湖北省宜昌市兴山县20142015学年上学期期末调研考试九年级数学试卷及答案
- 格式:doc
- 大小:3.32 MB
- 文档页数:9
2014-2015学年人教版九年级上学期期末数学试卷考试时间100分钟,试卷满分100分一. 选择题(每小题3分,共30分)1.“ a 是实数,0≥a ”这一事件是( )A .必然事件B .不确定事件C .不可能事件D .随机事件2. 把△ABC 三边的长度都扩大为原来的3倍,则锐角A 的正弦值( )A .不变B .缩小为原来的13C .扩大为原来的3倍D .不能确定 3.已知反比例函数xy 1=,下列结论中不正确的是( ) A .图象经过点(-1,-1) B .图象在第一、三象限C .当x >1 时, 0 <y <1D .当 x <0 时, y 随着 x 的增大而增大 4.如图,在方格纸中,△ABC 经过变换得到△DEF ,正确的变换是( ) A .把△ABC 绕点C 逆时针方向旋转90°,再向下平移2格 B .把△ABC 绕点C 顺时针方向旋转90°,再向下平移5格 C .把△ABC 向下平移4格,再绕点C 逆时针方向旋转180° D .把△ABC 向下平移5格,再绕点C 顺时针方向旋转180° 5.如果关于x 的一元二次方程22(21)10k x k x -++=有两个 不相等的实数根,那么k 的取值范围是() A .14k >-B .14k >-且0k ≠ C .14k <- D .14k ≥-且0k ≠ 6.如图,点A 、B 、O 是正方形网格上的三个格点,⊙O 的半径为OA ,点P 是优弧tan 的值是( )A .1BCD 7.如图,在大小为4×4的正方形网格中与①中三角形相似的是( )A .②B . ③C . ④和③D . ②和④8.已知抛物线k x a y +-=2)2((是常数,>k a a ,0),A (﹣3,y 1)、B (3,y 2)、C (4,y 3)是抛物线上三点,则y 1,y 2,y 3由小到大依序排列为( ) A .y 1<y 2<y 3 B .y 2<y 1<y 3 C .y 2<y 3<y 1 D .y 3<y 2<y 1 9.如图,△AOB 是等边三角形,B (2,0),将△AOB 绕O 点逆时针方向旋转90°到△A′OB′位置,则点A′ 的坐标是( )(第4题)(第6题)A .(﹣1,)B .(﹣,1)C .(,﹣1)D .(1,﹣)10. 已知二次函数c bx ax y ++=2的图象如图所示,那么 一次函数c bx y +=和反比例函数xay =在同一平面直角坐标系中的图象大致是( )A .B .C .D .二.填空题(每小题3分,共24分.) 11. 已知点M )3,21(m -关于原点对称的点在第一象限,那么的取值范围是________. 12. 如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为 13.一种药品经过两次降价,药价从原来每盒 60 元降至现在的 48.6 元,则平均每次降价的百分率是 .14. 如图,在平面直角坐标系中,点O为坐标原点,点P 在第一象限,☉P 与x 轴交于O 、A 两点,点A 的坐标为(6,0),☉P的半径为13,则点P 的坐标为 .15.如图,在△ABC 中,AB=24,AC=18,D 是AC 上一点,AD=12,AB 上取一点E ,A 、D 、E 三点为顶点组成的三角形与△ABC 相似,AE 的长是_____ _. 16.如图,在直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行.点P (a 3,a )是反比例函数xk y =(k >0)的图象上与正方形的一个交点,若图中阴影部分的 面积等于9,则k 的值为 .(第16题) 17. 轮船从B 处以每小时50海里的速度沿南偏东30°方向匀速航行,在B 处观测灯塔A 位于南偏东75°方向上,轮船航行半小时到达 C 处,在C 处观测灯塔A 位于北偏东60°方向上,则C 处与灯塔 A 的距离是 海里.18. 二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0),下列说法:①若b 2﹣4ac=0,则抛物线的顶点一定在x 轴上; ②若a-b+c=0,则抛物线必过点(-1,0);③若a <0,且一元二次方程ax 2+bx+c=0有两根x 1,x 2(x 1<x 2),则ax 2+bx+c <0的解集为x 1<x <x 2;④若33ca b +=,则方程ax 2+bx+c=0有一根为-3. (第12题) (第14题) (第15题)其中正确的是 (把正确的序号都填上)三.解答题(本大题共有5题,满分46分) 19.(每小题6分,共12分)(1)2tan 603sin 30cos 45+--o o o . (2)解方程:2410x x ++=20.(本题8分) 如图,一次函数y 1=kx+b 的图象与反比例函数2my x=(x >0)的图象交于A (1,6),B (a ,2)两点.(1)求一次函数与反比例函数的解析式; (2)直接写出y 1≤y 2时x 的取值范围.21.(本题8分) 小华和小丽两人玩数字游戏,先由小丽心中任意想一个数记为 x ,再由小华猜小丽刚才想的数字,把小华猜的数字记为 y ,且他们想和猜的数字只能在 1、2、3、4这四个数字中.(1)请用树状图或列表法表示出他们想和猜的所有情况;(2)如果他们想和猜的数字相同,则称他们“心灵相通” .求他们“心灵相通”的概率; (3)如果他们想和猜的数字满足x y 1-≤,则称他们“心有灵犀” .求他们“心有灵犀”的概率.22. (本题8分) 如图,直线PM 切⊙O 于点M,直线PO 交⊙O 于A 、B 两点,弦AC ∥PM ,连接OM 、BC. 求证:(1)△ABC ∽△POM ;(2)2OA 2=OP·BC.23. (本题10分)某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润甲y (万元)与进货量x(吨)近似满足函数关系x y 3.0=甲;乙种水果的销售利润乙y (万元)与进货量x (吨)近似满足函数关系bx ax y +=2乙(其中0≠a ,a ,b 为常数),且进货量x 为1吨时,销售利润乙y 为1.4万元;进货量x 为2吨时,销售利润乙y 为2.6万元.(1)求乙y (万元)与x (吨)之间的函数关系式.(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为t 吨,请你写出这两种水果所获得的销售利润之和W (万元)与t (吨)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?2014—2015学年第一学期九年级数学期末质量检测评分标准11.m0< 12.1413.010 14.(3,2) 15.916或16.3 17.25 18.①、②、④三.解答题(本大题共有5题,满分46分)19.(1)21-2⎛⨯⎝…………………………………3分=313+-22…………………………………5分=4………………………………………6分(2)(2)解:2x4x1+=-,2x4x 414++=-+2(x2)3+=…………………………………3分x+2=…………………………………5分12x2,x2==.………………………………………6分20. (1)∵点A(1,6),B(a,2)在y2=的图象上,∴=6,m=6.∴反比例函数的解析式为:y2=,…………………………………3分∴=2,a==3,∵点A(1,6),B(3,2)在函数y1=kx+b的图象上,∴,解这个方程组,得∴一次函数的解析式为y1=-2x+8,反比例函数的解析式为y2=;…………………6分(2)由函数图象可知,当x在A、B之间时一次函数的图象在反比例函数图象的上方,∵点A(1,6),B(3,2),∴1≤x≤3.…………………………………8分(2)根据(1)得所以可能的情况有16中,想和猜的数相同的情况有4种,∴P(心灵相通)=41164=…………………6分(3)根据(1)得所以可能的情况有16中,数字满足|x-y|≤1的情况有10种,∴P(心有灵犀)105168==…………………8分22.(1)证明:∵直线PM切⊙O于点M,∴∠PMO=90°,∵弦AB是直径,∴∠ACB=90°,∴∠ACB=∠PMO,∵AC∥PM,∴∠CAB=∠P,∴△ABC∽△POM;…………………4分(2)∵△ABC∽△POM,∴,又AB=2OA,OA=OM,∴,∴2OA2=OP·BC.…………………8分23.解:(1)由题意,得:解得∴y乙=-0.1x2+1.5x.…………………4分(2)W=y甲+y乙=0.3(10-t)+(-0.1t2+1.5t)∴W=-0.1t2+1.2t+3.W=-0.1(t-6)2+6.6.∴t=6时,W有最大值为6.6.∴10-6=4(吨).答:甲、乙两种水果的进货量分别为4吨和6吨时,获得的销售利润之和最大,最大利润是6.6万元.…………………10分2014-2015学年人教版九年级上学期期末数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.已知=,则x的值是()A.B.C.D.2.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定3.如图,在Rt△ABC中,∠C=90°,AB=5,BC=4,则sinB的值是()A.B.C.D.4.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0 B.m>0 C.m<﹣1 D.m>﹣15.如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A.40° B.50° C.60° D.80°6.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6的点数,掷这个骰子一次,则掷得面朝上的点数为奇数的概率是()A.B.C.D.7.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣38.如图,等边△ABC边长为2,动点P从点A出发,以每秒1个单位长度的速度,沿A→B→C→A的方向运动,到达点A时停止.设运动时间为x秒,y=PC,则y关于x函数的图象大致为()A.B.C.D.二、填空题:(本题共16分,每小题4分)9.扇形的半径为9,且圆心角为120°,则它的弧长为.10.三角尺在灯泡O的照射下在墙上形成影子(如图所示).现测得OA=20cm,OA′=50cm,这个三角尺的周长与它在墙上形成的影子的周长的比是.11.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=,在下列结论中,唯一正确的是.(请将正确的序号填在横线上)①a<0;②c<﹣1;③2a+3b=0;④b2﹣4ac<0;⑤当x=时,y的最小值为.12.如图,在平面直角坐标系xOy中,正方形ABCD顶点A(﹣1,﹣1)、B(﹣3,﹣1).我们规定“把正方形ABCD先沿x轴翻折,再向右平移2个单位”为一次变换.(1)如果正方形ABCD经过1次这样的变换得到正方形A1B1C1D1,那么B1的坐标是.(2)如果正方形ABCD经过2014次这样的变换得到正方形A2014B2014C2014D2014,那么B2014的坐标是.三、解答题:(本题共30分,每题5分)13.计算:tan30°﹣cos60°×tan45°+sin30°.14.已知抛物线y=x2﹣4x+3.(1)用配方法将y=x2﹣4x+3化成y=a(x﹣h)2+k的形式;(2)求出该抛物线的对称轴和顶点坐标;(3)直接写出当x满足什么条件时,函数y<0.15.如图,在△ABC中,D是AB上一点,且∠ABC=∠ACD.(1)求证:△ACD∽△ABC;(2)若AD=3,AB=7,求AC的长.16.如图,热气球的探测器显示,从热气球看一栋高楼的顶部B的仰角为45°,看这栋高楼底部C的俯角为60°,热气球与高楼的水平距离AD为20m,求这栋楼的高度.(结果保留根号)17.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.18.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为A(2,3).(1)分别求出反比例函数和一次函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.四、解答题:(本题共20分,每题5分)19.如图,在锐角△ABC中,AB=AC,BC=10,sinA=,(1)求tanB的值;(2)求AB的长.20.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c经过点(﹣3,0)和(1,0).(1)求抛物线的表达式;(2)在给定的坐标系中,画出此抛物线;(3)设抛物线顶点关于y轴的对称点为A,记抛物线在第二象限之间的部分为图象G.点B是抛物线对称轴上一动点,如果直线AB与图象G有公共点,请结合函数的图象,直接写出点B纵坐标t的取值范围.21.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,且BF是⊙O的切线,BF交AC的延长线于F.(1)求证:∠CBF=∠CAB.(2)若AB=5,sin∠CBF=,求BC和BF的长.22.阅读下面材料:小明遇到这样一个问题:如图1,在等边三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB度数.小明发现,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决(如图2).请回答:图1中∠APB的度数等于,图2中∠PP′C的度数等于.参考小明思考问题的方法,解决问题:如图3,在平面直角坐标系xOy中,点A坐标为(﹣,1),连接AO.如果点B是x轴上的一动点,以AB为边作等边三角形ABC.当C(x,y)在第一象限内时,求y与x之间的函数表达式.五、解答题:(本题共22分,第23题7分,第24题7分,第25题8分)23.已知关于x的方程mx2+(3m+1)x+3=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值;(3)在(2)的条件下,将关于x的二次函数y=mx2+(3m+1)x+3的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请结合这个新的图象回答:当直线y=x+b与此图象有两个公共点时,b的取值范围.24.矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.(1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长.(2)如图2,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP 于点E.试问动点M、N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.25.我们规定:函数y=(a、b、k是常数,k≠ab)叫奇特函数.当a=b=0时,奇特函数y=就是反比例函数y=(k是常数,k≠0).(1)如果某一矩形两边长分别是2和3,当它们分别增加x和y后,得到新矩形的面积为8.求y与x之间的函数表达式,并判断它是否为奇特函数;(2)如图,在平面直角坐标系xOy中,矩形OABC的顶点A、C坐标分别为(6,0)、(0,3),点D是OA中点,连接OB、CD交于E,若奇特函数y=的图象经过点B、E,求该奇特函数的表达式;(3)把反比例函数y=的图象向右平移4个单位,再向上平移个单位就可得到(2)中得到的奇特函数的图象;(4)在(2)的条件下,过线段BE中点M的一条直线l与这个奇特函数图象交于P,Q两点(P在Q右侧),如果以B、E、P、Q为顶点组成的四边形面积为16,请直接写出点P的坐标.2014-2015学年人教版九年级上学期期末数学试卷答案解析参考答案与试题解析一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.已知=,则x的值是()A.B.C.D.考点:比例的性质.专题:计算题.分析:根据内项之积等于外项之积得到2x=15,然后解一次方程即可.解答:解:∵=,∴2x=15,∴x=.故选B.点评:本题是基础题,考查了比例的基本性质,比较简单.2.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定考点:点与圆的位置关系.分析:点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).解答:解:∵OP=3<4,故点P与⊙O的位置关系是点在圆内.故选A.点评:本题考查了点与圆的位置关系,注意掌握点和圆的位置关系与数量之间的等价关系是解决问题的关键.3.如图,在Rt△ABC中,∠C=90°,AB=5,BC=4,则sinB的值是()A.B.C.D.考点:锐角三角函数的定义.分析:首先根据勾股定理求得AC的长,然后利用正弦函数的定义即可求解.解答:解:∵在Rt△ABC中,∠C=90°,AB=5,BC=4,∴AC===3,∴sinB==.故选D.点评:本题考查了三角函数的定义,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形的边长的比.4.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0 B.m>0 C.m<﹣1 D.m>﹣1考点:反比例函数的性质.分析:如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()解答:解:∵反比例函数y=的图象在所在象限内,y的值随x值的增大而减小,∴m+1>0,解得m>﹣1.故选D.点评:本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.5.如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A.40° B.50° C.60° D.80°考点:圆周角定理.分析:已知⊙O是△ABC的外接圆,∠AOB=100°,根据圆周角定理可求得∠ACB的度数.解答:解:∵⊙O是△ABC的外接圆,∠AOB=100°,∴∠ACB=∠AOB=×100°=50°.故选B.点评:本题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角是所对的圆心角的一半.6.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6的点数,掷这个骰子一次,则掷得面朝上的点数为奇数的概率是()A.B.C.D.考点:概率公式.分析:先统计出奇数点的个数,再根据概率公式解答.解答:解:∵正方体骰子共六个面,点数为1,2,3,4,5,6,奇数为1,3,5,∴点数为奇数的概率为:=.故选:C.点评:此题主要考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣3考点:二次函数图象与几何变换.专题:几何变换.