教案高一数学人教版必修二 1.3.2球的表面积和体积
- 格式:doc
- 大小:362.00 KB
- 文档页数:8
1.3.2 球的体积与表面积一. 教学目标1.知识与技能⑴通过对球的体积和面积公式的推导,了解推导过程中所用的基本数学思想方法:“分割——求和——化为准确和”,有利于同学们进一步学习微积分和近代数学知识。
⑵能运用球的面积和体积公式灵活解决实际问题。
⑶培养学生的空间思维能力和空间想象能力。
2.过程与方法通过球的体积和面积公式的推导,从而得到一种推导球体积公式V=34πR 3和面积公式S=4πR 2的方法,即“分割求近似值,再由近似和转化为球的体积和面积”的方法,体现了极限思想。
3.情感与价值观通过学习,使我们对球的体积和面积公式的推导方法有了一定的了解,提高了空间思维能力和空间想象能力,增强了我们探索问题和解决问题的信心。
二.教学重点、难点重点:引导学生了解推导球的体积和面积公式所运用的基本思想方法。
难点:推导体积和面积公式中空间想象能力的形成。
三.学法和教学用具1.学法:学生通过阅读教材,发挥空间想象能力,了解并初步掌握“分割、求近似值的、再由近似值的和转化为球的体积和面积”的解题方法和步骤。
2.教学用具:投影仪四.教学设计(一)创设情景⑴教师提出问题:球既没有底面,也无法像在柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?引导学生进行思考。
]⑵教师设疑:球的大小是与球的半径有关,如何用球半径来表示球的体积和面积?激发学生推导球的体积和面积公式。
(二)探究新知1.球的体积:如果用一组等距离的平面去切割球,当距离很小之时得到很多“小圆片”,“小圆片”的体积的体积之和正好是球的体积,由于“小圆片”近似于圆柱形状,所以它的体积也近似于圆柱形状,所以它的体积有也近似于相应的圆柱和体积,因此求球的体积可以按“分割——求和——化为准确和”的方法来进行。
步骤:第一步:分割如图:把半球的垂直于底面的半径OA作n 等分,过这些等分点,用一组平行于底面的平面把半球切割成n 个“小圆片”,“小圆片”厚度近似为nR,底面是“小圆片”的底面。
1.3.2 球的体积和表面积整体设计教学分析本节教材直接给出了球的表面积和体积公式,并用两个例题来说明其应用.值得注意的是教学的重点放在球与其他几何体的组合体的有关计算上,这是高考的重点.三维目标掌握球的表面积和体积公式,并能应用其解决有关问题,提高学生解决问题的能力,培养转化与化归的数学思想方法.重点难点教学重点:球的表面积和体积公式的应用.教学难点:关于球的组合体的计算.课时安排约1课时教学过程导入新课思路1.位于香港栈桥回澜阁西部、西陵峡路东端海滨,有一座新异奇秀的半球形建筑.由香港好世界饮食服务(中国)有限公司等三方合资兴建,1996年9月正式开业,既是岛城饮食服务业的“特一级”店,又是新增加的一处景点.酒店的总建筑面积11 380平方米,现酒店管理层决定在半球形屋顶嵌上一层特殊化学材料以更好地保护酒店,那么,需要多少面积的这种化学材料呢?思路2.球既没有底面,也无法像柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?球的大小与球的半径有关,如何用球半径来表示球的体积和面积?教师引出课题:球的体积和表面积.推进新课新知探究球的半径为R ,它的体积和表面积只与半径R 有关,是以R 为自变量的函数.事实上,如果球的半径为R ,那么S=4πR 2,V=334R .注意:球的体积和表面积公式的证明以后证明.应用示例思路1例1 如图1所示,圆柱的底面直径与高都等于球的直径,求证:图1(1)球的体积等于圆柱体积的32; (2)球的表面积等于圆柱的侧面积.活动:学生思考圆柱和球的结构特征,并展开空间想象.教师可以使用信息技术帮助学生读懂图形.证明:(1)设球的半径为R ,则圆柱的底面半径为R ,高为2R.则有V 球=334R π,V 圆柱=πR 2·2R=2πR 3,所以V 球=圆柱V 32.(2)因为S 球=4πR 2,S 圆柱侧=2πR·2R=4πR 2,所以S 球=S 圆柱侧.点评:本题主要考查有关球的组合体的表面积和体积的计算.解决此类问题的关键是明确组合体的结构特征.变式训练1.如图2(1)所示,表面积为324π的球,其内接正四棱柱的高是14,求这个正四棱柱的表面积.图2解:设球的半径为R ,正四棱柱底面边长为a,则轴截面如图2(2),所以AA′=14,AC=a 2,又∵4πR 2=324π,∴R=9.∴AC=28''22=-CC AC .∴a=8.∴S 表=64×2+32×14=576,即这个正四棱柱的表面积为576.2有一种空心钢球,质量为142 g,测得外径(直径)等于5 cm ,求它的内径(钢的密度为7.9 g/cm 3,精确到0.1 cm ).解:设空心球内径(直径)为2x cm,则钢球质量为7.9·[3334)25(34x ππ-∙]=142, ∴x 3=14.349.73142)25(3⨯⨯⨯-≈11.3,∴x≈2.24,∴直径2x≈4.5. 答:空心钢球的内径约为4.5 cm.例2 如图3所示,表示一个用鲜花做成的花柱,它的下面是一个直径为1 m 、高为3 m 的圆柱形物体,上面是一个半球形体.如果每平方米大约需要鲜花150朵,那么装饰这个花柱大约需要多少朵鲜花(π取3.1)?图3活动:学生思考和讨论如何计算鲜花的朵数.鲜花的朵数等于此几何体的表面积(不含下底面)与每朵鲜花占用的面积.几何体的表面积等于圆柱的侧面积再加上半球的表面积. 解:圆柱形物体的侧面面积S 1≈3.1×1×3=9.3(m 2),半球形物体的表面积为S 2≈2×3.1×(21)2≈1.6(m 2), 所以S 1+S 2≈9.3+1.6=10.9(m 2).10.9×150≈1 635(朵).答:装饰这个花柱大约需要1 635朵鲜花.点评:本题主要考查球和圆柱的组合体的应用,以及解决实际问题的能力.变式训练有一个轴截面为正三角形的圆锥容器,内放一个半径为R 的内切球,然后将容器注满水,现把球从容器中取出,水不损耗,且取出球后水面与圆锥底面平行形成一圆台体,问容器中水的高度为多少?分析:转化为求水的体积.画出轴截面,充分利用轴截面中的直角三角形来解决.解:作出圆锥和球的轴截面图如图4所示,图4圆锥底面半径r=R R 330tan =︒, 圆锥母线l=2r=R 32,圆锥高为h=r 3=3R ,∴V 水=334332πππ=-R h r ·3R 2·3R 333534R R ππ=-, 球取出后,水形成一个圆台,下底面半径r=R 3,设上底面半径为r′,则高h′=(r -r′)tan60°=)'3(3r R -, ∴'3353h R ππ=(r 2+r′2+rr′),∴5R 3=)3'3')('3(322R Rr r r R ++-, ∴5R 3=)'33(333r R -,解得r′=6331634R R =, ∴h′=(3123-)R.答:容器中水的高度为(3123-)R.思路2例1 (2006广东高考,12)若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为____________.