心,相等的长为半径画弧,两弧相交于点F G ,,连结FG 交AB 于点E ,连结ED ,则DEA ∠=________︒.15.某水果量贩店出售一批菠萝蜜,分两种销售方式:小李买了一整个菠萝蜜,却发现两种销售方式中果肉的单价相同,则这个菠萝竇的重量为_________kg . 16.去年下半年以来,我市遭遇连续干旱,各地河流的水位连续下降,小明仔细观察并测量自家门口的抛物线型拱桥的水位高度与水面宽度,发现两周来每周水位下降的高度相同,而第一周水面宽度增加1米,而第二周水面宽度增加0.8米,小明刚开始观察时,他家门口抛物线型拱桥的水面宽为_______米.三、解答题(第17~20题,每題8分,第21题10分,第22~23题,每题12分,第24题14分,共80分)17.(1)计算:0tan 60(2)|︒+--(2)解不等式组:1024x x +>⎧⎨--⎩18.下面是某同学在完成作业本(2)43P 第5题第(2)小题的过程.221(1)(1)1m m m m m m +-=+---……①221m m =--……②1=-……③上面的解题过程________(填“正确”或“错误”);如果正确,请写出每一步的依据;如果有错,请写出从第几步开始出错,并写出正确的解题过程.19.将两个完全相同的含30︒角直角三角板ABE CBF 、如图所示放置,(1)求证:ADF CDE ≌; (2)连接BD ,求ABD ∠的度数.20.周末,小亮与同学携带激光测距仪与测角仪器去测量石夫人的高度,小亮在山脚下A 处摆好高度AB 为1.5m 的仪器,并测得B 与峰顶C 相距310m ,再用测角仪器在B 处测得C 处的仰角为53︒,求石夫人的高度CD .(结果精确到1m ,参考数据:sin530.80cos530.60,tan530.75︒=︒=︒=,)21.垃圾分类,事关人居环境改善,是当前世界各国共同关注的迫切问题.某校开展“垃圾分类”宣传活动,一个社团在开展“垃圾分类”宣传活动前、后分别对全校学生开展了抽样调查,将统计数据整理如下:开展“垃圾分类”宣传活动之前各类别统计表开展“垃圾分类”宣传活动之后各类别统计图(调查人数200人)(1)开展“垃圾分类”宣传活动前,抽取的学生中哪一类别的人数最多?占抽取人数的百分之几? (2)若全校有2000名学生,请估计开展“垃圾分类”宣传活动前“D .都不分类”的总人数;(3)李琳认为,开展“垃圾分类”宣传活动后,“D .都不分类”的人数为2008%16⨯=人,与活动前的人数一样,所以“垃圾分类”宣传活动开展不到位,她分析数据的方法是否合理?请结合统计图表,对学校开展“垃圾分类”宣传活动的效果谈谈你的看法. 22.如图,四边形ABCD 中,90,2180D A B ∠=︒∠+∠=︒,以AB 为直径画O 恰好经过点C ,与AD交于点E .(1)求证:CD 与O 相切;(2)若4AE DE =,求tan B .23.随着社会发展,手机已成为生活中的重要工具,电池充电是各手机厂商关注的重要环节.小明为了了解自己的手机的充电情况,他将一个剩余电量为30%的手机进行充电,并每隔5分钟记录电量变化如下:通过查阅资料,小眀发现,现有的手机快充模式一般为:先快速充电至一定电量,再缓慢充电至100%,然后自动停止充电;小明还发现,电量随充电时间的变化可以用已学过的函数类型表示,他根据数据近似求得缓慢充电阶段的函数解析式为2123355010y x x =-++.(1)①求快速充电阶段的函数解析式;②如果从电量10%开始充电,充满电需要________分钟;(2)小明了解到H 品牌手机充满电只需要60分钟,厂家提供充电曲线如图,由线段OA 和以点B 为顶点的抛物线组成.若小明的手机从电量10%开始充电,H 品牌手机从电量0%同时开始充电,当充电几分钟时,两个手机的电量一样多?24.在ABC 中,10cm AB AC AD BC ==⊥,于点D ,点E 是AC 上一点,(1)如图1,若8AD =,连结BE ,点A '是点A 关于直线BE 的对称点, ①当点A '也落在直线AC 上时,求AE ;②若A D '取得最小值,求A EC '的面积;(2)若60BAC F ∠<︒,是射线AB 上的点,且2AF AE =,点A '与点A 关于直线EF 对称,连结EA ',始终有//EA BC '.①如图2,当点F 与点B 重合时,求BC 的值;②如图3,连结DA ',当AE =________时,DA '的值最小.。
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1.实数4的相反数是( ) A. 14-B. -4C.14D. 42.如图是由4个相同的小正方体组成的一个立体图形,其主视图是( )A. B. C. D.3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为( ) A. 38×104B. 3.8×104C. 3.8×105D. 0.38×1064.(2018乌鲁木齐)在平面直角坐标系xOy 中,将点()12N --,绕点O 旋转180°,得到的对应点的坐标是( )A. ()12, B. ()12-, C. ()12--, D. ()12-, 5.不等式组12220360x x -<⎧⎨-≤⎩的解集是( )A. 46x -<≤B. 4x ≤-或2x >C. 42x -<≤D. 24x ≤<6.下列图形,既是轴对称图形又是中心对称图形的是( ) A 正三角形B. 正五边形C. 等腰直角三角形D. 矩形7.化简()22x 的结果是( ) A. x 4B. 2x 2C. 4x 2D. 4x8.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( ) A.16B.13C.12D.239.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C′处,点B 落在点B′处,其中AB=9,BC=6,则FC′的长为( )A.103B. 4C. 4.5D. 510.二次函数2y ax bx c =++的图象如图,且,OA OC =则( )A. 1ac b +=B. 1ab c += C. 1bc a +=D. 以上都不是二、填空题(本题共6小题,每小题3分,共18分)11.如图,EABC ∆边CA 延长线上一点,过点E 作//ED BC .若070BAC ∠=,050CED ∠=,则B ∠=________°.12.如图,∠AOE =∠BOE =15°,EF ∥OB ,EC ⊥OB 于C ,若EC =1,则OF =_____.13.为了建设“书香校园”,某校七年级的同学积极捐书,下表统计了七(1)班40名学生的捐书情况: 捐书(本) 3 4 5 7 10 人数 5710117该班学生平均每人捐书______本.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为_____________.15.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45,测得该建筑底部C 处的俯角为17.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为__m .(参考数据:sin170.29≈,cos170.96≈,tan170.31≈)16.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是______米.三.解答下列各题(本题共4小题,其中17、18、19题9分、20题12分,共39分)17.计算:1332)182+18.化简: 2212(1)244x x xx x x +--÷--+ 19.如图,EF=BC ,DF=AC ,DA=EB .求证:∠F=∠C .20.某校为了解九年级学生每天参加体育锻炼的时间,从该校九年级学生中随机抽取20名学生进行调查,得到如下数据(单位:分钟):306070103011570607590,,,,,,,,,,157040751058060307045,,,,,,,,,对以上数据进行整理分析,得到下列表一和表二:根据以上提供的信息,解答下列问题:()1填空:①a=,b=;②c=,d=;()2如果该校现有九年级学生200名,请估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为1122m,则小路的宽应为多少?22.如图,函数12y x=的图象与函数kyx=(x>0)的图象相交于点P(4,m).(1)求m,k的值;(2)直线y=3与函数12y x =的图象相交于点A ,与函数k y x=(x >0)的图象相交于点B ,求线段AB 长.23.如图,△ABC 中,AB =AC ,以AC 为直径的⊙O 交BC 于点D ,点E 为AC 延长线上一点,且DE 是⊙O 的切线.(1)求证:∠CDE =12∠BAC ; (2)若AB =3BD ,CE =4,求⊙O 的半径.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.如图,在平面直角坐标系xOy 中,直线112y x =+与y 轴,x 轴分别相交于点A B 、.点D 是x 轴上动点,点D 从点B 出发向原点O 运动,点E 在点D 右侧,2DE BD =.过点D 作DH AB ⊥于点,H 将DBH △沿直线DH 翻折,得到,DCH 连接CE .设,BD t =DCH 与AOB 重合部分面积为.S 求:(1)求线段BC 的长(用含t 的代数式表示);(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围. 25.阅读下面材料,完成()()13-题. 数学课上,老师出示了这样一道题:如图1,在ABC 中,,.BA BC AB kAC ==点F 在AC 上,点E 在BF 上,2BE EF =.点D 在BC 延长线上,连接,180AD AE ACD DAE ∠+∠=、.探究线段AD 与AE 的数量关系并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现CAD ∠与EAB ∠相等.” 小亮:“通过观察和度量,发现FAE ∠与D ∠也相等.”小伟:“通过边角关系构造辅助线,经过进一步推理, 可以得到线段AD 与AE数量关系.”老师:“保留原题条件,延长图1中的,AE 与BC 相交于点H (如图2),若知道DH 与AH 的数量关系,可以求出ABCH的值.”(1)求证:CAD EAB ∠=∠; (2)求ADAE的值(用含k 的式子表示); (3)如图2,若,DH AH =则ABCH的值为 (用含k 的式子表示). 26.已知抛物线2y x bx c =++过点A(m-2,n), B (m+4,n ),C (m ,53n -). (1)b=__________(用含m 的代数式表示); (2)求△ABC 的面积; (3)当1222m x m ≤≤+时,均有6y m -≤≤,求m 的值.答案与解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的)1.实数4的相反数是()A.14B. -4C.14D. 4【答案】B【解析】【分析】根据相反数的定义即可解答.【详解】∵符号相反,绝对值相等的两个数互为相反数,∴4的相反数是﹣4;故选B.【点睛】本题考查了相反数的定义,熟知只有符号不同的两个数互为相反数是解决问题的关键.2.如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A. B. C. D.【答案】A【解析】【分析】根据三视图的概念即可快速作答.【详解】解:立体图形的主视图,即正前方观察到的平面图,即选项A符合题意;故答案为A.【点睛】本题考查了三视图的概念及正确识别主视图,解题的关键在于良好的空间想象能力.3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为()A. 38×104B. 3.8×104C. 3.8×105D. 0.38×106【答案】C 【解析】 【分析】对于一个绝对值较大的数,用科学记数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数.【详解】380000=3.8×105. 故选C.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.(2018乌鲁木齐)在平面直角坐标系xOy 中,将点()12N --,绕点O 旋转180°,得到的对应点的坐标是( )A. ()12, B. ()12-, C. ()12--, D. ()12-, 【答案】A 【解析】【详解】点N 绕着点O 旋转180°,恰好关于原点对称,点(1,2)N --的中心对称点为(1,2),故选A .5.不等式组12220360x x -<⎧⎨-≤⎩的解集是( )A. 46x -<≤B. 4x ≤-或2x >C. 42x -<≤D. 24x ≤<【答案】C 【解析】 【分析】分别求出每一个不等式的解集,再确定出解集的公共部分即可得解. 【详解】解不等式12220x -<,得:4x >-, 解不等式360x -≤,得:2x ≤, 则不等式组的解集为42x -<≤, 故选C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 6.下列图形,既是轴对称图形又是中心对称图形的是( )A. 正三角形B. 正五边形C. 等腰直角三角形D. 矩形【答案】D【解析】【分析】根据轴对称图形与中心对称图形的概念逐一进行分析判断即可得.【详解】A.正三角形是轴对称图形,不是中心对称图形;B.正五边形是轴对称图形,不是中心对称图形;C.等腰直角三角形是轴对称图形,不是中心对称图形;D.矩形是轴对称图形,也是中心对称图形,故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.化简()22x的结果是()A. x4B. 2x2C. 4x2D. 4x【答案】C【解析】【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘即可.【详解】(2x)²=2²·x²=4x²,故选C.【点睛】本题考查了积的乘方,解题的关键是掌握积的乘方的运算法则.8.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A. 16B.13C.12D.23【答案】A【解析】【分析】直接利用概率公式计算可得.【详解】解:从中任意抽取1张,是“红桃”的概率为16,故选A.【点睛】本题主要考查概率公式,随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.9.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C′处,点B 落在点B′处,其中AB=9,BC=6,则FC′的长为( )A. 103B. 4C. 4.5D. 5【答案】D【解析】【分析】设FC ′=x ,则FD=9-x ,根据矩形的性质结合BC=6、点C ′为AD 的中点,即可得出C ′D 的长度,在Rt △FC ′D 中,利用勾股定理即可找出关于x 的一元一次方程,解之即可得出结论.【详解】设FC′=x ,则FD=9﹣x ,∵BC=6,四边形ABCD 为矩形,点C′为AD 的中点,∴AD=BC=6,C′D=3,在Rt △FC′D 中,∠D=90°,FC′=x ,FD=9﹣x ,C′D=3,∴FC′2=FD 2+C′D 2,即x 2=(9﹣x )2+32,解得:x=5,故选D .【点睛】本题考查了矩形的性质以及勾股定理,在Rt △FC′D 中,利用勾股定理找出关于FC′的长度的一元二次方程是解题的关键.10.二次函数2y ax bx c =++的图象如图,且,OA OC =则( )A. 1ac b +=B. 1ab c +=C. 1bc a +=D. 以上都不是【答案】A【解析】【分析】 根据题意可知,本题考察二次函数图像与系数的关系,根据图像与坐标轴的交点,运用两边相等求出交点坐标,代入坐标进行求解.【详解】∵OA OC =∴点A 、C 的坐标为(-c ,0),(0,c)∴把点A 的坐标代入2y ax bx c =++得∴2=0ac bc c -+∴()10c ac b -+=∵0c ≠∴10ac b -+=∴1ac b +=故选A【点睛】本题考察二次函数图像与系数关系,解题关键是根据图像得出系数取值范围,再代入点的坐标进行解决. 二、填空题(本题共6小题,每小题3分,共18分)11.如图,E 为ABC ∆边CA 延长线上一点,过点E 作//ED BC .若070BAC ∠=,050CED ∠=,则B ∠=________°.【答案】60【解析】【分析】利用平行线的性质,即可得到∠CED=∠C=50°,再根据三角形内角和定理,即可得到∠B 的度数.【详解】解:∵ED ∥BC ,∴∠CED=∠C=50°,又∵∠BAC=70°,∴△ABC中,∠B=180°-50°-70°=60°,故答案为60.【点睛】本题主要考查了平行线的性质,解题时注意运用两直线平行,内错角相等.12.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于C,若EC=1,则OF=_____.【答案】2【解析】【分析】作EH⊥OA于H,根据角平分线的性质求出EH,根据直角三角形的性质求出EF,根据等腰三角形的性质解答即可.【详解】作EH⊥OA于H.∵∠AOE=∠BOE=15°,EC⊥OB,EH⊥OA,∴EH=EC=1,∠AOB=30°.∵EF∥OB,∴∠EFH=∠AOB=30°,∠FEO=∠BOE,∴EF=2EH=2,∠FEO=∠FOE,∴OF=EF=2.故答案2.【点睛】本题考查了等腰三角形的判定、角平分线的性质、平行线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.13.为了建设“书香校园”,某校七年级的同学积极捐书,下表统计了七(1)班40名学生的捐书情况:捐书(本) 3 4 5 7 10人数 5 7 10 11 7该班学生平均每人捐书______本.【答案】6【解析】【分析】利用加权平均数公式进行求解即可得. 【详解】该班学生平均每人捐书3547510711107640⨯+⨯+⨯+⨯+⨯=(本), 故答案为6.【点睛】本题考查了加权平均数,熟练掌握加权平均数的计算公式是解题的关键.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为_____________.【答案】46483538x y x y +=⎧⎨+=⎩【解析】【分析】直接利用“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两”,分别得出方程得出答案.【详解】解:设马每匹x 两,牛每头y 两,根据题意可列方程组为: 46483538x y x y +=⎧⎨+=⎩ 故答案是:46483538x y x y +=⎧⎨+=⎩【点睛】此题主要考查了二元一次方程组的应用,正确得出等式是解题关键.15.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45,测得该建筑底部C 处的俯角为17.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为__m .(参考数据:sin170.29≈,cos170.96≈,tan170.31≈)【答案】262【解析】【分析】作AE BC ⊥于E ,根据正切的定义求出AE ,根据等腰直角三角形的性质求出BE ,结合图形计算即可.【详解】作AE BC ⊥于E ,则四边形ADCE 为矩形,62EC AD ∴==,在Rt AEC ∆中,tan EC EAC AE ∠=, 则62200tan 0.31EC AE EAC =≈=∠, 在Rt AEB ∆中,45BAE ∠=,200BE AE ∴==,20032262()BC m ∴=+=,则该建筑的高度BC 为262m ,故答案为262.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.16.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是______米.