分析:先确定抛物线y=5x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后所得对应点的坐标,然后根据顶点式写出平移后的抛物线解析式.解答:解:抛物线y=5x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向上平移3个单位后得到对应点的坐标为(﹣2,3),所以新抛物线的表达式是y=5(x+2)2+3.故选A.点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.8.如图,等边△ABC边长为2,动点P从点A出发,以每秒1个单位长度的速度,沿A→B→C→A的方向运动,到达点A时停止.设运动时间为x秒,y=PC,则y关于x函数的图象大致为()A .B .C .D .考点: 动点问题的函数图象.分析: 分段讨论,当0≤x ≤2时,作PQ ⊥AC ,根据锐角三角函数和勾股定理求出AQ 、PQ 、CQ 、PC 2;当2<x <4时,PC 在BC 上,是一次函数;当4<x ≤6时,PC 在AC 上,是一次函数,根据函数关系式分析即可得出结论.解答: 解:当0≤x ≤2时,作PQ ⊥AC ,∵AP=x ,∠A=60°∴AQ=,PQ=, ∴CQ=2﹣,∴PC==, ∴PC 2=x 2﹣2x+4=(x ﹣1)2+3;当2<x <4时,PC=4﹣x ,当4<x ≤6时,PC=2﹣(6﹣x )=x ﹣4,故选:C .点评: 本题主要考查了动点问题的函数图形,分段讨论,列出每段函数的解析式是解决问题的关键.二、填空题:(本题共16分,每小题4分)9.扇形的半径为9,且圆心角为120°,则它的弧长为 6π .考点: 弧长的计算.分析: 直接利用弧长的计算公式计算即可.解答: 解:弧长是:=6π.故答案是:6π.点评:本题考查了弧长的计算公式,正确记忆公式是关键.10.三角尺在灯泡O的照射下在墙上形成影子(如图所示).现测得OA=20cm,OA′=50cm,这个三角尺的周长与它在墙上形成的影子的周长的比是2:5.考点:相似三角形的应用.分析:由题意知三角尺与其影子相似,它们周长的比就等于相似比.解答:解:∵,∴三角尺的周长与它在墙上形成的影子的周长的比是.点评:本题考查相似三角形的性质,相似三角形的周长的比等于相似比.11.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=,在下列结论中,唯一正确的是③⑤.(请将正确的序号填在横线上)①a<0;②c<﹣1;③2a+3b=0;④b2﹣4ac<0;⑤当x=时,y的最小值为.考点:二次函数图象与系数的关系.分析:根据二次函数的图象开口方向即可判断A;由二次函数的图象与y轴的交点位置即可判断B;把x=﹣1代入二次函数的解析式即可判断C;根据二次函数的对称轴即可求出D.解答:解:①∵二次函数的图象开口向上,∴a>0,故本选项错误;②∵二次函数的图象与y轴的交点在点(0,﹣1)的上方,∴c>﹣1,故本选项错误;③、∵二次函数的图象的对称轴是直线x=,∴﹣=,﹣3b=2a,2a+3b=0,故本选项正确;④∵二次函数的图象与x轴有两个交点,∴b2﹣4ac>0,故本选项错误;⑤∵二次函数的图象的对称轴是直线x=,∴﹣=,∴﹣3b=2a,b=﹣a,∴y最小值=a+b+c=a+×(﹣a)+c=;即y的最小值为,故本选项正确;故答案为:③⑤.点评:本题考查了二次函数的图象和系数的关系,题目具有一定的代表性,是一道比较好的题目,注意用了数形结合思想,二次函数的图象开口方向决定a的符号,二次函数的图形与y轴的交点位置决定c的符号,根据二次函数的图象的对称轴是直线x=得出﹣=,把x=代入y=ax2+bx+c(a≠0)得出y=a+b+c等等.12.如图,在平面直角坐标系xOy中,正方形ABCD顶点A(﹣1,﹣1)、B(﹣3,﹣1).我们规定“把正方形ABCD先沿x轴翻折,再向右平移2个单位”为一次变换.(1)如果正方形ABCD经过1次这样的变换得到正方形A1B1C1D1,那么B1的坐标是(﹣1,1).(2)如果正方形ABCD经过2014次这样的变换得到正方形A2014B2014C2014D2014,那么B2014的坐标是(4025,﹣1).考点:规律型:点的坐标.分析:(1)把正方形ABCD先沿x轴翻折,则点B关于x轴对称,得到B点的坐标为:(﹣3,1),再向右平移2个单位”后点B的坐标为:(﹣3+2,1),即B1(﹣1,1).(2)首先由正方形ABCD,点A、B的坐标分别是(﹣1,﹣1)、(﹣3,﹣1),然后根据题意求得第1次、2次、3次变换后的点B的对应点的坐标,即可得规律:第n次变换后的点B的对应点的为:当n为奇数时为(2n﹣3,1),当n为偶数时为(2n﹣3,﹣1),继而求得把正方形ABCD经过连续2014次这样的变换得到正方形A′B′C′D′,则点B的对应点B′的坐标.解答:解:(1)∵正方形ABCD,点A、B的坐标分别是(﹣1,﹣1)、(﹣3,﹣1),∴根据题意得:第1次变换后的点B的对应点的坐标为(﹣3+2,1),即B1(﹣1,1),(2)第2次变换后的点B的对应点的坐标为:(﹣1+2,﹣1),即(1,﹣1),第3次变换后的点B的对应点的坐标为(1+2,1),即(3,1),第n次变换后的点B的对应点的为:当n为奇数时为(2n﹣3,1),当n为偶数时为(2n﹣3,﹣1),∴把正方形ABCD经过连续2014次这样的变换得到正方形A′B′C′D′,则点B的对应点B′的坐标是:(4025,﹣1).故答案为:(﹣1,1);(4025,﹣1).点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的点B的对应点的坐标为:当n为奇数时为(2n﹣3,1),当n为偶数时为(2n ﹣3,﹣1)是解此题的关键.三、解答题:(本题共30分,每题5分)13.计算:tan30°﹣cos60°×tan45°+sin30°.考点:特殊角的三角函数值.分析:将tan30°=,cos60°=,tan45°=1,sin30°=分别代入运算,然后合并即可得出答案.解答:解:原式==.点评:本题考查了特殊角的三角函数值,属于基础题,熟练记忆一些特殊角的三角函数值是关键.14.已知抛物线y=x2﹣4x+3.(1)用配方法将y=x2﹣4x+3化成y=a(x﹣h)2+k的形式;(2)求出该抛物线的对称轴和顶点坐标;(3)直接写出当x满足什么条件时,函数y<0.考点:二次函数的三种形式;二次函数的性质.分析:(1)由于二次项系数是1,所以直接加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式;(2)根据二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h求解即可;(3)先求出方程x2﹣4x+3=0的两根,再根据二次函数的性质即可求解.解答:解:(1)y=x2﹣4x+3=(x2﹣4x+4)﹣4+3=(x﹣2)2﹣1;(2)∵y=(x﹣2)2﹣1,∴对称轴为直线x=2,顶点坐标为(2,﹣1);(3)解方程x2﹣4x+3=0,得x=1或3.∵y=x2﹣4x+3,a=1>0,∴抛物线开口向上,∴当1<x<3时,函数y<0.点评:本题考查了二次函数解析式的三种形式,二次函数的性质,难度适中.利用配方法将一般式转化为顶点式是解题的关键.15.如图,在△ABC中,D是AB上一点,且∠ABC=∠ACD.(1)求证:△ACD∽△ABC;(2)若AD=3,AB=7,求AC的长.考点:相似三角形的判定与性质.分析:(1)根据两角对应相等,两三角形相似即可证明△ADC∽△ACB;(2)根据相似三角形的对应边成比例得出AC:AB=AD:AC,即AC2=AB•AD,将数值代入计算即可求出AC的长.解答:(1)证明:在△ADC与△ACB中,∵∠ABC=∠ACD,∠A=∠A,∴△ACD∽△ABC;(2)解:∵△ACD∽△ABC,∴AC:AB=AD:AC,∴AC2=AB•AD,∵AD=2,AB=7,∴AC2=7×2=14,∴AC=.点评:本题考查的是相似三角形的判定与性质,用到的知识点为:①如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似(简叙为两角对应相等,两三角形相似);②相似三角形的对应边成比例.16.如图,热气球的探测器显示,从热气球看一栋高楼的顶部B的仰角为45°,看这栋高楼底部C的俯角为60°,热气球与高楼的水平距离AD为20m,求这栋楼的高度.(结果保留根号)考点:解直角三角形的应用-仰角俯角问题.分析:在Rt△ABD中,求出BD,在Rt△ACD中,求出CD,二者相加即为楼高BC.解答:解:在Rt△ABD中,∠BDA=90°,∠BAD=45°,∴BD=AD=20.在Rt△ACD中,∠ADC=90°,∠CAD=60°,∴CD=AD=20.∴BC=BD+CD=20+20(m).答:这栋楼高为(20+20)m.点评:本题考查了解直角三角形的应用﹣﹣仰角俯角问题,将原三角形转化为两个直角三角形是解题的关键.17.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若CD=,AE=2,求⊙O的半径.考点:圆周角定理;勾股定理;垂径定理.专题:计算题.分析:(1)由OB=OC,利用等边对等角得到一对角相等,再由同弧所对的圆周角相等得到一对角相等,等量代换即可得证;(2)由弦CD与直径AB垂直,利用垂径定理得到E为CD的中点,求出CE的长,在直角三角形OCE中,设圆的半径OC=r,OE=OA﹣AE,表示出OE,利用勾股定理列出关于r 的方程,求出方程的解即可得到圆的半径r的值.解答:(1)证明:如图.∵OC=OB,∴∠BCO=∠B.∵∠B=∠D,∴∠BCO=∠D;(2)解:∵AB是⊙O的直径,且CD⊥AB于点E,∴CE=CD=×4=2,在Rt△OCE中,OC2=CE2+OE2,设⊙O的半径为r,则OC=r,OE=OA﹣AE=r﹣2,∴r2=(2)2+(r﹣2)2,解得:r=3,∴⊙O的半径为3.点评:此题考查了垂径定理,勾股定理,以及圆周角定理,熟练掌握定理是解本题的关键.18.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为A(2,3).(1)分别求出反比例函数和一次函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.考点:反比例函数与一次函数的交点问题;三角形的面积.专题:计算题.分析:(1)先将点A(2,3)代入反比例函数和一次函数y=kx+2,求得m、k的值,(2)可求得点B的坐标,设P(x,y),由S△PBC=18,即可求得x,y的值.解答:解:(1)把A(2,3)代入,∴m=6.∴.(1分)把A(2,3)代入y=kx+2,∴2k+2=3.∴.∴.(2分)(2)令,解得x=﹣4,即B(﹣4,0).∵AC⊥x轴,∴C(2,0).∴BC=6.(3分)设P(x,y),∵S△PBC==18,∴y1=6或y2=﹣6.分别代入中,得x1=1或x2=﹣1.∴P1(1,6)或P2(﹣1,﹣6).(5分)点评:本题考查了一次函数和反比例函数的交点问题,利用待定系数法求解析式是解此题的关键.四、解答题:(本题共20分,每题5分)19.如图,在锐角△ABC中,AB=AC,BC=10,sinA=,(1)求tanB的值;(2)求AB的长.考点:解直角三角形.专题:计算题.分析:(1)过点C作CD⊥AB,垂足为D,设CD=3k,则AB=AC=5k,继而可求出BD=k,从而求出tanB的值;(2)在Rt△BCD中,先求出BC=k=10,求出k的值,继而得出AB的值.解答:解:(1)过点C作CD⊥AB,垂足为D,(1分)在Rt△ACD中,,(1分)设CD=3k,则AB=AC=5k,(1分)∴.(1分)在△BCD中,∵BD=AB﹣AD=5k﹣4k=k.(1分)∴.(1分)(2)在Rt△BCD中,,(1分)∵BC=10,∴.(1分)∴.(1分)∴AB=.(1分)点评:本题考查了解直角三角形的知识,过点C作CD⊥AB,构造直角三角形是关键.20.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c经过点(﹣3,0)和(1,0).(1)求抛物线的表达式;(2)在给定的坐标系中,画出此抛物线;(3)设抛物线顶点关于y轴的对称点为A,记抛物线在第二象限之间的部分为图象G.点B是抛物线对称轴上一动点,如果直线AB与图象G有公共点,请结合函数的图象,直接写出点B纵坐标t的取值范围.考点:待定系数法求二次函数解析式;二次函数的图象;二次函数的性质.分析:(1)根据待定系数法即可求得;(2)正确画出图形;(3)通过图象可以看出点B纵坐标t的取值范围.解答:解:(1)∵抛物线y=﹣x2+bx+c经过点(﹣3,0)和(1,0).∴,解得,∴抛物线的表达式为y=﹣x2﹣2x+3.(2)此抛物线如图所示.(3)2<t≤4.如图,由图象可知点B纵坐标t的取值范围为2<t≤4.点评:本题考查了待定系数法求解析式,以及画图的能力和识别图形的能力,要熟练掌握.21.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,且BF是⊙O的切线,BF交AC的延长线于F.(1)求证:∠CBF=∠CAB.(2)若AB=5,sin∠CBF=,求BC和BF的长.考点:切线的性质.分析:(1)连接AE,由圆周角定理和等腰三角形的性质,结合切线的性质可证得∠CBF=∠BAE,可证得结论;(2)由(1)结论结合正弦值,在Rt△ABE中可求得BE,可求出BC,过C作CM⊥BF,在Rt△BCM中可求得BM,CM,再利用平行线分线段成比例可求得BF.解答:(1)证明:如图1,连结AE.∵AB是⊙O的直径,∴∠AEB=90°,∴∠BAE=∠BAC.∵BF是⊙O的切线,∴∠CBF=∠BAE,∴∠CBF=∠CAB.(2)解:由(1)可知∠CBF=∠BAE,∴sin∠BAE=sin∠CBF=,在Rt△ABE中,sin∠BAE=,∴=,∴BE=,∴BC=2,如图2,过C作CM⊥BF于点M,则sin∠CBF==,即=,解得CM=2,由勾股定理可求得BM=4,又∵AB∥CM,∴=,。
2014---2015学年度第一学期期末质量检测九年级数学试题 (答案)一、选择题(请把选择题答案填在下列表格中,每题3分,满分36分)二、填空题(本大题共8小题,每小题3分,共24分.) 13.1414. 24π 15. 35︒ 16. 80 17. 10 18. 2 三、解答题19.解: 1)设平均每次下调的百分率为x , 则6000(1-x )2=4860, 解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………5分 (2)方案1优惠:4860×100×(1-0.98)=9720(元); 方案2可优惠:80×100=8000(元). 故方案1优惠.…………………………9分 20. 解:设小明的身高为x 米,则CD=EF=x 米. 在Rt △ACD 中,∠ADC=90°,tan ∠CAD=AD CD ,即tan30°=xAD,AD=3x --2分 在Rt △BEF 中,∠BFE=90°,tan ∠EBF=EF BF ,即tan60°=x BF ,BF=x 33 ---4分 由题意得DF=2,∴BD=DF-BF=2-x 33,∵AB=AD+BD=4,∴3x+2-x 33=4 --7分即x=3.答:小明的身高为3米.------------------------------------------------------------------------9分21. 解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b═4,解得k=4,b=3,反比例函数的解析式是y=,一次函数解析式是y=x+3;…………4分(每个解析式2分)(2)如图,当x=﹣4时,y=﹣1,B(﹣4,﹣1),当y=0时,x+3=0,x=﹣3,C(﹣3,0)S△AOB=S△AOC+S△BOC==;…………8分(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.…………12分22.解:(1)∵x%+15%+10%+45%=1,∴x=30;…………1分∵调查的总人数=90÷45%=200(人),…………2分∴B等级人数=200×30%=60(人);C等级人数=200×10%=20(人),…………4分(求出1个1分)如图:…………5分(2)2500×(10%+30%)=1000(人),所以估计每周课外阅读时间量满足2≤t<4的人数为1000人;…………7分(3)3人学习组的3个人用甲表示,2人学习组的2个人用乙表示,画树状图为:,共有20种等可能的结果数,其中选出的2人来自不同小组占12种,…………10分所以选出的2人来自不同小组的概率==.…………12分23.(1)证明:∵AB是⊙O的切直径,∴∠ADB=90°,又∵∠BAD=∠BED,∠BED=∠DBC,∴∠BAD=∠DBC,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC是⊙O的切线;…………6分(2)解:∵∠BAD=∠DBC,∠C=∠C,∴△ABC∽△BDC,∴=,即BC2=AC•CD=(AD+CD)•CD=10,∴BC=.…………12分22.………………1分………………6分∴P 点的坐标为(5,2)………………12分………………7分………10分………………11分。
2014-2015学年第一学期期末质量检测九年级数学试卷(本试卷共三个大题,26个小题,时间90分钟,满分120分)一、精心选一选(本大题共16小题。