活动:学生思考长方体和球的结构特征.教师可以借助于信息技术画出图形.分析:画出球的轴截面可得,球的直径是正方体的对角线,所以球的半径R=233,则该球的表面积为S=4πR 2=27π.答案:27π点评:本题主要考查简单的组合体和球的表面积.球的表面积和体积都是半径R 的函数.对于和球有关的问题,通常可以在轴截面中建立关系.画出轴截面是正确解题的关键.变式训练1.(2006全国高考卷Ⅰ,理7)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( )A.16πB.20πC.24πD.32π分析:由V=Sh ,得S=4,得正四棱柱底面边长为2.画出球的轴截面可得,该正四棱柱的对角线即为球的直径,所以,球的半径为R=642221222=++,所以球的表面积为S=4πR 2=24π.答案:C2.(2005湖南数学竞赛,13)一个球与正四面体的六条棱都相切,若正四面体的棱长为a ,则这个球的体积为_____________.分析:把正四面体补成正方体的内接正四面体,此时正方体的棱长为a 22,于是球的半径为a 42,V=3242a π. 答案:3242a π 3.(2007天津高考,理12)一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为___________.分析:长方体的对角线为14321222=++,则球的半径为214,则球的表面积为4π(214)2=14π. 答案:14π例2 图5是一个底面直径为20 cm 的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6 cm ,高为20 cm 的一个圆锥形铅锤,当铅锤从水中取出后,杯里的水将下降几厘米?图5活动:学生思考杯里的水将下降的原因,通过交流和讨论得出解题思路.因为玻璃杯是圆柱形的,所以铅锤取出后,水面下降部分实际是一个小圆柱,这个圆柱的底面与玻璃杯的底面一样,是一直径为20 cm 的圆,它的体积正好等于圆锥形铅锤的体积,这个小圆柱的高就是水面下降的高度.解:因为圆锥形铅锤的体积为2)26(31⨯⨯π×20=60π(cm 3),设水面下降的高度为x ,则小圆柱的体积为x 2)220(π=100πx ( cm 3). 所以有60π=100πx ,解此方程得x=0.6( cm ).答:杯里的水下降了0.6 cm.点评:本题主要考查几何体的体积问题,以及应用体积解决实际问题的能力.明确几何体的形状及相应的体积公式是解决这类问题的关键.解实际应用题的关键是建立数学模型.本题的数学模型是下降的水的体积等于取出的圆锥形铅锤的体积.明确其体积公式中的相关量是列出方程的关键.变式训练1.一个空心钢球,外直径为12 cm ,壁厚0.2 cm ,问它在水中能浮起来吗?(钢的密度为7.9 g/cm 3)和它一样尺寸的空心铅球呢?(铅的密度为11.4 g/cm 3)分析:本题的关键在于如何判断球浮起和沉没,因此很自然要先算出空心钢球的体积,而空心钢球的体积相当于是里、外球的体积之差,根据球的体积公式很容易得到空心钢球的体积,从而算出空心钢球的质量,然后把它与水的质量相比较即可得出结论,同理可以判断铅球会沉没.解:空心钢球的体积为V 钢=348.53463433πππ=⨯-⨯×20.888≈87.45(cm 3), ∴钢的质量为m 钢=87.45×7.9=690.86(g).∵水的体积为V 水=34π×63=904.32(cm 3), ∴水的质量为m 水=904.32×1=904.32(g)>m 钢.∴钢球能浮起来,而铅球的质量为m 铅=87.45×11.4=996.93(g)>m 水.∴同样大小的铅球会沉没.答:钢球能浮起来,同样大小的铅球会沉没.2.(2006全国高中数学联赛试题第一试,10)底面半径为1 cm 的圆柱形容器里放有四个半径为21cm 的实心铁球,四个球两两相切,其中底层两球与容器底面相切.现往容器里注水使水面恰好浸没所有铁球,则需要注水___________cm 3.分析:设四个实心铁球的球心为O 1、O 2、O 3、O 4,其中O 1、O 2为下层两球的球心,A 、B 、C 、D 分别为四个球心在底面的射影,则ABCD 是一个边长为22 cm 的正方形,所以注水高为(1+22) cm.故应注水π(1+22)-4×)2231()21(343+=ππ cm 3. 答案:(31+22)π 知能训练1.三个球的半径之比为1∶2∶3,那么最大球的表面积是其余两个球的表面积之和的( )A.1倍B.2倍C.59倍D.47倍分析:根据球的表面积等于其大圆面积的4倍,可设最小的一个半径为r ,则另两个为2r 、3r ,所以各球的表面积分别为4πr 2、16πr 2、36πr 2,5916436222=+r r r πππ(倍). 答案:C2.(2006安徽高考,理9)表面积为32的正八面体的各个顶点都在同一个球面上,则此球的体积为( ) A.32π B.3π C.32π D.322π 分析:此正八面体是每个面的边长均为a 的正三角形,所以由8×32432=a 知,a=1,则此球的直径为2.答案:A3.(2007北京西城抽样,文11)若与球心距离为4的平面截球所得的截面圆的面积是9π,则球的表面积是____________.分析:画出球的轴截面,则球心与截面圆心的连线、截面的半径、球的半径构成直角三角形,又由题意得截面圆的半径是3,则球的半径为2234+=5,所以球的表面积是4π×52=100π.答案:100π4.某街心花园有许多钢球(钢的密度是7.9 g/cm 3 ),每个钢球重145 kg,并且外径等于50 cm,试根据以上数据,判断钢球是实心的还是空心的.如果是空心的,请你计算出它的内径(π取3.14,结果精确到1 cm ).解:由于外径为50 cm 的钢球的质量为7.9×3)250(34⨯π≈516 792(g), 街心花园中钢球的质量为145 000 g,而145 000<516 792,所以钢球是空心的.设球的内径是2x cm ,那么球的质量为7.9·[3334)250(34x ππ-∙]=145 000, 解得x 3≈11 240.98,x≈22.4,2x≈45(cm).答:钢球是空心的,其内径约为45 cm.5.(2007海南高考,文11)已知三棱锥S —ABC 的各顶点都在一个半径为r 的球面上,球心O 在AB 上,SO ⊥底面ABC ,AC=r 2,则球的体积与三棱锥体积之比是( )A.πB.2πC.3πD.4π分析:由题意得SO=r 为三棱锥的高,△ABC 是等腰直角三角形,所以其面积是21×2r×r=r 2,所以三棱锥体积是33132r r r =⨯⨯,又球的体积为343r π,则球的体积与三棱锥体积之比是4π.答案:D点评:面积和体积往往涉及空间距离,而新课标对空间距离不作要求,因此在高考试题中其难度很低,属于容易题,2007年新课标高考试题就体现了这一点.高考试题中通常考查球、三棱锥、四棱锥、长方体、正方体等这些简单几何体或它们的组合体的面积或体积的计算.我们应高度重视这方面的应用.