两圆的位置关系
- 格式:doc
- 大小:221.88 KB
- 文档页数:9
圆与圆的位置关系的判断方法一、圆与圆的位置关系的判断方法有两种,一种是~d r 法,另一种是判别式法.以下详解这两种方法. 1、~d r 法根据两圆心距与两圆径的大小关系来判断:①外离d R r ; ②外切d R r ; ③相交R r dR r ;④内切dR r ; ⑤内含dR r .其中,R 是大圆的半径,r 是小圆的半径,12||d C C .如果是等圆,那么两圆就没有内切和内含这种位置关系,而有个重合的情况.如果两圆是等圆,那么两圆的位置关系只有外离,外切,相交和重合四种. 2、判别式法已知22111:0C xy D x E y F 1⊙,半径为r 和222222:0C xy D x E y F ⊙,半径为R ,且R r 判断两圆的位置关系:两圆的方程相减,得 121212()()()0D D x E E y F F简记为 0AxBy C其中220A B (1)将(1)式代入其中一个圆的方程中,消去x 或y ,可得一个关于y 或x 一元二次方程,记为20ay by c 或20ax bx c,其中0a①0两圆有两个公共点(相交); ②0两圆有一个公共点(内切或外切); ③0两圆无公共点(内含或外离); 以上②③中,如何区分内切和外切,内含和外离呢?请看以下数学思想方法: 将问题转化为小圆的圆心与大圆的位置关系(亦即点圆位置关系)来判断! 如果圆心1C 在圆2C 的外面,即dR ,那么两圆外切或外离;如果圆心1C 在圆2C 的内部,即d R ,那么两圆内切或内含. 二、两圆方程作差的意义 两圆作差后得到的方程:121212()()()0D D x E E y F F简记为 0AxBy C其中220A B (1)其意义为①当两圆相交时,方程(1)是相交弦所在的直线方程; ②当两圆相切时,方程(1)是过切点的公切线的方程; ③当两圆没有公共点时,方程(1)没有特别的含义. 三、应用举例 例题1 已知22:2440C xy x y 1⊙和222:1090C x y x ⊙,判断两圆的位置关系,若两圆相交,则求出相交弦所在直线的方程.【解析】方法一:~d r 法 圆心1(1,2)C ,半径3r ,圆心2(5,0)C ,半径4R ,则1,7R r R r两圆圆心距为22(15)(20)210(1,7)d所以,两圆相交,将两圆的方程相减可得 124130x y 即为相交弦的方程.方法二:判别式法将两圆的方程相减,得 124130x y 即 1334y x(2) 将(2)式代入222:1090C xy x ⊙得21604723130x x 24724160313224640所以,两圆相交,相交弦所在直线的方程是124130x y .【变式训练】 已知22:650C xy y 1⊙和222:870C x y x ⊙,判断两圆的位置关系,若两圆相交,则求出相交弦所在直线的方程;若两圆相切,则求出过切点的公切线的方程.例题2 已知22:4210C xy x y 1⊙和222:142410C x y x y ⊙,判断两圆的位置关系,若两圆相交,则求出相交弦所在直线的方程;若两圆相切,则求出过切点的公切线的方程.【解析】方法一:~d r 法 圆心1(2,1)C ,半径2r ,圆心2(7,1)C ,半径3R ,则1,5R r R r两圆圆心距为 22(72)(11)5dR r所以,两圆外切,将两圆的方程相减可得 4x 即为所求公切线的方程.方法二:判别式法将两圆的方程相减,得 4x (3)将(3)式代入222:142410C xy x y ⊙得2210y y 2(2)4110所以,两圆相切.小圆圆心1(2,1)C ,坐标代入222:142410C xy x y ⊙中,有222214241211422141170x y x y所以,两圆是外切关系,所求公切线的方程4x .【变式训练】 1.已知22:1C xy 1⊙和222:6890C x y x y ⊙,判断两圆的位置关系,若两圆相交,则求出相交弦所在直线的方程;若两圆相切,则求出过切点的公切线的方程. 2.已知22:46120C x y x y 1⊙和222:680C x y x y⊙,判断两圆的位置关系.。
圆与圆位置关系知识点
在几何学中,圆与圆之间的位置关系涉及到它们的相对位置和相交情况。
以下
是一些关于圆与圆位置关系的重要知识点。
1. 内切:当一个圆完全位于另一个圆内部,并且两个圆的边界相切于一个点时,我们称这两个圆为内切圆。
内切圆的半径小于外切圆的半径。
2. 外切:当一个圆完全位于另一个圆外部,并且两个圆的边界相切于一个点时,我们称这两个圆为外切圆。
外切圆的半径大于内切圆的半径。
3. 相离:当两个圆没有任何交点且没有相切点时,我们称这两个圆为相离圆。
4. 相交:当两个圆有交点时,我们称这两个圆为相交圆。
a. 两个圆相交于两个不同的点时,我们称这种相交为普通相交。
b. 当两个圆的圆心重合且半径相等时,这两个圆相交于一条直径线,我们称
这种相交为重合相交。
5. 同心圆:当两个圆的圆心重合但半径不相等时,我们称这两个圆为同心圆。
这些是圆与圆位置关系的基本知识点,它们帮助我们理解圆的排列方式并解决
与圆相关的几何问题。
了解这些知识点可以为我们进一步学习和应用几何学提供基础。
两圆位置关系
直线及圆是几何学中最重要的基本图形。
关于直线和圆的位置关系及拓展,自古以来就有许多学术成果,也有许多新的发现。
其中,最基本的问题是两个圆的位置关系。
讨论这一问题,先把它分为五类: 1、一直线上有两个圆,即两个圆相切:其实,一条直线上只能
有两个圆,它们之间的关系叫做“相切”,它们的位置关系就是彼此