【答案】175【解析】试题解析:根据题意得,甲的速度为:75÷30=2.5米/秒,设乙的速度为m 米/秒,则(m -2.5)×(180-30)=75,解得:m =3米/秒,则乙的速度为3米/秒, 乙到终点时所用的时间为:15003=500(秒), 此时甲走的路程是:2.5×(500+30)=1325(米),甲距终点的距离是1500-1325=175(米).【点睛】本题考查了一次函数的应用,读懂题目信息,理解并得到乙先到达终点,然后求出甲、乙两人所用的时间是解题的关键.三.解答下列各题(本题共4小题,其中17、18、19题9分、20题12分,共39分)17.计算:2)+【答案】-1.【解析】【分析】先利用平方差公式简便运算乘法,同时化简二次根式,再合并同类二次根式即可.【详解】解:2)+=3-4+=-1.【点睛】本题考查的是二次根式的混合运算,二次根式的化简,掌握利用平方差公式进行简便运算是解题的关键.18.化简: 2212(1)244x x x x x x +--÷--+ 【答案】3x . 【解析】【分析】先通分,计算括号内的减法,把除法转化为乘法,约分后得到结论. 【详解】解:原式=212(2)122()22(2)2x x x x x x x x x x x x+--+-+--÷=•----323.2x x x x-=•=- 【点睛】本题考查的是分式的化简,考查了分式的加减法,分式的除法,掌握以上运算是解题的关键. 19.如图,EF=BC ,DF=AC ,DA=EB .求证:∠F=∠C .【答案】见解析.【解析】【分析】欲证明∠F =∠C ,只要证明△ABC ≌△DEF(SSS)即可.【详解】证明:DA BE =,DE AB ∴=,在ABC ∆和DEF ∆中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩,()ABC DEF SSS ∴∆≅∆,C F ∴∠=∠.【点睛】本题主要考查全等三角形的判定与性质.20.某校为了解九年级学生每天参加体育锻炼的时间,从该校九年级学生中随机抽取20名学生进行调查,得到如下数据(单位:分钟):306070103011570607590,,,,,,,,,,157040751058060307045,,,,,,,,,对以上数据进行整理分析,得到下列表一和表二:根据以上提供的信息,解答下列问题:()1填空:①a=,b=;②c=,d=;()2如果该校现有九年级学生200名,请估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数.【答案】(1)①5,3;②65,70;(2)130人.【解析】【分析】(1)①根据数据统计出a、b;②根据中位数和众数的定义求出c,d即可;(2)先求出样本用样本达到平均水平及以上的学生的概率,然后用九年级学生数×样本达到平均水平及以上的学生的概率即可.【详解】解:()1①经统计:该组数据处于30≤t<60的数据有5个, 处于90≤t<120的数据有3个,∴a=5;b=3故答案为:5;3②将这组数据从小到大排序,位于第10个的数据是60,第11个的数据是70∴中位数为(60+70)÷2=65这组数据中出现次数最多的是70 ∴众数为70 ∴6570,c d==故答案为:65;70.()132********⨯=(人),答:估计该校九年级学生每天参加体育锻炼的时间达到平均水平及以上的学生人数为130人.【点睛】本题考查中位数、众数、平均数、样本估计总体的思想等知识,掌握中位数、众数、平均数等基本知识是解答本题的关键.四、解答题(本题共3小题,其中21、22题各9分,23题10分,共28分)21.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)16m,宽(AB)9m的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为1122m,则小路的宽应为多少?【答案】小路的宽应为1m .【解析】【分析】设小路的宽应为x 米,那么草坪的总长度和总宽度应该为(16-2x ),(9-x );那么根据题意得出方程,解方程即可.【详解】解:设小路的宽应为x 米,根据题意得:(162)(9)112x x --=,解得:11x =,216x =.∵169>,∴16x =不符合题意,舍去,∴1x =.答:小路的宽应为1米.【点睛】本题考查一元二次方程的应用,弄清“草坪的总长度和总宽度”是解决本题的关键. 22.如图,函数12y x =的图象与函数k y x=(x >0)的图象相交于点P (4,m ). (1)求m ,k 的值;(2)直线y=3与函数12y x =的图象相交于点A ,与函数k y x=(x >0)的图象相交于点B ,求线段AB 长.【答案】(1)m=2,k=8;(2)103.【解析】【分析】(1)将点P(4,m)代入y=x,求出m=2,再将点P(4,2)代入kyx=即可求出k的值;(2) 分别求出A、B两点的坐标,即可得到线段AB的长.【详解】(1)∵函数12y x=的图象过点P(4,m),∴m=2,∴P(4,2),∵函数kyx=(x>0)的图象过点P,∴k=4×2=8;(2)将y=3代入12y x=,得x=6,∴点A(6,3).将y=3代入8yx=,得x=83,∴点B(83,3).∴AB=6﹣83=103.【点睛】本题主要考查了利用待定系数法求函数解析式以及函数图象上点的坐标特征,解题时注意:点在图象上,点的坐标就一定满足函数的解析式.23.如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为AC延长线上一点,且DE是⊙O 的切线.(1)求证:∠CDE=12∠BAC;(2)若AB=3BD,CE=4,求⊙O的半径.【答案】(1)见解析;(2)14.【解析】【分析】(1)根据圆周角定理得出∠ADC=90°,按照等腰三角形的性质和已知的2倍角关系,证明∠ODE为直角即可得到答案;(2)通过证得△CDE∽△DAE,根据相似三角形的性质即可求得.【详解】(1)如图,连接OD,AD,∵AC是直径,∴∠ADC=90°,-∴AD⊥BC,∵AB=AC,∴∠CAD=∠BAD=12∠BAC,∵DE是⊙O的切线;∴OD⊥DE∴∠ODE=90°∴∠ADC=∠ODE∴∠CDE=∠ADO ∵OA=OD,∴∠CAD=∠ADO,∴∠CDE=∠CAD,∠CAD=12∠BAC,∴∠CDE=12∠BAC.(2)解:∵AB=AC,AD⊥BC,∴BD=CD,∵AB=3BD,∴AC=3DC,设DC=x,则AC=3x,∴AD2222,AC DC x-=∵∠CDE=∠CAD,∠DEC=∠AED,∴△CDE∽△DAE,∴CE DC DE DE AD AE∴==,即43422DE DE xx==+∴DE=82,,x=283,∴AC=3x=28,∴⊙O的半径为14.【点睛】本题考查了圆的切线的判定定理、圆周角定理、等腰三角形的性质、三角形相似的判定和性质,解题的关键是作出辅助线构造直角三角形或等腰三角形.五、解答题(本题共3小题,其中24题11分,25、26题各12分,共35分)24.如图,在平面直角坐标系xOy 中,直线112y x =+与y 轴,x 轴分别相交于点A B 、.点D 是x 轴上动点,点D 从点B 出发向原点O 运动,点E 在点D 右侧,2DE BD =.过点D 作DH AB ⊥于点,H 将DBH △沿直线DH 翻折,得到,DCH 连接CE .设,BD t =DCH 与AOB 重合部分面积为.S 求:(1)求线段BC 的长(用含t 的代数式表示);(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.【答案】(1)55t BC =;(2)222420536224825357734288523334t t S t t t t t t ⎧⎛⎫<≤ ⎪⎪⎝⎭⎪⎪⎛⎫=-+-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-+<≤⎪ ⎪⎝⎭⎩ 【解析】【分析】(1)先根据直线112y x =+求得点A 、B 的坐标,利用勾股定理求得AB 的长,进而可求得5555sin ABO cos ABO ∠=∠=,由翻折知DB DC t ==,12BH CH BC ==,最后根据255BH cos ABO BD ∠==求得55t BH =,即可求得BC 的长; (2)分类讨论:当203t <≤时,当2534t <≤时,当524t <≤时,分别画出相应图形,然后利用相似三角形的性质分别表示出对应的底和高,进而可得S 关于t 的函数解析式即可. 【详解】解:()1∵直线112y x =+与y 轴,x 轴分别相交于点A B 、, ∴点()()012,0A B -,,,∴由勾股定理得22125AB =+=∴在直角AOB 中,525,55sin ABO cos ABO ∠=∠=, 由翻折知:DB DC t ==,12BH CH BC ==, 255BH cos ABO BD∠==, 255t BH ∴=, 455t BC ∴=, ()2当203t <≤时, 过点C 做CG BO ⊥于点G ,45CG t ∴=, 55CG sin ABO BC∴∠==, 45GC t ∴=, 14225S t t ∴=⨯⨯ 245t = 当2534t <≤时, 设OA 交CE 于点F ,45CD BD t GC t ===,, ∴由勾股定理得35GD t =,37255GE t t t ∴=-=, 382255GO t t t =--=-, 78 23255OE EG OG t t t ∴=-=-+=-, //OF CG ,EOFCGE ∴, OF OE CG OG∴=, ()4327OF t ∴=-, 12OFE S OE OF =⋅ ()()14323227t t =⋅-⋅- 222(73)t -= , DCE OFE S S S =-∴2622483577t t =-+-, 当524t <≤时, 设CD 交OA 于点P ,//,OP CG,DOP DGC ∴OP OD CG DG∴=, 2OD t =-,()423OP OP t ∴==-,12S OD OP =⋅⋅∴ 2288333t t =-+, ∴综上所述,222420536224825357734288523334t t S t t t t t t ⎧⎛⎫<≤ ⎪⎪⎝⎭⎪⎪⎛⎫=-+-<≤⎨ ⎪⎝⎭⎪⎪⎛⎫-+<≤⎪ ⎪⎝⎭⎩ 【点睛】本题考查了一次函数的图像与性质,解直角三角形、相似三角形的判定及性质,根据点D 的位置画出相应的图形然后运用分类讨论思想以及相似三角形的性质是解决本题的关键.25.阅读下面材料,完成()()13-题.数学课上,老师出示了这样一道题:如图1,在ABC 中,,.BA BC AB kAC ==点F 在AC 上,点E 在BF 上,2BE EF =.点D 在BC 延长线上,连接,180AD AE ACD DAE ∠+∠=、.探究线段AD 与AE 的数量关系并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现CAD ∠与EAB ∠相等.”小亮:“通过观察和度量,发现FAE ∠与D ∠也相等.”小伟:“通过边角关系构造辅助线,经过进一步推理, 可以得到线段AD 与AE 的数量关系.” 老师:“保留原题条件,延长图1中的,AE 与BC 相交于点H (如图2),若知道DH 与AH 的数量关系,可以求出AB CH的值.”(1)求证:CAD EAB ∠=∠;(2)求AD AE的值(用含k 的式子表示); (3)如图2,若,DH AH =则AB CH 的值为 (用含k 的式子表示). 【答案】(1)证明见解析;(2)3AD AE k =;(3)2115AB k CH ++= 【解析】【分析】(1)由BA BC =可知BAC BCA ∠=∠,再通过180ACD DAE ∠+∠=以及平角为180°,可以得到CAD EAB ∠=∠;(2)方法一:过点C 做ACM ABE ∠=∠,交AD 于点M ,通过AEB AMC 可知AC AM CM AB AE BE ==,通过DCM AFE 可知DM CM AE EF =,通过比例关系可推导出AD AE的值;方法二:过点B 做//BN AC 交AE 延长线于点N ,通过AHC DHA 和ACD ABN 相似得到的比例关系即可可推导出AD AE的值; (3)同方法二辅助线,通过证明AHC DHA ,AFE NBE ,然后由对应边成比例即可推导出结论.【详解】()1BA BC =,BAC BCA ∴∠=∠180,ACD DAE ∠+∠=180,ACD ACB ∠+∠=∴∠=∠ADE ACB,∴∠=∠DAE BAC,∴∠=∠DAC BAE,()2方法一:∠=∠,交AD于点M 过点C做ACM ABE∠=∠,DAC BAE∴AEB AMCAC AM CM∴==AB AE BE=AB kAC1∴=AM AEk1=CM BEk=2BE EF2∴=CM FEk∠=∠+∠AEF EAB ABE∠=∠+∠DMC MAC ACM∴∠=∠DMC AEFACB D DAC∠=∠+∠∠=∠+∠DAE DAC FAEDAE ACB∠=∠∴∠=∠D FAE∴DCM AFEDM CM∴=AE EF2∴=DM AEk3∴=+=AD AM DM AEkAD3∴=AE k方法二:BN AC交AE延长线于点,N 过点B做//,∴∠=∠N FAE∠=∠,AFE EBN∴,AFE NBEAE EF∴=NE BE=BE EF2,∴=NE EA2,NA EA∴=3,∠=∠+∠ACB D DAC,DAE DAC FAE∠=∠+∠,DAE ACB∠=∠,∴∠=∠,D FAE,DAC BAE ∴∠=∠ ACD ABN ∴ AC AD AB AN ∴= ,AB kAC = ,AN kAD ∴= 3,AE kAC ∴= 3AD AE k ∴= ()3同方法二辅助线,D CAH ∠=∠ ,AHC DHA ∠=∠ AHC DHA ∴ 2AH HC DH ∴=⋅ 23AH AC DH AD == 23AD AC ∴= AB kAC = 32AD AB k ∴= 3AD AE k =12AE AB ∴= 设2AH a AB BC b ===,13,2DH a AE b ∴== 2NE AE =NE b ∴=EH AH AE EN NH =-=-322NH b a ∴=- 2AH HC DH =⋅43CH a ∴= 53CD a ∴= ∴由方法二相似得53BN ak = ADHNBH ' AD DH NB NH∴= 33253232b a k ak b a ∴=- 222912200b ab a k ∴--=(123a b -∴=(舍),(223ab +=12AB CH +∴= 【点睛】本题考查了相似三角形的判定和性质,正确作出辅助线是解题的关键.26.已知抛物线2y x bx c =++过点A(m-2,n), B (m+4,n ),C (m ,53n -).(1)b=__________(用含m 的代数式表示);(2)求△ABC 的面积;(3)当1222m x m ≤≤+时,均有6y m -≤≤,求m 的值.【答案】(1)b=-2m-2;(2)24;(3)m =. 【解析】【分析】(1)根据A(m-2,n), B (m+4,n )纵坐标一致,结合对称轴即可求解;(2)先用含m 的代数式表示c ,再带入A 点坐标即可求出n=3,最后利用铅锤法即可求出△ABC 的面积; (3)先用只含m 的代数式表示二次函数解析式,再结合带取值范围的二次函数最值求法分类讨论即可.【详解】(1)∵2y x bx c =++过点A(m-2,n), B (m+4,n ), ∴对称轴2422b m m x -++=-= ∴22b m =--(2)∵22b m =--∴2(22)y x m x c =-++把C (m ,53n -)代入2(22)y x m x c =-++ ∴2523c m m n =+-∴225(22)23y x m x m m n =-+++-把A(m-2,n)代入225(22)23y x m x m m n =-+++-得583n n =-∴n=3∴A(m-2,3), B (m+4,3),C (m ,5-)∴AB=6C 点到x 轴的距离为:3﹣(-5)=8,∴S △ABC=12×6×8=24 (3)∵n=3∴22(22)25y x m x m m =-+++-∴2(1)6y x m =---∴当1x m =+时-6y =最小∵6y m -≤≤ ∴由函数增减性知11222m m m ≤+≤+ 即1m ≥-∴当10m -≤<时 由函数增减性知12x m =时,y m =最大 ∴21(1)62m m m =---∴m =±当0m ≥时由函数增减性知22x m =+时,y m =最大∴2(221)6m m m =+---∴1m =(舍)2m =∴12m -+=【点睛】本题考查二次函数综合运用,当参数比较多时可以带入解析式,利用解方程消元法消去多余的参数,在最后一问中对于带取值范围的二次函数最值需要根据对称轴与取值范围的关系确定范围内的最值.。
2021年九年级中考模拟考试数 学 试 题一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列说法正确的是( )A .若a =-a ,则a <0B .若a <0,ab <0,则b > 0C .3xy 7-4x 3y +12是七次三项式D .正有理数和负有理数统称有理数 2.下列运算中,结果正确的是( )A .3412a a a ⋅=B .1025a a a ÷=C .235a a a +=D .4a a 3a -= 3.如图,在五边形ABCDE 中,A B ∠=∠,90C D E ∠=∠=∠=︒,4DE DC ==,2AB =,则五边形ABCDE 的周长是( )A .162+B .142+C .122+D .102+ 4.某同学对数据18,28,48,5□,57进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是( )A .平均数B .中位数C .方差D .众数 5.如图所示的几何体是由5个大小相同的小立方块搭成的,其俯视图是( )A .B .C .D . 6.下列结论:①横坐标为3-的点在经过点(3,0)-且平行于y 轴的直线上;②0m ≠时,点()2,P m m -在第四象限; ③点()3,4-关于y 轴对称的点的坐标是(3,4)--;④在第一象限的点N 到x 轴的距离是1,到y 轴的距离是2,则点N 的坐标为(2,1).其中正确的是( ).A .①③B .②④C .①④D .②③7.如图,在菱形纸片ABCD 中,∠A=60°,P 为AB 中点.折叠该纸片使点C 落在点C′处且点P 在DC′上,折痕为DE ,则∠CDE 的大小为( )A .30°B .40°C .45°D .60°8.若点A (﹣1,m )、B (1,m )、C (2,m ﹣1)在同一个函数图象上,这个函数图象可以是( ) A . B . C .D .二、填空题:本题共8小题,每小题3分,共24分。
一、选择题(每题3分,共30分)1. 若m和n是方程x^2 - (m+n)x + mn = 0的两个根,则m+n的值是:A. m+n = m^2B. m+n = n^2C. m+n = mnD. m+n = 02. 在直角坐标系中,点A(-2,3)关于y轴的对称点B的坐标是:A. (-2,-3)B. (2,-3)C. (2,3)D. (-2,3)3. 若等比数列{an}的首项为2,公比为q,则第5项a5的值是:A. 32B. 16C. 8D. 44. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数是:A. 75°B. 105°C. 135°D. 150°5. 若a、b、c是△ABC的三边,且满足a^2 + b^2 = c^2,则△ABC是:A. 等腰三角形B. 直角三角形C. 等边三角形D. 不规则三角形6. 已知函数y = -x^2 + 2x + 1,则函数的顶点坐标是:A. (1,0)B. (-1,0)C. (0,1)D. (1,1)7. 若log2x + log2y = 3,则xy的值是:A. 2B. 4C. 8D. 168. 在平面直角坐标系中,点P(2,3)到直线x - 2y + 1 = 0的距离是:A. 1B. 2C. 3D. 49. 若a、b、c是△ABC的三边,且满足a+b+c=12,a^2+b^2=c^2,则△ABC是:A. 等腰三角形B. 直角三角形C. 等边三角形D. 不规则三角形10. 已知函数y = 2^x - 1,则函数的图像在第二象限的点是:A. (0,1)B. (1,1)C. (0,0)D. (1,0)二、填空题(每题5分,共20分)11. 若等差数列{an}的首项为3,公差为2,则第10项a10的值是______。