拓展提升问题:如图6,在四面体ABCD中,截面AEF经过四面体的内切球(与四个面都相切的球)球心O,且与BC,DC分别截于E、F,如果截面将四面体分成体积相等的两部分,设四棱锥A—BEFD与三棱锥A—EFC的表面积分别是S1,S2,则必有()图6A.S1<S2B.S1>S2C.S1=S2D.S1,S2的大小关系不能确定探究:如图7,连OA、OB、OC、OD,则V A—BEFD=V O—ABD+V O—ABE+V O—BEFD+V O—ADF,V A—EFC=V O—AFC+V O—AEC+V O—EFC,又V A—BEFD=V A—EFC,而每个小三棱锥的高都是原四面体的内切球的半径,故S△ABD+S△ABE+S BEFD+S△ADF=S△AFC+S△AEC+S△EFC,又面AEF是公共面,故选C.图7答案:C课堂小结本节课学习了:1.球的表面积和体积.2.计算组合体的体积时,通常将其转化为计算柱、锥、台、球等常见的几何体的体积.3.空间几何体的表面积与体积的规律总结:(1)表面积是各个面的面积之和,求多面体表面积时,只需将它们沿着若干条棱剪开后展成平面图形,利用平面图形求多面体的表面积.求旋转体的表面积时,可从回忆旋转体的生成过程及其几何特征入手,将其展开求表面积,但要搞清它们的底面半径、母线长与对应的侧面展开图中的边长关系,注意球面不可展开.(2)在体积公式中出现了几何体的高,其含义是:柱体的高:从柱体的一个底面上任一点向另一个底面作垂线,这点和垂足间的距离称为柱体的高;锥体的高:从锥体的顶点向底面作垂线,这点和垂足间的距离称为锥体的高;台体的高:从台体的一个底面上任一点向另一个底面作垂线,这点和垂足间的距离称为台体的高.注意球没有高的结构特征.(3)利用侧面展开图或截面把空间图形问题转化为平面图形问题,是解决立体几何问题的常用手段.(4)柱体、锥体、台体和球是以后学习第二章点、直线、平面位置关系的载体,高考试题中,通常是用本模块第一章的图,考查第二章的知识.(5)与球有关的接、切问题是近几年高考的热点之一,常以选择题或填空题的形式出现,属于低档题.作业课本本节练习1、2、3.设计感想本节教学结合高考要求,主要是从组合体的角度来讨论球的表面积和体积.值得注意的是其中的题目没有涉及球的截面问题(新课标对球的截面不要求),在实际教学中,教师不要增加球的截面方面的练习题,那样会增加学生的负担.。
1.3.2球的体积和表面积[学习目标]1.记准球的表面积和体积公式,会计算球的表面积和体积.2.能解决与球有关的组合体的计算问题.[知识链接]1.长宽高分别为a、b、c的长方体的表面积S=2(ab+bc+ac),体积V=abc.2.棱长为a的正方体的表面积S=6a2,体积V=a3.3.底面半径为r,高为h,母线长为l的圆柱侧面积S侧=2πrh,表面积S=2πrh+2πr2,体积V=πr2h.4.底面半径为r,高为h,母线长为l的圆锥侧面积S侧=πrl,表面积S=πr2+πrl,体积V=13πr2h.[预习导引]球的体积公式与表面积公式(1)球的体积公式V=43πR3(其中R为球的半径)(2)球的表面积公式S=4πR2要点一球的表面积和体积例1(1)已知球的表面积为64π,求它的体积.(2)已知球的体积为5003π,求它的表面积.解(1)设球的半径为R,则4πR2=64π,解得R=4,所以球的体积V=43πR3=43π·(4)3=2563π.(2)设球的半径为R ,则43πR 3=5003π,解得R =5,所以球的表面积S =4πR 2=4π×52=100π.规律方法 1.已知球的半径,可直接利用公式求它的表面积和体积. 2.已知球的表面积和体积,可以利用公式求它的半径. 跟踪演练1 一个球的表面积是16π,则它的体积是( ) A .64π B.64π3 C .32π D.323π 答案 D解析 设球的半径为R ,则由题意可知4πR 2=16π,故R =2.所以球的半径为2,体积V =43πR 3=323π.要点二 球的截面问题例2 平面α截球O 的球面所得圆的半径为1.球心O 到平面α的距离为2,则此球的体积为( )A.6π B .43π C .46π D .63π答案 B 解析如图,设截面圆的圆心为O ′, M 为截面圆上任一点, 则OO ′=2,O ′M =1.∴OM =(2)2+1= 3.即球的半径为 3. ∴V =43π(3)3=43π.规律方法 有关球的截面问题,常画出过球心的截面圆,将问题转化为平面中圆的有关问题解决.跟踪演练2 已知半径为5的球的两个平行截面圆的周长分别为6π和8π,则这两个截面间的距离为________.答案 1或7解析 若两个平行截面在球心同侧,如图(1),则两个截面间的距离为52-32-52-42=1;若两个平行截面在球心异侧,如图(2),则两个截面间的距离为52-32+52-42=7.要点三 球的组合体与三视图例3 某个几何体的三视图如图所示,求该几何体的表面积和体积.解 由三视图可知该几何体的下部是棱长为2的正方体,上部是半径为1的半球,该几何体的表面积为S =12×4π×12+6×22-π×12=24+π. 该几何体的体积为: V =23+12×43π×13=8+2π3.规律方法 1.由三视图求球与其他几何体的简单组合体的表面积和体积,关键要弄清组合体的结构特征和三视图中数据的含义.2.求解表面积和体积时要避免重叠和交叉.跟踪演练3已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是________.答案12π解析由三视图知组合体为球内接正方体,正方体的棱长为2,若球半径为R,则2R=23,∴R= 3.∴S球表=4πR2=4π×3=12π.1.直径为6的球的表面积和体积分别是()A.36π,144π B.36π,36πC.144π,36π D.144π,144π答案 B解析球的半径为3,表面积S=4π·32=36π,体积V=43π·33=36π.2.若将气球的半径扩大到原来的2倍,则它的体积增大到原来的() A.2倍B.4倍C.8倍D.16倍答案 C解析设气球原来的半径为r,体积为V,则V=43πr3,当气球的半径扩大到原来的2倍后,其体积变为原来的23=8倍.3.两个半径为1的实心铁球,熔化成一个球,这个大球的半径是________.答案3 2解析设大球的半径为R,则有43πR3=2×43π×13,R3=2,∴R=3 2.4.一个长方体的各个顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为________.答案14π解析长方体外接球直径长等于长方体对角线长,即2R=12+22+32=14,所以球的表面积S=4πR2=14π.5.某几何体的三视图如图所示,则其表面积为________.答案3π解析由三视图可知,该几何体为一个半径为1的半球,其表面积为半个球面面积与截面面积的和,即12×4π+π=3π.1.球的表面积、体积基本性质是解决有关问题的重要依据,它的轴截面图形,球半径、截面圆半径、球心到截面的距离所构成的直角三角形是把空间问题转化为平面问题的主要方法.2.