切面相同。
2、一直线上有两个圆,即两个圆内切:不仅仅是一条直线上只
能有两个圆,它们之间的关系叫做“内切”,它们的位置关系就是其
中一个圆在另一个圆的内部。
3、一直线上有两个圆,即两个圆外切:当两个圆都没有在一条
直线上时,它们之间的关系叫“外切”,它们的位置关系就是其中一
个圆在另一个圆的外部。
4、一直线上有两个圆,即两个圆相离:两个圆没有在一条直线上,也没有其他关系,它们之间的关系叫做“相离”,它们的位置关
系就是彼此离得越远越好。
5、一直线上有两个圆,即两个圆相交:当两个圆在一条直线上,又有一定的关系时,它们之间的关系叫做“相交”,它们的位置关系
就是共有一定的公共切面。
了解了两个圆的基本位置关系之后,我们可以通过四边形的变换,将两个圆有规律地放在一起,从而得到爱心形状,密码形状,多边形等等。
仅仅通过两个圆的位置关系,就可以得到各种多彩的几何图形,
也可以用来解决各种科学问题。
归纳起来,两个圆的位置关系有相切、内切、外切、相离和相交五种情况,每一种情况都有不同的拓展应用,从而形成了几何学中最丰富多彩的部分。
两个圆的位置关系对于更深入的几何学知识也是至关重要的,广泛而复杂的应用也是广大几何学家们追求的目标。
圆与圆的位置关系知识要点:1.圆与圆的位置关系设两圆半径为R和r,圆心距为d,则两圆的位置关系如下:2.分切线定义:和两个圆都相切的直线叫做两圆的公切线。
当两圆在公切线同旁时,这样的公切线叫做外公切线;当两圆在公切线两旁时,这样的公切线叫做内公切线。
公切线长:公切线上的两个切点间的距离叫做公切线的长。
定理:两圆的两条外分切线长相等,两圆的两条内公切线长也相等。
外公切线的长为;内公切线的长为。
3.相交两圆的性质定理:相交两圆的连心线垂直平分两圆的公共弦。
4.相切两圆的性质定理:相切两圆的连心线经过切点。
1.圆和圆的位置关系(设两圆半径分别为R和r,同心距为d)(1)两圆外离d>R+r;(2)两圆外切d=R+r;(3)两圆相交R-r<d<R+r;(4)两圆内切d=R-r;(5)两圆内含d<R-r。
(同心圆(6)是一种内含的特例)2.有关性质:(1)连心线:通过两圆圆心的直线。
如果两个圆相切,那么切点一定在连心线上。
(2)公共弦:相交两圆的连心线垂直平分两圆的公共弦。
(3)公切线:和两个圆都相切的直线,叫做两圆的公切线。
两个圆在公切线同旁两个圆在公切线两旁3.已知两圆半径分别为R、r,同心距为d,填定下表:名称公共点数圆心距半径关系公切线条数内外外离d=R+r相交d=R-r内含一星级题:1.如果两圆有且只有两条公切线,那么这两圆的位置关系是()A.外离 B.外切 C.相交 D.内含2.如果两圆半径分别为3㎝和5㎝,圆心距为2㎝,则两个圆的位置关系为()。
A.外离 B.外切 C.相交 D.内切3.已知⊙O1和⊙O2内切,它们的半径分别为2㎝和3㎝,则两圆圆心距O1O2= ㎝。
4.半径分别为3㎝和4㎝的两圆外切,那么这两圆的圆心距为㎝。
5.已知半径为R的两个等圆的圆心距为d,那么当两圆外切时,d与R满足的关系式是。
6.已知两圆半径分别为5㎝和2㎝,它们的圆心距为7㎝,则两圆位置关系为。
7.已知:两圆⊙O1与⊙O2的圆心距O1O2=5㎝,两圆的半径分别为㎝和㎝,则这两圆的位置关系是。
圆与圆的位置关系圆与圆之间的位置关系在几何学中占据着重要的地位。
研究圆与圆的位置关系,可以帮助我们解决许多实际问题,比如在建筑设计中确定柱子的位置,或者在交通规划中确定车辆行驶的路线等等。
下面我将介绍几种常见的圆与圆的位置关系。
1. 相离当两个圆没有任何部分重叠时,它们被称为相离。
这意味着两个圆之间没有共同的点。
在平面几何中,我们可以用一个圆心到另一个圆心的距离来判断两个圆是否相离。
如果这个距离大于两个圆的半径之和,那么它们是相离的。
2. 外切如果两个圆之间有且仅有一个公共切点,并且两个圆的切点直接与它们的圆心连线垂直,那么它们被称为外切。
在外切的情况下,两个圆的半径之和等于它们的切点到圆心的距离。
3. 相交当两个圆有部分重叠时,它们被称为相交。
在相交的情况下,两个圆有两个公共切点。
这样的位置关系在很多实际问题中都有应用,比如在某个半径固定的圆内部找到与之相切的另一个半径未知的圆。
在判断两个圆是否相交时,我们需要比较它们的圆心到圆心的距离与两个圆的半径之和。
4. 内切当两个圆的半径不同,但是其中一个圆完全位于另一个圆的内部,并且切点处的切线与两个圆的半径垂直时,它们被称为内切。
在内切的情况下,两个圆的半径之差等于它们的切点到圆心的距离。
5. 同心圆如果两个圆的圆心重合,那么它们被称为同心圆。
同心圆的半径可以不同,但是它们不会相交或相切。
在实际问题中,我们可以利用这些位置关系来解决一些几何难题。
通过观察两个圆的位置关系,我们可以计算圆心的坐标、切点的位置以及两个圆的半径之比等等。
这些计算有助于我们更好地理解圆与圆之间的关系,为我们解决其他几何问题提供了一种思路。
总结起来,圆与圆之间有五种常见的位置关系:相离、外切、相交、内切和同心圆。
通过对这些位置关系的研究,我们可以解决许多实际问题,同时也能够加深对几何学的理解。
无论是在建筑设计中确定位置,还是在日常生活中解决其他难题,几何学的知识都能够帮助我们找到最佳的解决方案。
圆与圆的位置关系的判断方法:
(1)利用圆心距和两圆半径比较大小(几何法)已知两圆
的圆心距为
d,则位置关系表示如下:
(2)利用两圆的交点进行判断(代数法)
设由两圆的方程组成的方程组为
由此方程组得:有两组不同的实数解则两圆相交;有两组相同的实数解则两圆相切;无实数解则两圆相离.