1-6题,每题2分;7-16题,每题3分,共42分)每小题给出的4个选项中只有一个符合题意,请将所选选项的字母代号写在题中的括号内. 1. 一元二次方程02=-x x 的解为……………………………………………【 】 A.1=x B.0=x C.0,121==x x D.0,121=-=x x 2.在平面直角坐标系中,点M (3,-5)关于原点对称的点的坐标是……………【 】 A .(-3,-5) B .(3,5) C .(5,-3) D .( -3,5) 3.下列各点中,在函数xy 2-=的图象上的是…………………………………【 】 A.(2,1) B.(-2,1) C.(2,-2) D.(1,2)4. 顶点坐标为(-2,3),开口方向和大小与抛物线y =x 2相同的解析式为…【 】A .y =(x -2)2+3B .y =(x +2)2-3C .y =(x +2)2+3D .y =-(x +2)2+35. 盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出黑色笔芯的概率是………………………………………【 】A .23B .15C .25D . 356. Rt △ABC 中∠C =90°,AC =3cm ,BC =4cm ,则它的外心与顶点C 的距离为……【 】 A .2.4cm B .2.5cm C .3cm D .4cm7.向上发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度关系为y =ax 2+bx .若此炮弹在第6秒与第15秒时的高度相等,则下列几个时刻高度最高的是……【 】 A. 第8秒 B.第10秒 C.第12秒 D. 第14秒 8. 如图,⊙O 的直径CD ⊥EF 于G ,若∠EOD =50°,则∠DCF 等于………………【 】 A.80° B. 50° C. 40° D. 25°9.如图,为了测量一池塘的宽DE ,在岸边找一点C ,测得CD =30m ,在DC 的延长线上找一点A ,测得AC=5m ,过点A 作AB ∥DE ,交EC 的延长线于B ,测得AB =6m ,则池塘的宽DE 为…………………………………………………………………【 】 A.25m B.30m C.36m D.40m10. 已知:如图,PA 切⊙O 于点A ,PB 切⊙O 于点B ,如果∠APB =60°,⊙O 半径是3,则劣弧AB 的长为…………………………………………………………【 】 A .π B .6π C .2π D .3π11.面积为2的直角三角形一直角边长为x ,另一直角边长为y ,则y 与x 的变化 规律用图象大致表示为……………………………………………………………【 】12.已知反比例函数y =xm52 的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当 x 1<x 2<0时,y 1<y 2,则m 的取值范围是………………………………………【 】A.m <0B.m >0C.m <52 D.m >52 13.如图所示,在一边靠墙(墙足够长)的空地上,修建一个面积为640m 2的矩形临时仓库,仓库一边靠墙,另三边用总长为80 m 的栅栏围成,若设栅栏AB 的长为 xm ,则下列各方程中,符合题意的是………………………………………………【 】 A .21x (80-x )=640 B .21x (80-2x )=640 C .x (80-2x )=640 D . x (80-x )=640第8题图第9题图 第10题图第13题图第14题图第15题图第16题图14. 如图,若P 为△ABC 的边AB 上一点(AB >AC ),则下列条件不一定能保证 △ACP ∽△ABC 的有…………………………………………………………………【 】A.∠ACP =∠BB.∠APC =∠ACBC.AC AP AB AC =D.AB ACBC PC = 15.如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是…………………………………………【 】 A.x <-1 B.x >2 C.-1<x <0或x >2 D.x <-1或0<x <2 16.如图,量角器的直径与含30°角的直角三角板ABC 的斜边AB 重合,射线CP 从CA 处出发沿顺时针方向以每秒2度的速度旋转,CP 与量角器的半圆弧交于点E ,当第30秒时,点E 在量角器上对应的读数是……………………………………【 】 A. 120° B.150° C.75° D. 60°二、细心填一填(本大题共4小题,每小题3分,共12分)把答案直接写在题中的横线上.17. 圆锥的母线长5cm ,底面半径长3cm ,那么它的侧面展开图的面积是 . 18. 如图,△ABC 中,E 、F 分别是AB 、AC 上的两点,且,若△AEF 的面积为3,则四边形EBCF 的面积为 .19. 如图,在平面内将Rt △ABC 绕着直角顶点C 逆时针旋转90°得到Rt △EFC .若AB =1BC =,则阴影部分的面积为 .20.如图,Rt △ABC 中,∠ACB =90°,∠ABC =60°,BC =4cm ,D 为BC 的中点,若动点E 以1cm /s 的速度从A 点出发,沿着A →B →A 的方向运动,设E 点的运动时间为t 秒(0≤t <12),连接DE ,当△BDE 是直角三角形时,t 的值为 .第18题图 第19题图第20题图三、专心解一解(本题满分66分)请认真读题,冷静思考.解答题应写出文字说明、解答过程.21. (本题满分9分) 已知双曲线xky的图象经过点A (-1,2). (1)求该反比例函数的解析式.(2)若B (b ,m )、C (c ,n )是该双曲线上的两个点,且b <c ,判断m ,n 的大小关系.(3)判断关于x 的一元二次方程k x 2+2x -1=0的根的情况.22. (本题满分10分)如图,方格纸中每个小正方形的边长都是单位1,△ABC 在平面直角坐标系中的位置如图所示.(1)将△ABC 绕点B 顺时针方向旋转 90o后得△A 1BC 1,画出△A 1BC 1,并直接写 出点C 1的坐标为 . (2)把△ABC 以点C 为位似中心同侧 放大,使放大前后对应边长的比为1:2, 画作出△A 2B 2C ,并直接写出点B 2的坐标 为 .23. (本题满分11分)在一副扑克牌中,拿出黑桃3、黑桃4、黑桃5、黑桃6四张牌,小刚从中随机摸出一张记下牌面上的数字为x,再由小明从剩下的牌中随机摸出一张,记下牌面上的数字为y,组成一对数(x,y).(1)用列表法或树状图表示出(x,y)的所有可能出现的结果;(2)求小刚、小明各摸一次扑克牌所确定的一对数是方程x+y=9的解的概率.24.(本题满分11分)如图所示,AB 是⊙O 的直径,AD 与⊙O 相切于点A ,DE 与⊙O 相切于点E ,点C 为DE 延长线上一点,且CE =CB .(1)求证:BC 为⊙O 的切线; (2)若AB =4,AD =1,求线段CE 的长.25. (本题满分12分)某商场出售一批进价为3元的小工艺品,在市场营销中发现此工艺品的日销售单价x (单位:元)与日销售量y (单位:个)之间有如下关系:(1) (2)设经营此小工艺品的日销售利润为S元,求出S 与x 之间的函数关系式; (3)物价局规定小商品的利润不得高于进价的200%,请你求出当日销售单价x 定为多少时,才能获得最大日销售利润?最大日销售利润是多少?26. (本题满分13分)如图,抛物线y=ax2+52x-2与x轴相交于点A(1,0)与点B ,与y轴相交于点C.(1)确定抛物线的解析式;(2)连接AC、BC,△AOC与△COB相似吗?并说明理由.(3)点N在抛物线的对称轴上,在抛物线上是否存在点M,使得以点N、M、A、B为顶点的四边形是平行四边形?若存在,求出对应的点M、N的坐标;若不存在,请说明理由.备用图九年级数学答案一、1.C 2.D 3.B 4.C 5.C 6.B 7.B 8.D 9.C 10. C 11. C 12.D 13.A 14.D 15.D 16.A二、17. π15 18.24 19. 1-π 20. 4或7或9 三、21.解:(1)由题意可知,12-=k ,∴k =-2-----------------2分 (2)∵k =-2<0,∴y 随x 的增大而增大-----------------4分 又∵b <c ,∴m <n-----------------6分(3)△=22-4×(-2)×(-1)=-4<0 -----------------8分∴关于x 的一元二次方程k x 2+2x -1=0没有实数根-----------------9分22.如图 (1)作图 3分 C 1(2,3)2分 (2) 作图 3分 B 2(1,-2) 2分23.解:(1)分析题意,用树状图表示为:--------------5分所以共有12种等可能的结果,即(3,4)(3,5)(3,6)(4,3)(4,5)(4,6)(5,3)(5,4)(5,6)(6,3)(6,4)(6,5) -----------7分(2)满足所确定的一对数是方程x+y=9的解的结果有4种:(3,6)(4,5)(5,4)(6,3) -----------9分此事件记作A ,则P(A)=31124= -----------11分 24 (1)证明:连接OE,O C …………1分∵DE 与⊙O 相切于点E ∴∠OEC =90° -----------3分 ∵OE=OB CB=CE OC=OC∴△CEO ≌△CBO -----------5分 ∴∠OBC=∠OEC =90° -----------6分 ∴BC 为⊙O 的切线 -----------7分 (2)过点D 作D F ⊥BC 于F …………………8分 设CE=x ∵CE,CB 为⊙O 切线 ∴CB=CE=x ∵DE,DA 为⊙O 切线 ∴DE=DA=1∴DC=x+1………………………………9分 ∵∠DAB=∠ABC =∠DFB= 90° ∴四边形ADFB 为矩形 ∴DF=AB=4 BF=AD=1 ∴FC=x-1Rt △CDF 中,(x+1)2-(x-1)2=16 -----------10分 x=4 ∴CE=4 -----------11分25.解:(1)由表中数据规律可知x 与y 的乘积一定,为105×4=420 -----------2分所以函数关系式为xy 420= -----------3分 (2)S=(x-3)x420-----------5分=4201260+-x-----------7分 (3)由题意可知:x ≤3+3×200% ∴3≤x ≤9 -----------8分 ∵k=-1260<0九年级数学试卷共8页,第11页∴S 随x 的增大而增大∴当x=9时,S 的值最大 -----------10分最大值为280 -----------11分∴当日销售单价定为9元时,才能获得最大日销售利润是280元。
2014-2015九年级第一学期数学期末测试卷一.选择题(共10小题)1.已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则的值是()23.已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值4.如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有()5.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()6.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,7.已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二28.如图,二次函数y=ax2+bx+c的图象经过点(0,﹣2),与x轴交点的横坐标分别为x1,x2,且﹣19.如图,在平行四边形ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于E ,交DC 的延长线于F ,BG ⊥AE 于G ,BG=,则△EFC 的周长为( )10.如图,在△ABC 中,以BC 为直径的圆分别交边AC 、AB 于D 、E 两点,连接BD 、DE .若BD 平分∠ABC ,则下列结论不一定成立的是( )二.填空题(共8小题) 11.如果(2x+2y+1)(2x+2y ﹣1)=63,那么x+y 的值是 _________ . 12.若,且一元二次方程kx 2+ax+b=0有两个实数根,则k 的取值范围是_________ .13.如图,在平面直角坐标系中,点A ,B ,C 的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P 1.使得点P 1与点O 关于点A 成中心对称;第二次跳跃到点P 2,使得点P 2与点P 1关于点B 成中心对称;第三次跳跃到点P 3,使得点P 3与点P 2关于点C 成中心对称;第四次跳跃到点P 4,使得点P 4与点P 3关于点A 成中心对称;第五次跳跃到点P 5,使得点P 5与点P 4关于点B 成中心对称;…照此规律重复下去,则点P 2013的坐标为 _________ .14.一副扑克牌52张(不含鬼牌),分为黑桃、红心、方块、及梅花4种花色,每种花色各有13张,分别标有字母A 、K 、Q 、J 和数字10、9、8、7、6、5、4、3、2.从这副牌中任意抽取一张,则这张牌是标有字母的概率是 _________ . A . a <0B .a ﹣b+c <0 C . ﹣D . 4ac ﹣b 2<﹣8a15.二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第_________象限.16.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是_________.17.如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是_________.18.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是_________(写出所有正确结论的序号).三.解答题(共10小题)19.随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)20如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.21.如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC 于AC点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.22.如图,AD是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O于点C,连接AC,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若AB=9,BC=6.求PC的长.23.如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.24.为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的采购单价(元/件)是采购数量(件)的一次函数,下表提供了部分采购数据.(1)设A产品的采购数量为x(件),采购单价为y1(元/件),求y1与x的关系式;(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且A产品采购单价不低于1200元,求该商家共有几种进货方案;(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.25.如图①,若二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(3,0)两点,点A关于正比例函数y=x的图象的对称点为C.(1)求b、c的值;(2)证明:点C在所求的二次函数的图象上;(3)如图②,过点B作DB⊥x轴交正比例函数y=x的图象于点D,连结AC,交正比例函数y=x 的图象于点E,连结AD、CD.如果动点P从点A沿线段AD方向以每秒2个单位的速度向点D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动.当其中一个点到达终点时,另一个点随之停止运动,连结PQ、QE、PE.设运动时间为t秒,是否存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC?若存在,求出t的值;若不存在,请说明理由.26.在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.27.如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x轴的正半轴上,且长分别为m、4m(m>0),D为边AB的中点,一抛物线l经过点A、D及点M(﹣1,﹣1﹣m).(1)求抛物线l的解析式(用含m的式子表示);(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.28.如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.(1)求点A的坐标;(2)若△OBC是等腰三角形,求此抛物线的函数关系式.2014-2015学年九年级[上]数学期末测试卷参考答案与试题解析一.选择题(共10小题)1.(2013•烟台)已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则的值是()=2≤3.(2013•鄂州)已知m,n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值4.(2013•盐城)如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有()5.(2013•天津)如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()6.(2013•资阳)在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中÷=127.(2013•苏州)已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二2.8.(2013•济南)如图,二次函数y=ax2+bx+c的图象经过点(0,﹣2),与x轴交点的横坐标分别为x1,x2,且﹣1<x1<0,1<x2<2,下列结论正确的是()﹣<最小值:9.(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为()BG=4AG==210.(2013•日照)如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD 平分∠ABC,则下列结论不一定成立的是()∴==,二.填空题(共8小题)11.如果(2x+2y+1)(2x+2y﹣1)=63,那么x+y的值是4或﹣4.12.(2013•兰州)若,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是k≤4且k≠0.解:∵,13.(2013•威海)如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2013的坐标为(0,﹣2).∵14.(2013•永州)一副扑克牌52张(不含鬼牌),分为黑桃、红心、方块、及梅花4种花色,每种花色各有13张,分别标有字母A、K、Q、J和数字10、9、8、7、6、5、4、3、2.从这副牌中任意抽取一张,则这张牌是标有字母的概率是.从这副牌中任意抽取一张,则这张牌是标有字母的概率是=故答案为:=15.(2013•营口)二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第四象限.16.(2013•兰州)如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是﹣2<k<.时,抛物线与,×x<<17.(2011•湖州)如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是在﹣2<b<2范围内的任何一个数.18.(2013•宜宾)如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是①②④(写出所有正确结论的序号).,根据垂径定理可得:=由=E=∴,∵,AG===E=AD=,×=3∴(∴,,;三.解答题(共10小题)19.(2013•重庆)随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)x个月,则乙队施工)20.