与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图.一、基础达标1.设正方体的表面积为24,那么其外接球的体积是()A.43π B.8π3C.43π D.323π答案 C解析由题意可知,6a2=24,∴a=2.设正方体外接球的半径为R,则3a =2R ,∴R =3,∴V 球=43πR 3=43π.2.一个正方体的八个顶点都在半径为1的球面上,则正方体的表面积为( )A .8B .8 2C .8 3D .4 2答案 A解析 ∵球的半径为1,且正方体内接于球,∴球的直径即为正方体的对角线,即正方体的对角线长为2.不妨设正方体的棱长为a ,则有3a 2=4,即a 2=43.∴正方体的表面积为6a 2=6×43=8.3.如图是某几何体的三视图,则该几何体的体积为( )A.92π+12 B.92π+18 C .9π+42 D .36π+18答案 B解析 由三视图可得几何体为长方体与球的组合体,故体积为V =32×2+43π⎝ ⎛⎭⎪⎫323=18+92π. 4.正方体的内切球与其外接球的体积之比为( ) A .1∶ 3 B .1∶3 C .1∶3 3 D .1∶9 答案 C解析设正方体的棱长为a,则它的内切球的半径为12a,它的外接球的半径为32a,故所求的比为1∶3 3.5.一平面截一球得到直径是6 cm的圆面,球心到这个平面的距离是4 cm,则该球的体积是()A.100π3cm3 B.208π3cm3C.500π3cm3 D.41613π3cm3答案 C解析根据球的截面性质,有R=r2+d2=32+42=5,∴V球=43πR3=5003π(cm3).6.已知一个正方体的所有顶点在一个球面上.若球的体积为9π2,则正方体的棱长为________.答案 3解析先求出球的半径,再根据正方体的体对角线等于球的直径求棱长.设正方体棱长为a,球半径为R,则43πR3=92π,∴R=32,∴3a=3,∴a= 3.7.盛有水的圆柱形容器的内壁底面半径为5 cm,两个直径为5 cm的玻璃小球都浸没于水中,若取出这两个小球,则水面将下降多少?解设取出小球后,容器中水面下降h cm,两个小球的体积为V球=2⎣⎢⎡⎦⎥⎤4π3×⎝⎛⎭⎪⎫523=125π3(cm3),此体积即等于它们在容器中排开水的体积V=π×52×h,所以125π3=π×52×h,所以h=53,即若取出这两个小球,则水面将下降53cm.二、能力提升8.如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器厚度,则球的体积为()A.500π3cm3 B.866π3cm3C.1 372π3cm3 D.2 048π3cm3答案 A解析利用球的截面性质结合直角三角形求解.如图,作出球的一个截面,则MC=8-6=2(cm),BM=12AB=12×8=4(cm).设球的半径为R cm,则R2=OM2+MB2=(R-2)2+42,∴R=5,∴V球=43π×53=5003π(cm3).9.设三棱柱的侧棱垂直于底面,所有棱的长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2 B.73πa2 C.113πa2D.5πa2答案 B解析由题意知,该三棱柱为正三棱柱,且侧棱与底面边长相等,均为a.如图,P 为三棱柱上底面的中心,O为球心,易知AP=23×32a=33a,OP=12a,所以球的半径R =OA 满足R 2=⎝ ⎛⎭⎪⎫33a 2+⎝ ⎛⎭⎪⎫12a 2=712a 2,故S 球=4πR 2=73πa 2.10.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是________cm.答案 4解析 设球的半径为r ,则圆柱形容器的高为6r ,容积为πr 2×6r =6πr 3,高度为8 cm 的水的体积为8πr 2,3个球的体积和为3×43πr 3=4πr 3,由题意6πr 3-8πr 2=4πr 3,解得r =4(cm).11.已知过球面上A 、B 、C 三点的截面和球心的距离等于球半径的一半,且AB =18,BC =24,AC =30,求球的表面积和体积.解 ∵AB ∶BC ∶AC =18∶24∶30=3∶4∶5,∴△ABC 是直角三角形,∠B =90°.因球心O 到截面△ABC 的射影O ′为截面圆的圆心,也即是Rt △ABC 的外接圆的圆心,所以斜边AC 为截面圆O ′的直径(如图所示).设O ′C =r ,OC =R ,则球半径R ,截面圆半径r , 在Rt △O ′CO 中,由题设知sin ∠O ′CO =OO ′OC =12, ∴∠O ′CO =30°,∴r R =cos 30°=32,即R =23r ,①又2r =AC =30⇒r =15,代入①得R =10 3. ∴球的表面积为S =4πR 2=4π(103)2=1 200π.球的体积为V=43πR3=43π(103)3=4 0003π.三、探究与创新12.如图所示,半径为R的半圆内的阴影部分以直径AB所在直线为轴,旋转一周得到一几何体,求该几何体的表面积.(其中∠BAC=30°)解如图所示,过C作CO1⊥AB于O1.在半圆中可得∠BCA=90°,∠BAC=30°,AB=2R,∴AC=3R,BC=R,CO1=32R,∴S球=4πR2,S圆锥AO1侧=π×32R×3R=32πR2,S圆锥BO1侧=π×32R×R=32πR2,∴S几何体表=S球+S圆锥AO1侧+S圆锥BO1侧=112πR2+32πR2=11+32πR2.故旋转所得几何体的表面积为11+32πR2.13.如图所示,一个圆锥形的空杯子上放着一个直径为8 cm的半球形的冰淇淋,请你设计一种这样的圆锥形杯子(杯口直径等于半球形的冰淇淋的直径,杯子壁厚忽略不计),使冰淇淋融化后不会溢出杯子,怎样设计最省材料?解设圆锥形杯子的高为h cm,要使冰淇淋融化后不会溢出杯子,则必须V圆锥≥V半球,而V半球=12×43πr3=12×4π3×43,V圆锥=13Sh=13πr2h=π3×42×h.依题意:π3×42×h≥12×4π3×43,解得h≥8,即当圆锥形杯子杯口直径为8 cm,高大于或等于8 cm时,冰淇淋融化后不会溢出杯子.又因为S圆锥侧=πrl=πr h2+r2,当圆锥高取最小值8时,S圆锥侧最小,所以高为8 cm时,制造的杯子最省材料.。
《1.3.2球的体积和表面积》教学设计
教材:人民教育出版社A 版普通高中课程标准实验教科书《数学必修2》
一、 教学目标
知识目标:
1、掌握球的体积公式34
3
V R π=
、表面积公式24S R π=. 2、会用球的表面积公式、体积公式解决相关问题,培养学生应用数学的能力. 3、能解决与球的截面有关的计算问题及球的“内接”与“外切”的几何体问题. 能力目标:
通过类比、归纳、猜想等合情推理培养学生勇于探索的精神. 提高学生分析、综合、抽象概括等逻辑推理能力
情感目标:
通过寻求如何研究球的内切与外接的方法,培养学生将数学知识和生活实际相联系的意识,对学生进行“事物具有多面性”的辩证唯物主义思想教育. 二、 教学重点、难点
重点:球的体积和表面积的计算公式的应用.