两圆公切线条数的确定:
两圆的公切线的条数是由两圆的位置关系确定的,设两圆的圆心距为d,两圆的半径分别为
则当时,两圆外离,此时有四条公切线;
当时,两圆外切,连心线过切点,此时有三条公切线,有外公切线两条,内公切线一条;
当时,两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线过切点,此时只有一条公切线;
当时,两圆内含,此时没有公切线。
2.5.2圆与圆的位置关系一、圆和圆的位置关系1.圆与圆的五种位置关系的定义 两圆外离:两个圆没有公共点,且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离. 两圆外切:两个圆有唯一公共点,并且除了这个公共点外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切.这个唯一的公共点叫做切点. 两圆相交:两个圆有两个公共点时,叫做这两圆相交. 两圆内切:两个圆有唯一公共点,并且除了这个公共点外,一个圆上的点都在另一个圆的内部时,叫做这两个圆内切.这个唯一的公共点叫做切点. 两圆内含:两个圆没有公共点,且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含.2.两圆的位置与两圆的半径、圆心距间的数量关系: 设⊙O1的半径为r1,⊙O2半径为r2,两圆心O1O2的距离为d,则: 两圆外离d>r1+r2 两圆外切d=r1+r2 两圆相交r1-r2<d<r1+r2(r1≥r2) 两圆内切d=r1-r2(r1>r2) 两圆内含d<r1-r2(r1>r2)要点: (1) 圆与圆的位置关系,既考虑它们公共点的个数,又注意到位置的不同,若以两圆的公共点个数分类,又可以分为:相离(含外离、内含)、相切(含内切、外切)、相交; (2) 内切、外切统称为相切,唯一的公共点叫作切点; (3) 具有内切或内含关系的两个圆的半径不可能相等,否则两圆重合.A .2种B .3种C .4种D .5种【答案】A 【解析】由图形可以看出,有两种位置关系,相交和内切.故选A.题型2:根据圆与圆的位置关系求半径4.已知1O e 与2O e 相切,若1O e 的半径为3cm ,127cm O O =,,则2O e 的半径为( )A .4cm 或12cmB .10cm 或6cmC .4cm 或10cmD .6cm 或12cm【答案】C【分析】根据圆与圆的位置关系,内切时()2121d r r r r =->,外切时12d r r =+,计算即可.【解析】解:两圆内切时,2O e 的半径7310=+=(cm),外切时,2O e 的半径734=-=(cm),∴2O e 的半径为4cm 或10cm .故选:C .【点睛】本题考查了圆与圆的位置关系,熟练掌握知识点是解题的关键.5.如果两圆有两个交点,且圆心距为13,那么此两圆的半径可能为( )A .1、10B .5、8C .25、40D .20、30【答案】D【分析】先由两圆有两个交点得到两圆相交,然后根据半径与圆心距之间的关系求解即可.【解析】∵两圆有两个交点,∴两圆相交,∵圆心距为13∴两圆的半径之差小于13,半径之和大于13.A .1101113+=<,故不符合题意;B .5813+=,故不符合题意;【点睛】此题重点考查圆与圆的位置关系、线段的垂直平分线的性质、勾股定理以及数形结合与分类讨论数学思想的运用等知识与方法,正确地作出所需要的辅助线是解题的关键.9.已知两圆的半径分别为2和5,如果这两圆内含,那么圆心距A.0<d<3B.0<d<7C.3<d<7A.45°B.30°【答案】B【分析】连接O1O2,AO2,O1B,可得【解析】解:连接O1O2,AO2,O∵O 1B = O 1A∴112112O AB O BA AO O Ð=Ð=Ð ∵⊙O 1和⊙O 2是等圆,∴AO 1=O 1O 2=AO 2,∴△AO O 是等边三角形,【点睛】本题考查了相交两圆的性质以及等边三角形的判定与性质,得出21AO O D 是等边三角形是解题的关键.题型5:分类讨论13.已知圆1O 、圆2O 的半径不相等,圆1O 的半径长为5,若圆2O 上的点A 满足15AO =,则圆1O 与圆2O 的位置关系是( )A .相交或相切B .相切或相离C .相交或内含D .相切或内含【答案】A【分析】根据圆与圆的位置关系,分类讨论.【解析】解:如图所示:当两圆外切时,切点A 能满足15AO =,当两圆相交时,交点A 能满足15AO =,当两圆内切时,切点A 能满足15AO =,当两圆相离时,圆2O 上的点A 不能满足15AO =,所以,两圆相交或相切,故选:A .【点睛】本题考查了由数量关系来判断两圆位置关系的方法.14.如图,长方形ABCD 中,4AB =,2AD =,圆B 半径为1,圆A 与圆B 外切,则点C 、D 与圆A 的位置关系是( )A .点C 在圆A 外,点D 在圆C .点C 在圆A 上,点D 在圆【答案】A 【分析】先根据两圆外切求出圆A 的半径,连接【解析】解:∵4AB =,圆B 半径为【点睛】本题考查了点与圆的位置关系、圆与圆的位置关系、勾股定理,熟练掌握点与圆的位置关系是关键,还利用了数形结合的思想,通过图形确定圆的位置.15.如图,1O e ,2O e 的圆心 1O ,128cm O O =.1O e 以 1cm /s 的速度沿直线A .外切B .相交C .内切D .内含【答案】D 【分析】先求出7s 后,两圆的圆心距为1cm ,结合两圆的半径差即可得到答案.【解析】解:∵1O e 的半径为 2cm ,2O e 的半径为 3cm ,128cm O O =.1O e 以 1cm /s 的速度沿直线 l 向右运动,7s 后停止运动.∴7s 后,两圆的圆心距为1cm ,此时两圆的半径差为321cm -=,∴此时两圆内切,∴在此过程中,1O e 与 2O e 没有出现的位置关系是:内含,故选D .【点睛】本题主要考查圆与圆的位置关系,掌握d R r =+,则两圆外切,d R r =-,则两圆外切,是关键.题型6:圆的位置关系综合16.如图,∠MON =30°,p 是∠MON 的角平分线,PQ 平行ON 交OM 于点Q ,以P 为圆心半径为4的圆ON 相切,如果以Q 为圆心半径为r 的圆与P Q 相交,那么r 的取值范围是( )A .4<r <12B .2<r <12C .4<r <8D .r >4【答案】A 【分析】过点Q 作QA ⊥AN 于A ,过点P 作PB ⊥ON 于B ,得到四边形ABPQ 是矩形,QA=PB=4,根据∠MON =30°求出OQ=2QA=8,根据平行线的性质及角平分线的性质得到PQ=8,再分内切与外切两种求出半径r ,即可得到两圆相交时的半径r 的取值范围.