(2013•潍坊)如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.=﹣21.(2013•铁岭)如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC 点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.AE=CE=•AE=.22.(2013•南京)如图,AD是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O于点C,连接AC,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若AB=9,BC=6.求PC的长.BC=3AM=6r=6r=CE=2r=OM=6﹣BE=2OM=BM=CM=BC=3=6,r=6﹣r=CE=2r=OM=6﹣BE=2OM=,∴,.23.(2013•重庆)如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.∴∴××,解得,x++时,有最大值24.(2013•义乌市)为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的采购单价(元/件)y1(元/件),求y1与x的关系式;(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且A产品采购单价不低于1200元,求该商家共有几种进货方案;(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.,=11时,25.(2013•盐城)如图①,若二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(3,0)两点,点A关于正比例函数y=x的图象的对称点为C.(1)求b、c的值;(2)证明:点C在所求的二次函数的图象上;(3)如图②,过点B作DB⊥x轴交正比例函数y=x的图象于点D,连结AC,交正比例函数y=x的图象于点E,连结AD、CD.如果动点P从点A沿线段AD方向以每秒2个单位的速度向点D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动.当其中一个点到达终点时,另一个点随之停止运动,连结PQ、QE、PE.设运动时间为t秒,是否存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC?若存在,求出t的值;若不存在,请说明理由.y=y=∴﹣x,FH=FOB==x×,×=1,﹣﹣,=,AD==2xCD=AD=2,∠AC=∴,即:﹣t=或t=,故舍去)t=26.(2013•绍兴)在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC 上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.BE EH=:B==EQ=AEH==,EH=BE::27.(2013•珠海)如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x轴的正半轴上,且长分别为m、4m(m>0),D为边AB的中点,一抛物线l经过点A、D及点M(﹣1,﹣1﹣m).(1)求抛物线l的解析式(用含m的式子表示);(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.,解得,mN=N=mON==点坐标为(m×≤,,,当≤(+,到达最高位置时的坐标为()28.(2013•无锡)如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.(1)求点A的坐标;(2)若△OBC是等腰三角形,求此抛物线的函数关系式.==∴=,即==362)代入,解得x=36(负值舍去))代入,解得xx x y=31。
2014—2015学年第一学期初三年级期末质量抽测数学试卷2014.12学校姓名考试编号考生须知1.本试卷共6页,共五道大题,25个小题,满分120分.考试时间120分钟.2.在试卷和答题卡上认真填写学校名称、姓名和考试编号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.考试结束,请将答题卡交回.一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.1.已知⊙O 1和⊙O 2的半径分别为3和5,如果O 1O 2= 8,那么⊙O 1和⊙O 2的位置关系是A .外切B.相交C.内切D.内含2.在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球..的概率是A .15B.13C.25D.233.如图,⊙O 的直径AB=4,点C 在⊙O 上,如果∠ABC =30°,那么AC 的长是A .1B .2C .3D .24. 在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,使它与图中阴影部分组成的新图形构成中心对称图形,该小正方形的序号是A .①B .②C .③D .④5.如图,在△ABC 中,点D E 、分别在AB AC 、边上,DE ∥BC ,若:3:4AD AB,6AE,则AC 等于A. 3B. 4C . 6D. 86.当二次函数249y xx 取最小值时,x 的值为A .2B .1C .2D .9来源学|科|网ABC30°④③②①ABCODC BAO7.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB 在地面上的影长BC 为24米,那么旗杆AB 的高度约是A .12米B .83米C .24米D .243米[来源:]8.已知:如图,在半径为4的⊙O 中,AB 为直径,以弦AC (非直径)为对称轴将AC折叠后与AB 相交于点D ,如果3ADDB ,那么AC 的长为A .214B .27C .42D .6二、填空题(共4道小题,每小题4分,共16分)9.如果3cos 2A,那么锐角A 的度数为.10.如果一个圆锥的母线长为4,底面半径为1,那么这个圆锥的侧面积为.11.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为.12.在平面直角坐标系xoy 中,直线2x 和抛物线2yax 在第一象限交于点A,过A 作ABx 轴于点B .如果a 取1,2,3,,,n 时对应的△AOB 的面积为123S S S ,,,,n S ,那么1S _____;123nS S S S _____.三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.如图1,正方形ABCD 是一个 6 × 6网格的示意图,其中每个小正方形的边长为1,位于AD 中点处的点P 按图2的程序移动.(1)请在图中画出点P 经过的路径;(2)求点P 经过的路径总长.绕点A 顺时针旋转90°绕点B 顺时针旋转90°绕点C 顺时针旋转90°输入点P输出点ADPxOy[来源:.Com]14.计算:3tan302cos452sin 60.15.现有三个自愿献血者,两人血型为O 型,一人血型为A 型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所献血的血型均为O 型的概率(要求:用列表或画树状图的方法解答).[来源:]16. 如图,从热气球C 处测得地面A 、B 两处的俯角分别为30°、45°,如果此时热气球C处的高度CD 为100米,点A 、D 、B 在同一直线上,求AB 两处的距离.17. 已知抛物线与x 轴相交于两点A(1,0),B(-3,0),与y 轴相交于点C (0,3).(1)求此抛物线的函数表达式;(2)如果点3,2Dm 是抛物线上的一点,求△ABD 的面积.18.如图,在△ABC 中,∠AB C =2∠C ,BD 平分∠ABC ,且2AD ,22BD ,求AB 的值.BCDADCBA四、解答题(共4道小题,每小题5分,共20分)19.如图,在平面直角坐标系xoy 中,⊙A 与y 轴相切于点3(0,)2B ,与x 轴相交于M 、N 两点.如果点M 的坐标为1(,0)2,求点N 的坐标.20.(1)已知二次函数223y xx ,请你化成2()y x h k的形式,并在直角坐标系中画出223y xx 的图象;(2)如果11()A x y ,,22()B x y ,是(1)中图象上的两点,且121x x ,请直接写出1y 、2y 的大小关系;(3)利用(1)中的图象表示出方程2210xx 的根来,要求保留画图痕迹,说明结果.21.已知:如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 与BC 交于点D ,DE ⊥AB ,垂足为E ,ED 的延长线与AC 的延长线交于点F .(1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为4,BE =2,求∠F 的度数.yxO AB MNyOxEOA22.阅读下面的材料:小明遇到一个问题:如图(1),在□ABCD 中,点E 是边BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G. 如果3AF EF,求CD CG的值.他的做法是:过点E 作EH ∥AB 交BG 于点H ,则可以得到△BAF ∽△HEF .请你回答:(1)AB 和EH 的数量关系为,CG 和EH 的数量关系为,CD CG的值为.(2)如图(2),在原题的其他条件不变的情况下,如果(0)AF a a EF,那么CD CG的值为(用含a 的代数式表示).(3)请你参考小明的方法继续探究:如图(3),在四边形ABCD 中,DC ∥AB ,点E是BC 延长线上一点,AE 和BD 相交于点 F. 如果(00)AB BC m n mnCDBE,,,那么AF EF的值为(用含m ,n 的代数式表示).H(1)ABCDE FG G FE DCBA(2)(3)AB CDEF五、解答题(共3道小题,第23题7分,第24、25题各8分,共23分)23.由于2013年第30号强台风“海燕”的侵袭,致使多个城市受到影响. 如图所示,A 市位于台风中心M 北偏东15°的方向上,距离612千米,B 市位于台风中心M 正东方向603千米处. 台风中心以每小时30千米的速度沿MF 向北偏东60°的方向移动(假设台风在移动的过程中的风速保持不变),距离台风中心60千米的圆形区域内均会受到此次强烈台风的影响.(1)A 市、B 市是否会受到此次台风的影响?说明理由.(2)如果受到此次台风影响,该城市受到台风影响的持续时间为多少小时?备用图24.已知二次函数y = x 2–kx + k – 1(k >2).(1)求证:抛物线y = x 2–kx + k- 1(k >2)与x 轴必有两个交点;(2)抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,若tan 3OAC,求抛物线的表达式;(3)以(2)中的抛物线上一点P (m,n )为圆心,1为半径作圆,直接写出:当m 取何值时,x 轴与P 相离、相切、相交.25.已知:四边形ABCD 中,AD ∥BC ,AD=AB=CD ,∠BAD =120°,点E 是射线CD 上的一个动点(与C 、D 不重合),将△ADE 绕点A 顺时针旋转120°后,得到△ABE',连接EE'.(1)如图1,∠AEE'= °;(2)如图2,如果将直线AE 绕点A 顺时针旋转30°后交直线BC 于点F ,过点E 作EM∥AD 交直线AF 于点M ,写出线段DE 、BF 、ME 之间的数量关系;(3)如图3,在(2)的条件下,如果CE =2,AE=27,求ME 的长.xyO–1–21234–1–21234E'MFEDC BAE'EDCBA图1图2E'MFEDC BA图32014—2015学年第一学期初三年级期末质量抽测数学试卷参考答案及评分标准2014.12一、选择题(共8个小题,每小题4分,共32分)题号 1 2 3 4 5 6 7 8 答案 ACDBDABA二、填空题(共4个小题,每小题4分,共16分)题号9 10 1112答案304344 ,2n(n+1)(各2分)三、解答题(共6道小题,第13题4分,第14 -18题各5分,共29分)13.解:(1)如图所示:PAB CD,,,,,,,,,,,,,,,,,,,,2分(2)由题意得,点P 经过的路径总长为:270318091802n r .,,,,,,,,,,,4分14.解:原式=323322322,,,,,,,,,,,,,,,,,,,,,,3分=113,,,,,,,,,,,,,,,,,,,,,,4分=23.,,,,,,,,,,,,,,,,,,,,,,,,,,,,5分15.解:列表如下:O 1O 2 A O 1(O 1,O 1)(O 1,O 2)(O 1,A)O 2(O 2,O 1) (O 2,O 2) (O 2,A) A(A ,O 1)(A ,O 2) (A ,A),,,,,,,,,,,,,,,,,,,,,,,4分所以,两次所献血型均为O 型的概率为49.,,,,,,,,,,,,,,,,,,,,,,5分16.解:依题意,可知:30,45,,100,CABCBACD AB D CD 于点,,,,,,,,,,,,,,,1分,CD AB 90.CDACDB ,,,,,,,,,,,,,,,,,,,,,,,,,2分Rt 100BDC BDCD 在中,,,,,,,,,,,,,,,,,,,,,,,,3分Rt tan CDADC AAD在中,.∴31003AD CD .,,,,,,,,,,,,,,,,,,,,,,,,,4分1003100ABADBD.,,,,,,,,,,,,,,,,,,,,,,,5分∴AB 两处的距离为(1003100)米.17.解:(1)∵抛物线与y 轴相交于点C (0,3),∴设抛物线的解析式为23y axbx .,,,,,,,,,,,,,,,,,1分∵抛物线与x 轴相交于两点(1,0),(3,0)A B ,∴30,9330.a b a b ,,,,,,,,,,,,,,,,,,,,,,,,,,,2分解得:1,2.a b∴抛物线的函数表达式为:232yxx .,,,,,,,,,,,,,,,,3分(2)∵点3(,)2D m 是抛物线上一点,∴2(23339)224m . ,,,,,,,,,,,,,,,,,,,,,,4分∴119942242ABDDSAB y . ,,,,,,,,,,,,,,,,,,5分18.解:∵BD 平分∠ABC ,∴∠ABC =2∠1=2∠2.∵∠ABC =2∠C ,∴∠C =∠1=∠2.,,,,,,,,,,,1分∴22CD BD . ,,,,,,,,,,,,2分∴32AC.又∵∠A=∠A,∴△ABD ∽△ACB .,,,,,,,,,,,,,,,,,,,,,,,,,,,3分∴AD AB ABAC.,,,,,,,,,,,,,,,,,,,,,,,,,,,4分∴22326AB AD AC .∴6AB(舍负).,,,,,,,,,,,,,,,,,,,,,,,,,,5分四、解答题(共4道小题,每小题5分,共20分)19.解:连接AB 、AM ,过点A 作AC ⊥MN 于点C .∵⊙A 与y 轴相切于点B(0,32),∴AB ⊥y 轴.又∵AC ⊥MN ,x 轴⊥y 轴,∴四边形BOCA 为矩形.∴AC =OB=32,OC =BA .∵AC ⊥MN ,∴∠ACM=90°,MC=CN .,,,,,,,,,,,,,,,,,,,,2分∵M(12,0),∴OM =12.在Rt △AMC 中,设AM=r.O A B MNCyx21DCBA。
2014--2015学年度第一学期期末教学质量检测九年级数学参考答案及评分标准说明:1、答案只提供一种,如答案有误或一题多解(证),以阅卷组为单位统一商定评分。
2、评分标准中的评分细化到每个步骤中的得分点...累计记分,但学生解题过程中每个步骤出现的先后顺序是可以不同的,阅卷者需把握标准认真评阅。
二、解答题 (本大题共9小题,计75分)16.(6分)解:原方程可整理得:x 2-2x-3=0. ----------------------1分 (x-3)(x-1)=0(应用公式法和配方法均可) ----------------------3分解得:x 1=3,x 2=1 ----------------------6分17.(6分)解:原式=2)(2)31(+)(3)(3)33x x x x x x x +--÷+---(---------------------1分=)23()3)(3()2)(2--⨯-+-+x x x x x x (---------------------2分 =32++x x --------------------------- 3分解不等式2x ﹣3<7得,x <5 ---------------------------4分 依题意只可取数值1或4, ---------------------------5分 代入得值7643或(代一个数值计算即可)---------------------6分18.(7分)解:∵底面圆的面积为100π,∴底面圆的半径为10. ---------------------1分∴扇形的弧长等于圆的周长为20π. ---------------------2分 设圆锥的母线长为l . 则120180lπ=20π---------------------4分 解得:l=30. ---------------------5分∴扇形的面积为πrl=π×10×30=300π,---------------------7分 19.(7分)解:(1)∵在△ABC 中,∠ACB=90°,∠B=30°,∴∠A=60°, ---------------------1分又∵ AC=DC , ∴△ADC 是等边三角形,---------------------2分 ∴∠ACD=60°,∴ 当旋转角为60度时,点D 刚好落在AB 边上. ---------------------3分 (2)四边形ACFD 是菱形; ---------------------4分理由:∵∠DCE=∠ACB=90°,F 是DE 的中点,∴FC=DF=FE ,---------------------5分 ∵∠CDF=∠A=60°,∴△DFC 是等边三角形,---------------------6分 ∴DF=DC=FC,∵△ADC 是等边三角形, ∴AD=AC=DC,∴AD=AC=FC=DF,---------------------7分 ∴四边形ACFD 是菱形.20.(8分)解:(1)随机抽取1名是女生展示的概率为:41---------------------2分 (2---------------------5分所有等可能的情况有12种,其中同为男生的情况有6种,----------------6分 则P==21.---------------------8分 21.(8分)解:(1)如图所示,圆为所求. -----------------2分 (2)①如图连接AE 、.