难点:解决与球相关的“内接”与“外切”的几何体问题 三、教学方法
采用试验探索,启发式的教学方法.
教辅手段:圆柱、圆锥、半球容积比实物模型;一盆水;多媒体. 四、教学过程
由题意可知,该几何体是长方体,。
必修2第1章第3节《球的体积和表面积》第1课时教学设计【课标解读】由于球的体积和表面积公式在推导证明上比较繁琐,先生在理解掌握上也比较困难,根据新的《数学课程标准》要求,本节的公式证明和推导应淡化处理,只需让先生简单了解推导过程,领会其中所包含的数学思想和方法,和它们在后续学习中的作用,不要求先生掌握其证明。
在球的体积和表面积公式运用和球与几何体组合体的求解过程中,进步先生的空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。
经过运用预设和相应的运用练习进步先生的提出、分析和解决成绩(包括简单的理论成绩)的能力,利用先生身旁熟知的成绩预设进步先生学习数学的兴味,建立学好数学的决心,进而构成锲而不舍的研讨精神和科学态度。
【教材分析】本节课是人教A版高中数学(课程标准实验教材)必修2第一章“空间几何体”第三节“球的体积和表面积”,是在学习了柱体、锥体、台体等基本几何体的基础上,经过空间度量方式了解另一种基本几何体的结构特点。
从知识上讲,球是一种高度对称的基本空间几何体,同时它也是进一步研讨空间组合体结构特点的基础;从方法上讲,它为我们提供了另外一种求空间几何体体积和表面积的思想方法;从教材编排上,更注重先生的直观感知和操作确认,为螺旋式上升的学习奠定了基础。
【学情分析】先生刚学习立体几何不久,具备的图形言语表达及空间想象能力绝对不足,几何体的内切球、外接球的地位关系较难想象,很难顺利作出正确的直观图,空间图构成绩向平面图构成绩的转化认识也不够,对于解决组合体的体积和表面积的成绩有必然的困难,而且先生的归纳总结能力不够,独立完成自主学习任务有必然困难,还不能从必然高度去体会和感悟数学思想。
这些都是摆在先生面前的难题,也是教学中迫切需求解决的成绩。
【教学目标】1.掌握球的体积、表面积公式及其运用。
2会用球的表面积公式、体积公式解决相关成绩,培养先生运用数学的能力,发展逻辑思想能力,加强辩证唯物主义观点。
第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
2、了解我国书法发展的历史。
3、掌握基本笔画的书写特点。
重点:基本笔画的书写。
难点:运笔的技法。
教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。
2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。
二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。
换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。
三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。
2、教师边书写边讲解。
3、学生练习,教师指导。
(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。
在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。
5、学生练习,教师指导。
(发现问题及时指正)四、作业:完成一张基本笔画的练习。
板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。
这是书写的起步,让学生了解书写工具及保养的基本常识。
基本笔画书写是整个字书写的基础,必须认真书写。
课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。
总第(2)课时课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。
2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。
重点:正确书写6个字。
难点:注意字的结构和笔画的书写。
教学过程:一、小结课堂内容,评价上次作业。
二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。
2、书写方法是:写一个字看一眼黑板。
《1.3.2 球的表面积和体积》教学设计一、教学目标:知识与技能:1、了解球的体积公式343V R π=、表面积公式24S R π=。
2、会用球的表面积公式、体积公式解决相关问题,培养学生应用数学的能力。
3、能解决与球的截面有关的计算问题及球相关的“内切”“外接”的几何体问题。
过程与方法:通过类比、猜想球的表面积和体积公式,变式训练强化内切、外接问题,提高学生分析、综合、抽象概括等逻辑推理能力。
情感态度价值观:培养学生空间想象能力以及勇于探索的精神,拓展学生视野,增强应用意识,渗透类比化归等数学思想,加强辨证唯物主义观点。
二、学情分析:学生以前已学习过圆的概念、相关公式,有一定的类比迁移能力,对本节课球的概念和公式较容易接受,运算能力良好,能运用公式求解相关问题。
但对正方体和球的几类情况较为陌生,学生具有一定的空间想象能力,借助3D 软件和FLASH 动画演示能较好理解新知。
三、教学重难点:重点:球的体积和表面积的计算公式的应用。
难点:解决与球相关的“内切”“外接”的几何体问题。
四、教学方法:探索启发式的教学方法。
五、教学用具:3D 玲珑画板、FLASH 动画、PPT 、板书等六、教学过程:一、探究新知2.复习:球的概念:一个半圆绕着它的直径所在的直线旋转一周所形成的旋转体。
3.思考:做一个足球需要用到多少布料?把一个足球充满气需要多少气体?球的表面积和体积由哪个量来确定?试猜想球的表面积和体积公式。
引导学生类比得出球的表面积与半径的平方成正比,球的体积与半径的立方成正比。
猜想出32,kRVkRS==。
教师给出球的表面积公式24S Rπ=、体积公式343V Rπ=。
以后可以证明。
V和S都是以R为自变量的函数。
从实际问题入手,激发学生的学习兴趣,复习球的概念。
引导学生猜想球的表面积和体积公式。
唤起学生对球体的概念的认识,加深印象,为本节做好必要的知识铺垫.二、新知应用1.一个球的直径为4cm,则它的表面积是_________,体积是_________。
球的表面积和体积教案一、教学目标1. 理解球的表面积和体积的概念。
2. 利用公式计算球的表面积和体积。
3. 运用所学知识解决实际问题。
二、教学重点1. 确定球的表面积和体积的计算公式。
2. 运用公式计算球的表面积和体积。
三、教学难点1. 确定球的表面积和体积的计算公式。
2. 运用所学知识解决实际问题。