12. 在直角坐标系中,点A(-3,4)到原点O的距离是______。
13. 若等比数列{an}的首项为-1,公比为-2,则第4项a4的值是______。
2021-2022中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知反比例函数,下列结论不正确的是()A.图象必经过点(﹣1,2)B.y随x的增大而增大C.图象在第二、四象限内D.若,则2.如图,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,则tan∠BCD的值为()A.45B.54C.43D.343.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.9米,则梯子顶端A下落了()A.0.9米B.1.3米C.1.5米D.2米4.如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN ,AB 之间的距离;⑤∠APB 的大小.其中会随点P 的移动而变化的是( )A .②③B .②⑤C .①③④D .④⑤5.下列图形中,既是中心对称图形又是轴对称图形的是( )A .正五边形B .平行四边形C .矩形D .等边三角形6.世界因爱而美好,在今年我校的“献爱心”捐款活动中,九年级三班50名学生积极加献爱心捐款活动,班长将捐款情况进行了统计,并绘制成了统计图,根据图中提供的信息,捐款金额的众数和中位数分别是( )A .20、20B .30、20C .30、30D .20、307.如图,已知抛物线21y x 4x =-+和直线2y 2x =.我们约定:当x 任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M= y 1=y 2.下列判断: ①当x >2时,M=y 2;②当x <0时,x 值越大,M 值越大;③使得M 大于4的x 值不存在;④若M=2,则x=" 1" .其中正确的有A .1个B .2个C .3个D .4个8.工信部发布《中国数字经济发展与就业白皮书(2018)》)显示,2017年湖北数字经济总量1.21万亿元,列全国第七位、中部第一位.“1.21万”用科学记数法表示为( )A .1.21×103B .12.1×103C .1.21×104D .0.121×1059.如图是由5个相同的正方体搭成的几何体,其左视图是( )A .B .C .D .10.如图,正方形ABCD 的边长为2cm ,动点P 从点A 出发,在正方形的边上沿A→B→C 的方向运动到点C 停止,设点P 的运动路程为x(cm),在下列图象中,能表示△ADP 的面积y(cm 2)关于x(cm)的函数关系的图象是( )A .B .C .D .11.16的算术平方根是( )A .4B .±4C .2D .±2 12.将函数的图象用下列方法平移后,所得的图象不经过点A (1,4)的方法是( )A .向左平移1个单位B .向右平移3个单位C .向上平移3个单位D .向下平移1个单位 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式:m 2n ﹣2mn+n= .141x -﹣2018)2=0,则x ﹣2+y 0=_____. 15.如图,OAB ∆与OCD ∆是以点O 为位似中心的位似图形,相似比为3:4,90OCD =∠,60AOB ∠=,若点B的坐标是(6,0),则点C的坐标是__________.16.如图,矩形ABCD中,如果以AB为直径的⊙O沿着BC滚动一周,点B恰好与点C重合,那么BCAB的值等于________.(结果保留两位小数)17.分解因式:2x+xy=_______.18.若式子x1x有意义,则x的取值范围是.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.20.(6分)(10分)如图,AB是⊙O的直径,OD⊥弦BC于点F,交⊙O于点E,连结CE、AE、CD,若∠AEC=∠ODC.(1)求证:直线CD 为⊙O 的切线;(2)若AB=5,BC=4,求线段CD 的长.21.(6分)已知:如图,在半径为2的扇形AOB 中,90AOB ︒∠=°,点C 在半径OB 上,AC 的垂直平分线交OA 于点D ,交弧AB 于点E ,联结BE CD 、.(1)若C 是半径OB 中点,求OCD ∠的正弦值;(2)若E 是弧AB 的中点,求证:2•BE BO BC =;(3)联结CE ,当△DCE 是以CD 为腰的等腰三角形时,求CD 的长.22.(8分)如图①,在正方形ABCD 中,△AEF 的顶点E ,F 分别在BC ,CD 边上,高AG 与正方形的边长相等,求∠EAF 的度数.如图②,在Rt △ABD 中,∠BAD=90°,AB=AD ,点M ,N 是BD 边上的任意两点,且∠MAN=45°,将△ABM 绕点A 逆时针旋转90°至△ADH 位置,连接NH ,试判断MN 2,ND 2,DH 2之间的数量关系,并说明理由.在图①中,若EG=4,GF=6,求正方形ABCD 的边长.23.(8分)对于平面直角坐标系xOy 中的任意两点M ()11 ,x y ,N ()22,x y ,给出如下定义:点M 与点N 的“折线距离”为:(),d M N =12x x -+12y y -.例如:若点M(-1,1),点N(2,-2),则点M 与点N 的“折线距离”为:()(),1212336d M N =--+--=+=.根据以上定义,解决下列问题:已知点P(3,-2).①若点A(-2,-1),则d(P ,A)= ;②若点B(b ,2),且d(P ,B)=5,则b= ;③已知点C (m,n )是直线y x =-上的一个动点,且d(P ,C)<3,求m 的取值范围.⊙F 的半径为1,圆心F 的坐标为(0,t),若⊙F 上存在点E ,使d(E ,O)=2,直接写出t 的取值范围.24.(10分)如图,在△ABC 中,∠ABC=90°.(1)作∠ACB 的平分线交AB 边于点O ,再以点O 为圆心,OB 的长为半径作⊙O ;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC 与⊙O 的位置关系,直接写出结果.25.(10分)如图,抛物线y=﹣(x ﹣1)2+c 与x 轴交于A ,B (A ,B 分别在y 轴的左右两侧)两点,与y 轴的正半轴交于点C ,顶点为D ,已知A (﹣1,0).(1)求点B,C的坐标;(2)判断△CDB的形状并说明理由;(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.26.(12分)x取哪些整数值时,不等式5x+2>3(x-1)与12x≤2-32x都成立?27.(12分)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(15,22)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)B点坐标为,并求抛物线的解析式;(2)求线段PC长的最大值;(3)若△PAC为直角三角形,直接写出此时点P的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】试题分析:根据反比例函数y=的性质,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大,即可作出判断.试题解析:A、(-1,2)满足函数的解析式,则图象必经过点(-1,2);B、在每个象限内y随x的增大而增大,在自变量取值范围内不成立,则命题错误;C、命题正确;D、命题正确.故选B.考点:反比例函数的性质2、D【解析】先求得∠A=∠BCD,然后根据锐角三角函数的概念求解即可.【详解】解:∵∠ACB=90°,AB=5,AC=4,∴BC=3,在Rt△ABC与Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A=∠BCD.∴tan∠BCD=tanA=BCAC=34,故选D.【点睛】本题考查解直角三角形,三角函数值只与角的大小有关,因而求一个角的函数值,可以转化为求与它相等的其它角的三角函数值.3、B【解析】试题分析:要求下滑的距离,显然需要分别放到两个直角三角形中,运用勾股定理求得AC和CE的长即可.解:在Rt△ACB中,AC2=AB2﹣BC2=2.52﹣1.52=1,∴AC=2,∵BD=0.9,∴CD=2.1.在Rt△ECD中,EC2=ED2﹣CD2=2.52﹣2.12=0.19,∴EC=0.7,∴AE=AC﹣EC=2﹣0.7=1.2.故选B.考点:勾股定理的应用.4、B【解析】试题分析:①、MN=12AB,所以MN的长度不变;②、周长C△PAB=12(AB+PA+PB),变化;③、面积S△PMN=14S△PAB=14×12AB·h,其中h为直线l与AB之间的距离,不变;④、直线NM与AB之间的距离等于直线l与AB之间的距离的一半,所以不变;⑤、画出几个具体位置,观察图形,可知∠APB的大小在变化.故选B考点:动点问题,平行线间的距离处处相等,三角形的中位线5、C【解析】分析:根据中心对称图形和轴对称图形对各选项分析判断即可得解.详解:A. 正五边形,不是中心对称图形,是轴对称图形,故本选项错误.B. 平行四边形,是中心对称图形,不是轴对称图形,故本选项错误.C. 矩形,既是中心对称图形又是轴对称图形,故本选项正确.D. 等边三角形,不是中心对称图形,是轴对称图形,故本选项错误.故选C.点睛:本题考查了对中心对称图形和轴对称图形的判断,我们要熟练掌握一些常见图形属于哪一类图形,这样在实际解题时,可以加快解题速度,也可以提高正确率.6、C【解析】分析:由表提供的信息可知,一组数据的众数是这组数中出现次数最多的数,而中位数则是将这组数据从小到大(或从大到小)依次排列时,处在最中间位置的数,据此可知这组数据的众数,中位数.详解:根据右图提供的信息,捐款金额的众数和中位数分别是30,30.故选C.点睛:考查众数和中位数的概念,熟记概念是解题的关键.7、B【解析】试题分析:∵当y 1=y 2时,即2x 4x 2x -+=时,解得:x=0或x=2,∴由函数图象可以得出当x >2时, y 2>y 1;当0<x <2时,y 1>y 2;当x <0时, y 2>y 1.∴①错误.∵当x <0时, -21y x 4x =-+直线2y 2x =的值都随x 的增大而增大,∴当x <0时,x 值越大,M 值越大.∴②正确.∵抛物线()221y x 4x x 24=-+=--+的最大值为4,∴M 大于4的x 值不存在.∴③正确;∵当0<x <2时,y 1>y 2,∴当M=2时,2x=2,x=1;∵当x >2时,y 2>y 1,∴当M=2时,2x 4x 2-+=,解得12x 2x 2==.∴使得M=2的x 值是1或2+综上所述,正确的有②③2个.故选B .8、C【解析】分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:1.21万=1.21×104, 故选:C .点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.9、A【解析】根据三视图的定义即可判断.【详解】根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选A .【点睛】本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型.10、B【解析】△ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象.【详解】解:当P点由A运动到B点时,即0≤x≤2时,y=12×2x=x,当P点由B运动到C点时,即2<x<4时,y=12×2×2=2,符合题意的函数关系的图象是B;故选B.【点睛】本题考查了动点函数图象问题,用到的知识点是三角形的面积、一次函数,在图象中应注意自变量的取值范围.11、C【解析】【详解】4,4的算术平方根是2,2,故选C.【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.12、D【解析】A.平移后,得y=(x+1)2,图象经过A点,故A不符合题意;B.平移后,得y=(x−3)2,图象经过A点,故B不符合题意;C.平移后,得y=x2+3,图象经过A点,故C不符合题意;D.平移后,得y=x2−1图象不经过A点,故D符合题意;故选D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、n (m ﹣1)1.【解析】先提取公因式n 后,再利用完全平方公式分解即可【详解】m 1n ﹣1mn+n=n (m 1﹣1m+1)=n (m ﹣1)1.故答案为n (m ﹣1)1.14、1【解析】直接利用偶次方的性质以及二次根式的性质分别化简得出答案.【详解】﹣1018)1=0,∴x ﹣1=0,y ﹣1018=0,解得:x =1,y =1018,则x ﹣1+y 0=1﹣1+10180=1+1=1.故答案为:1.【点睛】此题主要考查了非负数的性质,正确得出x ,y 的值是解题关键.15、(2,【解析】分析:首先解直角三角形得出A 点坐标,再利用位似是特殊的相似,若两个图形OAB ∆与OCD ∆是以点O 为位似中心的位似图形,相似比是k ,OAB ∆上一点的坐标是(),x y ,则在OCD ∆中,它的对应点的坐标是(),kx ky 或(),kx ky --,进而求出即可.详解:OAB 与OCD ∆是以点O 为位似中心的位似图形,90OCD ∠=,90.OAB ∴∠=︒60AOB ∠=,若点B 的坐标是()6,0,1cos606 3.2OA OB =⋅︒=⨯=过点A 作AE OD ⊥交OD 于点E . 333,,22OE AE == 点A 的坐标为:333,,22⎛⎫ ⎪ ⎪⎝⎭OAB ∆与OCD ∆的相似比为3:4,点C 的坐标为:34334,,2323⎛⎫⨯⨯ ⎪ ⎪⎝⎭即点C 的坐标为:()2,23. 故答案为:()2,23.点睛:考查位似图形的性质,熟练掌握位似图形的性质是解题的关键.16、3.1【解析】分析:由题意可知:BC 的长就是⊙O 的周长,列式即可得出结论.详解:∵以AB 为直径的⊙O 沿着BC 滚动一周,点B 恰好与点C 重合,∴BC 的长就是⊙O 的周长,∴π•AB =BC ,∴BC AB=π≈3.1. 故答案为3.1.点睛:本题考查了圆的周长以及线段的比.解题的关键是弄懂BC 的长就是⊙O 的周长.17、()x x+y .【解析】将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【详解】直接提取公因式x 即可:2x xy x(x y)+=+.18、x 1≥-且x 0≠【解析】∴x+1≥0,且x≠0,解得:x≥-1且x≠0.故答案为x≥-1且x≠0.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)二次函数的表达式为:y=x 2﹣4x+3;(2)点P 的坐标为:(0,)或(0,3﹣)或(0,-3)或(0,0);(3)当点M 出发1秒到达D 点时,△MNB 面积最大,最大面积是1.此时点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.【解析】(1)把A (1,0)和C (0,3)代入y=x 2+bx+c 得方程组,解方程组即可得二次函数的表达式;(2)先求出点B 的坐标,再根据勾股定理求得BC 的长,当△PBC 为等腰三角形时分三种情况进行讨论:①CP=CB ;②BP=BC ;③PB=PC ;分别根据这三种情况求出点P 的坐标;(3)设AM=t 则DN=2t ,由AB=2,得BM=2﹣t ,S △MNB=12×(2﹣t )×2t=﹣t 2+2t ,把解析式化为顶点式,根据二次函数的性质即可得△MNB 最大面积;此时点M 在D 点,点N 在对称轴上x 轴上方2个单位处或点N 在对称轴上x 轴下方2个单位处.【详解】解:(1)把A (1,0)和C (0,3)代入y=x 2+bx+c ,103b c c ++=⎧⎨=⎩解得:b=﹣4,c=3,∴二次函数的表达式为:y=x 2﹣4x+3;(2)令y=0,则x 2﹣4x+3=0,解得:x=1或x=3,∴B (3,0),∴,点P 在y 轴上,当△PBC 为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB 时,,∴或OP=PC ﹣﹣3∴P 1(0,),P 2(0,3﹣);②当PB=PC时,OP=OB=3,∴P3(0,-3);③当BP=BC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+32)或(0,3﹣32)或(﹣3,0)或(0,0);(3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=12×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.20、(1)证明见试题解析;(2)103.【解析】试题分析:(1)利用圆周角定理结合等腰三角形的性质得出∠OCF+∠DCB=90°,即可得出答案;(2)利用圆周角定理得出∠ACB=90°,利用相似三角形的判定与性质得出DC的长.试题解析:(1)连接OC ,∵∠CEA=∠CBA ,∠AEC=∠ODC ,∴∠CBA=∠ODC ,又∵∠CFD=∠BFO ,∴∠DCB=∠BOF ,∵CO=BO ,∴∠OCF=∠B ,∵∠B+∠BOF=90°,∴∠OCF+∠DCB=90°,∴直线CD 为⊙O 的切线;(2)连接AC ,∵AB 是⊙O 的直径,∴∠ACB=90°,∴∠DCO=∠ACB ,又∵∠D=∠B ,∴△OCD ∽△ACB ,∵∠ACB=90°,AB=5,BC=4,∴AC=3,∴CO CD AC BC =,即2.534CD =,解得;DC=103.考点:切线的判定.21、(2)3sin CD 5O ∠=;(2)详见解析;(2)当DCE 是以CD 为腰的等腰三角形时,CD 的长为2或2-. 【解析】(2)先求出OC 12=OB =2,设OD =x ,得出CD =AD =OA ﹣OD =2﹣x ,根据勾股定理得:(2﹣x )2﹣x 2=2求出x ,即可得出结论;(2)先判断出AE BE =,进而得出∠CBE =∠BCE ,再判断出△OBE ∽△EBC ,即可得出结论;(3)分两种情况:①当CD =CE 时,判断出四边形ADCE 是菱形,得出∠OCE =90°.在Rt △OCE 中,OC 2=OE 2﹣CE 2=4﹣a 2.在Rt △COD 中,OC 2=CD 2﹣OD 2=a 2﹣(2﹣a )2,建立方程求解即可;②当CD =DE 时,判断出∠DAE =∠DEA ,再判断出∠OAE =OEA ,进而得出∠DEA =∠OEA ,即:点D 和点O 重合,即可得出结论.【详解】(2)∵C 是半径OB 中点,∴OC 12=OB =2. ∵DE 是AC 的垂直平分线,∴AD =CD .设OD =x ,∴CD =AD =OA ﹣OD =2﹣x .在Rt △OCD 中,根据勾股定理得:(2﹣x )2﹣x 2=2,∴x 34=,∴CD 54=,∴sin ∠OCD 35OD CD ==; (2)如图2,连接AE ,CE .∵DE 是AC 垂直平分线,∴AE =CE .∵E 是弧AB 的中点,∴AE BE =,∴AE =BE ,∴BE =CE ,∴∠CBE =∠BCE .连接OE ,∴OE =OB ,∴∠OBE =∠OEB ,∴∠CBE =∠BCE =∠OEB .∵∠B =∠B ,∴△OBE ∽△EBC ,∴BE OB BC BE =,∴BE 2=BO •BC ; (3)△DCE 是以CD 为腰的等腰三角形,分两种情况讨论:①当CD =CE 时.∵DE 是AC 的垂直平分线,∴AD =CD ,AE =CE ,∴AD =CD =CE =AE ,∴四边形ADCE 是菱形,∴CE ∥AD ,∴∠OCE =90°,设菱形的边长为a ,∴OD =OA ﹣AD =2﹣a .在Rt △OCE 中,OC 2=OE 2﹣CE 2=4﹣a 2.