∵AC 为⊙O 的直径,∴∠AEC=90°------------------3分又∵AB=AC ,∴∠BAE=∠CAE ---------------------4分而∠BAE=21∠DOE ,∠CAE=21∠EOC∴∠DOE=∠EOC ---------------------5分②连接,过点作于∵AC 为⊙O 的直径,∴∠ADC=90°∵∠AEC=90°,AB=AC=5,BC=6 ∴BE=EC=3 设DB=X,则AD=5-x ,在和中,有即52-(5-x)2=62-x 2解得:x=518 ---------------------6分即=524又---------------------7分即DH ×6=2418 ∴DH=72---------------------8分(此问题解题方法多样,只要方法正确,均可视对错给予判分.)22.(10分) 解:(1)设用于购买书桌、书架等设施的为x 元,-----------------1分则购买书籍的有(40000﹣x )元,根据题意得:40000﹣x≥3x,-------------2分 解得:x≤10000. -----------------3分答:用于购买书桌、书架等设施的资金最多为10000元;-----------------4分 (列方程计算也可,只要回答时按最多作答即可判满分) (2)设这个相同的百分数为y,根据题意可得:----------------5分200(1+y )×200(1-y )=30000 -----------------7分 整理得:4(1-y 2)=3,-----------------8分解得:y=0.5或a=﹣0.5(舍去),-----------------9分 答:这个相同的百分数为50%.-----------------10分 23.(11分)解:(1)∵l 1⊥l 2,⊙O 与l 1,l 2都相切,∴∠OAD=45°,而⊙O 的半径为2-------------1分 ∴OA=22 --------------2分 (2)当直线AC 与⊙O 第一次相切时(如图位置一)⊙O移动到⊙O1的位置,矩形ABCD移动到A1B1C1D1的位置,设⊙O1与直线l1,A1C1分别相切于点F,G,连接O1F,O1G,O1A1,∴O1F⊥l1,O1G⊥A1G,∠C1A1D1=60°,∴∠GA1F=120°,∴∠O1A1F=60°,-----------------3分在Rt△A1O1F中,O2F=2,∴A1F=,-----------------4分∵OO1=3t,AF=AA1+A1F=4t1+,又∵AF= OO1+2 ∴4t1+=3t1+2,----------------5分∴t1=2﹣,------------------6分(3)如图(位置二),当O2,A2,C2恰好在同一直线上时,设⊙O2与l1的切点为E,连接O2E,可得O2E=2,O21E⊥l1,在矩形A2B2C2D2中,∵∠ A2 C2B2=60°,∴∠O2A2E=∠C2A2D2=60°,设A2E=x,则A2O2=2x.由勾股定理可得:∴A2E=,-----------------7分∵A2E=AA2﹣OO2﹣2=4t﹣3t-2,∴t﹣2=,-----------------8分∴解得:t=+2,此时点O2,A2,C2恰好在同一直线上. ---------------9分(4)当直线AC与⊙O第二次相切时,设移动时间为t2,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,∴+2﹣(2﹣)=t2﹣(+2),解得:t2=2+2,综上所述,当d<2时,t的取值范围是:2﹣<t<2+2.----------------11分(不等式有一个正确即可得1分,合计2分)24.(12分)解:(1) 由直线BC 的解析式y=一x+4可得:A(4,0), B(0,4) -----------------1分由抛物线经过点B(O ,4)可得c=4,① ∵抛物线过点A(4,0),C (-2,O ),∴16a+4b+c=0 ②,4a -2b+c=0 ③ ---------2分由①②③ 解得:a=21-, b=1 ,c=4. 所以抛物线的解析式是y=21-x 2+x+4--------3分(2) ∵点D 是直线AB 上方的抛物线上的一个动点,∴可设动点D 的坐标为(m ,21-m 2+m+4),则E 点的坐标为(m ,-m+4), ∴DE=(21-m 2+m+4)﹣(-m+4),-----------------4分 =21-m 2+2m=21-(m ﹣2)2+2,----------------5分∵DE >0,∴当m=2时,线段DE 的最大值为2. ----------------6分 (3)假设能,设点D 的坐标为(t, 21-t 2+t+4),连接BD 、AD 、OD . 过点D 作D G⊥y 轴于G .DE ⊥x 轴于H ,∵O<t<4, 则DH=21-t 2+t+4 , DG=t, ∴S △O AD=21OA.DH=21×4×(21-t 2+t+4)=-t 2+2t+8 , S △O BD =21OB.DG=21×4×t=2t ; S △O BC =21OB.OC=21×4×2=4∴S 四边形ACBD =S △BOC +S △AOD +S △BOD =4-t 2+2t+8+2t=-t 2+4t+12.-------------7分 令-t2+4t+12 =20,即t2-4t+8=0,则△=(一4)2-4×8=-16<0, ---------8分∴方程无解,故点D 在运动中不能使得四边形ACBD 的面积为20.---------9分 (4)由y=21-x 2+4x+4及题意得: D (1,29),又点E 在直线AB 上,则点E(1,3),于是DE=29一3= 23.若以D.E.P.Q 为顶点的四边形是平行四边形,因为DE∥PQ,只须DE=PQ, ------10分设点P 的坐标是(n ,-n+4),则点Q 的坐标是(n ,-21n 2+n+4).①当0<n<4时,PQ=(-21n 2+n+4)-(-n+4)=-21n 2+2n .由-21n 2+2n=23,解得:n=1或3.当n=1时,线段PQ 与DE 重合,n=1舍去,∴n=3,此时P 1 (3,1). -------------11分 ②当n<o 或n>4时,PQ=(-n+4)-(-21n 2+n+4)= 21n 2—2n,由21n 2—2n=23,解得m=2±7,经检验适合题意,此时P 2(2+7,2一7),P 3(2一7,2+7).---------------12分综上所述,满足条件的点P 有三个,分别是P 1 (3,1),P 2(2+7,2 -7),P 3(2—7,2十7).。
2014——2015学年度第一学期期末测试九 年 级 数 学参考答案一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的代号填入题后括号内.1.D 2.B 3.C 4.A 5.B 6.C 7.D 8.A 9.B 10.C二、填空题:本大题共8小题,每小题3分,共24分.请把最后结果填在题中横线上. 11.0。
6 12.25 13.24 14.52 15.277 16.(9,0) 17.-1<x <3 18.②④三、解答题:本大题共10小题,共96分.解答时应写出文字说明、证明过程或演算步骤. 19.(本小题满分8分)每图4分解:由表可以看出,随机地摸取一个小球然后放回, 再随机地摸出一个小球,可能出现的结果有16个,它们出现的可能性相等.…………4分 (1)满足两次取的小球的标号相同的结果有4个,所以P (1)=164=41.……6分 (2)满足两次取的小球的标号的和等于4的结果有3个,所以P (2)=163.…8分21.(本小题满分9分)(1)8π (3分) (2)(3分)(3)③(3分)22.(本小题满分8分)证明:连接OC .………………………………………………1分∵OA =OC ,∴∠OAC =∠OCA .………………………2分∵CD 切⊙O 于点C ,∴OC ⊥CD .……………………3分∵AD ⊥CD ,∴∠ADC =∠OCD =90°,即∠ADC +∠OCD =180°,∴AD ∥OC ,……………………………………………5分∴∠DAC =∠OCA =∠OAC ,……………………………7分∴AC 平分∠DAB .……………………………………8分一 二1 2 3 4 1 (1,1) (2,1) (3,1) (4,1) 2 (1,2) (2,2) (3,2) (4,2) 3 (1,3) (2,3) (3,3) (4,3)4 (1,4) (2,4) (3,4) (4,4) A B C D O . (第22题图).O A B C解:设所围成圆锥的底面半径和高分别为r 和h .∵扇形半径为3㎝,圆心角为120°, ∴12032180r ππ⋅⋅=,……………………………………………………………………4分 ∴r =1,……………………………………………………………………………………6分∴h ==8分24.(本小题满分10分)解:(1)令y =0,得2230x x --=,………………………………………………………1分解得x 1=3,x 2=-1,………………………………………………………………3分 ∴抛物线与x 轴交点坐标为(3,0)和(-1,0).……………………………4分(2)令x =0,得y =-3,∴抛物线与y 轴交点坐标为(0,-3),…………………………………………5分 ∴将此抛物线向上平移3个单位后可以经过原点.……………………………7分 平移后抛物线解析式为22y x x =-.………………………………………10分25.(本小题满分9分)(1)证明:∵DE ∥BC ,EF ∥AB ,∴∠AED =∠ECF ,∠A =∠FEC ,……………2分∴△ADE ∽△EFC .………………………………………………………………4分(2)解:∵△ADE ∽△EFC , ∴AD DE EF FC=.…………………………5分 ∵AD =4,DE =5,EF =2, ∴FC =52.……………………………………6分 ∵DE ∥BC ,EF ∥AB ,∴四边形DEFB 是平行四边形,∴BF =DE =5,……8分∴BC =BF + FC =5+52=152.………………………………………………………9分26.(本小题满分10分)(1)证明:∵四边形ABCD 是正方形,∴∠A =∠B =90°,∴∠DEA +∠ADE =90°.…1分∵EF ⊥DE ,∴∠DEF =90°,∴∠DEA +∠FEB =90°,……………………………2分 ∴∠ADE =∠FEB ,……………………………………………………………………4分 ∴△ADE ∽△BEF .……………………………………………………………………5分(2)解:∵正方形的边长为4,AE =x ,∴BE =4-x .∵△ADE ∽△BEF , ∴DA AE EB BF =,……………………………………………7分 ∴44x x y =-, ∴2(4)144x x y x x -==-+,…………………………………10分解:(1)由题意得1060x y -=.…………………………………………………………3分 (2)由题意得1200040101)200)(1060()200(2++-=+-=+=x x x x x y z .6分 (3)由题意得)1060(201200040101202x x x y z w --++-=-= 10800421012++-=x x .…………………………………………9分 当每个房间的定价2102=-=a b x (元)时,w 有最大值,最大值是15210.………12分28.(本小题满分14分)解:(1)∵点A 坐标为(0,3),∴OA =3.∵矩形ABCO 面积为12,∴AB =4,……2分∴抛物线的对称轴为直线x =2.…………………………………………………4分(2)∵∠ADM =∠DOM ,∠AMD =∠DMO ,∴△ADM ∽△DOM , ∴MOMD MD AM =,∴MO AM MD ⋅=2.设MO=x ,则MA= x -3. ∴)3(4-=x x ,∴41=x ,12-=x ,∴MO=4,∴D 点坐标为(2,4).…6分 设抛物线的解析式为4)2(2+-=x a y . 将点A (0,3)代入得443+=a ,∴41-=a , ∴抛物线的解析式为4)2(412+--=x y .……………………………8分 (3)∵⊙P 在y 轴上截得线段长为2,OA =3, ∴P 点纵坐标为2或4.……9分在4)2(412+--=x y 中,令y=2或4得 4)2(4122+--=x 或4)2(4142+--=x ,………………………………11分 解得2221+=x ,2222-=x ,23=x ,∴P 点坐标为(222+,2)、(222-,2)或(2,4).………………14分。
2014-2015学年度(上)期末数学九年级质量检测试题(满分:120分; 时间 90分钟)一、选择题(每小题3分,共30分)1、已知135=a b ,则b a ba +-的值是( )A 、32B 、23C 、49D 、942、关于x 的一元二次方程22(1)10a x x a --+-=的一个根是0,则a 的值为( ) A 、1或-1. B 、-1 C 、1 D 、123、已知x -1x =3,则4-12x 2+32x 的值为( ) A 、1 B 、32 C 、52 D 、724、如图,在平面直角坐标系中,点A 的坐标为(0,3),△OAB 沿x 轴向右平移后得到△O ′A ′B ′,点A 的对应点A ′在直线y=34x 上,则点B 与其对应点B ′间的距离为( ) A 、94B 、3C 、4D 、55、如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是S 1,S 2,S 3,则S 1,S 2,S 3的大小关系是( ) A 、S 1>S 2>S 3 B 、 S 3>S 2>S 1C 、S 2>S 3>S 1D 、S 1>S 3>S 26、如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴 上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以 A 1,A 2,B 1,B 2其中的任意两点与点O 为顶点作三角形,所作三角形 是等腰三角形的概率是( )A 、34B 、13C 、23D 、127、在同一时刻,身高1.6m 的小强的影长是1.2m ,旗杆的影长是15m ,则旗杆高为(A 、16mB 、18mC 、20mD 、22m8、如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2则S 1+S2的值为( )A 、16 B 、17 C 、18 D 、199、如图,△ABC 中,AC 的垂直平分线分别交AC 、AB 与点D 、F,BE ⊥DF 交DF 的延长线于点E ,已知∠A=30°,BC=2,AF=BF,则四边形BCDE 的面积是( )A 、32B 、33C 、4D 、34第4题图第5题图10、已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k-1=0根的存在情况是()A、没有实数根B、有两个相等的实数根C、有两个不相等的实数根D、无法确定二、填空题(每小题3分,共24分)11、如图,点D,E分别在AB,AC上且∠ABC=∠AED,若DE=4cm,AE=5cm, BC=8cm,则AB的长为 .12、关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1+x2-x1·x2=1-a,则a= .13、如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=的图象上,OA=1,OC=6,则正方形ADEF的边长为.14、一水塘里有鲤鱼、鲫鱼、鲢鱼共10000尾,一渔民通过多次捕捞试验后发现,鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里大约有鲢鱼 _____尾.15、在平面直角坐标系中,已知A(6,3),B(6,0)两点,以坐标原点为位似中心,位似比为3∶1,把线段AB缩小后得到线段A′B′,则A′B′的长度为 .16、如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足条件时,四边形EFGH是菱形.17、在锐角三角形ABC中,已知∠A,∠B满足2sin2A⎛-⎝⎭+tan B|=0,则∠C=______.18、已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点.若四边形EFDC与矩形ABCD相似,则AD= .三、解答题(本题共八小题,共66分)19、(本题6分)作出如下图所示的三种视图.G第16题图E第18题图第19题第13题图20、(本题6分)已知()()0622222=-+-+b ab a ,求:22b a +的值。