四、教学过程Step 1 引入新知1. 引入球的表面积的概念:“同学们,你们平时在打篮球或足球时,有没有观察过球的表面?球的表面是光滑而圆润的,我们今天就来学习如何计算球的表面积。
”2. 引入求球的体积的概念:“那么,同学们,我们再思考一个问题,球的内部空间有多大呢?我们可以用体积来表示。
下面我们就来学习求球的体积。
”Step 2 讲解球的表面积的计算公式1. “同学们,请看这个球,球的每一个点都与球心的距离相等,我们称这个距离为半径。
我们可以用R来表示球的半径。
”2. “球的表面由许多小面元组成,每个小面元都是一个小圆,根据几何知识,我们可以知道每个小圆的面积是πR²。
”3. “考虑球的所有小圆,我们可以算出球的表面积。
由于球表面上每个小圆的面积相等,所以球的表面积等于小圆面积乘以球表面的个数。
”4. “根据上面的讲解,我们可以得出球的表面积公式:表面积 =4πR²。
”Step 3 讲解球的体积的计算公式1. “同学们,请思考一下,如果把球切成无数个很小的小块,每个小块的体积是什么?”2. “根据几何知识,我们可以知道每个小块的体积是半径为R的球冠体积的一部分。
”3. “考虑球的所有小块,我们可以得到球的体积。
由于球的所有小块的体积相等,所以球的体积等于小块体积乘以球内小块的个数。
”4. “根据上面的讲解,我们可以得出球的体积公式:体积 =(4/3)πR³。
”Step 4 练习计算球的表面积和体积1. 分发练习题,让学生在教师的指导下进行计算球的表面积和体积的练习。
2. 强调计算过程中的注意事项,例如要注意单位的转换,保留适当的有效数字等。
球的体积与表面积教案设计(参考)一、教学目标1. 知识与技能:理解球的体积和表面积的概念。
学会计算球的体积和表面积。
能够应用球的体积和表面积公式解决实际问题。
2. 过程与方法:通过观察和实验,探究球的体积和表面积的计算方法。
利用数学软件或工具,验证球的体积和表面积的计算结果。
3. 情感态度价值观:培养学生的空间想象能力。
培养学生的合作探究精神。
二、教学重点与难点1. 教学重点:球的体积和表面积的计算公式。
应用球的体积和表面积公式解决实际问题。
2. 教学难点:理解球的体积和表面积的概念。
球的体积和表面积公式的推导。
三、教学准备1. 教具准备:球体模型。
数学软件或工具。
2. 学生准备:了解平面几何的基本知识。
掌握代数的基本运算。
四、教学过程1. 导入:通过展示球体模型,引导学生观察和描述球体的特点。
提问:球的体积和表面积是什么?如何计算?2. 探究球的体积和表面积:引导学生通过实验或观察,探究球的体积和表面积的计算方法。
引导学生推导球的体积和表面积的计算公式。
3. 讲解与应用:讲解球的体积和表面积的计算公式。
通过例题,演示如何应用球的体积和表面积公式解决实际问题。
4. 练习与巩固:布置练习题,让学生独立完成。
学生之间互相讨论和解答疑问。
五、教学反思1. 教师反思:教学过程中是否清晰讲解球的体积和表面积的概念和计算方法?学生是否能够理解和应用球的体积和表面积公式?是否有针对性地解决学生的疑问和难点?自己是否理解和掌握了球的体积和表面积的概念和计算方法?在解决实际问题时,是否能够正确应用球的体积和表面积公式?自己在学习过程中遇到的困难和疑问是否得到解决?六、教学评估1. 课堂问答:通过提问方式检查学生对球体积和表面积概念的理解。
评估学生对球体积和表面积计算公式的掌握情况。
2. 练习题:布置不同难度的练习题,评估学生应用公式解决问题的能力。
观察学生的解题过程,了解其在应用知识时的思维过程。
七、练习与拓展1. 小组活动:学生分组,进行合作探究,解决更复杂的球体积和表面积问题。
1.3.2 球的体积和表面积教学要求:了解球的表面积和体积计算公式;能运用柱锥台球的表面积公式及体积公式进行计算和解决有关实际问题.教学重点:运用公式解决问题.教学难点:运用公式解决问题.教学过程:一、复习准备:1. 提问:柱、锥、台的体积计算公式?圆柱、圆锥的侧面积、表面积计算公式?2. 两个平行于圆锥底面的平面将圆锥的高分成相等的三段,求圆锥分成的三部分的侧面积之比、三部分的体积之比.二、讲授新课:1. 教学球的表面积及体积计算公式:①讨论:大小变化的球,其体积、表面积与谁有关?②给出公式:V球=343Rπ;S球面=4πR2. (R为球的半径)→讨论:公式的特点;球面是否可展开为一个平面图形?(证明的基本思想是:“分割→求体积和→求极限→求得结果”,以后的学习中再证明球的公式)③出示例:圆柱的底面直径与高都等于球的直径. 求球的体积与圆柱体积之比;证明球的表面积等于圆柱的侧面积.讨论:圆柱与球的位置关系?(相切)→几何量之间的关系(设球半径R,则…)→师生共练→小结:公式的运用. →变式:球的内切圆柱的体积④练习:一个气球的半径扩大2倍,那么它的表面积、体积分别扩大多少倍?2. 体积公式的实际应用:①出示例:一种空心钢球的质量是142g,外径是5.0cm,求它的内径. (钢密度7.9g/cm3)讨论:如何求空心钢球的体积?→列式计算→小结:体积应用问题.②有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放入一个半径为R的球,并注入水,使水面与球正好相切,然后将球取出,求此时容器中水的深度.③探究阿基米德的科学发现:图中所示的圆及其外切正方形绕图中由虚线表示的对称轴旋转一周生成的几何体称为圆柱容球。
在圆柱容球中,球的体积是圆柱体积的2,球的表面积3也是圆柱全面积的2.3三、巩固练习:1. 一个正方体的顶点都在球面上,它的棱长为6cm,求这个球的表面积和体积。
2. 如果球的体积是V球,它的外切圆柱的体积是V圆柱,外切等边圆锥的体积是V圆锥,求这三个几何体体积之Array比.3. 如图,求图中阴影部分绕AB旋转一周所形成的几何体的表面积和体积。
2019-2020年高中数学1.3.2球体的体积和表面积教案新人教A版必修2【教学目标】(1)能运用球的面积和体积公式灵活解决实际问题。
(2)培养学生的空间思维能力和空间想象能力。
【教学重难点】重点:球的体积和面积公式的实际应用难点:应用体积和面积公式中空间想象能力的形成。
【教学过程】一、教师提出问题:球既没有底面,也无法像在柱体、锥体和台体那样展开成平面图形,它是由半圆围绕直径旋转而成的旋转体,那么球的表面积与体积与半圆的哪个量有关呢?引导学生进行思考。
教师设疑:球的大小是与球的半径有关,如何用球半径来表示球的体积和面积?球的体积和面积公式:半径是R的球的体积,表面积S=4πR2二、典例例1.一种空心钢球的质量是732πg,外径是5cm,求它的内径. (钢密度9g/cm3)求空心钢球的体积。
解析:利用“体积=质量/密度”及球的体积公式解:设球的内径为r,由已知得球的体积V=732π/9(cm3)由V=(4/3) π(53-r3)得r=4(cm)点评:初步应用球的体积公式变式:正方体的棱长为2,顶点都在同一球面上,则球的体积为____________()例2 在球心同侧有相距9的两个平行截面,它们的面积分别为49π和400π,求球的表面积。