在Rt △COD 中,OC 2=CD 2﹣OD 2=a 2﹣(2﹣a )2,∴4﹣a 2=a 2﹣(2﹣a )2,∴a =﹣23-2(舍)或a =232-;∴CD =232-;②当CD =DE 时.∵DE 是AC 垂直平分线,∴AD =CD ,∴AD =DE ,∴∠DAE =∠DEA .连接OE ,∴OA =OE ,∴∠OAE =∠OEA ,∴∠DEA =∠OEA ,∴点D 和点O 重合,此时,点C 和点B 重合,∴CD =2.综上所述:当△DCE 是以CD 为腰的等腰三角形时,CD 的长为2或232-.【点睛】本题是圆的综合题,主要考查了勾股定理,线段垂直平分线的性质,菱形的判定和性质,锐角三角函数,作出辅助线是解答本题的关键.22、 (1) 45°.(1) MN 1=ND 1+DH 1.理由见解析;(3)11.【解析】(1)先根据AG ⊥EF 得出△ABE 和△AGE 是直角三角形,再根据HL 定理得出△ABE ≌△AGE ,故可得出∠BAE=∠GAE ,同理可得出∠GAF=∠DAF ,由此可得出结论;(1)由旋转的性质得出∠BAM=∠DAH ,再根据SAS 定理得出△AMN ≌△AHN ,故可得出MN=HN .再由∠BAD=90°,AB=AD 可知∠ABD=∠ADB=45°,根据勾股定理即可得出结论;(3)设正方形ABCD 的边长为x ,则CE=x-4,CF=x-2,再根据勾股定理即可得出x 的值.【详解】解:(1)在正方形ABCD 中,∠B=∠D=90°,∵AG ⊥EF ,∴△ABE 和△AGE 是直角三角形.在Rt △ABE 和Rt △AGE 中,AB AG AE AE=⎧⎨=⎩, ∴△ABE ≌△AGE (HL ),∴∠BAE=∠GAE .同理,∠GAF=∠DAF .∴∠EAF=∠EAG+∠FAG=12∠BAD=45°. (1)MN 1=ND 1+DH 1.由旋转可知:∠BAM=∠DAH ,∵∠BAM+∠DAN=45°,∴∠HAN=∠DAH+∠DAN=45°.∴∠HAN=∠MAN .在△AMN 与△AHN 中, AM AH HAN MAN AN AN =⎧⎪∠=∠⎨⎪=⎩,∴△AMN ≌△AHN (SAS ),∴MN=HN .∵∠BAD=90°,AB=AD ,∴∠ABD=∠ADB=45°.∴∠HDN=∠HDA+∠ADB=90°.∴NH 1=ND 1+DH 1.∴MN 1=ND 1+DH 1.(3)由(1)知,BE=EG=4,DF=FG=2.设正方形ABCD 的边长为x ,则CE=x-4,CF=x-2.∵CE 1+CF 1=EF 1,∴(x-4)1+(x-2)1=101.解这个方程,得x 1=11,x 1=-1(不合题意,舍去).∴正方形ABCD 的边长为11.【点睛】本题考查的是几何变换综合题,涉及到三角形全等的判定与性质、勾股定理、正方形的性质等知识,难度适中.23、(1)① 6,② 2或4,③ 1<m <4;(2)223t -≤≤或322t -≤≤-. 【解析】 (1)①根据“折线距离”的定义直接列式计算; ②根据“折线距离”的定义列出方程,求解即可;③根据“折线距离”的定义列出式子,可知其几何意义是数轴上表示数m 的点到表示数3的点的距离与到表示数2的点的距离之和小于3.(2)由题意可知2x y +=,根据图像易得t 的取值范围.【详解】解:(1) ①d(P, A)=|3-(-2)|+|(-2)-(-1)|=6② (,)3(2)2345d P B b b =-+--=-+=∴ 31b -=∴ b=2或4③ (,)3(2)32323d P C m n m m m m =-+--=-+-+=-+-<,即数轴上表示数m 的点到表示数3的点的距离与到表示数2的点的距离之和小于3,所以1<m <4(2)设E (x,y ),则2x y +=,如图,若点E 在⊙F 上,则223322t t -≤≤-≤≤-或.【点睛】本题主要考查坐标与图形,正确理解新定义及其几何意义,利用数形结合的思想思考问题是解题关键.24、(1)见解析(2)相切【解析】(1)首先利用角平分线的作法得出CO ,进而以点O 为圆心,OB 为半径作⊙O 即可;(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可.【详解】(1)如图所示:;(2)相切;过O 点作OD ⊥AC 于D 点,∵CO 平分∠ACB ,∴OB=OD ,即d=r ,∴⊙O 与直线AC 相切,【点睛】此题主要考查了复杂作图以及角平分线的性质与作法和直线与圆的位置关系, 正确利用角平分线的性质求出d=r 是解题关键.25、 (Ⅰ)B(3,0);C(0,3);(Ⅱ)CDB ∆为直角三角形;(Ⅲ)22333(0)221933(3)222t t t S t t t ⎧-+<≤⎪⎪=⎨⎪=-+<<⎪⎩. 【解析】(1)首先用待定系数法求出抛物线的解析式,然后进一步确定点B ,C 的坐标.(2)分别求出△CDB 三边的长度,利用勾股定理的逆定理判定△CDB 为直角三角形. (3)△COB 沿x 轴向右平移过程中,分两个阶段:①当0<t≤32时,如答图2所示,此时重叠部分为一个四边形; ②当32<t <3时,如答图3所示,此时重叠部分为一个三角形. 【详解】解:(Ⅰ)∵点()1,0A -在抛物线()21y x c =--+上, ∴()2011c =---+,得4c =∴抛物线解析式为:()214y x =--+,令0x =,得3y =,∴()0,3C ;令0y =,得1x =-或3x =,∴()3,0B .(Ⅱ)CDB ∆为直角三角形.理由如下:由抛物线解析式,得顶点D 的坐标为()1,4.如答图1所示,过点D 作DM x ⊥轴于点M ,则1OM =,4DM =,2BM OB OM =-=.过点C 作CN DM ⊥于点N ,则1CN =,1DN DM MN DM OC =-=-=.在Rt OBC ∆中,由勾股定理得:22223332BC OB OC =+=+=;在Rt CND ∆中,由勾股定理得:2222112CD CN DN =+=+=;在Rt BMD ∆中,由勾股定理得:22222425BD BM DM =+=+=.∵222BC CD BD +=,∴CDB ∆为直角三角形.(Ⅲ)设直线BC 的解析式为y kx b =+,∵()()3,0,0,3B C ,∴303k b b +=⎧⎨=⎩, 解得1,3k b =-=,∴3y x =-+,直线QE 是直线BC 向右平移t 个单位得到,∴直线QE 的解析式为:()33y x t x t =--+=-++;设直线BD 的解析式为y mx n =+,∵()()3,0,1,4B D ,∴304m n m n +=⎧⎨+=⎩,解得:2,6m n =-=, ∴26y x =-+.连续CQ 并延长,射线CQ 交BD 交于G ,则3,32G ⎛⎫ ⎪⎝⎭. 在COB ∆向右平移的过程中:(1)当302t <≤时,如答图2所示:设PQ 与BC 交于点K ,可得QK CQ t ==,3PB PK t ==-.设QE 与BD 的交点为F ,则:263y x y x t =-+⎧⎨=-++⎩. 解得32x t y t=-⎧⎨=⎩, ∴()3,2F t t -.111222QPE PBK FBE F S S S S PE PQ PB PK BE y ∆∆∆=--=⋅-⋅-⋅ ()221113333232222t t t t t =⨯⨯---⋅=-+. (2)当332t <<时,如答图3所示:设PQ 分别与BC BD 、交于点K 、点J .∵CQ t =,∴KQ t =,3PK PB t ==-.直线BD 解析式为26y x =-+,令x t =,得62y t =-,∴(),62J t t -.1122PBJ PBK S S S PB PJ PB PK ∆∆=-=⋅-⋅ ()()()211362322t t t =---- 219322t t =-+. 综上所述,S 与t 的函数关系式为:2233302219333222t t t S t t t ⎧⎛⎫-+<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪=-+<< ⎪⎪⎝⎭⎩. 26、-2,-1,0,1【解析】解不等式5x +2>3(x -1)得:得x >-2.5; 解不等式12x≤2-32x 得x≤1.则这两个不等式解集的公共部分为 2.51x -≤< , 因为x 取整数,则x 取-2,-1,0,1.故答案为-2,-1,0,1【点睛】本题考查了求不等式组的整数解,先求出每个不等式的解集,再求出它们的公共部分,最后确定公共的整数解(包括正整数,0,负整数).27、(1)(4,6);y=1x1﹣8x+6(1)498;(3)点P的坐标为(3,5)或(711,22).【解析】(1)已知B(4,m)在直线y=x+1上,可求得m的值,抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值.(1)要弄清PC的长,实际是直线AB与抛物线函数值的差.可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC与P点横坐标的函数关系式,根据函数的性质即可求出PC的最大值.(3)根据顶点问题分情况讨论,若点P为直角顶点,此图形不存在,若点A为直角顶点,根据已知解析式与点坐标,可求出未知解析式,再联立抛物线的解析式,可求得C点的坐标;若点C为直角顶点,可根据点的对称性求出结论. 【详解】解:(1)∵B(4,m)在直线y=x+1上,∴m=4+1=6,∴B(4,6),故答案为(4,6);∵A(,),B(4,6)在抛物线y=ax1+bx+6上,∴,解得,∴抛物线的解析式为y=1x1﹣8x+6;(1)设动点P的坐标为(n,n+1),则C点的坐标为(n,1n1﹣8n+6),∴PC=(n+1)﹣(1n1﹣8n+6),=﹣1n1+9n﹣4,=﹣1(n﹣)1+,∵PC>0,∴当n=时,线段PC最大且为.(3)∵△PAC为直角三角形,i)若点P为直角顶点,则∠APC=90°.由题意易知,PC∥y轴,∠APC=45°,因此这种情形不存在;ii)若点A为直角顶点,则∠PAC=90°.如图1,过点A(,)作AN⊥x轴于点N,则ON=,AN=.过点A作AM⊥直线AB,交x轴于点M,则由题意易知,△AMN为等腰直角三角形,∴MN=AN=,∴OM=ON+MN=+=3,∴M(3,0).设直线AM的解析式为:y=kx+b,则:,解得,∴直线AM的解析式为:y=﹣x+3 ①又抛物线的解析式为:y=1x1﹣8x+6 ②联立①②式,解得:或(与点A重合,舍去),∴C(3,0),即点C、M点重合.当x=3时,y=x+1=5,∴P1(3,5);iii)若点C为直角顶点,则∠ACP=90°.∵y=1x1﹣8x+6=1(x﹣1)1﹣1,∴抛物线的对称轴为直线x=1.如图1,作点A(,)关于对称轴x=1的对称点C,则点C在抛物线上,且C(,).当x=时,y=x+1=.∴P1(,).∵点P1(3,5)、P1(,)均在线段AB上,∴综上所述,△PAC为直角三角形时,点P的坐标为(3,5)或(,).【点睛】本题考查了二次函数的综合题,解题的关键是熟练的掌握二次函数的应用.。
温中实验学校学年(上)九年级第一次联考试题数 学各位同学,欢迎参加本次考试。
全卷满分为150分,考试时间为120分钟,有三大题,24题。
考试时不得使用计算器,请仔细答题。
一选择题(本题有10小题,每小题4分,共40分,请选出各题中一个符合题意的正确选项,不选多选错选,均不给分) 1.式子4化简结果正确的是( )A .2B .-2C .±2D .4 2.方程 x (x -1)=0的解是( )A .x=1B .x=0C .x=0或x=1D .x=0且x=1 3.点P (2,-1)关于原点对称的点的坐标为( ) A .(2,1) B .(-2,1) C .(-2,-1) D .(-1,2) 4.若方程3x 2-5x -2=0有一根为a ,那么6a 2-10a 的值为( ) A .4 B .8 C .4或8 D .6 5.如图,一个量角器放在∠BAC 的上面,则∠BAC 的度数是( ) A .80° B .40° C .20° D .10°6.有4张背面完全相同,正面是下列交通标志图案的卡片任抽取一张, 抽出的一张是中心对称图形的是( ).A B C D7.半径等于4的圆中,垂直平分半径的弦长为( )A .32B .34C .36D .388.如图,AB 是⊙O 的直径,弦BC =2cm ,F 是弦BC 的中点,∠ABC =60°. 若动点E 以2cm/s 的速度从A 点出发沿着A→B→A 的方向运动,设运动时 间为t(s)(0≤t <3),连接EF ,当△BEF 是直角三角形时,t 的值为( ) A.47 B. 1 C. 47或1 D. 47或1或49 9.右图中,△ABD 和△BCE 都是等边三角形,下列说法错误的是( )A .△DBC ≌△ABEB .△DBC 可以由△ABE 绕B 点顺时针旋转600而得C .∠3=600D .BF 平分∠DBE10.如图,动点P 从(0,3)出发,沿所示方向运动, 每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P 第次碰到矩形的边时,点P 的坐标为( ) A .(0,3) B .(5,0) C .(8,3) D .(6,4)二填空题(本题有6小题,每小题5分,共30分)11.式子2-m 有意义,则m 的取值范围是 ;12.某公交车上原有18人,经过四个站点时上下车情况如下(上车为正,下车为负): (+3,-6),(-2,+4),(-7,+2),(+3,-5),则现在车上有 人; 13. 当k 时,方程022=+-k x x 有两个不相等的实数根;14.如图,在4×4的正方形网格中,△MNP 绕某点旋转90︒,得到△M 1N 1P 1 , 则其旋转中心可以是 ;(在点EFGH 中选一个填写)15.如图,直角坐标系中一条圆弧经过网格点ABC ,其中B 点坐 标为(4,4),•则该圆弧所在圆的圆心坐标为.16.平面内,若点P 与AB 两点构成等腰三角形,我们称点P 是AB 两点的“巧妙点”.类似地,平面内,若点P 与ABC 三点中的任意两 点均构成等腰三角形,我们则称点P 是ABC 三点的“巧妙点”. 若ABC 三点构成三角形,也可称点P 是△ABC 的“巧妙点”,则等边三角形ABC 的“巧妙点”的个数有 个。
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________(满分120分,考试用时120分钟)一、填空题(本大题共6小题,每小题3分,共18分)1.(2020•盱眙县校级模拟)若m与﹣2互为相反数,则m的值为.2.(2021•东港市模拟)在式子中,x的取值范围是.3.(2021•成都模拟)已知x1,x2是关于x的一元二次方程x2﹣3x+a=0的两个实数根,且x12+x22=5,则a =.4.(2021•山西模拟)已知,A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,则反比例函数的解析式为.5.(2021春•长白县期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).6.(2021•和平区一模)如图,在四边形ABCD中,∠DAB=∠BCD=90°,对角线AC与BD相交于点E,点F,G分别是AC,BD的中点,当∠CBD=15°,EG=EC,FG=时,则线段AC的长为.二、选择题(本大题共8小题,每小题4分,共32分,每小题正确的选项只用一个)7.(2021•裕华区模拟)全国已有29个省份在政府工作报告中设定:2021年GDP增速目标不低于6%.已知河北省2020年GDP总量为36206.9亿元,若今年比上年增长6%,则河北省2021年GDP总量用科学记数法(精确到百亿位)表示为()A.5.8×1011元B.3.41×1012元C.3.83×1012元D.3.84×1012元8.(2021•南关区一模)如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的左视图为()A.B.C.D.9.(2021•山西模拟)下列运算正确的是()A.a2•a3=a6B.(3a2)3=9a6C.2﹣3÷2﹣5=D.(﹣ab2)3=﹣a3b610.(2021•赣州模拟)本学期某校举行了四次数学测试,李娜同学四次的成绩(单位:分)分别为80,70,90,70,王玥同学四次的成绩分别为80,a(a≥70),70,90,且李娜同学四次成绩的中位数比王玥同学四次成绩的中位数少5分,则下列说法正确的是()A.a的值为70B.两位同学成绩的平均数相同C.李娜同学成绩的众数比王玥同学成绩的众数大D.王玥同学的成绩比李娜同学的成绩稳定11.(2021•碑林区校级二模)如图,在△ABC中,AB=10,BC=16,点D、E分别是边AB、AC的中点,点F是线段DE上的一点,连接AF、BF,若∠AFB=90°,则线段EF的长为()A.2B.3C.4D.512.(2021•武汉模拟)如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种13.(2021•莱州市模拟)如图,AB是⊙O的直径,弦CD⊥AB,延长弦AF,DC交于点E.若∠DFC=48°,则∠CFE的度数为()A.60°B.66°C.68°D.72°14.(2021•长清区二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,以点A为圆心、AC的长为半径作交AB于点E,以点B为圆心、BC的长为半径作交AB于点D,则阴影部分的面积为()A.π一2B.2π﹣4C.4π﹣8D.2π﹣2三、解答题(本大题共9小题,共70分)15.(本小题满分6分)(2021•铁西区二模)计算:(﹣2)2+2×(tan60°﹣20210)﹣|﹣2|.16.(本小题满分6分)(2021•常州一模)如图,△ABC中,AB=AC,点D、E是BC边上不重合的两点,BD =CE.(1)求证:AD=AE;(2)若DA⊥AE,∠B=26°,求∠BAD的大小.17.(本小题满分8分)(2021•南通一模)某校组织学生参加”防疫卫生知识竞赛”(满分为100分).竞赛结束后,随机抽取甲、乙两班各40名学生的成绩,并对数据(成绩)进行了整理、描述和答案.下面给出了部分信息.信息一:甲、乙两班40名学生数学成绩的频数分布统计表:成绩班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲41113102乙6315122 (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)信息二:甲班成绩在70≤x<80这一组的是:70,70,70,71,74,75,75,75,76,76,76,76,78信息三:甲、乙两班成绩的平均分、中位数、众数:班级平均分中位数众数甲74.2n85乙73.57384根据以上信息,回答下列问题:(1)写出表中n的值.(2)在此次测试中,某学生的成绩是74分,在他所属班级排在前20名,由表中数据可知该学生是班的学生(填”甲”或”乙”),给出理由.(3)假设学校1200名学生都参加此次竞赛,估计成绩优秀的学生人数.18.(本小题满分6分)(2021•广东模拟)为提升青少年的身体素质,在全市中小学推行”阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?19.(本小题满分7分)(2021•前郭县三模)嫦娥、神舟、北斗、天问被称为中国航天的”四大天王”.2020年”北斗”组网、”天问”问天、”嫦五”探月,一个个好消息从太空传来,照亮了中国航天界的未来!小玲对航空航天非常感兴趣,她收集到了嫦娥五号、神舟十一号、北斗三号、天问一号的模型图,依次制成编号为A、B、C、D的四张卡片(背面完全相同),将这四张卡片背面朝上,洗匀放好.(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为;(2)小玲先从四张卡片中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率.20.(本小题满分8分)(2021•余姚市一模)如图,已知二次函数y=x2﹣x+c的图象经过点P(﹣3,6).(1)求该二次函数的表达式.(2)求该二次函数图象的顶点坐标.(3)点Q(m,n)在该二次函数图象上,若点Q到y轴的距离小于3.请根据图象直接写出n的取值范围.21.