【解析】过点Q 作QA ⊥AN 于A ,过点P 作PB ⊥ON 于B ,∵PQ ∥ON ,∴PQ ⊥PB ,∴∠QAB=∠QPB=∠PBA=90°,∴四边形ABPQ 是矩形,∴QA=PB=4,∵∠MON =30°,∴OQ=2QA=8,∵OP 平分∠MON ,PQ ∥ON ,∴∠QOP=∠PON=∠QPO ,∴PQ=OQ=8,当以Q 为圆心半径为r 的圆与P Q 相外切时,r=8-4=4,当以Q 为圆心半径为r 的圆与P Q 相内切时,r=8+4=12,∴以Q 为圆心半径为r 的圆与P Q 相交,4<r<12,故选:A.【点睛】此题考查角平分线的性质,平行线的性质,矩形的判定及性质,两圆相切的性质.17.如图,在Rt ABC V 中,90C Ð=°,4AC =,7BC =,点D 在边BC 上,3CD =,A e 的半径长为3,D e 与A e 相交,且点B 在D e 外,那么D e 的半径长r 可能是( )A .1r =B .3r =C .=5r D .7r =【答案】B 【分析】连接AD 交A e 于E ,根据勾股定理求出AD 的长,从而求出DE DB 、的长,再根据相交两圆的位置关系得出r 的范围即可.【解析】解:连接AD 交A e 于E ,如图1,在Rt ACD V 中,由勾股定理得:则532DE AD AE =-=-=,73BC CD ==Q ,,734BD \=-=,\D e A eA .142r <<B .52r <<【答案】C【分析】过点O 作OE AD ^,勾股定理求得11,OE AB OF AD ==,根据题意,画出相应的图形,即可求解.当圆O 与CD 相切时,过点O 作OF CD ^于点F ,如图所示,则162OF AD ==则1325622r =+=∴O e 与直线AD 相交、与直线CD 相离,且D e 与O e 内切时,作AD⊥BC,以A为圆心,以AD为半径画圆一、单选题1.如果两圆的半径长分别为5和3,圆心距为8,那么这两个圆的位置关系是()A.内切B.外离C.相交D.外切【答案】D【分析】根据两圆半径的和与圆心距,即可确定两圆位置关系.【解析】解:∵两圆的半径长分别为5和3,圆心距为8,538+=,∴两圆外切,故选:D .【点睛】本题考查了圆与圆的位置关系,解题的关键是掌握:外离,则d R r >+;外切,则d R r =+;相交,则R r d R r -<<+;内切,则d R r =-;内含,则d R r <-.2.两圆的半径分别为2和3,圆心距为7,则这两个圆的位置关系为( )A .外离B .外切C .相交D .内切【答案】A【分析】本题直接告诉了两圆的半径及圆心距,根据它们数量关系与两圆位置关系的对应情况便可直接得出答案.【解析】解:∵两圆的半径分别为2和3,圆心距为7,又∵7>3+2,∴两圆的位置关系是:外离.故选A .【点睛】本题主要考查了圆与圆的位置关系,解题的关键在于能够准确掌握相关知识进行求解.3.已知直径分别为6和10的两圆没有公共点,那么这两个圆的圆心距的取值范围是( )A .d >2B .d >8C .d >8或0≤d <2D .2≤d <8【答案】C【分析】分两种情况讨论:当两圆外离时,两圆没有公共点时,当两圆内含时,两圆没有公共点时,从而可得答案.【解析】解:Q 直径分别为6和10的两圆没有公共点,\ 两圆的半径分别为3和5,当两圆外离时,两圆没有公共点时,8,d >当两圆内含时,两圆没有公共点时,02,d £<综上:所以两圆没有公共点时,8d >或0 2.d £<故选C【点睛】本题考查的是两圆的位置关系,熟练的运用两圆外离与内含的定义解题是解本题的关键.4.已知点()4,0A ,()0,3B ,如果⊙A 的半径为2,⊙B 的半径为7,那么⊙A 与⊙B 的位置关系( )【点睛】本题考查了两圆外切的条件,两圆相交的条件,等腰直角三角形的性质和对称性,熟练掌握两圆D .当⊙1O 与⊙2O 没有公共点时,1202O O <≤.【答案】D【分析】根据圆与圆位置关系的性质,对各个选项逐个分析,即可得到答案.【解析】当1224O O <<时,⊙1O 与⊙2O 相交,有两个公共点,故选项A 描述正确;当⊙1O 与⊙2O 有两个公共点时,1224O O <<,故选项B 描述正确;当1202O O <≤时,⊙1O 与⊙2O 没有公共点,故选项C 描述正确;当⊙1O 与⊙2O 没有公共点时,1202O O <≤或124O O >,故选项D 描述错误;故选:D .【点睛】本题考查了圆与圆位置关系的知识;解题的关键是熟练掌握圆与圆位置关系的性质,从而完成求解.9.如图,矩形ABCD 中,AB=4,BC=6,以A 、D 为圆心,半径分别为2和1画圆,E 、F 分别是⊙A 、⊙D 上的一动点,P 是BC 上的一动点,则PE+PF 的最小值是( )A .5B .6C .7D .8【答案】C 【分析】以BC 为轴作矩形ABCD 的对称图形A′BCD′以及对称圆D′,连接AD′交BC 于P ,交⊙A 、⊙D′于E 、F′,连接PD ,交⊙D 于F ,EF′就是PE+PF 最小值;根据勾股定理求得AD′的长,即可求得PE+PF 最小值.【解析】解:如图,以BC 为轴作矩形ABCD 的对称图形A′BCD′以及对称圆D′,连接AD’交BC 于P ,则EF′就是PE+PF最小值;∵矩形ABCD中,AB=4,BC=6,圆A的半径为2,圆D的半径为1,∴A′D′=BC=6,AA′=2AB=8,AE=2,D′F′=DF=1,∴AD′=10,EF′=10-2-1=7∴PE+PF=PF′+PE=EF′=7,故选C.【点睛】本题考查了轴对称-最短路线问题,勾股定理的应用等,作出对称图形是解答本题的关键.10.如图,在⊙O中,弦AD等于半径,B为优弧AD上的一动点,等腰△ABC的底边BC所在直线经过点D.若⊙O的半径等于1,则OC的长不可能为()A.2﹣B.﹣1C.2D.+1【答案】A【解析】试题分析:利用圆周角定理确定点C的运动轨迹,进而利用点与圆的位置关系求得OC长度的取值范围.解:如图,连接OA、OD,则△OAD为等边三角形,边长为半径1.