(答案:2500π)解析:利用轴截面解决解:设球的半径为R,球心到较大截面的距离为x则R2=x2+202,R2=(x+9)2+72解得x=15,R=25所以球的表面积S=2500π点评:数形结合解决实际问题变式:长方体的一个顶点上三条棱长分别为3、4、5,是它的八个顶点都在同一球面上,则这个球的表面积是。
(答案50π)【板书设计】一、球的面积和体积公式二、例题例1变式1例2变式2【作业布置】P30 1、21.3.2 球的体积和表面积课前预习学案一.预习目标:记忆球的体积、表面积公式二.预习内容:1.3.2课本内容思考:球的大小是与球的半径有关,如何用球半径来表示球的体积和面积三.提出疑惑课内探究学案一.学习目标:应用球的体积与表面积公式的解决实际问题学习重点:球的体积和面积公式的实际应用学习难点:应用体积和面积公式中空间想象能力的形成。
1.3.2 球的体积和表面积学习目标 1.掌握球的表面积和体积公式.2.能解决与球有关的组合体的计算问题.重点:球的体积和表面积的计算公式的应用.难点:解决与球相关的“内接”与“外切”的几何体问题 [导入新知]1.球的体积设球的半径为R ,则球的体积V = . 2.球的表面积设球的半径为R ,则球的表面积S = ,即球的表面积等于它的大圆面积的 倍. [化解疑难]1.一个关键 把握住球半径 2.两个结论(1)两个球的体积之比等于这两个球的半径之比的立方. (2)两个球的表面积之比等于这两个球的半径之比的平方. 题型一 球的体积与表面积[例1] 若圆锥与球的体积相等,且圆锥底面半径与球的直径相等,求圆锥侧面积与球面面积之比.球的体积是32π3,则此球的表面积是( )A .12πB .16π C.16π3D.64π3题型二 根据三视图计算球的体积与表面积[例2] 一个几何体的三视图(单位:cm)如图所示,则该几何体的表面积是________cm 2.[类题通法]计算球与球的组合体的表面积与体积时要恰当地分割与拼接,避免重叠和交叉.如图是一个几何体的三视图,根据图中的数据可得该几何体的表面积为( ) A.18πB.30πC.33πD.40π题型三球的截面问题[例3] 已知球的两平行截面的面积为5π和8π,它们位于球心的同一侧,且相距为1,求这个球的表面积.[类题通法]球的截面问题的解题技巧(1)有关球的截面问题,常画出过球心的截面圆,将问题转化为平面中圆的问题.(2)解题时要注意借助球半径R,截面圆半径r,球心到截面的距离d构成的直角三角形,即R2=d2+r2.已知过球面上三点A,B,C的截面到球心的距离等于球半径的一半,且AC=BC=6,AB=4,求球的表面积与球的体积.题型四 1.探究与球有关的组合问题[典例] 一个长方体的各个顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为________.[多维探究]1.球的内接正方体问题若棱长为2的正方体的各个顶点均在同一球面上,求此球的体积.2.球内切于正方体问题将棱长为2的正方体木块削成一个体积最大的球,则该球的体积为( )A.4π3B.2π3C.3π2D.π63.球的内接正四面体问题若棱长为a 的正四面体的各个顶点都在半径为R 的球面上,求球的表面积.4.球的内接圆锥问题球的一个内接圆锥满足:球心到该圆锥底面的距离是球半径的一半,则该圆锥的体积和此球体积的比值为________.5.球的内接直棱柱问题设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( ) A .πa 2B.73πa 2C.113πa 2D .5πa 2[方法感悟] 1.正方体的内切球球与正方体的六个面都相切,称球为正方体的内切球,此时球的半径为r 1=a2,过在一个平面上的四个切点作截面,如图(1). 2.球与正方体的各条棱相切球与正方体的各条棱相切于各棱的中点,过球心作正方体的对角面有r 2=2a2,如图(2). 3.长方体的外接球长方体的八个顶点都在球面上,称球为长方体的外接球,根据球的定义可知,长方体的体对角线是球的直径,若长方体过同一顶点的三条棱长为a ,b ,c ,则过球心作长方体的对角面有球的半径为r 3=12a 2+b 2+c 2,如图(3).4.正方体的外接球正方体棱长a 与外接球半径R 的关系为2R =3a . 5.正四面体的外接球正四面体的棱长a 与外接球半径R 的关系为:2R =62a . [随堂即时演练]1.两个球的半径之比为1∶3,那么两个球的表面积之比为( ) A .1∶9 B .1∶27 C .1∶3D .1∶12.棱长为2的正方体的外接球的表面积是( ) A .8π B .4π C .12πD .16π3.火星的半径约是地球半径的一半,则地球的体积是火星体积的________倍. 4.已知OA 为球O 的半径,过OA 的中点M 且垂直于OA 的平面截球面得到圆M .若圆M 的面积为3π,则球O 的表面积等于________.5.(1)已知球的直径为2,求它的表面积和体积. (2)已知球的体积为36π,求它的表面积.一、选择题1.两个球的体积之比为8∶27,那么这两个球的表面积之比为( ) A .2∶3 B .4∶9 C.2∶ 3D.8∶272.设长方体的长、宽、高分别为2a ,a ,a ,其顶点都在一个球面上,则该球的表面积为( )A .3πa 2B .6πa 2C .12πa 2D .24πa 23.如果一个球的外切圆锥的高是这个球的半径的3倍,则圆锥的侧面面积和球的表面积之比为( )A .4∶3B .3∶1C .3∶2D .9∶44.(全国乙卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )A .17πB .18πC .20πD .28π5.(山东高考)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23π B.13+23π C.13+26π D .1+26π 二、填空题6.圆柱形容器的内壁底半径是10 cm ,有一个实心铁球浸没于容器的水中,若取出这个铁球,测得容器的水面下降了53cm ,则这个铁球的表面积为________ cm 2.7.正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为________.8.(天津高考)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.三、解答题9.某组合体的直观图如图所示,它的中间为圆柱形,左右两端均为半球形,若图中r =1,l =3,试求该组合体的表面积和体积.10.用两个平行平面去截半径为R 的球面,两个截面圆的半径为r 1=24 cm ,r 2=15 cm ,两截面间的距离为d =27 cm ,求球的表面积.。
双峰一中高一数学必修二教案
科目:数学
课题§1.3.2球的表面积和体积课型新课
教学
目标
(1)了解球的表面积与体积公式(不要求记忆公式).(2)培养学生空间想象能力和思维能力.