(本小题满分8分)(2021•宁波模拟)如图,已知四边形ABCD是菱形,点E,F分别在线段AB,AD上,EG∥BC,FH∥DC,点G,H分别在线段CD,BC上,EG和FH相交于点P,BE=DF.(1)求证:四边形HCGP是菱形.(2)若四边形BHPE是菱形,求证:点E是线段AB的中点.22.(本小题满分9分)(2021•台安县模拟)某商店购进了一种新款小电器,为了制定合适的销售价格,进行了为期4周的试营销,试营销的情况如下表所示:第1周第2周第3周第4周售价/(元/台)50456055销售/台360390300330已知该款小电器的进价每台40元,设该款小电器每台的售价为x元,每周的销售量为y台.(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;(2)若想每周的销售利润为6000元,则其售价应定为多少元?(3)若每台小电器的售价不低于45元,但又不能高于进价的1.5倍,则如何定价才能使每周的销售利润最大?23.(本小题满分12分)(2021•泉州模拟)如图1,在⊙O中,点A是优弧BAC上的一点,点I为△ABC的内心,连接AI并延长交⊙O于点D,连接OD交BC于点E,连接BI.(1)求证:OD⊥BC;(2)连接DB,求证:DB=DI;(3)如图2,若BC=24,tan∠OBC=,当B、O、I三点共线时,过点D作DG∥BI,交⊙O于点G,求DG的长.参考答案四、填空题(本大题共6小题,每小题3分,共18分)1.(2020•盱眙县校级模拟)若m与﹣2互为相反数,则m的值为.【答案】2.【解析】解:∵﹣2的相反数是2,∴m=2.故答案为:2.2.(2021•东港市模拟)在式子中,x的取值范围是.【答案】x>﹣1.【解析】解:由题意得,x+1>0,解得,x>﹣1,故答案为:x>﹣1.3.(2021•成都模拟)已知x1,x2是关于x的一元二次方程x2﹣3x+a=0的两个实数根,且x12+x22=5,则a =.【答案】2.【解析】解:根据题意得:△=9﹣4a≥0,解得:a,x1+x2=3,x1x2=a,x12+x22=﹣2x1x2=9﹣2a=5,解得:a=2(符合题意),故答案为:2.4.(2021•山西模拟)已知,A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,则反比例函数的解析式为.【答案】:y=﹣..【解析】解:∵A(﹣3,n),C(3n﹣6,2)是反比例函数y=(x<0)图象上的两点,∴n=,2=,即m=﹣3n,m=2(3n﹣6),消去m得:﹣3n=2(3n﹣6),解得:n=,把n=代入得:m=﹣4,则反比例函数解析式为y=﹣.故答案为:y=﹣.5.(2021春•长白县期中)如图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是(填序号).【答案】①②③.【解析】解:①∠A与∠1是同位角,此结论正确;②∠A与∠B是同旁内角,此结论正确;③∠4与∠1是内错角,此结论正确;④∠1与∠3不是同位角,原来的结论错误;故答案为:①②③.6.(2021•和平区一模)如图,在四边形ABCD中,∠DAB=∠BCD=90°,对角线AC与BD相交于点E,点F,G分别是AC,BD的中点,当∠CBD=15°,EG=EC,FG=时,则线段AC的长为.【答案】6.【解析】解:如图所示,连接AG,CG,由题意,△ABD与△BCD均是BD为斜边的直角三角形,∴AG=BD,CG=BD,即:AG=CG,∴△ACG为等腰三角形,∵∠CBD=15°,CG=BG,∴∠CGE=2∠CBD=30°,∵EC=EG,∴∠ECD=∠CGE=30°,又∵F为AC的中点,∴GF为△ACG的中线,AF=CF,∴由”三线合一”知,GF⊥AC,∠GFC=90°,∵FG=,∴CF=FG=3,∴AC=2FC=6,故答案为:6.五、选择题(本大题共8小题,每小题4分,共32分,每小题正确的选项只用一个)7.(2021•裕华区模拟)全国已有29个省份在政府工作报告中设定:2021年GDP增速目标不低于6%.已知河北省2020年GDP总量为36206.9亿元,若今年比上年增长6%,则河北省2021年GDP总量用科学记数法(精确到百亿位)表示为()A.5.8×1011元B.3.41×1012元C.3.83×1012元D.3.84×1012元【答案】D.【解析】解:36206.9×(1+6%)=38379.314亿元≈38400亿元=3840000000000元=3.84×1012元.故选:D.8.(2021•南关区一模)如图是由4个相同的小长方体组成的立体图形和它的主视图,则它的左视图为()A.B.C.D.【答案】B.【解析】解:立体图形的左视图是.故选:B.9.(2021•山西模拟)下列运算正确的是()A.a2•a3=a6B.(3a2)3=9a6C.2﹣3÷2﹣5=D.(﹣ab2)3=﹣a3b6【答案】D.【解析】解:A.a2•a3=a2+3=a5,故A运算不符合题意,B.(3a2)3=33•(a2)3=27a6,故B运算不符合题意,C.2﹣3÷2﹣5=2﹣3﹣(﹣5)=22,故C运算不符合题意,D.(﹣ab2)3=﹣a3b2×3=﹣a3b6,故D运算符合题意,故选:D.10.(2021•赣州模拟)本学期某校举行了四次数学测试,李娜同学四次的成绩(单位:分)分别为80,70,90,70,王玥同学四次的成绩分别为80,a(a≥70),70,90,且李娜同学四次成绩的中位数比王玥同学四次成绩的中位数少5分,则下列说法正确的是()A.a的值为70B.两位同学成绩的平均数相同C.李娜同学成绩的众数比王玥同学成绩的众数大D.王玥同学的成绩比李娜同学的成绩稳定【答案】D.【解析】解:∵李娜同学四次的成绩的中位数为=75(分),∴由题意知王玥同学四次的成绩的中位数为80分,则a=80分,故A选项错误;李娜成绩的平均数为=77.5(分),王玥成绩的平均数为=80(分),故B选项错误;李娜同学成绩的众数为70分,王玥同学成绩的众数为80分,故C选项错误;王玥同学的成绩的方差为×[(70﹣80)2+2×(80﹣80)2+(90﹣80)2]=50,李娜同学的成绩的方差为×[2×(70﹣77.5)2+(80﹣77.5)2+(90﹣77.5)2]=68.75,∴王玥同学的成绩比李娜同学的成绩稳定,故D选项正确;故选:D.11.(2021•碑林区校级二模)如图,在△ABC中,AB=10,BC=16,点D、E分别是边AB、AC的中点,点F是线段DE上的一点,连接AF、BF,若∠AFB=90°,则线段EF的长为()A.2B.3C.4D.5【答案】解:∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∵BC=16,∴DE=BC=8.∵∠AFB=90°,D是AB的中点,AB=10,∴DF=AB=5,∴EF=DE﹣DF=8﹣5=3.故选:B.【解析】利用三角形中位线定理得到DE=BC.由直角三角形斜边上的中线等于斜边的一半得到DF =AB.所以由图中线段间的和差关系来求线段EF的长度即可.12.(2021•武汉模拟)如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种【答案】C.【解析】解:如图所示,直线代表一个1×2的小矩形纸片:1+4+3=8(种).答:不同的覆盖方法有8种.故选:C.13.(2021•莱州市模拟)如图,AB是⊙O的直径,弦CD⊥AB,延长弦AF,DC交于点E.若∠DFC=48°,则∠CFE的度数为()A.60°B.66°C.68°D.72°【答案】B.【解析】解:连接AD,∵AB是⊙O的直径,弦CD⊥AB,∴=,∴∠DAB=∠DFC=×48°=24°,∴∠ADC=90°﹣∠DAB=90°﹣24°=66°,∵四边形ADCF内接与⊙O,∴∠CFE=∠ADC=66°,故选:B.14.(2021•长清区二模)如图,在Rt△ABC中,∠ACB=90°,AC=BC=4,以点A为圆心、AC的长为半径作交AB于点E,以点B为圆心、BC的长为半径作交AB于点D,则阴影部分的面积为()A.π一2B.2π﹣4C.4π﹣8D.2π﹣2【答案】C.【解析】解:∵∠ACB=90°,AC=BC=4,∴S△ABC=×4×4=8,S扇形BCD==2π,S空白=2×(8﹣2π)=16﹣4π,S阴影=S△ABC﹣S空白=8﹣16+4π=4π﹣8,故选:C.六、解答题(本大题共9小题,共70分)15.(本小题满分6分)(2021•铁西区二模)计算:(﹣2)2+2×(tan60°﹣20210)﹣|﹣2|.【答案】解:原式=4+2×(﹣1)﹣2=4+2﹣2﹣2=2.【解析】直接利用特殊角的三角函数值以及绝对值的性质、零指数幂的性质分别计算得出答案.16.(本小题满分6分)(2021•常州一模)如图,△ABC中,AB=AC,点D、E是BC边上不重合的两点,BD =CE.(1)求证:AD=AE;(2)若DA⊥AE,∠B=26°,求∠BAD的大小.【答案】.证明:(1)∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE;(2)∵∠C=∠B=26°,∴∠BAC=180°﹣(26°+26°)=128°,∵∠BAC=128°,∠DAE=90°,∴∠BAD+∠CAE=128°﹣90°=38°,∵△ABD≌△ACE,∴∠BAD=∠CAE,∴∠BAD=38°÷2=19°.【解析】(1)由”SAS”可证△ABD≌△ACE,可得AD=AE;(2)由全等三角形的性质可得∠BAD=∠CAE,由三角形内角和定理可求解17.(本小题满分8分)(2021•南通一模)某校组织学生参加”防疫卫生知识竞赛”(满分为100分).竞赛结束后,随机抽取甲、乙两班各40名学生的成绩,并对数据(成绩)进行了整理、描述和答案.下面给出了部分信息.信息一:甲、乙两班40名学生数学成绩的频数分布统计表:成绩班级50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100甲41113102乙6315122 (说明:成绩80分及以上为优秀,70~79分为良好,60~69分为合格,60分以下为不合格)信息二:甲班成绩在70≤x<80这一组的是:70,70,70,71,74,75,75,75,76,76,76,76,78信息三:甲、乙两班成绩的平均分、中位数、众数:班级平均分中位数众数甲74.2n85乙73.57384根据以上信息,回答下列问题:(1)写出表中n的值.(2)在此次测试中,某学生的成绩是74分,在他所属班级排在前20名,由表中数据可知该学生是班的学生(填”甲”或”乙”),给出理由.(3)假设学校1200名学生都参加此次竞赛,估计成绩优秀的学生人数.【答案】解:(1)这组数据的中位数是第20、21个数据的平均数,所以中位数n==74.5,故答案为:74.5;(2)这名学生的成绩为74分,小于甲班样本数据的中位数74.5分,大于乙班样本数据的中位数73分,说明这名学生是乙班的学生,故答案为:乙,这名学生的成绩为74分,小于甲班样本数据的中位数74.5分,大于乙班样本数据的中位数73分,说明这名学生是乙班的学生;(3)1200×=390(人),答:学校1200名学生中成绩优秀的大约有390人.【解析】(1)根据中位数的定义求解可得;(2)根据这名学生的成绩为74分,大于甲班样本数据的中位数72.5分,小于乙班样本数据的中位数76分可得;(3)利用样本估计总体思想求解可得.18.(本小题满分6分)(2021•广东模拟)为提升青少年的身体素质,在全市中小学推行”阳光体育”活动,某学校为满足学生的需求,准备购买一些键球和跳绳.已知用720元购买键球的个数比购买跳绳的条数多24,键球单价为跳绳单价的.(1)求键球、跳绳的单价分别为多少元?(2)如果计划用不多于2700元购买键球、跳绳共100个,那么最多可以购买多少条跳绳?【答案】解:(1)设跳绳的单价为x元,则键球的单价为x元,依题意得:﹣=24,解得:x=45,经检验,x=45是原方程的解,且符合题意,∴x=18(元).答:键球的单价为18元,跳绳的单价为45元.(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,依题意得:45m+18(100﹣m)≤2700,解得:m≤.又∵m为正整数,∴m的最大值为33.答:最多可以购买33条跳绳.【解析】(1)设跳绳的单价为x元,则键球的单价为x元,根据数量=总价÷单价,结合用720元购买键球的个数比购买跳绳的条数多24,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设可以购买m条跳绳,则购买(100﹣m)条跳绳,根据总价=单价×数量,结合总价不多于2700元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再取其中的最大整数值即可得出结论.19.(本小题满分7分)(2021•前郭县三模)嫦娥、神舟、北斗、天问被称为中国航天的”四大天王”.2020年”北斗”组网、”天问”问天、”嫦五”探月,一个个好消息从太空传来,照亮了中国航天界的未来!小玲对航空航天非常感兴趣,她收集到了嫦娥五号、神舟十一号、北斗三号、天问一号的模型图,依次制成编号为A、B、C、D的四张卡片(背面完全相同),将这四张卡片背面朝上,洗匀放好.(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为;(2)小玲先从四张卡片中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率.【答案】解:(1)小玲从中随机抽取一张卡片是”北斗三号”的概率为,故答案为:;(2)画树状图如图:共有12种等可能的情况,其中抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的有2种情况,∴抽到的两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的概率为=.【解析】(1)根据概率公式直接得出答案;(2)先画树状图列出所有等可能的结果数,两张卡片恰好是编号为A(嫦娥五号)和D(天问一号)的结果数为2种,再根据概率公式求解可得.20.(本小题满分8分)(2021•余姚市一模)如图,已知二次函数y=x2﹣x+c的图象经过点P(﹣3,6).(1)求该二次函数的表达式.(2)求该二次函数图象的顶点坐标.(3)点Q(m,n)在该二次函数图象上,若点Q到y轴的距离小于3.请根据图象直接写出n的取值范围.【答案】解:(1)把点P(﹣3,6)代入y=x2﹣x+c中,得:6=×(﹣3)2﹣(﹣3)+c,解得:c=﹣,∴该二次函数的表达式为y=x2﹣x﹣;(2)y=x2﹣x﹣=(x﹣1)2﹣2,∴该二次函数图象的顶点坐标为(1,﹣2);(3)∵点Q到y轴的距离小于3,∴|m|<3,∴﹣3<m<3,∵x=﹣3时,y=x2﹣x﹣=×(﹣3)2﹣(﹣3)﹣=6,x=3时,y=x2﹣x﹣=×32﹣3﹣=0,又∵顶点坐标为(1,﹣2),∴﹣3<m<3时,n≥2,∴﹣2≤n<6.【解析】(1)把点P(﹣3,6)代入y=x2﹣x+c中,即可求解;(2)把二次函数的表达式化为顶点式即可得该二次函数图象的顶点坐标;(3)由点Q到y轴的距离小于3,可得﹣3<m<3,在此范围内求n即可.21.(本小题满分8分)(2021•宁波模拟)如图,已知四边形ABCD是菱形,点E,F分别在线段AB,AD上,EG∥BC,FH∥DC,点G,H分别在线段CD,BC上,EG和FH相交于点P,BE=DF.(1)求证:四边形HCGP是菱形.(2)若四边形BHPE是菱形,求证:点E是线段AB的中点.【答案】证明:(1)∵四边形ABCD是菱形,∴AB∥CD,AD∥BC,∵EG∥BC,FH∥DC,∴四边形HCGP、四边形BCGE、四边形CDFH都是平行四边形,∴BE=CG,CH=DF,∵BE=DF,∴CG=CH,∴平行四边形HCGP是菱形;(2)由(1)可知,BE=CG=CH,∵四边形BHPE是菱形,∴BE=BH,∴BE=BH=CH=BC,∵四边形ABCD是菱形,∴AB=BC,∴BE=AB,∴点E是线段AB的中点.【解析】(1)先证四边形HCGP、四边形BCGE、四边形CDFH都是平行四边形,得BE=CG,CH=DF,再证CG=CH,即可得出结论;(2)由(1)可知,BE=CG=CH,再由菱形的性质得BE=BH,AB=BC,则BE=BH=CH=BC=AB,即可得出结论.22.(本小题满分9分)(2021•台安县模拟)某商店购进了一种新款小电器,为了制定合适的销售价格,进行了为期4周的试营销,试营销的情况如下表所示:第1周第2周第3周第4周售价/(元/台)50456055销售/台360390300330已知该款小电器的进价每台40元,设该款小电器每台的售价为x元,每周的销售量为y台.(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;(2)若想每周的销售利润为6000元,则其售价应定为多少元?(3)若每台小电器的售价不低于45元,但又不能高于进价的1.5倍,则如何定价才能使每周的销售利润最大?【答案】解:(1)y与x满足一次函数关系,设y与x的函数关系式为y=kx+b,,解得:,即这个函数关系式是y=﹣6x+660;(2)由题意可得,(x﹣40)(﹣6x+660)=6000,解得,x1=60,x2=90,答:若想每周的利润为6000元,则其售价应定为每台60元或每台90元;(3)设每周的销售利润为w元,定价为x元,由题意可得,w=(x﹣40)(﹣6x+660)=﹣6(x﹣75)2+7350,45≤x≤40×1.5,即45≤x≤60,∵y=﹣6x+660,∵﹣6<0,对称轴为直线x=75,∴x<75时,y随x的增大而增大,∴当x=60时,w取得最大值,答:定价为60元/台时,才能使每周的销售利润最大.【解析】(1)根据题意和表格中的数据可以判断出y与x的函数关系,并求出这个函数关系式;(2)根据题意可以得到每周的利润为6000元,则其售价应定为多少元;(3)设每周的销售利润为w元,定价为x元,根据题意和(1)中的函数关系式,利用一次函数的性质可以解析本题.23.(本小题满分12分)(2021•泉州模拟)如图1,在⊙O中,点A是优弧BAC上的一点,点I为△ABC的内心,连接AI并延长交⊙O于点D,连接OD交BC于点E,连接BI.(1)求证:OD⊥BC;(2)连接DB,求证:DB=DI;(3)如图2,若BC=24,tan∠OBC=,当B、O、I三点共线时,过点D作DG∥BI,交⊙O于点G,求DG的长.【答案】(1)证明:如图1中,∵I是△ABC的内心,∴∠BAD=∠CAD,∴=,∴OD⊥BC.(2)证明:如图1中,连接BD.∵I是△ABC的内心,∴∠BAI=∠CAI,∠ABI=∠CBI,∵∠DIB=∠BAI+∠ABI,∠DBI=∠CBI+∠CBD,∠CBD=∠CAI,∴∠DBI=∠DIB,∴DB=DI.(3)解:如图2中,连接OG,过点O作OH⊥DG于H.∵OD⊥BC,∴BE=EC=12,∵tan∠OBE==,∴OE=5,∵DG∥OB,∴∠BOE=∠ODH,∵∠BEO=∠OHD=90°,OB=OD,∴△OBE≌△ODH(AAS),∴OE=DH=5,∵OH⊥DG,∴DH=HG=5,∴DG=10.【解析】(1)证明=,再利用垂径定理可得结论.(2)想办法证明∠DBI=∠DIB,即可解决问题.(3)如图2中,连接OG,过点O作OH⊥CG于H,解直角三角形求出OE,再利用全等三角形的性质求出DH,可得结论.。