作点O关于AD的对称点O′,连接O′A、O′D,则△O′AD也是等边三角形,边长为半径1,∴OO′=×2=.由题意可知,∠ACB=∠ABC=∠AOD=30°,∴∠ACB=∠AO′D,∴点C在半径为1的⊙O′上运动.由图可知,OC长度的取值范围是:﹣1≤OC≤+1.故选A.考点:相交两圆的性质;轴对称的性质.二、填空题当1O e 位于2O e 外部,且P ,1O ,2O 位于同一条直线上时,如图所示,min 121523r O O PO =-=-=.故答案为:37r ££.【点睛】本题主要考查圆与圆的位置关系,能采用数形结合的方法和分类讨论的思想分析问题是解题的关键.16.在矩形ABCD 中,5AB =,8AD =,点E 在边AD 上,3AE =图),点F 在边BC 上,以点F 为圆心、CF 为半径作F e .如果F e【答案】4116【分析】连接EF ,作FH 股定理得到()(235r r +=-【解析】解:连接EF ,作BQe过点A,且7AB=,由函数图象可知,当即不等式①的解集为同理可得:不等式②【点睛】此题主要考查了相交两圆的性质以及勾股定理,熟练利用正三角形以及正方形的性质是解题关键.20.已知A e ,B e ,C e 【答案】A e 的半径为2厘米,(1)设AP =x ,求两个圆的面积之和S ;(2)当AP 分别为13a 和12a 时,比较S 【答案】(1)22111422a ax x p p p -+11求:(1)弦AC的长度;(2)四边形ACO1O2的面积.【答案】(1)8(2)21(2)解:在2Rt AO E △中,由勾股定理得:∴1212426O O O E O E =+=+=∴1111831222O AC S AC O D ==´´=g △,S ∴四边形ACO 1O 2的面积为:S S +(1)如图1所示,已知,点()02A ,,点()32B ,.①在点()()()123011141P P P -,,,,,中,是线段AB 的“对称平衡点”的是___________②线段AB 上是否存在线段AB 的“对称平衡点”?若存在,请求出符合要求的 “对称平衡点若不存在,请说明理由;(2)如图2,以点()02A ,为圆心,1为半径作A e .坐标系内的点C 满足2AC =,再以点作C e ,若C e 上存在A e 的“对称平衡点”,直接写出C 点纵坐标C y 的取值范围.【答案】(1)①1P ,3P ;②不存在,理由见解析(2)02c y ££∴线段AB的“对称平衡点”的是1P,故答案为:1P,3P;②不存在设P为线段AB上任意一点,则它与线段££,PA PB33点P关于x轴的对称点为P¢,它到线段,是线段AB上的任意两点,即若M N∵()()0,2,0,0A O ∴02c y ££【点睛】本题考查了对称平衡点.两圆的位置关系,点与圆的位置关系等知识,解题的关键是理解题意,学会取特殊点特殊位置解决问题.。
两圆位置关系
圆与圆的位置关系:外离、相切(内切和外切)、相交、内含。
在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。
一、设两个圆的半径为r和r,圆心距为d。
则存有以下五种关系:
1、d>r r 两圆外离; 两圆的圆心距离之和大于两圆的半径之和。
2、d=r r 两圆外切; 两圆的圆心距离之和等同于两圆的半径之和。
3、d=r-r 两圆内切; 两圆的圆心距离之和等于两圆的半径之差。
4、d<r-r 两圆附带;两圆的圆心距离之和大于两圆的半径之差。
5、d<r r 两园相交;两圆的.圆心距离之和小于两圆的半径之和。
二、圆和圆的边线关系,还需用有没有公共点去推论:
1、无公共点,一圆在另一圆之外叫外离,在之内叫内含。
2、存有唯一公共点的,一圆在另一圆之外叫做外切,在之内叫做内乌。
3、有两个公共点的叫相交。
两圆圆心之间的距离叫做圆心距。
圆与圆的位置关系的判断方法李吉文一、圆与圆的位置关系的判断方法有两种,一种是~d r 法,另一种是判别式法D .以下详解这两种方法. 1、~d r 法根据两圆心距与两圆径的大小关系来判断: ①外离Ûd R r >+; ②外切Ûd R r =+;③相交ÛR r d R r -<<+; ④内切Ûd R r =-; ⑤内含Ûd R r <-.其中,R 是大圆的半径,r 是小圆的半径,如果是等圆,那么两圆就没有内含这种位置关系了.2、判别式法D已知22111:0C x y D x E y F ++++=1⊙,半径为r 和222222:0C x y D x E y F ++++=⊙,半径为R ,且R r >判断两圆的位置关系:两圆的方程相减,得 121212()()()0D D x E E y F F -+-+-=简记为 0A x B yC ++= 其中220A B +? (1) 将(1)式代入其中一个圆的方程中,消去x 或y ,可得一个关于y 或x 一元二次方程,记为20ay by c ++=或20ax bx c ++=,其中0a >①0D >?两圆有两个公共点(相交);②0D =?两圆有一个公共点(内切或外切); ③0D <?两圆无公共点(内含或外离);以上②③中,如何区分内切和外切,内含和外离呢?请看以下数学思想方法: 将问题转化为小圆的圆心与大圆的位置关系(亦即点圆位置关系)来判断!如果圆心1C 在圆2C 的外面,即d R >,那么两圆外切或外离;如果圆心1C 在圆2C 的内部,即d R <,那么两圆内切或内含.二、两圆方程作差的意义两圆作差后得到的方程:121212()()()0D D x E E y F F -+-+-=简记为 0A x B yC ++= 其中220A B +? (1) 其意义为①当两圆相交时,方程(1)是相交弦所在的直线方程; ②当两圆相切时,方程(1)是过切点的公切线的方程; ③当两圆没有公共点时,方程(1)没有特别的含义.三、应用举例例题1 已知22:2440C x y x y ++--=1⊙和222:1090C x y x +-+=⊙,判断两圆的位置关系,若两圆相交,则求出相交弦所在直线的方程.【解析】方法一:~d r 法圆心1(1,2)C -,半径3r =,圆心2(5,0)C ,半径4R =,则1,7R r R r -=+= 两圆圆心距为(1,7)d =所以,两圆相交,将两圆的方程相减可得 124130x y --= 即为相交弦的方程. 