2014~2015学年度第一学期期末检测九年级数学试卷(选用)(考试时间120分钟 满分120分)成绩一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1.一元二次方程x 2-2x =0的解为A .x = 2B .x 1 = 0,x 2 = 2C .x 1 = 0,x 2 = -2D .x 1 = 1,x 2 = 2 2. 抛物线2(1)2y x =-+的顶点坐标是 A .(1,2)B .(1,-2)C .(-1, 2)D .(-1,-2)3.下列图形是中心对称图形的是A B C D4. 如图,A ,B ,C 是⊙O 上的三个点,若∠C =35°,则∠AOB 的度数为 A .35° B . 55° C .65° D . 70°5. 如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点 均在格点上,则tan ∠ABC 的值为A .3B .34C 5D .16.下列事件是随机事件的是 A .明天太阳从东方升起B .任意画一个三角形,其内角和是360°C .通常温度降到0℃以下,纯净的水结冰D .射击运动员射击一次,命中靶心7.一个矩形的长比宽相多3cm ,面积是25cm 2,求这个矩形的长和宽.设矩形的宽为x cm , 则所列方程正确的是A .x 2-3x +25=0B .x 2-3x -25=0C .x 2+3x -25=0D .x 2+3x -50=0B8.如图,点C 是以点O 为圆心,AB 为直径的半圆上的动点(点C 不与 点A ,B 重合),AB =4.设弦AC 的长为x ,△ABC 的面积为y ,则 下列图象中,能表示y 与x 的函数关系的图象大致是A B C D二、填空题(本题共16分,每小题4分)9.如图,A 是反比例函数(0)ky x x=>图象上的一点,AB 垂直于x 轴,垂足为B ,AC 垂直于 y 轴,垂足为C ,若矩形ABOC 的面积为5,则k 的值为 .10.一枚质地均匀的骰子,六个面分别刻有1到6的点数,掷这个骰子一次,则向上一面的 点数大3的概率是 .11. 如图,在平面直角坐标系xOy 中,点O 是边长为2的正方形ABCD 的中心.写出一个 函数2y x c =+,使它的图象与正方形ABCD 有公共点,这个函数的表达式为 .三、解答题(本题共30分,每小题5分) 13.计算:cos30sin602sin 45tan 45︒︒+︒∙︒- .A(第9题图)(第11题图)(第12题图)14. 用配方法解方程: x 2-4x -1=0.15. 如图,△ABC 中,点D 在AB 上,∠ACD =∠ABC ,若AD =2,AB =6,求AC 的长.16. 如图,在平面直角坐标系xOy 中,以点A (2,3)为圆心的⊙A 交 x 轴于点B ,C ,BC =8, 求⊙A 的半径.17. 如图,正方形ABCD 的边长为2,E 是BC 的中点,以点A 为中心,把△ABE 逆时针旋转90°, 设点E 的对应点为F .(1)画出旋转后的三角形. (2)在(1)的条件下,①求EF 的长;②求点E 经过的路径弧EF 的长.18.如图,甲船在港口P 的南偏东60°方向,距港口30海里的A 处,沿AP 方向以每小时5海里的速度驶向港口P ;乙船从港口P 出发,沿南偏西45°方向驶离港口P .现两船 同时出发,2小时后甲船到达B 处,乙船到达C 处,此时乙船恰好在甲船的正西方向,A求乙船的航行距离 1.41≈ 1.73,结果保留整数).四、解答题(本题共20分,每小题5分)19.已知关于x 的一元二次方程mx 2-(m +1)x +1=0. (1)求证:此方程总有两个实数根;(2)若m 为整数,当此方程的两个实数根都是整数时,求m 的值.20. 如图,直线2y x =-+与反比例函数k y =x的图象相交于点A (a ,3),且与x 轴相交于点B .(1)求该反比例函数的表达式;(2)若P 为y 轴上的点,且△AOP 的面积是△AOB 的面积的23, 请直接写出点P 的坐标.21. 随着“节能减排、绿色出行”的健康生活意识的普及,新能源汽车越来越多地走进百姓的生活. 某汽车租赁公司拥有40辆电动汽车,据统计,当每辆车的日租金为120元时, 可全部租出;当每辆车的日租金每增加5元时,未租出的车将增加1辆;该公司平均每日 的各项支出共2100元.(1) 若某日共有x 辆车未租出,则当日每辆车的日租金为 元;(2) 当每辆车的日租金为多少时,该汽车租赁公司日收益最大?最大日收益是多少?22.如图,在△ABC 中,BA =BC ,以AB 为直径的⊙O 分别交AC ,BC 于点D ,E ,BC 的延长线 与⊙O 的切线AF 交于点F . (1)求证:∠ABC =2∠CAF ;(2)若AC=CE :EB =1:4,求CE ,AF 的长.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 已知二次函数y =kx 2-(k +3)x +3在x =0和x =4时的函数值相等. (1)求该二次函数的表达式;(2)画出该函数的图象,并结合图象直接写出当y <0时,自变量x 的取值范围;(3)已知关于x 的一元二次方程2220k x m m +-=,当-1≤m ≤3 时,判断此方程根的情况.24. △ABC 和△ADE 中,AB =AC ,AD =AE ,∠BAC =∠DAE = α (0°<α ≤90°) ,点F ,G ,P 分别是DE ,BC ,CD 的中点,连接PF ,PG .A(1)如图①,α=90°,点D 在AB 上,则∠FPG = °;(2)如图②,α=60°,点D 不在AB 上,判断∠FPG 的度数,并证明你的结论;(3)连接FG ,若AB =5, AD =2,固定△ABC ,将△ADE 绕点A 旋转,当PF 的长最大时,FG 的长为 (用含α的式子表示).25. 在平面直角坐标系xOy 中,直线y =2x +2与x 轴,y 轴分别交于点A ,B ,抛物线y =ax 2+bx -32经过点A 和点C (4,0) . (1)求该抛物线的表达式.(2)连接CB ,并延长CB 至点D ,使DB =CB ,请判断点D 是否在该抛物线上,并说明理由. (3)在(2)的条件下,过点C 作x 轴的垂线EC 与直线y =2x +2交于点E ,以DE 为直径画⊙M ,①求圆心M 的坐标;②若直线AP 与⊙M 相切,P 为切点,直接写出点P 的坐标.九年级数学试卷参考答案及评分标准 2015.1图①B图②B备用图B二、填空题(本题共16分,每小题4分) 9.5 10.1211.答案不惟一,如2y x =(说明:写成2y x c =+的形式时,c 的取值范围是-2≤c ≤1) 12.60,3π 三、解答题(本题共30分,每小题5分)13.解:原式21=……………………………………………………………………4分 = ………………………………………………………………………………………5分 14.解: x 2-4x =1. ……………………………………………………………………………………………… 1分x 2-4x +4=1+4 ,(x -2)2=5 .…………………………………………………………………………………………… 3分x -2=∴12x =+22x =………………………………………………………………………5分 15.解:∵∠ACD =∠ABC ,∠A=∠A , …………………………………………………………………… 2分∴△ACD ∽△ABC . ……………………………………………………………………………… 3分∴AD ACAC AB=. …………………………………………………………………………………… 4分 ∵AD =2,AB =6,∴26AC AC =.∴212AC =.∴AC = …………………………………………………………………………………………5分16.解:如图,作AD ⊥BC 于点D .………………………………… 1分连接AB . ∴142BD BC ==. ………………………………………… 3分 ∵点A 的坐标是(2,3),∴AD=3.……………………………………………………… 4分在Rt△ABD中,∴5AB……………………………………… 5分∴⊙A的半径为5.17.解:(1)如图1.………………………… 1分(说明:点F在CD的延长线上)∴△ADF为所求.(2)①如图2,依题意,AE=AF,∠EAF =90°.…………… 2分在Rt△ABE中,∵AB=2,112BE BC==,∴AE=…………………………………………… 3分在Rt△AEF中,EF=……………………………… 4分②l==.……………………………… 5分∴弧EF.18.解:如图,作PD⊥BC于点D.………………………1分根据题意,得∠BPD=60°,∠CPD=45°.PB=AP - AB =20.………………………………… 2分在Rt△BPD中,∴cos60=10PD PB=∙︒.……………………………3分在Rt△CPD中,∴cos45PDPC=︒…………………………… 4分∴14PC≈.…………………………………………5分答:乙船的航行距离约是14海里.C图1D图2四、解答题(本题共20分,每小题5分)19.解:(1)证明:∆=〔-(m +1)]2-4m =(m -1)2.…………………………………………………………………………………… 1分∵(m -1)2≥0, ∴∆≥0.∴该方程总有两个实数根. …………………………………………………………………2分(2)解:x =当m 为整数1或-1时,x 2为整数,即该方程的两个实数根都是整数, ∴m 的值为1或-1.……………………………………………………………………………5分20.解:(1)∵点A (a ,3)在直线2y x =-+ 上,∴ 3=-a +2. ∴ a=-1.………………………………………………………………………………………… 1分 ∴A (-1,3).∵点A (-1,3)在反比例函数ky =x的图象上,∴31k=-.∴ k =-3. ………………………………………………………………………………………… 2分∴3y =x -. ……………………………………………………………………………………… 3分(2)(0,4 )或(0,-4 ).……………………………………………………………………………5分21.解:(1)120+5x ;……………………………………………………………………………………………………………………………… 1分(2)设有x 辆车未租出时,该汽车租赁公司日收益为y 元.根据题意,有()()4012052100y x x =-+-. (3)分即 25802700y x x =-++.∵05<-, ∴当8082(5)x =-=⨯-时,y 有最大值.y 有最大值是3020. ……………………………………………………………………………………………………………………… 4分∴120+5x =120+5×8=160. …………………………………………………………………………………………………………… 5分答:当每辆车的日租金为160元时,该汽车租赁公司日收益最大,最大日收益为3020元.22. (1)证明:如图,连接BD .∵AB 为⊙O 的直径,∴∠ADB =90°.…………………………………… 1分∴∠DAB +∠ABD =90°. ∵AF 是⊙O 的切线, ∴∠FAB =90°.…………………………………… 2分 即∠DAB +∠CAF =90°.∴∠CAF =∠ABD . ∵BA =BC ,∠ADB =90°, ∴∠ABC =2∠ABD .∴∠ABC =2∠CAF .………………………………… 3分(2)解:如图,连接AE .∴∠AEB =90°. 设CE = x ,∵CE :EB =1:4,∴EB =4x ,BA =BC =5x ,AE=3x . 在Rt △ACE 中,AC 2=CE 2+AE 2.即(2= x 2+(3x ) 2.∴x =2.∴CE =2.…………………………………………………………………………………………… 4分∴EB =8,BA =BC =10,AE =6.∵tan AE AFEB BAABF ==∠. ∴6810AF =. ∴AF =152. ……………………………………………………………………………………… 5分 五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.解: (1) 由题意可知,此二次函数图象的对称轴为2x =,即()322k k-+-=.A∴1k =. …………………………………………………………………………………………1分 ∴y=x 2-4x +3. ……………………………………………………………………………………2分(2)如图1…………………………………………3分1<x <3. …………………………………………………………………………………………………………………………… 4分(3)由(1)得此方程为220x m m +-=.22=4m m ∆--()()=-m 2+4m . …………………………………………………………………………………… 5分∴Δ是m 的二次函数.由图2可知,当-1≤m <0时,Δ<0; 当m =0时,Δ=0;当0<m ≤3时,Δ>0. ∴当-1≤m <0时,原方程没有实数根;当m =0时, 原方程有两个相等的实数根 ;当0<m ≤3时,原方程有 两个不相等的实数根. ………………………………7分24.(1)90;………………………………………………………1分 (2)∠FPG =120°;……………………………………………2分证明:如图,连接BD ,CE . ∵∠BAC =∠DAE , ∴∠BAD =∠CAE . ∵AB =AC ,AD =AE ,∴△BAD ≌△CAE ……………………………………3分∴∠1=∠2.∵点F ,G ,P 分别是DE ,BC ,CD 的中点, ∴PF ∥CE ,PG∥B图1图2BD .……………………………………………………………………………4分∴∠FPD=∠ECD =∠2+∠3,∠4=∠5. ∴∠DPG =∠4+∠6=∠5+∠6.∴∠FPG=∠FPD +∠DPG =∠2+∠3 +∠5+∠6=∠1+∠3 +∠5+∠6. 即∠FPG=∠ABC +∠ACB =180°-∠BAC =120°.…………………………………………………5分(3)7sin(90)2α︒-. ……………………………………………………………………………………7分(说明:也可以写成7cos 2α)25.解:(1)依题意,可知 A (-1, 0),B (0,2).抛物线y =ax 2+bx -32经过点A ,C (4,0) 所以有 203216+40.3a b a b ⎧--=⎪⎪⎨⎪-=⎪⎩, ………………………………………………………………………1分解得 161.2a b ⎧=⎪⎪⎨⎪=-⎪⎩,∴2112623y x x =--.………………………………………………………………………………2分(2)点D 在该抛物线上.………………………………………………………………………………3分依题意,可得BO =2,CO =4. 过点D 作DF 垂直x 轴于点F , ∴△CDF ∽△CBO . ∴2===1DC DF CF BC BO CO . ∴DF =4,OF = CF - OC = 4.∴ D (-4,4).……………………………………4分∵()()21124623⨯-⨯-=-4-4,∴点D 在该抛物线上.(3)①由题意可知E (4,10). 设DE 与y 轴的交点为M ′, ∵M ′B ∥EC ,∴'1'DM DBEM CB==.∴D M′=EM′.∴M′即⊙M的圆心M.∴152BM EC==.∴M(0,7). (6)分②(-4,4)或(3,3). (8)分说明:各解答题的其他正确解法请参照以上标准给分.。
2014/2015学年度第一学期九年级期末考试数学试卷(人教版)一、选择题1.下列方程没有实数根的是( )A .x 2+4x = 1B . x 2+ x −3= 0C .x 2−2x +2=0D .0)3)(2(=--x x 2.抛物线5)3(22+--=x y 的顶点坐标是( ) A. )5,3(B. )5,3(-C. )5,3(-D. )5,2(-3.把抛物线y = −x 2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( )A .y = −(x − 1)2 − 3B .y = −(x + 1)2 + 3C .y = −(x − 1)2 + 3D .y = −(x + 1)2 − 34.已知二次函数y =ax 2+bx +c ,若a<0,c>0,那么它的图象大致是( )5.已知二次函数y = −x 2− 2x + k 的图象经过点A (2,y 1),B (-2,y 2),C (−5,y 3),则下列结论正确的是( )A .321y y yB .312y y yC .213y y yD .231y y y 6.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是( )A .点(0,3)B .点(2,3)C .点(6,1)D .点(5,1) 72则下列判断中正确的是( )A .抛物线开口向上B .抛物线与y 轴交于负半轴C .当x =4时,y >0D .方程ax 2+bx +c =0的正根在3与4之间8.如图,抛物线y=x 2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A 1,A 2,A 3…A n ,….将抛物线y=x 2沿直线L :y=x 向上平移,得一系列抛物线,且满足下列条件: ①抛物线的顶点M 1,M 2,M 3,…M n ,…都在直线L :y=x 上; ②抛物线依次经过点A 1,A 2,A 3…A n ,…. 则顶点M 2014的坐标为( )A.(2013,2013)B.(2014,2014)C.(4027,4027)D.(4028,4028)二、细心填一填(10×3)9.写出一个根为-2的一元二次方程10.2014年南京青奥会某项目6名礼仪小姐的身高如下(单位:cm ):168,166,168,167, 169,168,则她们身高的极差是 cm .11.在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率 飞镖落在白色区域的概率.(填“>”“=”“<”) 12.某台钟的时针长为9分米,从上午7时到上午11时该钟时针针尖走过的路程是 分14.如图,对称轴平行于y 轴的抛物线与x 轴交于(1,0),(3,0)两点,则它的对称轴为 .15.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为3)4(1012+--=x y ,由此可知铅球推出的距离是 m .16.把球放在长方体纸盒内,球的一部分露出盒外,如图所示为正视图.已知EF =CD =16厘米,这个球的半径是 厘米.17.如图,定长弦CD 在以AB 为直径的⊙O 上滑动(点C 、D 与点A 、B 不重合),M 是CD 的中点,过点C 作CP ⊥AB 于点P ,若CD=3,AB=8,PM=l ,则l 的最大值是 .(第11题图) (第14题图)18.若抛物线y =c bx x ++-22与x 轴只有一个交点,且过点),2(),,4(n m B n m A +-,则n =______. 三、用心做一做 19.(本题满分8分)2015年“我要上春晚”进入决赛阶段,最终将有甲、乙、丙、丁4 名选手进行决赛的终极较量,决赛分3期进行,每期比赛淘汰1名选手,最终留下的歌手 即为冠军.假设每位选手被淘汰的可能性都相等. (1) 甲在第1期比赛中被淘汰的概率为 ;(2) 利用树状图或表格求甲在第2期被淘汰的概率;(3) 依据上述经验,甲在第3期被淘汰的概率为 . 20.(本题满分8分)九(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲7 8 9 7 10 10 9 10 10 10 乙10 8 7 9 8 10 10 9 10 9 (1)甲队成绩的中位数是 分,乙队成绩的众数是 分; (2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是 队. 21.(本题满分8分)某种盆栽花卉每盆的盈利与每盆种植花卉的株数有关:已知每盆种植3株时,平均每株可盈利4元;若每盆多种植1株,则平均每株盈利要减少0.5元.为使每盆的盈利达到15元,则每盆应种植花卉多少株?22.(本题满分8分)如图,已知二次函数121212--=x x y 的图象交x 轴于A 、D 两点. (1)求线段AD 的长;(2)在同一坐标系中画出直线y =x +1,并写出当x 在什么范围内时,一次函数的值大于二次函数的值.23.(本题满分10分)如图,抛物线与x 轴交于A 、B 两点,与y 轴交C 点,点A 的坐标为(2,0),点C 的坐标为(0,3)它的对称轴是直线x=(1)求抛物线的解析式;(2)M 是线段AB 上的任意一点,当△MBC 为等腰三角形时,求M 点的坐标.24.(本题满分10分)有一座抛物线形拱桥,正常水位时桥下水面宽度为20m ,拱顶距离水面4m.⑴ 在如图所示的直角坐标系中,求出该抛物线的解析式;⑵ 设正常水位时桥下的水深为2m ,为保证过往船只顺利航行,桥下水面的宽度不得小于18m ,求水深超过多少米时就会影响过往船只在桥下的顺利航行.4mC B AO正常水位20my x25.(本题满分10分)科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):温度x/℃……-4 -2 0 2 4 4.5 ……植物每天高度增长量y/mm ……41 49 49 41 25 19.75 ……由这些数据,科学家推测出植物每天高度增长量y是温度x的函数,且这种函数是反比例函数、一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度的增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度x应该在哪个范围内选择?