2021年浙江省温州市鹿城区中考数学一模试卷一.选择题(共10小题,满分40分,每小题4分)1.3的相反数是()A.﹣3B.3C.D.﹣2.下列图案中,可以看作是中心对称图形的是()A.B.C.D.3.一组数据﹣1,﹣3,2,4,0,2的众数是()A.0B.1C.2D.34.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是()A.8B.9C.10D.125.如果分式的值是零,那么x的值是()A.x=﹣2B.x=5C.x=﹣5D.x=26.一个公园有A,B,C三个入口和D,E二个出口小明进入公园游玩,从“A口进D口出”的概率为()A.B.C.D.7.如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=4m,则坡面AB的长度是()A.m B.4m C.2m D.4m8.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,由题意列出关于x与y的方程组为()进球数012345人数15x y32A.B.C.D.9.以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y =经过点D,则正方形ABCD的边长是()A.B.3C.D.610.如图,△ABC为等边三角形,以AB为边向形外作△ABD,使∠ADB=120°,再以点C为旋转中心把△CBD旋转到△CAE,则下列结论:①D、A、E三点共线;②DC平分∠BDA;③∠E=∠BAC;④DC=DB+DA,其中正确的有()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分30分,每小题5分)11.已知:a+b=﹣3,ab=2,则a2b+ab2=.12.在半径为12的⊙O中,150°的圆心角所对的弧长等于.13.对于三个数a,b,c,用M{a,b,c}表示这三个数的中位数,用max{a,b,c}表示这三个数中最大的数.例如:M{﹣2,﹣1,0}=﹣1;max{﹣2,﹣1,0}=0,max{﹣2,﹣1,a}=根据以上材料,解决下列问题:若max{3,5﹣3x,2x﹣6}=M{1,5,3},则x的取值范围为.14.如图,已知∠BDC=142°,∠B=34°,∠C=28°,则∠A=.15.抛物线y=n(n+1)x2﹣(3n+1)x+3与直线y=﹣nx+2的两个交点的横坐标分别是x1、x2,记dn=|x1﹣x2|,则代数式d1+d2+d3+…+d2018的值为.16.①把图一的矩形纸片ABCD折叠,B,C两点恰好重合落在AD边上的点P处(如图二),已知∠MPN=90°,PM=3,PN=4,那么矩形纸片ABCD的面积为;②在图三的Rt△MPN中,若以P为圆心,R为半径所作的圆与斜边MN只有一个公共点,则R的取值范围是.三.解答题(共8小题,满分80分,每小题10分)17.(1)计算:(﹣2018)0.(2)化简:(a+2)(a﹣2)﹣a(a+1).18.如图,分别延长▱ABCD的边AB、CD至点E、点F,连接CE、AF,其中∠E=∠F.求证:四边形AECF为平行四边形.19.2018年3月,某市教育主管部门在初中生中开展了“文明礼仪知识竞赛”活动,活动结束后,随机抽取了部分同学的成绩(x均为整数,总分100分),绘制了如下尚不完整的统计图表.调查结果统计表组别成绩分组(单位:分)频数频率A80≤x<85500.1B85≤x<9075C90≤x<95150cD95≤x≤100a合计b1根据以上信息解答下列问题:(1)统计表中,a=,b=,c=;(2)扇形统计图中,m的值为,“C”所对应的圆心角的度数是;(3)若参加本次竞赛的同学共有5000人,请你估计成绩在95分及以上的学生大约有多少人?20.如图,在8×8的正方形网格中,点A、B、C均在格点上.根据要求只用直尺在网格中画图并标注相关字母.(1)画线段AC.(2)画直线AB.(3)过点C画AB的垂线,垂足为D.(4)在网格中标出直线DC经过的异于点C的所有格点,并标注字母.21.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴相交于原点O和点B(4,0),点A(3,m)在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)求tan∠OAB的值.22.如图,AB是⊙O的弦,半径OE⊥AB,P为AB的延长线上一点,PC与⊙O相切于点C,CE 与AB交于点F.(1)求证:PC=PF;(2)连接OB,BC,若OB∥PC,BC=3,tan P=,求FB的长.23.如图,有长为24m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm2.(1)求S与x的函数关系式及x值的取值范围;(2)要围成面积为45m2的花圃,AB的长是多少米?(3)、当AB的长是多少米时,围成的花圃的面积最大?24.AB为⊙O的直径,弦CD⊥AB,垂足为H,F为弧BC上一点,且∠FBC=∠ABC,连接DF,分别交BC、AB于E、G.(1)如图1,求证:DF⊥BC;(2)如图2,连接EH,过点E作EM⊥EH,EM交⊙O于点M,交AB于点N,求证:NH=AB;(3)如图3,在(2)的条件下,若DG=6,ON=6,求MN的长.2019年浙江省温州市鹿城区中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】依据相反数的定义回答即可.【解答】解:3的相反数是﹣3.故选:A.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.【分析】根据旋转180°后与原图重合的图形是中心对称图形,进而分析即可.【解答】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、是中心对称图形,故此选项正确;D、不是中心对称图形,故此选项错误;故选:C.【点评】此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【分析】众数是一组数据中出现次数最多的数据,注意众数可以不只一个.【解答】解:因为这组数出现次数最多的是2,所以这组数的众数是2.故选:C.【点评】本题属于基础题,考查了确定一组数据的众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.4.【分析】设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数.【解答】解:设这个多边形的外角为x°,则内角为3x°,由题意得:x+3x=180,解得x=45,这个多边形的边数:360°÷45°=8,故选:A.【点评】此题主要考查了多边形的内角与外角,关键是掌握多边形的相邻的内角与外角互补.5.【分析】根据分式的值为零的条件即可求出答案.【解答】解:由题意可知:x﹣5=0且x+2≠0,∴x=5,故选:B.【点评】本题考查分式的值,解题的关键是运用分式的值为零的条件,本题属于基础题型.6.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:根据题意画树形图:共有6种等情况数,其中“A口进D口出”有一种情况,从“A口进D口出”的概率为;故选:D.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.7.【分析】首先根据坡比求出AC的长度,然后根据勾股定理求出AB的长度.【解答】解:∵迎水坡AB的坡比是1:,∴BC:AC=1:,BC=4m,∴AC=4m,则AB==4(m).故选:D.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据坡比构造直角三角形,利用三角函数的知识求解.8.【分析】设进2个球的有x人,进3个球的有y人,根据20人共进49个球,即可得出关于x,y 的二元一次方程组,此题得解.【解答】解:设进2个球的有x人,进3个球的有y人,根据题意得:,即.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.9.【分析】根据题意、正方形的性质和反比例函数图象上点的坐标特点,可以求得正方形的边长,本题得以解决.【解答】解:设点D的坐标为(a,a),∵双曲线y=经过点D,∴a=,解得,a=或a=﹣(舍去),∴AD=2a=2,即正方形ABCD的边长是2,故选:C.【点评】本题考查反比例函数图象上点的坐标特征、正方形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.10.【分析】(1)设∠1=x度,把∠2=(60﹣x)度,∠DBC=(x+60)度,∠4=(x+60)度,∠3=60°加起来等于180度,即可证明D、A、E三点共线;(2)根据△BCD绕着点C按顺时针方向旋转60°得到△ACE,判断出△CDE为等边三角形,求出∠BDC=∠E=60°,∠CDA=120°﹣60°=60°,可知DC平分∠BDA;(3)由②可知,∠BAC=60°,∠E=60°,从而得到∠E=∠BAC.(4)由旋转可知AE=BD,又∠DAE=180°,DE=AE+AD.而△CDE为等边三角形,DC=DE =DB+BA.【解答】解:①设∠1=x度,则∠2=(60﹣x)度,∠DBC=(x+60)度,故∠4=(x+60)度,∴∠2+∠3+∠4=60﹣x+60+x+60=180度,∴D、A、E三点共线;②∵△BCD绕着点C按顺时针方向旋转60°得到△ACE,∴CD=CE,∠DCE=60°,∴△CDE为等边三角形,∴∠E=60°,∴∠BDC=∠E=60°,∴∠CDA=120°﹣60°=60°,∴DC平分∠BDA;③∵∠BAC=60°,∠E=60°,∴∠E=∠BAC.④由旋转可知AE=BD,又∵∠DAE=180°,∴DE=AE+AD.∵△CDE为等边三角形,∴DC=DB+BA.【点评】本题考查了旋转的性质、全等三角形的判定与性质、等边三角形的性质、圆周角定理等相关知识,要注意旋转不变性,找到变化过程中的不变量.二.填空题(共6小题,满分30分,每小题5分)11.【分析】原式提取公因式变形后,将已知等式代入计算即可求出值.【解答】解:∵a+b=﹣3,ab=2,∴原式=ab(a+b)=﹣6.故答案为:﹣6【点评】此题考查了因式分解﹣提公因式法,熟练掌握提公因式法是解本题的关键.12.【分析】根据弧长的公式l=进行解答.【解答】解:根据弧长的公式l=得到:=10π.故答案是:10π.【点评】本题主要考查了弧长的计算,熟记公式是解题的关键.13.【分析】由max{3,5﹣3x,2x﹣6}=M{1,5,3}得,解之可得.【解答】解:∵max{3,5﹣3x,2x﹣6}=M{1,5,3}=3,∴,∴≤x≤,故答案为≤x≤.【点评】此题考查了一元一次不等式组的应用,解题的关键是读懂题意,根据题意得到不等式去求解,考查综合应用能力.14.【分析】连接AD,延长AD到E.只要证明∠BDC=∠B+∠C+∠BAC,即可解决问题.【解答】解:连接AD,延长AD到E.∵∠BDE=∠B+∠BAE,∠CDE=∠C+∠CAE,∴∠BDC=∠B+∠C+∠BAE+∠CAE=∠B+∠C+∠BAC,∵∠BDC=142°,∠B=34°,∠C=28°,∴∠BAC=80°,故答案为80°.【点评】本题考查三角形的外角的性质,三角形内角和定理等知识,解题的关键是学会添加常用辅助线,构造三角形的外角解决问题,属于中考常考题型.15.【分析】联立抛物线和直线的解析式,求得两个交点的横坐标,然后观察d n表达式的规律,根据规律进行求解即可.【解答】解:依题意,联立抛物线和直线的解析式有:n(n+1)x2﹣(3n+1)x+3=﹣nx+2,整理得:n(n+1)x2﹣(2n+1)x+1=0,解得x1=,x2=;所以当n为正整数时,d n=﹣,故代数式d1+d2+d3+…+d2018=1﹣+﹣+…+﹣=1﹣=,故答案为.【点评】此题主要考查的是函数图象交点坐标的求法,能够发现所求代数式中的规律是解决问题的关键.16.【分析】(1)根据已知可求得MN,BC的长,再根据矩形的面积公式即可求得其面积.(2)因为所作的圆与斜边MN只有一个公共点,即当PM<R≤PN时只有一个交点,解出即可.【解答】解:(1)∵PM=3,PN=4,∴MN=5;∴BC=5+3+4=12.从点P处作MN的高,则根据直角三角形斜边上的高的性质可知高==,所以矩形的面积=×12=.(2)①以P为圆心,当PM<R≤PN时只有一个交点,则3<R≤4时,R为半径所作的圆与斜边MN只有一个公共点,②当以P为圆心,2.4为半径时,圆P与斜边NM相切,只有一个交点.综上所述,半径R的取值范围是:R=2.4或3<R≤4.故答案为:R=2.4或3<R≤4.【点评】本题主要考查了切线的判定及翻折变换.解题的关键是理解题意,抓住题目考查的知识点.三.解答题(共8小题,满分80分,每小题10分)17.【分析】(1)根据零指数幂、二次根式的化简等计算法则解答;(2)利用多项式乘多项式以及单项式乘多项式的计算法则解答.【解答】(1)解:原式=1+2﹣9×=2;(2)解:原式=a2﹣4﹣a2﹣a=﹣4﹣a.【点评】考查了平方差公式,实数的运算,零指数幂等知识点,熟记计算法则即可.18.【分析】由平行四边形的性质可得AB=CD,AD=BC,∠ADC=∠ABC,由“AAS”可证△ADF ≌△CBE,可得AF=CE,DF=BE,可得AE=CF,则可得结论.【解答】证明:∵四边形ABCD是平行四边形∴AB=CD,AD=BC,∠ADC=∠ABC∴∠ADF=∠CBE,且∠E=∠F,AD=BC∴△ADF≌△CBE(AAS)∴AF=CE,DF=BE∴AB+BE=CD+DF∴AE=CF,且AF=CE∴四边形AECF是平行四边形【点评】本题考查了平行四边形的判定和性质,全等三角形判定和性质,熟练运用平行四边形的判定和性质是本题的关键.19.【分析】(1)由A组频数及其频率求得总数b=500,根据各组频数之和等于总数求得a,再由频率=频数÷总数可得c;(2)D组人数除以总人数得出其百分比即可得m的值,再用360°乘C组的频率可得;(3)总人数乘以样本中D组频率可得.【解答】解:(1)b=50÷0.1=500,a=500﹣(50+75+150)=225,c=150÷500=0.3;故答案为:225,500,0.3;(2)m%=×100%=45%,∴m=45,“C”所对应的圆心角的度数是360°×0.3=108°,故答案为:45,108°;(3)5000×0.45=2250,答:估计成绩在95分及以上的学生大约有2250人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.【分析】(1)根据线段的定义作图即可;(2)根据直线的定义作图即可得;(3)根据垂线的定义作图可得;(4)结合图形,由格点的定义可得.【解答】解:(1)如图所示,线段AC即为所求;(2)如图所示,直线AB即为所求;(3)如图所示,直线CD即为所求;(4)如图所示,点E和点F即为所求.【点评】本题主要考查作图﹣应用与设计作图,解题的关键是掌握直线、线段、垂线的定义.21.【分析】(1)把点O(0,0),点B(4,0)分别代入y=﹣x2+bx+c,解之,得到b和c的值,即可得到抛物线的表达式,根据抛物线的对称轴x=﹣,代入求值即可,(2)把点A(3,m)代入y=﹣x2+4x,求出m的值,得到点A的坐标,过点B作BD⊥OA,交OA于点D,过点A作AE⊥OB,交OB于点E,根据三角形的面积和勾股定理,求出线段BD和AD的长,即可得到答案.【解答】解:(1)把点O(0,0),点B(4,0)分别代入y=﹣x2+bx+c得:,解得:,即抛物线的表达式为:y=﹣x2+4x,它的对称轴为:x=﹣=2,(2)把点A(3,m)代入y=﹣x2+4x得:m=﹣32+4×3=3,即点A的坐标为:(3,3),过点B作BD⊥OA,交OA于点D,过点A作AE⊥OB,交OB于点E,如下图所示,AE=3,OE=3,BE=4﹣3=1,OA==3,AB==,S=×OB×AE=×OA×BD,△OABBD===2,AD==,tan∠OAB==2.【点评】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数图象上点的坐标特征,待定系数法求二次函数解析式,解直角三角形,解题的关键:(1)正确掌握代入法和抛物线的对称轴公式,(2)正确掌握三角形面积公式和勾股定理.22.【分析】(1)连接OC,根据切线的性质以及OE⊥AB,可知∠E+∠EFA=∠OCE+∠FCP=90°,从而可知∠EFA=∠FCP,由对顶角的性质可知∠CFP=∠FCP,所以PC=PF;(2)过点B作BG⊥PC于点G,由于OB∥PC,且OB=OC,BC=3,从而可知OB=3,易证四边形OBGC是正方形,所以OB=CG=BG=3,所以,所以PG=4,由勾股定理可知:PB=5,所以FB=PF﹣PB=7﹣5=2.【解答】解:(1)连接OC,∵PC是⊙O的切线,∴∠OCP=90°,∵OE=OC,∴∠E=∠OCE,∵OE⊥AB,∴∠E+∠EFA=∠OCE+∠FCP=90°,∴∠EFA=∠FCP,∵∠EFA=∠CFP,∴∠CFP=∠FCP,∴PC=PF;(2)过点B作BG⊥PC于点G,∵OB∥PC,∴∠COB=90°,∵OB=OC,BC=3,∴OB=3,∵BG⊥PC,∴四边形OBGC是正方形,∴OB=CG=BG=3,∵tan P=,∴,∴PG=4,∴由勾股定理可知:PB=5,∵PF=PC=7,∴FB=PF﹣PB=7﹣5=2.【点评】本题考查圆的综合问题,涉及勾股定理,等腰三角形的判定,正方形的判定,锐角三角函数的定义等知识,需要学生灵活运用所学知识.23.【分析】(1)根据AB为xm,BC就为(24﹣3x),利用长方体的面积公式,可求出关系式.(2)将s=45m代入(1)中关系式,可求出x即AB的长.(3)当墙的宽度为最大时,有最大面积的花圃.此故可求.【解答】解:(1)根据题意,得S=x(24﹣3x),即所求的函数解析式为:S=﹣3x2+24x,又∵0<24﹣3x≤10,∴,(2)根据题意,设AB长为x,则BC长为24﹣3x∴﹣3x2+24x=45.整理,得x2﹣8x+15=0,解得x=3或5,当x=3时,BC=24﹣9=15>10不成立,当x=5时,BC=24﹣15=9<10成立,∴AB长为5m;(3)S=24x﹣3x2=﹣3(x﹣4)2+48∵墙的最大可用长度为10m,0≤BC=24﹣3x≤10,∴,∵对称轴x=4,开口向下,∴当x=m,有最大面积的花圃.即:x=m,最大面积为:=24×﹣3×()2=46.67m2【点评】主要考查了二次函数的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.本题的关键是垂直于墙的有三道篱笆.24.【分析】(1)利用同弧或等弧所对圆周角相等把角度进行转换即能求.(2)从要证明的结论NH=切入,即要证NH等于圆的半径长,连接OC构造Rt△COH,即需证明△COH与△HNE.由(1)的DF⊥BC可证得HE=CD=CH,再利用圆周角定理转换角度证得OC∥EM即能得到另一组对应角∠COH=∠HNE.(3)通过角度转换可证得EN是Rt△BEG斜边上的中线,所以得OH=BN=GN,HG=ON=6,根据勾股定理求得DH,再利用相似可把BH、BN、EN求出.过M作AB的垂线MP,构造△MNP 相似与△HNE,则MP、NP的长可用MN表示,再利用Rt△OMP三边关系列方程,即把MN求出.【解答】(1)证明:∵CD⊥AB∴∠BHC=90°∴∠C+∠ABC=90°∵∠FBC=∠ABC,∠F=∠C∴∠F+∠FBC=90°∴∠BEF=90°∴DF⊥BC(2)证明:连接OC∵OC=OB∴∠OCB=∠OBC=∠D∵CD⊥AB∴∠CHO=90°,CH=DH∵∠CED=∠BEF=90°∴HE=CD=CH=DH∴∠D=∠HED∴∠OCB=∠HED∵EM⊥EH∴∠HEN=∠HED+∠DEN=90°∵∠DEN+∠BEN=∠BED=90°∴∠HED=∠BEN∴∠OCB=∠BEN∴OC∥EM∴∠COH=∠HNE在△COH与△HNE中∴△COH≌△HNE(AAS)∴CO=NH∴NH=AB(3)解:连接OM,过点M作MP⊥AB于点P ∵∠HEN=∠HEG+∠GEN=90°∠D+∠DGH=90°∠D=∠HEG∴∠GEN=∠DGH∵∠DGH=∠EGN∴∠GEN=∠EGN∴EN=GN∵△COH≌△HNE∴OH=NE=GN∴HG=OH+OG=GN+OG=ON=6∵DG=6,∠DHG=90°∴HE=CH=DH=∵△DHG∽△BHC∴∴BH=设OB=OC=r,则OH=BH﹣OB=12﹣r∵OH2+CH2=OC2∴(12﹣r)2+(6)2=r2解得:r=9∴OM=9,NH=AB=9,NG=EN=BN=3∵∠MNP=∠HNE,∠MPN=∠HEP=90°∴△MNP∽△HNE∴设MN=a,则NP=,MP=∴OP=ON+NP=6+∵OP2+MP2=OM2∴解得:a1=﹣9(舍去),a2=5∴MN=5【点评】本题考查了圆周角定理,直角三角形斜边上的中线等于斜边一半,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,一元二次方程的解法.解题关键是进行同弧或等弧的圆周角转换,得到证明全等或相似需要的等角.第(3)题关键是把MN构造在一个能与已知三角形相似的三角形里,利用勾股定理列方程解.。