方法二:判别式法D将两圆的方程相减,得 124130x y --= 即 1334y x =-(2) 将(2)式代入222:1090C x y x +-+=⊙得 21604723130x x -+=24724160313224640D =-创=>所以,两圆相交,相交弦所在直线的方程是124130x y --=.【变式训练】 已知22:650C x y y +-+=1⊙和222:870C x y x +-+=⊙,判断两圆的位置关系,若两圆相交,则求出相交弦所在直线的方程;若两圆相切,则求出过切点的公切线的方程.例题2 已知22:4210C x y x y +--+=1⊙和222:142410C x y x y +--+=⊙,判断两圆的位置关系,若两圆相交,则求出相交弦所在直线的方程;若两圆相切,则求出过切点的公切线的方程. 【解析】方法一:~d r 法圆心1(2,1)C ,半径2r =,圆心2(7,1)C ,半径3R =,则1,5R r R r -=+= 两圆圆心距为5d R r ===+所以,两圆外切,将两圆的方程相减可得 4x = 即为所求公切线的方程. 方法二:判别式法D将两圆的方程相减,得 4x = (3) 将(3)式代入222:142410C x y x y +--+=⊙得2210y y -+= 2(2)4110D =--创=所以,两圆相切.小圆圆心1(2,1)C ,坐标代入222:142410C x y x y +--+=⊙中,有222214241211422141170x y x y +--+=+-??=>所以,两圆是外切关系,所求公切线的方程4x =.【变式训练】1.已知22:1C x y +=1⊙和222:6890C x y x y +--+=⊙,判断两圆的位置关系,若两圆相交,则求出相交弦所在直线的方程;若两圆相切,则求出过切点的公切线的方程. 2.已知22:46120C x y x y +--+=1⊙和222:680C x y x y +--=⊙,判断两圆的位置关系.。
圆圆的位置关系知识点总结一、圆的位置关系的定义1. 内切:两个圆相切于一个点,且一个圆完全包围在另一个圆内部,则它们为内切关系。
2. 外切:两个圆相切于一个点,且一个圆完全包围在另一个圆外部,则它们为外切关系。
3. 相交:两个圆有一个或多个公共点,则它们为相交关系。
4. 相离:两个圆没有公共点,则它们为相离关系。
二、圆的位置关系的判定方法1. 两个圆内切的判定:判断两个圆的圆心距离是否等于它们的半径之差。
2. 两个圆外切的判定:判断两个圆的圆心距离是否等于它们的半径之和。
3. 两个圆相交的判定:判断两个圆的圆心距离是否小于它们的半径之和,且大于它们的半径之差。
4. 两个圆相离的判定:判断两个圆的圆心距离是否大于它们的半径之和。
三、圆的位置关系的性质1. 内切关系的性质:(1)两个内切圆的圆心连线与两圆的切点互相垂直。
(2)两个内切圆的圆心连线恰好等于两圆的半径之和。
2. 外切关系的性质:(1)两个外切圆的圆心连线与两圆的切点互相垂直。
(2)两个外切圆的圆心连线恰好等于两圆的半径之差。
3. 相交关系的性质:(1)相交的圆可分为内公切圆、外公切圆和拥有两个交点的一般相交圆。
(2)内公切圆的切点在两圆的连心线上。
(3)外公切圆的切点在两圆的连心线上。
4. 相离关系的性质:(1)相离的圆没有公共点。
(2)相离的圆之间没有公共切线。
四、圆的位置关系的应用1. 圆的位置关系在几何证明中的应用:利用圆的位置关系可以证明一些重要的几何定理,例如,圆在等腰三角形中的应用、圆在三角形角平分线中的应用等。
2. 圆的位置关系在工程设计中的应用:在工程设计中,例如建筑设计中,常常需要根据圆的位置关系来确定建筑物的位置以及结构的设计。
3. 圆的位置关系在实际问题中的应用:在解决实际问题时,如两个车轮的行驶路线、两个球的碰撞路线等,都需要用到圆的位置关系来进行分析和计算。
综上所述,圆的位置关系是几何中的重要知识点,它对于理解和应用几何知识都起着重要的作用。
正多边形与圆知识点一、正多边形的概念各边相等,各角也相等的多边形是正多边形.要点诠释:判断一个多边形是否是正多边形,必须满足两个条件:(1)各边相等;(2)各角相等;缺一不可.如菱形的各边都相等,矩形的各角都相等,但它们都不是正多边形(正方形).知识点二、正多边形的重要元素1. 正多边形的外接圆和圆的内接正多边形正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.2. 正多边形的有关概念(1)一个正多边形的外接圆的圆心叫做这个正多边形的中心.(2)正多边形外接圆的半径叫做正多边形的半径.(3)正多边形每一边所对的圆心角叫做正多边形的中心角.(4)正多边形的中心到正多边形的一边的距离叫做正多边形的边心距.3. 正多边形的有关计算(1)正n边形每一个内角的度数是()2180nn-⋅︒;(2)正n边形每个中心角的度数是360n︒;(3)正n边形每个外角的度数是360n︒.知识点三、正多边形的性质1. 正多边形都只有一个外接圆,圆有无数个内接正多边形.2. 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形.3. 正多边形都是轴对称图形,对称轴的条数与它的边数相同,每条对称轴都通过正n边形的中心;当边数是偶数时,它也是中心对称图形,它的中心就是对称中心.知识点四、正多边形的画法1. 用量角器等分圆:由于在同圆中相等的圆心角所对的弧相等,因此作相等的圆心角可以等分圆.2. 用尺规等分圆:对于一些特殊的正n边形,可以用圆规和直尺作图.题型分类精讲题型一正多边形与圆【例1】(1)判断:①正多边形的中心角等于它的每一个外角.( )②若一个正多边形的每一个内角是150°,则这个正多边形是正十二边形.( ) ③各角相等的圆外切多边形是正多边形.( )(2)判断下列各种图形是否一定是正多边形(是打“√”,不是打“×”)。