请直接写出结果.26.(本题满分10分)沿海开发公司准备投资开发A、B两种新产品,通过市场调研发现:(1)若单独投资A种产品,则所获利润y A(万元)与投资金额x(万元)之间满足正比例函数关系:y A=kx;(2)若单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间满足二次函数关系:y B=ax2+bx.(3)根据公司信息部的报告,y A,y B(万元)与投资金额x(万元)的部分对应值如下表A;B=;(2)若公司准备投资20万元同时开发A、B两种新产品,设公司所获得的总利润为W(万元),试写出W与某种产品的投资金额x(万元)之间的函数关系式;(3)请你设计一个在(2)中能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少万元?27.(本题满分12分)问题提出:平面内不在同一条直线上的三点确定一个圆.那么平面内的四点(任意三点均不在同一直线上),能否在同一个圆呢?初步思考:设不在同一条直线上的三点A、B、C确定的圆为⊙O.⑴当C、D在线段AB的同侧时,如图①,若点D在⊙O上,此时有∠ACB=∠ADB,理由是;如图②,若点D在⊙O内,此时有∠ACB ∠ADB;如图③,若点D在⊙O外,此时有∠ACB ∠ADB.(填“=”、“>”或“<”);由上面的探究,请直接写出A、B、C、D四点在同一个圆上的条件:.类比学习:(2)仿照上面的探究思路,请探究:当C、D在线段AB的异侧时的情形.如图④,此时有,如图⑤,此时有,如图⑥,此时有.由上面的探究,请用文字语言直接写出A、B、C、D四点在同一个圆上的条件:.拓展延伸:(3)如何过圆上一点,仅用没有刻度的直尺,作出已知直径的垂线? 已知:如图,AB 是⊙O 的直径,点C 在⊙O 上. 求作:CN ⊥AB .作法:①连接CA ,CB ; ②在上任取异于B 、C 的一点D ,连接DA ,DB ; ③DA 与CB 相交于E 点,延长AC 、BD ,交于F 点; ④连接F 、E 并延长,交直径AB 于M ;⑤连接D 、M 并延长,交⊙O 于N .连接CN . 则CN ⊥AB . 请按上述作法在图④中作图,并说明CN ⊥AB 的理由.(提示:可以利用(2)中的结论)28.(本题满分12分)如图,已知抛物线32++=bx ax y 经过点B (-1,0)、C (3,0),交y 轴于点A ,(1)求此抛物线的解析式;(2)抛物线第一象限上有一动点M ,过点M 作MN ⊥x 轴,垂足为N ,请求出ON MN 2+的最大值,及此时点M 坐标;(3)抛物线顶点为K ,KI ⊥x 轴于I 点,一块三角板直角顶点P 在线段KI 上滑动,且一直角边过A 点,另一直角边与x 轴交于Q (m ,0),请求出实数m 的变化范围,并说明理由.BCM N初三数学参考答案第17题命题老师解析:第18题命题老师解析:方法一:将y =c bx x ++-22沿x 轴左右平移得22x y -=,由),2(),,4(n m B n m A +-知,平移后,点B 坐标为),3(n ,易得18-=n方法二:由抛物线过点),2(),,4(n m B n m A +-得,抛物线对称轴为直线1-=m x ,抛物线与x 轴只有一个交点,可另设抛物线解析式为2)1(2+--=m x y 把点B 坐标代入可得18-=n20. (1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分), 则中位数是9.5分;10出现了4次,出现的次数最多, 则乙队成绩的众数是10分;故答案为:9.5,10;…………………… 2分(2)乙队的平均成绩是:(10×4+8×2+7+9×3)=9,…………………… 3分则方差是:[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;…………… 6分(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1, ∴成绩较为整齐的是乙队 故答案为:乙.;…………………… 8分21. 设每盆应种植花卉x 株[]15)3(5.04=--x x ……………………………5分解得51=x ,62=x ………………… 7分 答:每盆应种植花卉5株或6株………………8分(2)图象如图,……………7分当一次函数的值大于二次函数的值时,x 的取值范围是﹣1<x <4.……………………8分23.解:(1)设抛物线的解析式把A (2,0)C (0,3)代入得:解得:即………………………………………………………4分(2)由y=0得∴x 1=1,x 2=﹣3 ∴B (﹣3,0) ①CM=BM 时 ∵BO=CO=3 即△BOC 是等腰直角三角形 ∴当M 点在原点O 时,△MBC 是等腰三角形 ∴M 点坐标(0,0)…………………………………7分 ②BC=BM 时 在Rt △BOC 中,BO=CO=3, 由勾股定理得∴BC=∴BM=∴M 点坐标(……………………………10分25.(1)选择二次函数,设c bx ax y ++=2,得⎪⎩⎪⎨⎧=++=+-=4124492449c b a c b a c ,解得⎪⎩⎪⎨⎧=-=-=4921c b a∴y 关于x 的函数关系式是4922+--=x x y .不选另外两个函数的理由:注意到点(0,49)不可能在任何反比例函数图象上,所以y 不是x 的反比例函数;点(-4,41),(-2,49),(2,41)不在同一直线上,所以y 不是x 的一次函数. ……………………4分(2)由(1),得4922+--=x x y ,∴()5012++-=x y ,∵01<-=a ,∴当1-=x 时,y 有最大值为50.即当温度为-1℃时,这种植物每天高度增长量最大.……………………8分(3)46<<-x .…………………………10分27.(1)同弧所对的圆周角相等.∠ACB<∠ADB,∠ACB>∠ADB.答案不惟一,如:∠ACB=∠ADB.……………………(各1分)(2)如图:此时∠ACB+∠ADB=180°, 此时∠ACB+∠ADB>180°, 此时∠ACB+∠ADB<180 若四点组成的四边形对角互补,则这四点在同一个圆上.…………(各1分)(3)作图正确.………………(1分)∵AB是⊙O的直径,C、D在⊙O上,∴∠ACB=90°,∠ADB=90°.∴点E是△ABF三条高的交点.∴FM⊥AB.……………………(1分)∴∠EMB=90°.∠EMB+∠EDB=180°,∴点E,M,B,D在同一个圆上.……………………(1分)∴∠EMD=∠DBE.又∵点N,C,B,D在⊙O上,∴∠DBE=∠CND,∠EMD=∠CND.∴FM∥C N.∴∠CPB=∠EMB=90°.∴CN⊥AB.……………………(1分)(注:其他正确的说理方法参照给分.)28. (1)∵抛物线y=ax²+bx+3经过点B (-1,0)、C (3,0),∴a b+3=09a b+3=0⎧⎨⎩-+3,解得,a=1b=2⎧⎨⎩-。
2014-2015学年度秋季学期宜昌城区联考九 年 级 数 学 试 题本试题共24小题,满分120分,考试时间120分钟.注意事项:1.本试卷分试题卷和答题卡两部分,请将答案写在答题卡上每题对应的答题区域内,写在试题卷上无效.2.参考公式:弧长:180n l R π=;二次函数c bx ax y ++=2顶点坐标是(ab ac a b 44,22--)扇形面积:S = n πR 2360 ; 求根公式:x =-b ±b 2-4ac 2a一、选择题 (下列各小题中,只有一个选项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号. 每小题3分,计45分.)1.下列图案中既是中心对称图形也是轴对称图形的是().A .B .C .D .2.方程(x +1)(x -2)=0的根是( ).A .x =-1B . x 1=1,x 2=-2C .x =2D .x 1=-1,x 2=23.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列是必然事件的是( ).A .摸出的三个球中至少有一个球是黑球B .摸出的三个球中至少有一个球是白球C .摸出的三个球中至少有两个球是黑球D .摸出的三个球中至少有两个球是白球4.如果2是方程x 2-c =0的一个根,那么c 的值是( ). A .2 B .-2 C .4 D .-45.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =58°,则∠BCD 等于( ).A .16°B .64°C .58°D .32°第5题6.用配方法解方程x 2﹣2x ﹣5=0时,原方程应变形为( ).A . (x +1)2=6B . (x ﹣1)2=6C . (x +2)2=9D . (x ﹣2)2=97.如图,⊙O 的内接四边形ABCD ,∠BOD =110°,则∠A 的度数是( ).A . 55°B .80°C .125°D .110°8.为了估计池塘里有多少条鱼,从池塘里捕捞了100条鱼做上标记,然后放回池塘里, 经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记 的鱼有5条,则估计池塘里有鱼( ).A . 500条B . 1000条C . 2000条D . 4000条9.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m ) 之间的关系为y =-112(x -4)2+3,由此可知铅球能到达的最大高度( ).A . 10mB . 3mC . 4mD . 2m 或10m10.半径为5的⊙O 的圆心在原点O ,则点P (3,4)与⊙O 的位置关系( ). A .点P 在⊙O 外 B .点P 在⊙O 上 C .点P 在⊙O 内 D .无法判断11.如图,在4×4的正方形网格中,每个小正方形的边长为1.若将△AOC 绕点O 顺时针旋转90º得到△BOD ,则⌒AB 的长为( ).A. πB. 6πC. 3πD. 1.5π 12.若函数y=x 2-4x +m 与横轴只有一个交点,则m 的值是( ).A .4B .-4C .41D .41第7题C 第11题13.如图:点O是△ABC内心,若∠BAC=80°,则∠BOC=A.130°B.160°C.50°D.65°14.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C.若∠A=40°.∠B′=110°,则∠BCA′的度数是().A.110°B.80°C.40°D.30°15.直线y=ax+b和抛物线y=ax2+bx+c在同一坐标系中的图像可能是().A.B.C.D.二、解答题.(将解答过程写在答题卡上指定的位置.本大题共有9小题,计75分.) 16.(6分) 解方程:x2-2x-3=0 .17.(6分) 已知:Rt△ABC,∠ABC=90°,AB=BC=2,以A为圆心,AB为半径画弧交AC于D,求阴影部分的面积(结果保留π).18.(7分) 经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)请用树形图或列表法中的一种,列举这两辆汽车行驶方向的所有可能结果;(2)求这两辆汽车一辆汽车向左转,一辆汽车向右转的概率.第17题DCBAx第14题第13题B C19.(7分)如图:充分利用总长8米的竹篱笆围成一个直角三角形花坛ABC ,∠BAC =90°,斜边BC 靠墙边(BC 不占用竹篱笆,墙长超过8米),求能围成直角三角形花坛ABC的最大面积是多少?20.(8分) 如图,王师傅从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15立方米的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问王师傅购回这张矩形铁皮共花了多少元钱?(注:容积=长×宽×高)21.(8分) 已知:如图,AB 是⊙O 的直径,BD 是⊙O 的弦,过点B 向过点D 的直线作垂线,垂足是点C ,BC 交⊙O 于点G ,BD (1)求证:DC 是⊙O 的切线;(2)若CD =4,BG =6,求⊙O 的半径.第21题B第19题22.(10分) 某手机品牌店销售A ,B 两种品牌手机,随着元旦与春节的临近,加之商家有一定程度的让利促销活动,手机的销量分别出现不同程度的增长,A 品牌手机的销量每月都比上个月多卖100台,而B 品牌的手机的销量每月均按照一个相同的百分数增长,十月份A 品牌手机的销量比B 品牌的手机销量少360台,十一月份两种手机的总销量比十月份两种手机的总销量多200台,十二月份两种手机的总销量比十月份两种手机的总销量多25% .(1) 求B 品牌的手机十一份的销量比十月份的销量多多少台? (2) 求B 品牌的手机十月份的销量是多少台?23. (11分) 已知:Rt △ACB ,∠ACB =90°,∠BAC =60°,Rt △ACB 绕点A 旋转得到Rt △ADE . (1)如图1,若点D 在AB 边上,连接BE ,求证:AC ∥BE ; (2)如图2,在(1)的条件下,连接CD 并延长交BE 于F ,求证:①∠BFC =60° , ②BF =FE ;(3)如图3, 当Rt △ACB 绕点A 旋转到图3位置时,上述(2)的两个结论是否依然成立?如果成立,请予以证明;如果不成立,请说明理由.24.(12分) 已知:点A (m ,0)是x 轴负半轴上一个动点,B (0,4),△ABO 绕原点O第23题 图1B A 第23题 图2EA 第23题 图3A沿逆时针方向旋转90°到△DCO的位置,过A,C,D三点的抛物线的顶点E,EH⊥x轴于H,与直线BC交于点F,与直线CD交于点G .(1) 直接写出C,D的坐标:C(,);D(,)( 可含有字母m ) ;(2) 求出过A,C,D三点的抛物线的解析式(用m的代数式表示);(3) 求证:EF=EG;(4) 若过A,C,D三点的抛物线的顶点E在△ABC的内部(包括边界),求FG的最大值.(第24题 本图仅供参考)。
九年级数学试题注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页,为选择题,共36分.第Ⅱ卷2页,为非选择题,共84分.全卷满分120分,考试时间120分钟.2.答卷前,务必将答题卡上面的项目填涂清楚.所有答案都必须涂、写在答题卡相应的位置,答在本试卷上一律无效.第Ⅰ卷一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,多选、不选、错选均记零分.)1. 下列说法中正确的是()A. 平分弦的直径垂直于弦,并且平分弦所对的两条弧;B. 圆是轴对称图形,每一条直径都是它的对称轴;C. 弦的垂直平分线过圆心;D. 相等的圆心角所对的弧也相等.2. 如图,A、B、P是⊙O上的三点,∠APB=40°,则弧AB的度数为()A.50°B.80°C.280°D.80°或280°3. 如图,在直径为AB的半圆O上有一动点P从O点出发,以相同的速度沿O-A-B-O的路线运动,线段OP的长度d与运动时间t之间的函数关系用图象描述大致是()4. 下列命题中的假命题是()A. 正方形的半径等于正方形的边心距的2倍;B. 三角形任意两边的垂直平分线的交点是三角形的外心;C. 用反证法证明命题“三角形中至少有一个内角不小于60°”时,第一步应该“假设每一个内角都小于60°”;D. 过三点能且只能作一个圆.5. 如图,⊙O的半径是4,点P是弦AB延长线上的一点,连接OP,若OP=6,∠APO=30°,则弦AB的长为()A .27B .7C .5D .526. 如图所示,在△ABC 中D 为AC 边上一点,若∠DBC =∠A ,BC =3,AC =6,则CD 的长为( ) A .1 B .2 C .23 D .25 7. 下列方程中:①x 2-2x -1=0, ②2x 2-7x +2=0, ③x 2-x +1=0 两根互为倒数有( ) A. 0个 B. 1个 C. 2个 D. 3个 8. 一次函数y 1=3x +3与y 2=-2x +8在同一直角坐标系内的交点坐标 为(1,6).则当y 1>y 2时,x 的取值范围是( )A. x ≥1B. x =1C. x <1D. x >1 9. 在△ABC 中,若()21cosA 1tanB 02-+-=,则∠C 的度数是( ) A. 45° B. 60° C. 75° D. 105°10. 如图,热气球的探测器显示,从热气球A 看一栋高楼顶部B 的仰角为30°,看这栋高楼底部C 的俯角为60°,热气球A 与高楼的水平距离为120m ,这栋高楼BC 的高度为( ) A .1603m B .803 m C .()12031- m D .()12031+m11. 已知反比例函数y =xk的图像经过点P (-1,2),则这个函数图像位于( ) A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限 12. 已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:①abc <0;②b >a +c ;③2a -b =0;④b 2-4ac <0.其中正确的结论个数是( ) A.1个 B.2个 C.3个 D.4个第Ⅱ卷二、填空题(本题共6小题,要求将每小题的最后结果填写在横线上. 每小题3分,满分18分) 13. 已知一元二次方程ax 2+bx +c =0的两根为x 1=2,x 2=-3,则二次三项式ax 2+bx +c 可分解因式为 .14. ⊙O 的半径为10cm ,AB ,CD 是⊙O 的两条弦,且AB ∥CD ,AB =16cm ,CD =12cm .则AB 与CD 之间的距离是 cm .15. 如图所示,△ABC 中,E 、F 、D 分别是边AB 、AC 、BC 上的点,且满足12AE AF EB FC ==,则△EFD 与△ABC 的面积比为 .16. 如图,M 是Rt △ABC 的斜边BC 上异于B 、C 的一定点,过M 点作直线MN 截△ABC交AC 于点N ,使截得的△CMN 与△ABC 相似. 已知AB =6,AC =8,CM =4,则CN = .17. 一个足球从地面上被踢出,它距地面高度y (米)可以用二次函数x x y 6.199.42+-=刻画,其中x (秒)表示足球被踢出后经过的时间. 则足球被踢出后到离开地面达到最高点所用的时间是 秒. 18. 在△ABC 中,AB =AC =5,tanB =34.若⊙O 的半径为10,且⊙O 经过点B 、C ,那么线段OA 的长等于 .三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤. 共66分) 19. (本题满分10分)市某楼盘准备以每平方米6 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4 860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?如图,晚上小明站在路灯P的底下观察自己的影子时发现,当他站在F点的位置时,在地面上的影子为BF,小明向前走2米到D点时,在地面上的影子为AD,若AB=4米,∠PBF=60°,∠PAB=30°,通过计算,求出小明的身高.