2021年浙江省台州市温岭市中考数学一模试卷一、选择题〔此题有10小题,每题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多项选择、错选,均不给分〕1.在以下实数中,无理数是〔 〕 A .2 B .C .D .2.如以下图的几何体是由一些小立方块搭成的,那么这个几何体的俯视图是〔 〕A .BC.D.3.以下数据是 2021年4月5日10 时公布的中国六大城市的空气污染指数情况:城市 天津 合肥 南京 贵阳 成都 南昌污染指数342 163 16545 227163那么这组数据的中位数和众数分别是〔 〕A . 185和163B .164和 163C . 185和 164D .163和 164 4.不等式组的解集在数轴上表示为〔〕A .B .C .D . 5.以下运算正确的选项是〔 〕 22+b 2A ab a b 2﹣b 2 236 C 3a2a=a 5 ab=a B . a?a=a . D =a.〔+〕〔﹣〕 + .〔+〕2.6.,圆锥的高 h=cm ,底面半径r=2cm ,那么圆锥的侧面积为〔 〕cm A .4πB.8πC.12πD.〔4+4〕π7.某商品的进价为 120元,8折销售仍赚 40 元,那么该商品标价为〔〕元.A . 160B .180C .200D . 2208.“过直线外一点作直线的垂线 〞.以下尺规作图中对应的正确作法是〔〕A .B .C .D .9.古希腊数学家把数 1,3, 6,10,15,21,叫做三角数,它有一定的规律性.假设把第一个三角数记为a 1,第二个三角数记为 a 2,,第n 个三角数记为 an ,那么an ﹣1+an=〕〔 〕〔A n12B.n2C n1〕2D n22.〔﹣〕.〔+.〔+〕第1页〔共22页〕10.如图,点 A 〔2,n 〕在反比例函数 y= 的图象上,点 B 在第二象限,∠AOB=90°,∠OBA=30°,在小组合作学习中, 四位同学发现并提出了以下四个结论, 其中正确的有〔 〕 个.聪聪:在反比例函数 y= 的图象上任取一个点 P ,作两坐标轴的垂线, 那么它们与两坐标轴围 成的四边形面积为 3;明明:假设直线 OA 的函数解析式为 y=kx ,那么不等式 >kx 的解集为 0<x <2;智智:过点 B 的反比例函数的解析式为 y=﹣ ;慧慧:假设点 D 〔2+,〕,那么以点A ,O ,B ,D 为顶点的四边形是一个中心对称图形.A .1B .2C .3D .4二、填空题〔此题有6小题,每题 5分,共30 分〕.11.2021年底,台州市汽车数量到达 1160000多辆,数据 1160000用科学记数法表示为 .12.分解因式:8﹣2x 2=.13.如果两个变量x 、y 之间的函数关系如以下图, 那么自变量x 的取值范围是 .2m2x+〔 2m1 〕 =0 的方程有两个相等的实数根,那么 m的值 14.关于x ﹣〔+〕+为.15.如图,菱形ABCD ,AC=8,BD=6,将此菱形绕点A 逆时针旋转180°,那么该菱形扫过的面积为.第2页〔共22页〕16.如图,Rt△ABC中,BC=AC=2,D是斜边AB上一个动点,把△ACD沿直线CD折叠,点A落在同一平面内的A′处,当A′D平行于Rt△ABC的直角边时,AD的长为.三、解答题〔第17~20题,每题8分,第21题10分,第22~23题,每题12分,第24题14分,共80分〕17.计算:〔﹣〕﹣1﹣2sin60°+〔3﹣π〕0.18.解方程:.19.如图,四边形ABCD的对角线AC、BD交于点O,O是AC的中点,AE=CF,DF∥BE.1〕求证:△BOE≌△DOF;2〕假设OD=AC,那么四边形ABCD是什么特殊四边形?请证明你的结论.20.为推进多城同创,打造宜业宜居家园,温岭市交通部门一再提醒司机:为了平安,请勿超速,并进一步完善各类监测系统,如图,在泽太一级公路某直线路段MN内限速80千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了4秒钟,∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.〔参考数据:,〕第3页〔共22页〕21.菱形ABCD,AB=4,∠B=60°,以点D为圆心作⊙D与直线AB相切于点G,连接DG.1〕求证:⊙D与BC所在的直线也相切;2〕假设⊙D与CD相交于E,过E作EF⊥AD于H,交⊙D于F,求EF的长.22.某校为了了解学生大课间活动的跳绳情况,随机抽取了50名学生每分钟跳绳的次数进行统计,把统计结果绘制成如表和直方图.次数70≤x<9090≤x<110110≤x<130130≤x<150150≤x<170人数8231621根据所给信息,答复以下问题:〔1〕本次调查的样本容量是;〔2〕本次调查中每分钟跳绳次数到达110次以上〔含110次〕的共有的共有人;〔3〕根据上表的数据补全直方图;〔4〕如果跳绳次数到达130次以上的3人中有2名女生和一名男生,学校从这3人中抽取名学生进行经验交流,求恰好抽中一男一女的概率〔要求用列表法或树状图写出分析过程〕.23.如图,直线y=x+4抛物线y=ax+bx+12〔a≠0〕相交于A〔1,5〕和B〔8,n〕,点P是线段AB上异于A,B的动点,过点P作PC⊥x轴,交抛物线于点C.〔1〕求抛物线的解析式;第4页〔共22页〕2〕是否存在这样的点P,使△ABC的面积有最大值?假设存在,求出这个最大值;假设不存在,请说明理由;〔3〕当以线段PC为直径的圆经过点A时,求点P的坐标.24.【定义】假设一个四边形恰好关于其中一条对角线所在的直线对称,那么我们将这个四边形叫做镜面四边形.【理解】〔1〕以下说法是否正确〔对的打“√〞,错的打“×〞〕.①平行四边形是一个镜面四边形.〔〕②镜面四边形的面积等于对角线积的一半.〔〕〔2〕如图〔1〕,请你在4×4的网格〔每个小正方形的边长为1〕中画出一个镜面四边形,使它图〔1〕的顶点在格点上,且有一边长为.【应用】〔3〕如图〔2〕,镜面四边形ABCD,∠BAD=60°,∠ABC=90°,AB≠BC,P是AD上一点,AE丄BP于E,在BP的延长线上取一点F,使EF=BE,连接AF,作∠FAD的平分线AG交BF于G,CM丄BF于M,连接CG.①求∠EAG的度数.②比拟BM与EG的大小,并说明理由.③假设以线段CB,CG,AG为边构成的三角形是直角三角形,求cos∠CBM的值〔直接写出答案〕.第5页〔共22页〕2021年浙江省台州市温岭市中考数学一模试卷参考答案与试题解析一、选择题〔此题有10小题,每题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多项选择、错选,均不给分〕1.在以下实数中,无理数是〔〕A.2B.C.D.【考点】无理数.【分析】根据无理数,有理数的定义对各选项分析判断后利用排除法求解.【解答】解:A、2是有理数,故本选项错误;B、是有理数,故本选项错误;C、﹣是有理数,故本选项错误;D、是无理数,故本选项正确.应选D.2.如以下图的几何体是由一些小立方块搭成的,那么这个几何体的俯视图是〔〕A.B.C.D.【考点】简单组合体的三视图.【分析】俯视图是从物体上面看所得到的图形.从几何体上面看,是左边2个,右边1个正方形.【解答】解:从几何体上面看,是左边2个,右边1个正方形.应选:D.3.以下数据是2021年4月5日10时公布的中国六大城市的空气污染指数情况:城市天津合肥南京贵阳成都南昌污染指数34216316545227163那么这组数据的中位数和众数分别是〔〕A.185和163B.164和163C.185和164D.163和164【考点】众数;中位数.【分析】根据众数定义:一组数据中出现次数最多的数据叫做众数.中位数:将一组数据按照从小到大〔或从大到小〕的顺序排列,如果数据的个数是奇数,那么处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,那么中间两个数据的平均数就是这组数据的中位数.可以直接算出答案.【解答】解:把数据从小到大排列:45,163,163,165,227,342,第6页〔共22页〕位置处于中间的数是 163和165,故中位数是÷ 2=164; 163出现了两次,故众数是 163. 应选:B .4.不等式组的解集在数轴上表示为〔 〕A .B .C .D .【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【解答】解: ,解不等式①得,x ≥2, 解不等式②得,x <3,故不等式的解集为: 2≤x <3, 在数轴上表示为:.应选:C .5.以下运算正确的选项是〔〕 A .〔a +b 〕〔a ﹣b 〕=a 2﹣b 2B .a 2?a 3=a 6C .3a +2a=a 5D .〔a +b 〕2=a 2+b 2【考点】平方差公式;合并同类项;同底数幂的乘法;完全平方公式.【分析】根据平方差公式、同底数幂的乘法法那么、合并同类项、完全平方公式计算,逐一排除.【解答】解:A 、〔a+b 〕〔a ﹣b 〕=a 2﹣b 2,此选项正确;2 3 5B 、a?a=a ,此选项错误;C 、 3a2a=5a+ ,此选项错误;22abb 2 ,此选项错误.D、〔 ab2=a + ++〕应选A .6.,圆锥的高 h=cm ,底面半径r=2cm ,那么圆锥的侧面积为〔 〕cm 2.A . 4 πB . 8 πC . 12D .〔 4 4π +〕π【考点】圆锥的计算.【分析】根据圆锥的底面半径和高求出圆锥的母线长,再根据圆锥的底面周长等于圆锥的侧面展开扇形的弧长,最后利用扇形的面积计算方法求得侧面积.【解答】解:由勾股定理得:圆锥的母线长 ==4,∵圆锥的底面周长为2πr=2π×4=8π,∴圆锥的侧面展开扇形的弧长为8π,第7页〔共22页〕∴圆锥的侧面积为:×8π×2=8π.应选B.7.某商品的进价为120元,8折销售仍赚40元,那么该商品标价为〔〕元.A.160 B.180 C.200D.220【考点】一元一次方程的应用.【分析】设该商品的进价为x元,那么售价是120×80%,利润是120×80%﹣x,根据其相等关系列方程得120×80%﹣x=40,解这个方程即可.【解答】解:设该商品的进价为x元,那么:120×80%﹣x=40,解得:x=200.那么该商品的进价为200元.应选:C.8.“过直线外一点作直线的垂线〞.以下尺规作图中对应的正确作法是〔〕A.B.C.D.【考点】作图—根本作图.【分析】根据根本作图的步骤对各选项进行逐一分析即可.【解答】解:A、是作角平分线,故本选项错误;B、是作线段的垂直平分线,故本选项错误;C、过直线外一点作直线的垂线,故本选项正确;D、是作线段的垂直平分线,故本选项错误.应选C.9.古希腊数学家把数1,3,6,10,15,21,叫做三角数,它有一定的规律性.假设把第一个三角数记为a1,第二个三角数记为a2,,第n个三角数记为a n,那么a n﹣1+a n=〔〕〔〕A.〔n﹣1〕2B.n2C.〔n+1〕2D.〔n+2〕2【考点】规律型:数字的变化类.【分析】先求出:a1+a2=4=22,a2+a3=9=32,a3+a4=16=42,a4+a5=25=52,根据规律可以写出a n﹣1+a n的结果.【解答】解:∵a1+a2=4=22,2 a2+a3=9=3,a4+a5=25=52,a n﹣1+a n=n 2,应选B.第8页〔共22页〕10.如图,点A〔2,n〕在反比例函数y=的图象上,点B在第二象限,∠AOB=90°,∠OBA=30°,在小组合作学习中,四位同学发现并提出了以下四个结论,其中正确的有〔〕个.聪聪:在反比例函数y=的图象上任取一个点P,作两坐标轴的垂线,那么它们与两坐标轴围成的四边形面积为3;明明:假设直线 OA的函数解析式为y=kx,那么不等式>kx的解集为0<x<2;智智:过点B的反比例函数的解析式为y=﹣;慧慧:假设点D〔2+,〕,那么以点A,O,B,D为顶点的四边形是一个中心对称图形.A.1B.2C.3D.4【考点】反比例函数的性质;反比例函数系数k的几何意义;待定系数法求反比例函数解析式.【分析】由反比例函数系数k的几何意义可知聪聪的话正确;由反比例函数的对称性可找出直线OA与反比例函数的另一个交点坐标,结合函数图象可得出不等式>kx的解集,从而判断出明明的话不正确;由点A在反比例函数y=的图象上,可求出n的值,从而得出A点的坐标,设点B的坐标为〔x,y〕,结合给定的边角关系可找出关于x、y的二元二次方程组,结合点B的位置可得出点B的坐标,利用待定系数法即可求出过点B的反比例函数的解析式为y=﹣,由此得出智智的话不正确;由A、O、B、D的坐标特征,可得出DA ⊥OA,即OB∥DA,结合两点间的距离公式得出OB=DA,由此判断出以点A,O,B,D 为顶点的四边形是平行四边形,即慧慧的话正确.综上即可得出结论.【解答】解:∵在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|,∴聪聪的话正确;∵点A〔2,n〕,反比例函数的对称性可知:在第三象限直线OA与反比例函数y=有另一个交点〔﹣2,﹣n〕,结合函数图象可知:不等式>kx的解集为x<﹣2,或0<x<2,第9页〔共22页〕∴明明的话不正确;∵点A 〔2,n 〕在反比例函数y= 的图象上,∴n=,即点A 的坐标为〔2,〕.设点B 的坐标为〔x ,y 〕,过点B 的反比例函数解析式为 y=, 那么OA==,OB===,结合可得:,解得: .∴点B 的坐标为〔﹣ ,2 〕.∵点B 在反比例函数y=的图象上,∴2= ,解得:m=﹣9.∴过点B 的反比例函数的解析式为 y=﹣ ,∴智智的话不正确;∵=﹣ ,﹣ × =﹣1,∴DA ⊥OA , ∴AD ∥BO .∵AD===OB ,∴以点A ,O ,B ,D 为顶点的四边形为平行四边形,∴以点A ,O ,B ,D 为顶点的四边形是一个中心对称图形, 即慧慧的话正确.综上可知:聪聪和慧慧的话正确. 应选B .二、填空题〔此题有6小题,每题 5分,共 30分〕.11.2021 年底,台州市汽车数量到达1160000 多辆,数据 1160000用科学记数法表示为×106 .【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.第10页〔共22页〕【解答】解:将1160000 用科学记数法表示为×106. 故答案为:×106.128 ﹣ 2x 2= 2 2x 2x〕 . .分解因式:〔+ 〕〔﹣ 【考点】提公因式法与公式法的综合运用.【分析】先提取公因式,再根据平方差公式进行分解即可.2【解答】解:原式=2〔4﹣x 〕=2〔2+x 〕〔2﹣x 〕.13.如果两个变量 x 、y 之间的函数关系如以下图, 那么自变量 x 的取值范围是 ﹣3≤x ≤3 .【考点】函数自变量的取值范围.【分析】观察函数图象横坐标的变化范围,然后写出即可. 【解答】解:由图可知,自变量 x 的取值范围是﹣ 3≤x ≤3. 故答案为:﹣3≤x ≤3.2m2x+〔 2m1 〕 =0 的方程有两个相等的实数根,那么 m的值为 0或14.关于x ﹣〔+〕 +4. 【考点】根的判别式.【分析】根据方程有两个相等的实数根可知 b 2﹣4ac=0,套入数据可得出关于m 的一元二次方程,解方程即可得出结论.2=m 2【解答】解:由得: [﹣〔 m24 ×〔 2m 1 〕 ﹣ 4m=0,+〕 ]﹣+解得:m=0,或m=4.故答案为:0或4.15.如图,菱形 ABCD ,AC=8,BD=6,将此菱形绕点A 逆时针旋转180°,那么该菱形扫过的面积为32π+24.【考点】扇形面积的计算;菱形的性质.【分析】根据旋转的性质和扇形的面积公式即可得到结论. 【解答】解:∵将此菱形绕点 A 逆时针旋转 180°得到菱形 AB ′C ′D ′,2第11页〔共22页〕故答案为:32π+24.16.如图,Rt△ABC中,BC=AC=2,D是斜边AB上一个动点,把△ACD沿直线CD折叠,点A落在同一平面内的A′处,当A′D平行于Rt△ABC的直角边时,AD的长为2或2﹣2.【考点】翻折变换〔折叠问题〕.【分析】在Rt△ABC中,BC=AC=2,于是得到AB=2,∠B=∠A′CB=45°,①如图1,当A′D∥BC,设AD=x,根据折叠的性质得到∠A′=∠A=∠A′CB=45°,A′D=AD=x,推出A′C⊥AB,求得BH=BC=,DH=A′D=x,然后列方程即可得到结果,②如图2,当A′D∥AC,根据折叠的性质得到AD=A′D,AC=A′C,∠ACD=∠A′CD,根据平行线的性质得到∠A′DC=∠ACD,于是得到∠A′DC=∠A′CD,推出A′D=A′C,于是得到AD=AC=2.【解答】解:Rt△ABC中,BC=AC=2,∴AB=2,∠B=∠A′CB=45°,①如图1,当A′D∥BC,设AD=x,∵把△ACD沿直线CD折叠,点A落在同一平面内的A′处,∴∠A′=∠A=∠A′CB=45°,A′D=AD=x,∵∠B=45°,∴A′C⊥AB,∴BH=BC=,DH=A′D=x,∴x+=2,x=2﹣2,AD=2﹣2;②如图2,当A′D∥AC,第12页〔共22页〕∵把△ACD沿直线CD折叠,点A落在同一平面内的A′处,AD=A′D,AC=A′C,∠ACD=∠A′CD,∵∠A′DC=∠ACD,∴∠A′DC=∠A′CD,∴A′D=A′C,AD=AC=2,综上所述:AD的长为:2或2﹣2.三、解答题〔第17~20题,每题8分,第21题10分,第22~23题,每题12分,第24题14分,共80分〕17.计算:〔﹣〕﹣1﹣2sin60°+〔3﹣π〕0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法那么,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=32×1﹣﹣+=﹣2﹣.18.解方程:.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣1=2x﹣4,第13页〔共22页〕解得:x=3,经检验x=3是分式方程的解.19.如图,四边形ABCD的对角线AC、BD交于点O,O是AC的中点,AE=CF,DF∥BE.1〕求证:△BOE≌△DOF;2〕假设OD=AC,那么四边形ABCD是什么特殊四边形?请证明你的结论.【考点】全等三角形的判定与性质;平行四边形的判定与性质;矩形的判定.【分析】〔1〕由DF与BE平行,得到两对内错角相等,再由O为AC的中点,得到OA=OC,又AE=CF,得到OE=OF,利用AAS即可得证;〔2〕假设OD= AC,那么四边形ABCD为矩形,理由为:由OD= AC,得到OB=AC,即OD=OA=OC=OB,利用对角线互相平分且相等的四边形为矩形即可得证.【解答】〔1〕证明:∵DF∥BE,∴∠FDO=∠EBO,∠DFO=∠BEO,∵O为AC的中点,∴OA=OC,AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,在△BOE和△DOF中,,∴△BOE≌△DOF〔AAS〕;〔2〕假设OD= AC,那么四边形ABCD是矩形,理由为:证明:∵△BOE≌△DOF,∴OB=OD,∵OD=AC,∴OA=OB=OC=OD,且BD=AC,∴四边形ABCD为矩形.20.为推进多城同创,打造宜业宜居家园,温岭市交通部门一再提醒司机:为了平安,请勿超速,并进一步完善各类监测系统,如图,在泽太一级公路某直线路段MN内限速80千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从第14页〔共22页〕点A到达点B行驶了4秒钟,∠CAN=45°,∠CBN=60°,BC=200米,此车超速了吗?请说明理由.〔参考数据:,〕【考点】解直角三角形的应用.【分析】根据题意结合锐角三角函数关系得出BH,CH,AB的长,进而求出汽车的速度,进而得出答案.【解答】解:此车没有超速.理由如下:过C作CH⊥MN,垂足为H,∵∠CBN=60°,BC=200米,∴CH=BC?sin60°=200×=100〔米〕,BH=BC?cos60°=100〔米〕,∵∠CAN=45°,∴AH=CH=100米,AB=100﹣100≈73〔m〕,∴车速为≈〔m/s〕.∵80千米/小时=m/s,又∵<,∴此车没有超速.(21.菱形ABCD,AB=4,∠B=60°,以点D为圆心作⊙D与直线AB相切于点G,连(接DG.(1〕求证:⊙D与BC所在的直线也相切;(2〕假设⊙D与CD相交于E,过E作EF⊥AD于H,交⊙D于F,求EF的长.第15页〔共22页〕【考点】切线的判定与性质;菱形的性质.【分析】〔1〕作DK⊥BC于K,如图,根据切线的性质得DG⊥AB,再根据菱形的性质得BD平分∠ADC,那么根据角平分线的性质得DG=DK,然后根据切线的判断定理即可得到⊙D与边BC也相切;〔2〕根据菱形的性质和垂径定理解答即可.