(1)等边三角形( ) (2)矩形( ) (3)菱形( ) (4)正方形( ) (5)各角相等的圆内接多边形( )(6)各边相等的圆内接多边形( )(7)顺次连接正多边形各边中点所得的多边形( ) (8)既有内切圆又有外接圆,并且这两个圆是同心圆的多边形( )【例2】以下有四种说法:①顺次连结对角线相等的四边形各边中点,则所得的四边形是菱形;②等边三角形是轴对称图形,但不是中心对称图形;③顶点在圆周上的角是圆周角;④边数相同的正多边形都全等,其中正确的有( ) A .1个 B .2个 C .3个 D 4个题型二 正多边形的计算1、已知正多边形的边心距与边长的比是1:2,则此正多边形是( )A .正三角形 B.正方形 C .正六边形 D.正十二边形 2、正多边形的中心角与该正多边形一个内角的关系是( ) A. 互余 B. 互补 C. 互余或互补 D. 不能确定 3、若一个正多边形的每一个外角都等于36°,那么这个正多边形的中心角为( ) A .36°B 、 18°C .72°D .54° 4、正六边形螺帽的边长为a ,那么扳手的开口b 最小应是( )5、已知,正方形的边长为a,它的内切圆半径为r ,外接圆半径为R ,则r:R:a 等于( ) A.2:2:1 B. 2:2:1 C. 1:2:2 D.1:2:26、正六边形的两条平行边之间的距离为1,则它的边长为( ) A.63 B. 43 C. 332 D. 33 7、若正三角形、正方形、正六边形的周长相等,它们的面积分别是S 1,S 2,S 3,则下列关系成立的是( )A. S 1=S 2=S 3B. S 1>S 2>S 3C. S 1<S 2<S 3D. S 2>S 3>S 18、将一个边长为a 正方形硬纸片剪去四角,使它成为正n 边形,那么正n 边形的面积为_______ 9、正n 边形的中心角等于_____,正n 边形的每一个内角等于________。
正n 边形的每一个外角等于________。
正n 边形内角和_______。
10、正n 边形都是_______对称图形,正n 边形共有_________条对称轴;正n 边形满足什么条件时_____________,那又是中心对称图形,对称中心是__________。
11、正n 边形的半径和边心距把正n 边形分成_______个全等的直角三角形,每个直角三角形的边分别是指正n 边形的________________________________33D. a 23C. a 21.B a 3.A12、若正多边形的一个外角等于一个内角的,则它是正_________边形。
13、正六边形ABCDEF的边长是10cm,面积为S1,正六边形A′B′C′D′E′F′的边长是5cm,面积为S2,则S1:S2=______________。
14、一个外角等于它的一个内角的正多边形是正____边形.15、正八边形的中心角的度数为____,每一个内角度数为____,每一个外角度数为____.16、边长为6cm的正三角形的半径是____cm,边心距是____cm,面积是____cm.6cm2的正六边形的周长是____.17、面积等于318、正多边形的面积是240cm2,周长是60cm2,则边心距是____cm.19、正六边形的两对边之间的距离是12cm,则边长是____cm.20、若一个正多边形的一个外角大于它的一个内角,则它的边数是________21、正六边形的两条平行边间距离是1,则边长是________22、周长相等的正三角形、正四边形、正六边形的面积S3、S4、S6之间的大小关系是: ________23、正三角形的边心距、半径和高的比是________24、两个正六边形的边长分别是3和4,这两个正六边形的面积之比等于________25、圆内接正方形的半径与边长的比值是________26、圆内接正四边形的边长为4 cm,那么边心距是________27、已知圆内接正方形的边长为6,则该圆的内接正六边形边长为__________.28、圆内接正六边形的边长是8 cm那么该正六边形的半径为______;边心距为________.29、同一个圆的内接正方形和外切正方形的边长之比为_________________.30、已知正方形面积为8cm2,求此正方形边心距._________________31、如果一个正多边形的一个内角是135°,则这个多边形是__________边形32、一个正多边形绕它的中心旋转60°和原来的图形重合,那么这个正多边形是________33、有一边长为4的正n边形,它的一个内角是120°,则其外接圆的半径为_________34、正六边形一组对边间的距离为6,那么这个正六边形的半径是__________35、同圆中,内接正三角形,正方形,正五边形,正六边形中周长最大的是__________36、正九边形的半径为R ,则它的边长是_____37、一个正n 边形的中心角是它的一个内角的1/5,则n=_________.38、 两个正六边形的边长分别是3和4,则这两个正六边形的面积之比是________.40、 如图①:四边形ABCD 为正方形,M 、N 分别是BC 和CD 中点,AM 与BN 交于点P , (1)请你用几何变换的观点写出△BCN 是△ABM 经过什么几何变换得来的;(2)观察图①,图中是否存在一个四边形,这个四边形的面积与△APB 的面积相等?写出你的结论.(不必证明)(3)如图②:六边形ABCDEF 为正六边形,M 、N 分别是CD 和DE 的中点,AM 与BN 交于点P ,问:你在(2)中所得的结论是否成立?若成立,写出结论并证明,若不成立请说明理由.如果我们以正多边形对应顶点的交点作为圆心,过点到顶点的连线为半径,能够作一个圆,很明显,这个正多边形的各个顶点都在这个圆上,如图,•正六边形ABCDEF ,连结AD 、CF 交于一点,以O 为圆心,OA 为半径作圆,那么肯定B 、C 、•D 、E 、F 都在这个圆上.因此,正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.我们以圆内接正六边形为例证明.如图所示的圆,把⊙O •分成相等的6•段弧,依次连接各分点得到六边ABCDEF ,下面证明,它是正六边形.∵AB=BC=CD=DE=EF ∴AB=BC=CD=DE=EF又∴∠A=12BCF=12(BC+CD+DE+EF )=2BC ∠B=12CDA=12(CD+DE+EF+FA )=2CD∴∠A=∠B同理可证:∠B=∠C=∠D=∠E=∠F=∠A 又六边形ABCDEF 的顶点都在⊙O 上∴根据正多边形的定义,各边相等、各角相等、六边形ABCDEF 是⊙O 的内接正六边形,⊙O 是正六边形ABCDEF 的外接圆.为了今后学习和应用的方便,•我们把一个正多边形的外接圆的圆心叫做这个多边形的中心.外接圆的半径叫做正多边形的半径.正多边形每一边所对的圆心角叫做正多边形的中心角. 中心到正多边形的一边的距离叫做正多边形的边心距.例1.已知正六边形ABCDEF ,如图所示,其外接圆的半径是a ,•求正六边形的周长和面积.