(3)通过作轴截面,寻找旋转体类组合体中量与量之间的关系.(4)让学生更好地认识空间几何体的结构特征,培养学生学习的兴趣.
教学
过程
教学内容备
注
一、
自主
学习
1.柱体、锥体、台体的体积公式分别是什么?圆柱、圆锥、圆台的表面积公
式分别是什么?
2.球是一个旋转体,它也有表面积和体积,怎样求一个球的表面积和体积也
就成为我们学习的内容.
二、
质疑
提问
思考1:从球的结构特征分析,球的大小由哪个量所确定?
思考2:底面半径和高都为R的圆柱和圆锥的体积分别是什么?
思考3:如图,对一个半径为R的半球,其体积与上述圆柱和圆锥的体积有何
大小关系?
思考4:根据上述圆柱、圆锥的体积,你猜想半球的体积是什么?
思考5:由上述猜想可知,半径为R的球的
体积3
3
4
R
π
=
球
V,这是一个正确的结论,你能提出一些证明思路吗?
祖暅原理
幂势既同,则积不容异
夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相
等.
三、
问题
探究
思考1:半径为r的圆面积公式是什么?它是怎样得出来的?
思考2:把球面任意分割成n个“小球面片”,它们的面积之和等于什么?
思考3:以这些“小球面片”为底,球心为顶点的“小锥体”近似地看成棱锥,那么这些小棱锥的底面积和高近似地等于什么?它们的体积之和近似地等
于什么?
思考4:你能由此推导出半径为R的球的表面积公式吗?
思考5:经过球心的截面圆面积是什么?它与球的表面积有什么关系?
球的表面积等于球的大圆面积的4倍
例1:如图,圆柱的底面直径与高都等于球的直径,求证:
(1)球的体积等于圆柱体积的;
(2)球的表面积等于圆柱的侧面积.
例2:已知正方体的八个顶点都在球O的球面上,且正方体的表面积为a2,求球O的表面积和体积.
例3:有一种空心钢球,质量为142g(钢的密度为7.9g/cm3),测得其外径为5cm,求它的内径(精确到0.1cm).
四、
课堂
检测
将一个气球的半径扩大1倍,它的体积扩大到原来的几倍?
已知A、B、C为球面上三点,AC=BC=6,AB=4,球心O与△ABC的外心
M的距离等于球半径的一半,求这个球的表面积和体积.
五、小结评价
本节课主要学习了球的体积和球的表面积公式的推导,以及利用公式解决相关的球的问题。
小课堂:如何培养学生的自主学习能力?
自主学习是与传统的接受学习相对应的一种现代化学习方式。
在小学阶段,至关重要!!以学生作为学习的主体,学生自己做主,不受别人支配,不受外界干扰通过阅读、听讲、研究、观察、实践等手段使个体可以得到持续变化(知识与技能,方法与过程,情感与价值的改善和升华)的行为方式。
如何培养中学生的自主学习能力?
01学习内容的自主性
1、以一个成绩比自己好的同学作为目标,努力超过他。
2、有一个关于以后的人生设想。
3、每学期开学时,都根据自己的学习情况设立一个学期目标。
4、如果没有达到自己的目标,会分析原因,再加把劲。
5、学习目标设定之后,会自己思考或让别人帮助分析是否符合自己的情况。
6、会针对自己的弱项设定学习目标。
7、常常看一些有意义的课外书或自己找(课外题)习题做。
8、自习课上,不必老师要求,自己知道该学什么。
9、总是能很快选择好对自己有用的学习资料。
10、自己不感兴趣的学科也好好学。
11、课堂上很在意老师提出的重点、难点问题。
12、会花很多时间专攻自己的学习弱项。
02时间管理
13、常常为自己制定学习计划。
14、为准备考试,会制定一个详细的计划。
15、会给假期作业制定一个完成计划,而不会临近开学才做。
16、常自己寻找没有干扰的地方学习。
17、课堂上会把精力集中到老师讲的重点内容上面。
18、做作业时,先选重要的和难一点的来完成。
19、作业总是在自己规定的时间内完成。
20、作业少时,会多自学一些课本上的知识。
03 学习策略
21、预习时,先从头到尾大致浏览一遍抓住要点。
22、根据课后习题来预习,以求抓住重点。
23、预习时,发现前面知识没有掌握的,回过头去补上来。
24、常常归纳学习内容的要点并想办法记住。
25、阅读时,常做标注,并多问几个为什么。
26、读完一篇文章,会想一想它主要讲了哪几个问题。
27、常寻找同一道题的几种解法。
28、采用一些巧妙的记忆方法,帮助自己记住学习内容。
29、阅读时遇到不懂的问题,常常标记下来以便问老师。
30、常对学过的知识进行分类、比较。
31、常回忆当天学过的东西。
32、有时和同学一起“一问一答”式地复习。
33、原来的学习方法不管用时,马上改变方法。
34、注意学习别人的解题方法。
35、一门课的成绩下降了,考虑自己的学习方法是否合适。
36、留意别人好的学习方法,学来用用。
37、抓住一天学习的重点内容做题或思考。
38、不断试用学习方法,然后找出最适合自己的。
04学习过程的自主性
39、解题遇到困难时,仍能保持心平气和。
40、在学习时很少烦躁不安。
41、做作业时,恰好有自己喜欢的电视节目,仍会坚持做作业。
42、学习时有朋友约我外出,会想办法拒绝。
43、写作文或解题时,会时刻注意不跑题。
44、解决问题时,要检验每一步的合理性。
45、时时调整学习进度,以保证自己在既定时间内完成任务。
05学习结果的评价与强化
46、做完作业后,自己认真检查一遍。
47、常让同学提问自己学过的知识。
48、经常反省自己一段时间的学习进步与否。
49、常常对一天的学习内容进行回顾。
50、考试或作业出现错误时,仔细分析错误原因。
51、每当取得好成绩时,总要找一找进步的原因。
52、如果没有按时完成作业,心里就过意不去。
53、如果因贪玩而导致成绩下降,就心里责怪自己。
54、考试成绩不好的时候,鼓励自己加倍努力。
06学习环境的控制
55、总给自己树立一个学习的榜样。
56、常和别人一起讨论问题。
57、遇到问题自己先想一想,想不出来就问老师或同学。
58、自己到书店选择适合自己的参考书。
59、常到图书馆借阅与学习有关的书籍。
60、经常查阅书籍或上网查找有关课外学习的资料。