【解答】〔1〕〔1〕证明:作DK⊥BC于K,连结BD,如图,∵AB与⊙D相切于点G,∴DG⊥AB,∵四边形ABCD为菱形,∴BD平分∠ADC,而DG⊥AB,DK⊥BC,∴DG=DK,即DK为⊙D的半径∴⊙D与边BC也相切.2〕解:∵在菱形四边形中,CD=AB=4,CD∥AB,∴∠DCK=∠ABC=60°.又∵∠DKC=90°,∴DK=CD=2,∴DE=DK=2.又∵∠ADC=∠ABC=60°,EF⊥AD,∴EH=DE=3,EF=2EH=6.22.某校为了了解学生大课间活动的跳绳情况,随机抽取了50名学生每分钟跳绳的次数进行统计,把统计结果绘制成如表和直方图.次数70≤x<9090≤x<110110≤x<130130≤x<150150≤x<170第16页〔共22页〕人数8231621根据所给信息,答复以下问题:〔1〕本次调查的样本容量是50;〔2〕本次调查中每分钟跳绳次数到达110次以上〔含110次〕的共有的共有19人;〔3〕根据上表的数据补全直方图;〔4〕如果跳绳次数到达130次以上的3人中有2名女生和一名男生,学校从这3人中抽取名学生进行经验交流,求恰好抽中一男一女的概率〔要求用列表法或树状图写出分析过程〕.【考点】频数〔率〕分布直方图;频数〔率〕分布表;列表法与树状图法.【分析】〔1〕根据图表给出的数据可直接得出本次调查的样本容量;〔2〕把调查中每分钟跳绳次数到达110次以上〔含110次〕的人数加起来即可;3〕根据图表给出的数据可直接补全直方图;4〕根据题意画出树状图,得出抽中一男一女的情况,再根据概率公式,即可得出答案.【解答】解:〔1〕本次调查的样本容量是:8+23+16+2+1=50;故答案为:50;〔2〕本次调查中每分钟跳绳次数到达110次以上〔含110次〕的共有的共有人数是:16+2+1=19〔人〕;故答案为:19;〔3〕根据图表所给出的数据补图如下:第17页〔共22页〕〔4〕根据题意画树状图如下:共有6种情况,恰好抽中一男一女的有 4种情况,那么恰好抽中一男一女的概率是 = .23 y=x 4 抛物线 y=axbx12a0 〕相交于 A 1 5 B 8 nP是.如图,直线 + ++〔≠〔 ,〕和 〔 ,〕,点线段AB 上异于A ,B 的动点,过点 P 作PC ⊥x 轴,交抛物线于点 C .1〕求抛物线的解析式; 2〕是否存在这样的点P ,使△ABC 的面积有最大值?假设存在,求出这个最大值;假设不存 在,请说明理由; 〔3〕当以线段 PC 为直径的圆经过点 A 时,求点 P 的坐标.【考点】二次函数综合题. 【分析】〔1〕根据自变量与函数值的对应关系,可得B 点坐标,根据待定系数法,可得函数解析式; 2〕平行于y 轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,根据三角形的面积,可得二次函数,根据二次函数的性质,可得答案; 〔3〕根据圆的直径与半径之间的关系,可得关于 m 的方程,根据解方程,可得 m 的值, 根据自变量与函数值的对应关系,可得答案. 【解答】解:〔1〕∵点B 〔8,n 〕在直线 y=x+4上, n=8+4=12.∵ A 15 〕, B 8 , 12 〕在抛物线 y=ax 2 bx12 a0 〔, 〔 + + 〔≠〕上,∴,解得,故抛物线 y=x 2 8x 12﹣+;〔2〕设动点 P 的坐标为〔m ,m+4〕,那么点C 的坐标为〔m ,m 2﹣8m+12〕,BC=〔m+4〕﹣〔m 2﹣8m+12〕=﹣m 2+9m ﹣8; S △ABC = 〔8﹣1〕〔﹣m 2+9m ﹣8〕=﹣ 〔m ﹣ 〕2+ ,当m=时,△ABC 的面积最大值,最大值为 .第18页〔共22页〕3〕∵以线段PC为直径的圆经过点A,∴∠PAC=90°,∴点A到PC的距离为PC,∴m﹣1=〔﹣m29m8+﹣〕,m=6,m=1〔不符合题意,舍〕,∴点P〔6,10〕.24.【定义】假设一个四边形恰好关于其中一条对角线所在的直线对称,那么我们将这个四边形叫做镜面四边形.【理解】〔1〕以下说法是否正确〔对的打“√〞,错的打“×〞〕.①平行四边形是一个镜面四边形.〔×〕②镜面四边形的面积等于对角线积的一半.〔√〕〔2〕如图〔1〕,请你在4×4的网格〔每个小正方形的边长为1〕中画出一个镜面四边形,使它图〔1〕的顶点在格点上,且有一边长为.【应用】〔3〕如图〔2〕,镜面四边形ABCD,∠BAD=60°,∠ABC=90°,AB≠BC,P是AD上一点,AE丄BP于E,在BP的延长线上取一点F,使EF=BE,连接AF,作∠FAD的平分线AG交BF于G,CM丄BF 于M,连接CG.①求∠EAG的度数.②比拟BM与EG的大小,并说明理由.③假设以线段CB,CG,AG为边构成的三角形是直角三角形,求cos∠CBM的值〔直接写出答案〕.【考点】四边形综合题.【分析】〔1〕根据平行四边形的性质和镜面四边形的定义,直接判断;〔2〕由镜面四边形的意义,得到必有两边是,一个直角,画出图形即可〔3〕①根据角平分线的定义得到∠EAF=∠BAF,∠GAF=∠FAD计算;②先判断△ABE∽△BCM,通过计算判断出BM=EG,③分两种情况,AG和CG为斜边,利用勾股定理计算即可.【解答】解:〔1〕①∵平行四边形不关于任何一条对角线对称,∴错误,故答案×;第19页〔共22页〕②∵镜面四边形关于对角线对称,∴镜面四边形的两条对角线互相垂直,∴镜面四边形的面积等于对角线积的一半;故答案为√.〔2〕如图1∵有一边长为.∴镜面四边形必有两边是.3〕①∵AE⊥BP,EF=BE,∴AB=AF,∴∠EAF=∠BAF,∵∠GAF=∠FAD,∴∠EAG=∠EAF﹣∠GAF=∠BAF﹣∠FAD=∠BAD=30°;BM=EG,理由如下:连接AC,∵∠ABC=90°,∴AB=BC,∵∠ABC=∠AEB=∠CMB=90°,∴∠BAE+∠ABF=∠ABP+∠ABF=90°,∴∠BAE=∠CBF,∴△ABE∽△BCM,∴==,∴AE=BM,∵∠EAG=30°,AE⊥BP,AE=EG,BM=EG;cos∠CBM=或设BM=x,BC=y,∴CM=,∵△ABE∽△BCM,第20页〔共22页〕∴ = , ∴AE= BM ,AB= BC=y ,BE=y= , ∴ BG=BE + EG= x ,+ EG=BM=x MG=BE=y= ,∴CG==2 ,∵AE ⊥BP ,∠EAG=30°, AG=2EG=2x ,由题意得AG >BC ,以线段CB ,CG ,AG 为边构成的三角形是直角三角形, 只有两种 AG 为斜边或 CG 为斜边; AG 为斜边, ∴CB2+CG 2=AG 2,∴y 2+〔2 〕2=〔2x 〕2,∴y= x 或y=﹣ x 〔舍〕, ∴BM=x ,BC=y= x , ∴cos ∠CBM= = ,CG 为斜边,∴CB 2+AG 2=CG 2,∴y 2+〔2x 〕2=〔2 〕2,∴y= x 或y=﹣ x 〔舍〕,∴BC=y= x ,BM=x ,cos ∠CBM==;cos ∠CBM= 或 .第21页〔共22页〕2021年8月27日第22页〔共22页〕。
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:化简的结果是【】A. B.9 C. D.试题2:下列标志中,可以看作是中心对称图形的是【】试题3:如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是【】A. 25°B. 30°C. 35°D. 40°试题4:一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是,根据题意,下面列出的方程正确的是【】A.B.评卷人得分C.D.试题5:若x1、x2是一元二次方程x2-3x+2=0的两根,则x1+x2的值是【】A.-2 B.2 C.3 D.1试题6:将下列图形绕其对角线的交点逆时针旋转,所得图形一定与原图形重合的是A.平行四边形B.矩形C.菱形D.正方形试题7:已知m=,则有【】A.5<m<6 B.4<m<5 C.﹣5<m<﹣4 D.﹣6<m<﹣5试题8:用配方法解方程,配方后的方程是【】A.B.C.D.试题9:下列说法中【】①若式子有意义,则x>1.②已知∠α=27°,则∠α的补角是153°.③已知x=2 是方程x2-6x+c=0 的一个实数根,则c 的值为8.④在反比例函数中,若x>0 时,y 随x 的增大而增大,则k 的取值范围是k>2. 其中正确命题有A. 1 个B. 2 个C. 3 个D. 4 个试题10:如果关于x的一元二次方程x+1=0有两个不相等的实数根,那么的取值范围是【】A. B.且 C. D.且试题11:.点P关于原点对称的点Q的坐标是(-1,3),则P的坐标是试题12:分别以正方形的各边为直径向其内部作半圆得到的图形如图所示。
【九年级】2021年温岭市中考数学一模试题(带答案)2021 年温岭市初中毕业升学模拟考试数学试卷命题者:张玉良(市三中) 郑灵恩(新河镇中) 李卫星(松门镇中) 审题者:蒋锦波(教研室)亲爱的考生:欢迎参加考试!请你认真审题,仔细答题,发挥最佳水平. 答题时,请注意以下几点:1.全卷共 4 页,满分 150 分,考试时间 120 分钟.2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上无效.3.答题前,请认真阅读答题纸上的《注意事项》,按规定答题.4.本次考试不得使用计算器,请耐心解答.祝你成功!一、选择题(本题有 10 小题,每小题 4 分,共 40 分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.在 0.5, 0 ,1, 2 这四个数中,绝对值最大的数是( ▲)A.0.5 B. 0 C.1D.22.“厉行节约,反对浪费”势在必行.最新统计数据显示,我国每年浪费食物总量折合粮食大约是 210000000人一年的口粮,将 210000000 用科学计数法表示为( ▲)A.2.1×109 B.0.21×109 C.2.1×108 D.21×1073.不等式 2x<10 的解集在数轴上表示正确的是(▲)0 5 0 5 0 5 0 5A B C D4.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是( ▲)A B C D5.下列说法中,错误的是( ▲)A.平行四边形的对角线互相平分B.对角线互相垂直的四边形是菱形C.菱形的对角线互相垂直D.对角线互相平分的四边形是平行四边形6.某次数学趣味竞赛共有 10 道题目,每道题答对得 10 分,答错或不答得 0 分,全班 40 名同学参加了此次竞赛,他们的得分情况如下表所示:成绩(分)50 60 70 80 90 100人数 2 5 13 10 7 3则全班 40 名同学的成绩的中位数和众数分别是( ▲)A.75,70 B.70,70 C.80,80 D.75,807.小米在用尺规作图作△ABC 边 AC 上的高 BH,作法如下:①分别以点 D,E 为圆心,大于 DE 的长为半径作弧,两弧交于 F;②作射线 BF,交边 AC 于点 H;③以 B 为圆心,BK 长为半径作弧,交直线 AC 于点 D 和 E;④取一点 K,使 K 和 B 在 AC 的两侧;所以,BH 就是所求作的高.其中顺序正确的作图步骤是(▲)A.①②③④B.④③②①C.②④③①D.④③①②8.足球射门,不考虑其他因素,仅考虑射点到球门 AB 的张角大小时,张角越大,射门越好.如右图的正方形网格中,点 A,B,C,D,E 均在格点上,球员带球沿 CD 方向进攻,最好的射点在( ▲)A.点 C B.点 D 或点 EC.线段 DE(异于端点) 上一点D.线段 CD(异于端点) 上一点9.对于代数式 ax+b(a,b 是常数),当 x 分别等于 3、2、1、0 时,小虎同学依次求得下面四个结果:3、2、−1、−3,其中只有一个是错误的,则错误的结果是( ▲)A.3 B.2 C.−1 D.−310.在平面直角坐标系中,如果 x 与 y 都是整数,就称点(x,y)为整点.下列命题中错误的是( ▲)A.存在这样的直线,既不与坐标轴平行,又不经过任何整点 B.若 k 与 b 都是无理数,则直线 y=kx+b 不经过任何整点 C.若直线 y=kx+b 经过无数多个整点,则 k 与b 都是有理数D.存在恰好经过一个整点的直线二、填空题(本题有 6 小题,每小题 5 分,共 30 分)11.9 的算术平方根是▲ .12.掷一枚质地均匀的正方体骰子(六个面上分别刻有 1 到 6 的点数),向上一面出现的点数大于 2 且小于 5 的概率为▲.13.一个物体重 100N,物体对地面的压强 P(单位:Pa)随物体与地面的接触面积S C(单位:?)变化而变化的函数关系式是▲. OA B14.已知命题“对于非零实数 a,关于 x 的一元二次方程 ax2 4x 1 0 必有实数根”,能说明这个命题是假命题的一个反例是▲.15.如图,在圆 O 中有折线 ABCO,BC=6,CO=4,∠B=∠C=60°,则弦 AB 的长为▲ .第 15 题16.对于一个函数,如果它的自变量 x 与函数值 y 满足:当−1≤x≤1 时,−1≤y≤1,则称这个函数为“闭函数”.例如:y=x,y=−x 均是“闭函数”.已知y ax2 bx c(a 0) 是“闭函数”,且抛物线经过点 A(1,−1)和点 B(−1,1) ,则 a 的取值范围是▲.三、解答题(第 17~20 题,每题 8 分,第 21 题 10 分,第 22~23 题,每题 12 分,第 24 题 14 分,共 80 分)17.计算:18.某同学化简分式出现了错误,解答过程如下:第一步第二步第三步(1)该同学解答过程是从第▲步开始出错的,其错误原因是▲ ;(2)试写出此题正确的解答过程.19.小明家的脚踏式垃圾桶如图,当脚踩踏板时垃圾桶盖打开最大张角∠ABC =45°,为节省家里空间小明想把垃圾桶放到桌下,经测量桌子下沿离地面高 55cm,垃圾桶高BD=33.1cm,桶盖直径 BC=28.2cm,问垃圾桶放到桌下踩踏板时,桶盖完全打开有没有碰到桌子下沿?( 1.41 )20.有这样一个问题:探究函数的图象与性质,小静根据学习函数的经验,对函数的图象与性质进行了探究,下面是小静的探究过程,请补充完整:(1)函数的自变量 x 的取值范围是▲;(2)下表是 y 与 x 的几组对应值.表中的 m= ▲;(3)如图,在平面直角坐标系中,描出以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;(4)结合函数图象,写出一条该函数图象的性质:▲ .21.如图,正方形 ABCD 的边长为 4,E 是 BC 的中点,点 P 在射线 AD 上,过点P 作PF⊥AE,垂足为 F.(1)求证:△PFA∽△ABE;(2)当点 P 在射线 AD 上运动时,设 PA=x,是否存在实数 x,使以 P,F,E 为顶点的三角形也与△ABE相似?若存在,求出 x 的值;若不存在,说明理由.22.“农民也能报销医疗费了!”这是国家推行新型农村医疗合作的成果.村民只要每人每年交 10 元钱,就可以加入合作医疗,每年先由自己支付医疗费,年终时可得到按一定比例返回的返回款,这一举措极大地增强了农民抵御大病风险的能力.小华与同学随机调查了他们乡的一些农民,根据收集到的数据绘制了以下的统计图.根据以上信息,解答以下问题:(1) 本次调查了▲名村民,被调查的村民中,有▲人参加合作医疗得到了返回款;(2) 该乡有 10000 名村民,请你估计有▲人参加了合作医疗;(3) 要使该乡两年后参加合作医疗的人数增加到9680 人,假设这两年的年平均增长率相同,求年平均增长率?23.当前,交通拥堵是城市管理的一大难题.我市城东高架桥的开通为分流过境车辆、缓解市内交通压力起到了关键作用,但为了保证安全,高架桥上最高限速 80 千米/小时.在一般条件下,高架桥上的车流速度 v(单位:千米/小时)是车流密度 x(单位:辆/千米)的函数,当桥上的车流密度达到 180 辆/千米时,造成堵塞,此时车流速度为0;当0≤x≤20 时,桥上畅通无阻,车流速度都为 80 千米/小时,研究表明:当20≤x≤180 时,车流速度 v 是车流密度 x 的一次函数.(1)当0≤x≤20 和20≤x≤180 时,分别写出函数 v 关于 x 的函数关系式;(2)当车流密度 x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)w=x•v可以达到最大,并求出最大值;(3)某天早高峰(7:30―9:30)经交警部门控制管理,桥上的车流速度始终保持 40 千米/小时,问这天早高峰期间高架桥分流了多少辆车?24.(1) 知识储备⌒①如图 1,已知点 P 为等边△ABC 外接圆的BC 上任意一点.求证:PB+PC= PA.②定义:在△ABC 所在平面上存在一点 P,使它到三角形三顶点的距离之和最小,则称点 P 为△ABC的费马点,此时 PA+PB+PC 的值为△ABC 的费马距离.(2)知识迁移①我们有如下探寻△ABC (其中∠A,∠B,∠C 均小于120°)的费马点和费马距离的方法:如图 2,在△ABC 的外部以 BC 为边长作等边△BCD 及其外接圆,根据(1)的结论,易知线段▲的长度即为△ABC 的费马距离.②在图 3 中,用不同于图 2 的方法作出△ABC 的费马点 P(要求尺规作图).(3)知识应用①判断题(正确的打√,错误的打×):?. 任意三角形的费马点有且只有一个( ▲);?. 任意三角形的费马点一定在三角形的内部( ▲).②已知正方形 ABCD,P 是正方形内部一点,且 PA+PB+PC 的最小值为,求正方形ABCD 的边长.2021年温岭市初中毕业升学模拟考试参考答案一、1.D 2.C 3.D 4.A 5.B 6.A 7.D 8.C 9.B 10.B二、11.3 12. 13. 14. (答案不唯一,满足均可) 15.10 16.或 (给出一个正确答案给3分)三、17.解:原式= 6分(每项2分)= 0 8分18.解:(1) 第一步开始出错的,其错误原因是分子漏乘了(x-1) 2分(2) 原式= 4分6分8分19.解:过点C作CG⊥DE交AB于H 2分由题意得:四边形ABDE是矩形∴AB∥DE∴∠CHB=90° CH=BD=33.1 4分在Rt△CBH中,sin∠CBH=∴CH=BC•sin∠CBH=28.2× ≈20 6分∴CG=CH+HG=33.1+20=53.1?55答:桶盖完全打开时没有碰到碰到子下沿。
8分其它解法酌情给分20.(1) 2分(2) 4分(3) 如图所示 6分(4) 图象关于直线x=2对称; 8分图象永远在x轴的上方;(写上一个即可)其它结论酌情给分21.证明:∵正方形ABCD∴AD∥BC∠B=90°∴∠PAF=∠AEB∵PF⊥AE∴∠PFA=∠B=90°∴△PFA∽△ABE 4分(2)情况1,当△EFP∽ABE时,则有∠PEF=∠EAB,∴PE∥AB,∵AD∥BC∠B=90°∴四边形ABEP为矩形∴PA=EB=2,即x=2. 6分情况2,当△PFE∽△ABE时,且∠PEF=∠AEB时,∵∠PAF=∠AEB∴∠PEF=∠PAF,∴PE=PA∵PF⊥AE∴点F为AE的中点∵AE=∴ , 8分由,得:∴PE=5,∴PA= PE=5,即x=5. 9分∴当x=2或x=5时,以P,F,E为顶点的三角形与△ABE相似. 10分22.(1)调查了 300 名村民,有 6 人参加合作医疗得到了返回款; 4分(2)估计有 8000 人参加了合作医疗; 6分(3)解:设年平均增长率为x根据题意得: 10分解得:(舍去)答:年平均增长率为10%. 12分23.(1)4分(2)当0≤x≤20时,w=80x∵k=80?0,∴w随x的增大而增大,∴当x=20时,w最大值=80×20=1600 5分当20≤x≤180时,∴当x=90时,w最大值=4050 8分综合上述两种情况,当x=90时,w最大值=4050 9分答:当车流密度为90时,车流量最大,最大值为4050辆/小时.(3)当v=40时,得:,解得 x=100 11分∴w=100×40=4000分流了4000×2=8000(辆) 12分答:这天早高峰期间高架桥分流了8000辆车.24.(1)①证明:在PA上取一点E,使PE=PC,连接CE∵正三角形ABC∴∠APC=∠ABC=60°又∵PE=PC,∴△PEC是正三角形∴CE=CP∠ACB=∠ECP=60°∴∠1=∠2又∵∠3=∠4 BC=AC∴△ACE≌△BCP (ASA) 4分(2)①线段 AD 的长度即为△ABC的费马距离. 6分②过AB和AC分别向外作等边三角形,连接CD,BE,交点即为P0.(过AC或AB作外接圆视作与图2相同的方法,不得分)。