分析:要求正六边形的周长,只要求AB 的长,已知条件是外接圆半径,因此自然而然,边长应与半径挂上钩,很自然应连接OA ,过O 点作OM ⊥AB 垂于M ,在Rt △AOM •中便可求得AM ,又应用垂径定理可求得AB 的长.正六边形的面积是由六块正三角形面积组成的.解:如图所示,由于ABCDEF 是正六边形,所以它的中心角等于3606︒=60°,•△OBC 是等边三角形,从而正六边形的边长等于它的半径. 因此,所求的正六边形的周长为6a 在Rt △OAM 中,OA=a ,AM=12AB=12a 利用勾股定理,可得边心距 OM=221()2a a -=123a∴所求正六边形的面积=6×12×AB ×OM=6×12×a ×32a=323a 2现在我们利用正多边形的概念和性质来画正多边形.例2.利用你手中的工具画一个边长为3cm 的正五边形.分析:要画正五边形,首先要画一个圆,然后对圆五等分,因此,•应该先求边长为3的正五边形的半径.解:正五边形的中心角∠AOB=3605︒=72°, 如图,∠AOC=30°,OA=12AB ÷sin36°=1.5÷sin36°≈2.55(cm )画法(1)以O 为圆心,OA=2.55cm 为半径画圆;(2)在⊙O 上顺次截取边长为3cm 的AB 、BC 、CD 、DE 、EA . (3)分别连结AB 、BC 、CD 、DE 、EA .则正五边形ABCDE 就是所要画的正五边形,如图所示. 三、巩固练习教材P115 练习1、2、3 P116 探究题、练习. 四、应用拓展例3.在直径为AB 的半圆内,划出一块三角形区域,如图所示,使三角形的一边为AB ,顶点C 在半圆圆周上,其它两边分别为6和8,现要建造一个内接于△ABC •的矩形水池DEFN ,其中D 、E 在AB 上,如图24-94的设计方案是使AC=8,BC=6. (1)求△ABC 的边AB 上的高h .FDECBAOM(2)设DN=x ,且h DN NFh AB-=,当x 取何值时,水池DEFN 的面积最大? (3)实际施工时,发现在AB 上距B 点1.85的M 处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果在,为了保护大树,请设计出另外的方案,使内接于满足条件的三角形中欲建的最大矩形水池能避开大树.hFDEC BANG分析:要求矩形的面积最大,先要列出面积表达式,再考虑最值的求法,初中阶段,尤其现学的知识,应用配方法求最值.(3)的设计要有新意,•应用圆的对称性就能圆满解决此题. 解:(1)由AB ·CG=AC ·BC 得h=8610AC BC AB ⨯= =4.8 (2)∵h=h DN NFh AB -=且DN=x ∴NF=10(4.8)4.8x -则S 四边形DEFN =x ·104.8(4.8-x )=-2512x 2+10x=-2512(x 2-12025x ) =-2512 [(x -6025)2-3600625] =-25x (x -2.4)2+12 ∵-25x (x-2.4)2≤0 ∴-25x(x -2.4)2+12≤12 且当x=2.4时,取等号 ∴当x=2.4时,S DEFN 最大.(3)当S DEFN 最大时,x=2.4,此时,F 为BC 中点,在Rt △FEB 中,EF=2.4,BF=3. ∴BE=22223 2.4DE EF -=-=1.8∵BM=1.85,∴BM>EB ,即大树必位于欲修建的水池边上,应重新设计方案. ∵当x=2.4时,DE=5∴AD=3.2,由圆的对称性知满足条件的另一设计方案,如图所示:.cFD EC B AG此时,•AC=6,BC=8,AD=1.8,BE=3.2,这样设计既满足条件,又避开大树.五、归纳小结(学生小结,老师点评) 本节课应掌握:1.正多边和圆的有关概念:正多边形的中心,正多边形的半径,•正多边形的中心角,正多边的边心距.2.正多边形的半径、正多边形的中心角、边长、•正多边的边心距之间的等量关系. 3.画正多边形的方法.4.运用以上的知识解决实际问题. 六、布置作业1.教材P117 复习巩固1 综合运用5、7 P118 8.2.选用课时作业设计.课时作业设计一、选择题1.如图1所示,正六边形ABCDEF 内接于⊙O ,则∠ADB 的度数是( ).A .60°B .45°C .30°D .22.5°(1) (2) (3)2.圆内接正五边形ABCDE 中,对角线AC 和BD 相交于点P ,则∠APB 的度数是( ). A .36° B .60° C .72° D .108° 3.若半径为5cm 的一段弧长等于半径为2cm 的圆的周长,•则这段弧所对的圆心角为( ) A .18° B .36° C .72° D .144° 二、填空题1.已知正六边形边长为a ,则它的内切圆面积为_______.2.在△ABC 中,∠ACB=90°,∠B=15°,以C 为圆心,CA 长为半径的圆交AB 于D ,如图2所示,若AC=6,则AD 的长为________.3.四边形ABCD 为⊙O 的内接梯形,如图3所示,AB ∥CD ,且CD 为直径,•如果⊙O的半径等于r ,∠C=60°,那图中△OAB 的边长AB 是______;△ODA 的周长是_______;∠BOC 的度数是________.三、综合提高题1.等边△ABC 的边长为a ,求其内切圆的内接正方形DEFG 的面积.2.如图所示,•已知⊙O•的周长等于6πcm,•求以它的半径为边长的正六边形ABCDEF 的面积.3.如图所示,正五边形ABCDE的对角线AC、BE相交于M.(1)求证:四边形CDEM是菱形;(2)设MF2=BE·BM,若AB=4,求BE的长.答案:一、1.C 2.C 3.D二、1.34πa22.π3.r 3r 60°三、1.设BC与⊙O切于M,连结OM、OB,则OM⊥BC于M,OM=36a,连OE,作OE⊥EF于N,则OE=OM=36a,∠EOM=45°,OE=36a,∵EN=612a,EF=2EN=66a,∴S正方形=16a2.2.设正六边形边长为a,则圆O半径为a,由题意得:2πa=6π,∴a=3.如右图,设AB为正六边形的一边,O为它的中心,过O作OD⊥AB,垂足为D,.cD B A O则OD=r 6,•则∠DOA=1806 =30°,AD=12AB=32, 在Rt △ABC 中,OD=r 6=332cm , ∴S=6·12ar 6=12×3×332×6=2723cm 2.3.略。