(结果保留根号).21. (本题满分11分)如图,四边形ABCD内接于⊙O,BC是直径,∠BAD=120°,AB=AD.(1)求证:四边形ABCD是等腰梯形;(2)已知AC=6,求阴影部分的面积.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B .(1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =63,AF =43,求sinB 的值.23. (本题满分12分)已知关于x 的一元二次方程()2kx 4k 1x 3k 30-+++=. (1)试说明:无论k 取何值,方程总有两个实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5. 当△ABC 是等腰三角形时,求k 的值.AB是⊙O的直径,AD与⊙O相交,点C是⊙O上一点,经过点C的直线交AD于点E.⑴如图1 ,若AC平分∠BAD,CE⊥AD于点E,求证:CE是⊙O的切线;⑵如图2,若CE是⊙O的切线,CE⊥AD于点E,AC是∠BAD的平分线吗?说明理由;⑶如图3,若CE是⊙O的切线,AC平分∠BAD,AB=8,AC=6,求AE的长度.试题答案及评分标准一、选择题(每小题选对得3分,满分36分. 多选、不选、错选均记零分.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CBBDACBDCADB二、填空题(每小题3分,满分18分)13. a (x -2)(x +3) 14. 214或 15. 2:9 16. 1655或17.2 18. 3或5 三、解答题(本题共6小题,解答应写出文字说明、证明过程或推演步骤.共66分) 19. (本题满分10分)解:解:(1)设平均每次下调的百分率为x , 则6000(1-x )2=4860, 解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………6分 (2)方案1优惠:4860×100×(1-0.98)=9720(元); 方案2可优惠:80×100=8000(元). 故方案1优惠.…………………………10分20. (本题满分10分)解:设小明的身高为x 米,则CD =EF =x 米. 在Rt △ACD 中,∠ADC =90°,tan ∠CAD =ADCD,即tan 30°=x /AD ,AD =3x --2分 在Rt △BEF 中,∠BFE =90°,tan ∠EBF =EF /BF ,即tan 60°=x /BF ,BF =x 33---4分 由题意得DF =2,∴BD =DF -BF =2-x 33,∵AB =AD +BD =4,∴3x +2-x 33=4 --8分即x =3.答:小明的身高为3米.------------------------------------------------------------------------10分 21. (本题满分11分)⑴证明:∵∠BAD =120°,AB =AD ∴∠ABD =∠ADB =30° ∴弧AB 和弧AD 的度数都等于60°又 ∵BC 是直径 ∴弧CD 的度数也是60° ------------------ --------------2分 ∴AB =CD 且∠CAD =∠ACB =30° ∴BC ∥AD∴四边形ABCD 是等腰梯形. --------------------------------------------------5分⑵∵BC 是直径 ∴∠BAC =90°∵∠ACB =30°,AC =6∴0cos 30AC BC ===R =∵弧AB 和弧AD 的度数都等于60° ∴∠BOD =120° ---------------------------6分 连接OA 交BD 于点E ,则OA ⊥BD 在Rt △BOE中:0sin30OE OB =⋅=0cos 330BE OB =⋅=,BD =2BE =6----------------------------------------------------8分∴(21201-63602BOD BODS S S⨯⨯=-=⨯阴影扇形ππ ----------------------------------------------------11分 22. (本题满分11分)⑴证明:∵∠AFE =∠B ,∠AFE 与∠AFD 互补,∠B 与∠C 互补∴∠AFD =∠C --------------------------------------------------2分 ∵AD ∥BC ∴∠ADF =∠DEC -------------------------------------------4分 ∴△ADF ∽△DEC ----------------------------------------------------5分 ⑵解:∵△ADF ∽△DEC ∴AD AFDE CD== 解得:DE =12 ----------------------------------------------------7分 ∵AE ⊥BC , AD ∥BC ∴AE ⊥AD∴6AE ==----9分在Rt △ABE 中,63sin 84AE B AB === -------------------------------------------------11分 23. (本题满分12分)解:⑴△=()()243341k k k -++ =2216181212k k k k ++--=2441k k -+ =()221k -≥0 --------------------------------------------------4分∴无论k 取何值,方程总有两个实数根. -------------------------------------------------5分 ⑵若AB =AC 则方程()2kx 4k 1x 3k 30-+++=有两个相等的实数根此时△=0,即:()221k -=0 解得:12k =当12k =时,AB =AC =3,此时AB 、AC 、BC 满足三边关系. -------------------------8分 若BC =5为△ABC 的一腰,则方程()2kx 4k 1x 3k 30-+++=有一根是5,将5x =代入方程()2kx 4k 1x 3k 30-+++=解得:14k = 当14k =时,解得方程两根为5和3,此时AB 、AC 、BC 满足三边关系. ----------11分 综上:当△ABC 是等腰三角形时,k 的值为1124或. -----------------------------12分24. (本题满分12分) ⑴证明:连接OC∵OA =OC ∴∠OAC =∠OCA ∵AC 平分∠BAD ∴∠OCA =∠CAD ∴OC ∥AD∵CE ⊥AD ∴CE ⊥OC -----------------------------------------------3分 又OC 是半径 ∴CE 是⊙O 的切线。
2014-2015 学年九年级数学(上)期末试卷说明:1、本卷共有6个大题,24 个小题,全卷满分120分,考试时间120 分钟。
2、不要答在试题卷上,请将答案写在所给的答题卡相应位置,否则不给分。
一、选择题(本大题共6小题,每小题3分,共18分)1.下列电视台的台标,是中心对称图形的是A.B.C.D.2.掷一枚质地均匀的硬币10 次,下列说法正确的是()A.必有5 次正面朝上B.可能有5 次正面朝上C.掷2 次必有1 次正面朝上D.不可能10次正面朝上3.用配方法解方程x -2x-3=0时,配方后所得的方程为A、(x-1) =4B、(x-1) =2C、(x+1) =4D、(x+1) =24.九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070 张相片,如果全班有x 名学生,根据题意列出方程为11A、2x(x-1)=2070 B、2x(x+1)=2070 C、x(x+1)=2070 D、x(x-1)=2070 5.小明想用一个圆心角为120°,半径为6cm 的扇形做一个圆锥的侧面(接缝处忽略不计),则做成的圆锥底面半径为A、4 cmB、3cmC、2 cmD、1 cm6.已知抛物线y=ax +bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是A B C D二、填空题(本大题共8小题,每小题3分,共24分)C7.一元二次方程x=x 的解为。
8.如图,若AB 是⊙O 的直径,AB=10,∠CAB=30°,则BC=。
9.如图所示的五角星绕中心点旋转一定的角度后能与自身完全重合,则其旋转的角度至少为。
10.某品牌手机两年内由每台2500 元降低到每台1600 元,则这款手机平均每年降低的百分率为。
A O B22 2 2 22211.若正方形的边长为 6cm ,则其外接圆半径是 。
12.林业工人为调查树木的生长情况,常用一种角卡工具,可以很快测出大树的直径,其工作原理如图所示,已知 AC 和 AB 都与⊙O 相切,∠BAC =60°,AB =0.6m ,则这棵大树 的直径为 。
AD 湖北省宜昌市兴山县2014-2015学年上学期期末调研考试九年级数学试题(考试形式:闭卷 全卷两大题24小题 满分:120分 时限:120分钟)注意事项:本试卷分试题卷和答题卡两部分,请将答案写在答题卡上每题对应的答题区域内,写在试题卷上无效,考试结束,只交答题卡.一、选择题(下列各小题都给出了四个选项,其中只有一项符合题目要求,请把符合要求的选项 字母在答题卡上按要求涂黑.每小题3分,共45分)1、在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )2、下列事件中是确定事件的是( )A .篮球运动员身高都在2米以上B .弟弟的体重一定比哥哥的轻C .今年教师节一定是晴天D .吸烟有害身体健康 3、二次函数()223y x =-+-的图像的顶点坐标是( ) A .(2,3) B. (2,-3) C.(-2,3) D . (-2,-3)4、小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬币,那么硬币正面朝上的概率为( ) A .21 B .41 C . D .435、用配方法解方程x 2-4x +2=0,下列配方正确的是( ).A.()222=-xB.()222=+xC.()222-=-xD.()622=-x6、三角形的内心是( )(A )三条中线的交点 (B )三条角平分线的交点 (C )三条高的交点 (D )三条中垂线的交点 7、如图,用直角三角板经过两次画图找到圆形工件的圆心,这种方法应用的道理是( ) A. 垂径定理 B.勾股定理C. 直径所对的圆周角是直角D. 900的圆周角所对的弦是直径8.如图,已知点D 是⊙A 的优弧BC 上一点,∠BAC=0100,那么∠BDC 的度数是( )A. 040B. 050C. 060D. 不能确定9、劳技课上,小颖将一顶自制的圆锥形纸帽戴在头上,已知纸帽底面圆半径为10cm ,母线长50cm ,210. 小胡同学的身高为1.6米,某一时刻她在阳光下的影长为2米, 与她邻近的一根旗杆的影长为5米,则这根旗杆的高为( )A .3米B .3.6米C .4米D .4.8米11、下列正方形方格中四个三角形中,与甲图中的三角形相似的是( )甲图A B C D12. 把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( ) A .2(1)3y x =--- B .2(1)3y x =-+- C .2(1)3y x =--+D .2(1)3y x =-++13. 如右图,是一个单心圆曲隧道的截面,若路面AB 宽为10米,圆心O 在高上,OD 为3米,则此隧道所在圆的半径OA 是( ) A 、4 B 、 C D14. 如图,矩形内相邻两个正方形的面积分别为2 cm 2和5 cm 2, 则阴影部分的面积是( ) cm 2. A .3 B C .21 D 2(第14题图)15.已知一次函数y=ax+b 与二次函数y=ax 2+bx,它们在同一坐标系内大致图象是( )二、解答题(本大题共9小题,计75分) 16..(6分)解方程:3x(x+5)=x+5(第17题图)17. (6分)如图,P 是正方形内一点,将△ABP 绕点B 顺时针方向旋转能与△CBP′重合,若BP=3,求PP′.18、(7分)如图:在△ABC 中,AD ⊥BC ,垂足是D . (1)作△ABC 的外接圆O ,作直径AE (尺规作图);(2)若AB =8,AC =6,AD =5,求△ABC 的外接圆直径AE19、(7分)已知关于x 的一元二次方程x 2 + 2(k -1)x + k 2-1 = 0有两个不相等的实数根x 1,x 2. (1)求实数k 的取值范围;(2)若3x 1+3x 2= x 1x 2,求k 的值.20、(8分)一个不透明的布袋里装有3个红球,2个白球,它们除颜色外其余都相同.(1)随机摸出1个球,记下颜色后放回,并搅匀,再摸出1个球.利用列表或树状图求两次摸出的球恰好颜色不同的概率; (2)现又将n 个白球放入布袋,搅匀后,使摸出1个球是白球的概率为85,求n 的值. 21、(8分)如图,AB 为⊙O 的直径,弦CD 与AB 相交于E ,DE =EC ,过点B 的切线与AD 的延长线交于F ,过E 作EG ⊥BC 于G ,延长GE 交AD 于H .(1)求证:AH=HD ;(2)若AE:AD =45,DF =9,求⊙O 的半径。
FB A22、(10分)据统计,2013年某地区建筑商出售商品房后的利润率(即利润除以成本)为25%。
(1)2013年该地区一套总售价为60万元的商品房,成本是多少?(2)2014年第一季度,该地区商品房每平方米价格上涨了2a 元,每平方米成本仅上涨了a 元,这样60万元所能购买的商品房的面积比2013年减少了20平方米,建筑商的利润率达到三分之一。
求2014年该地区建筑商出售的商品房每平方米的利润。
DBC A(第18题图)23.(11分)如图,以矩形ABCD 的对角线AC 的中点O 为圆心、OA 长为半径作⊙O ,⊙O 经过B 、D 两点,过点B 作BK ⊥AC ,垂足为K ,过点D 作DH ∥KB ,DH 分别与AC 、AB 、⊙O 及CB 的延长线相交于点E 、F 、G 、H 。
(1)求证:AE =CK(2)若AB =a ,AD =13a (a 为常数),求BK 的长(用含a 的代数式表示)。
(3)若F 是EG 的中点,且DE =6,求⊙O 的半径和GH 的长。
24.(12分)平面直角坐标系中,如图1,将n 个边长为1的正方形并排组成矩形OABC ,相邻两边OA 和OC 分别落在x 轴和y 轴的正半轴上,设抛物线y =ax2+bx +c (a <0)过矩形顶点B 、C 。
(1)当n =1时,如果a =-1,试求b 的值。
(2)当n =2时,在矩形OABC 上方作一边长为1的正方形EFMN ,使EF 在线段CB 上,如果M ,N 两点也在抛物线上,求出此时抛物线的解析式。
(3)当n=3时,将矩形OABC 绕点O 顺时针旋转,使得点B 落到x 轴的正半轴上,如果该抛物线同时经过原点O ,求a 的值。
参考答案一、选择题(3分×15=45分)16、每解出一个正确的解计3分,两个解共6分17、证出△BPP ’等腰直角三角形的计3分,求出PP ’的值计6分 18、(1)两条中垂线各1分,直径1分,下结论1分,共4分 (2)连接BE ,(1分)证∽(1分)由比例式得:AE=(1分)19.解:(1)△= [ 2(k—1)] 2-4(k2-1)………………1分= 4k2-8k + 4-4k2 + 4=-8k + 8.………………2分∵原方程有两个不相等的实数根,∴-8k + 8>0,解得k<1 ………………3分即实数k的取值范围是k<1.(2)由根与系数的关系,x1+x2= -2(k-1),x1x2=k2-1,………………4分∵3(x1+x2)= x1x2 ,∴-6(k-1)=k2-1,………………5分化简得k2 +6k-7=0,(k-1)(k+7)=0∴k=1或k=-7,………………6分又∵k<1,∴k=-7. ………………7分20.解:(1)共有25种等可能的结果,其中两次摸出的球颜色不同的有12种,所以, ………………3分P(两次摸出的球恰好颜色不同)=…………5分(3)由题意得,………7分∴n=3 ………………8分经检验,n=3是所列方程的解,且符合题意.21:分步计分。
(1)EH=HA EH=HD 故HA=HD.3分(2)AE=4x,AE:AD=4/5,则AD=5x,ED=3x,EC=3x,4分由相似得AE:ED=EC:EB,故EB=9x/4,5分DE//FB,AE:AB=AD:AF,x=16/5,7分,AB=20,圆的半径是10,8分。
22: 解法:(1)成本=60/(1+25%)=48万元…………2分(2)方法一:设2014年60万元购买b平方米2014年的商品房成本=60/(1+1/3)=45万…………3分60/b-2a=60/(b+20)(1)45/b-a=48/(b+20)(2)……………………7分(列出一个方程2分)(2)×2-(1)30/b=36/(b+20)5b+100=6bb=100平方米……………………9分2014年每平方米的房价=600000/100=6000元利润=6000-6000/(1+1/3)=1500…………10分(2)方法二:设2013年的成本为每平米x元,列方程得:(6分)(列出一个方程2分)解得:a=500,x=4000(9分)则2014年商品房每平米的利润==0.25x+a=1500元(10分)23.(1)∵DH∥KB,BK⊥AC,∴DE⊥AC,∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴∠EAD=∠KCB,∴Rt△ADE≌Rt△CBK,∴AE=CK. (3分)(2)在Rt△ABC中,AB=,AD=BC=,∴==,(4分)∵S△ABC=AB×BC=AC×BK,∴BK===. (6分)(3)连线OG,∵AC⊥DG,AC是⊙O的直径,DE=6,∴DE=EG=6,又∵EF=FG,∴EF=3;∵Rt△ADE≌Rt△CBK,∴DE=BK=6,AE=CK,在△ABK中,EF=3,BK=6,EF∥BK,∴EF是△ABK的中位线,∴AF=BF,AE=EK=KC;(7分)在Rt△OEG中,设OG=,则OE=,EG=6,,∴,∴. (9分)连接BG可得△BGF≌△AEF,AF=BF,△ADF≌△BHF∵AD=BC,BF∥CD,∴HF=DF,∵FG=EF,∴HF-FG=DF-EF,∴HG=DE=6. (11分)24:(1)由题意可知,抛物线对称轴为直线x =1/2∴-b/2a=,得b =1 3分(2)设所求抛物线的解析式为y =ax2+bx +1 5分由对称性可知抛物线经过点B (2,1)和点M (1/2,2)∴ 解得a=-4/3,b=8/3.∴所求抛物线的解析式为y =-4/3x 2+8/3x +1 7分(3)当n =3时,OC =1,BC =3设所求抛物线的解析式为y =ax2+bx过C 作CD ⊥OB 于点D ,则Rt △OCD ∽Rt △OBC∴OD/CD=OC/BC=1/39分设OD =t ,则CD =3t∵OD 2+CD 2=OC 2,∴(3t )2+t 2=12,∴t∴C 11分又B0),∴把B、C坐标代入抛物线的解析式,得解得a=-12分。