ACPL332J应用
- 格式:pdf
- 大小:261.90 KB
- 文档页数:4
DATA SHEET Flex Max ®RF Amplifiers FM3321.2 GHz Line Extender AmplifierFor cable operators looking to ensure scalability, maximum backward compatibility, and protect network investments, CommScope offers solutions that deliver new services with minimal CAPEX, enhance network efficiency, and increase subscriber satisfaction.The new CommScope 1.2 GHz Flex Max ®FM332 Line Extender Amplifier enables cable operators to take advantage of DOCSIS 3.1 efficiencies while maintaining backward compatibility with existing 750 MHz, 870 MHz, and 1 GHz systems.•Supports 1.2 GHz Downstream and 204 MHzUpstream bandpass for DOCSIS ®3.1 migration•Increased gain to allow drop in upgrades for≥ 750 MHz spacing•Modular RF Electronics package with upgradablefrequency split options•Mechanically compatible with legacyE7/FM330/FM331 amplifier housings•QAM and Analog ADU options for automaticlevel control and gain hold in the event ofpilot loss FEATURESDownstreamThe FM332 is equipped with Gallium Nitride (GaN) hybrid technology and a single high‐level driven RF output. New 1.2 GHz Forward Cable Equalizers (CE‐120‐*) and Cable Simulators (CS‐120‐*) are available to optimize system designs. These new plug‐ins are in the JXP‐style form factor and plug into a carrier board with a backward compatible footprint, so operators who want to use the new amplifiers in older 870 MHz or 1 GHz systems can re‐use their legacy SEQ‐* equalizers.FM332 line extenders feature a new series of plug‐in Automatic Level Control (ALC) boards that include standard 711 MHz and 609 MHz QAM as well an option for legacy 499.25 MHz analog pilot frequencies. The amplifier utilizes a gain hold feature in the event of pilot loss for added system reliability. If Manual Level Control (MLC) option is chosen, there is an Automatic/Manual mode jumper that can be set to enable the amplifier to operate in Thermal Gain Control mode. There is an LED indicator to provide visual confirmation of the selected mode and pilot presence.The FM332 utilizes pluggable filters, which provides operators with the flexibility to change band splits in the future. The following frequency splits are available:•5 to 42 MHz/54 to 1218 MHz (042 split)•5 to 85 MHz/102 to 1218 MHz (085 split)•5 to 204 MHz/258 to 1218 MHz (204 split)UpstreamThe FM332 features 27 dB of gain in the upstream to accommodate a wide variety of network designs including high split. The upstream circuitry includes a single attenuator location prior to the output test point that allows operators to set levels. The return equalizer maintains the MEQ‐**‐* form factor from the FM331, and operators can select MEQ return path equalizers based on the diplex split and values required in their network design. Previous generation MEQT return path equalizers are no longer required because of the FM332’s on‐board thermal compensation feature, which helps maintain levels over temperature.Backward CompatibilityThe FM332 RF Module is backward compatible with the previous versions of FM330 and FM331 amplifier housings. Earlier E5 and E7 housings require a baseplate kit and performance > 1 GHz is not guaranteed.COMPATIBILITY330331 Upgrade to FM332Yes*Yes*Yes Yes*Requires Baseplate Upgrade Kit part number 1500855‐001 ‐Performance > 1 GHz not guaranteed204 Split258–1218 Flatness, dB2±0.75 Operational Gain, dB338 minInternal Slope, dB4042 Split085 Split204 Split 11.9 11.1 9.0Noise Figure, dB57.5 max @ 54 MHz9.0 @ 1218 MHzTest Point, dB20 ±1.0Return Loss, dB16Hum Modulation @ 15A, dBc6F minfwd to 870 MHz871 to 1003 MHz1004 to 1218 MHz ‐60 ‐55‐50Distortion: 1.2 GHz Analog/Digital, 30 Analog/160 Digital Channels7Reference Frequency, MHz1218/258/54Reference Input Level, dBmV19/10.7/9.9 (virtual)Reference Output Level (21 dB Slope), dBmV57/39.7/36 (virtual)Composite Triple Beat (CTB), dBc‐74Composite Second Order (CSO), dBc‐78Carrier to Composite Noise (CCN), dB56Distortion: 1.2 GHz All Digital, 190 Digital ChannelsReference Frequency, MHz1218/258/54Reference Input Level, dBmV13/4.7/3.9 (actual)Reference Output Level (21 dB Slope), dBmV51/33.7/30 (actual)Carrier to Composite Noise (CCN), dB850MER, dB948NOTES:1.Operating passband of station is determined by the diplex filters, forward correction board, and high pass filter installed in the amplifier.2.Flatness is measured with respect to slope. Slope is calculated using least squares.3.Specified at Ta = 25 ±5°C and measured at 1218 MHz.Includes the gain control back‐off of 5.0 ±0.1 dB and forward equalizer loss of 1.0 dB.4.Specified from 54 MHz to 1218 MHz,5.0 dB Linear Slope plus6.9 dB Cable Slope.5.The noise figure is measured with a 1 dB attenuator installed in the forward equalizer location and is specified at Ta = 25 ±5°C. The noise figure may degrade by up to 1 dB over thefull operating temperature range. The applicable specification value for any test frequency between 54 MHz and 1218 MHz is determined by applying linear interpolation to the listed specification values.6.Hum modulation is measured at 15 Arms AC current passing through the port under test.7.30 analog channels from 55.25 MHz to 253.25 MHz, 124 digital QAM channels from 261 MHz to 999 MHz, and a 192 MHz wide OFDM channel centered at 1122 MHz.N is measured by turning off the QAM channel under test and inserting a CW test signal at the corresponding QAM RF level in its place.9.MER is calculated from the measured CCN.204 Split5–204Flatness, dB2±0.5Operational Gain, dB327Slope, dB0 ±0.75Noise Figure, dB4 6.0Test Points, dB20 ±1.0dBReturn Loss, dB516Response Over Temperature, dB6±0.5 maxHum Modulation @ 15A, dBc7‐50, 5–10 MHz‐55, 11–15 MHz-60, 16–F maxreturn MHzDistortion: All Digital, 6 Digital Channels8Reference Frequency, MHz42/5Reference Input Level, dBmV13/13Reference Output Level, dBmV40/40NPR Dynamic Range, dB936BER Dynamic Range, dB1042Distortion: All Digital, 13Digital Channels8Reference Frequency, MHz85/5Reference Input Level, dBmV9/9Reference Output Level, dBmV36/36NPR Dynamic Range, dB933BER Dynamic Range, dB1039Distortion: All Digital, 33Digital Channels8Reference Frequency, MHz204/5Reference Input Level, dBmV6/6Reference Output Level, dBmV33/33NPR Dynamic Range, dB929BER Dynamic Range, dB1035NOTES:1.Upstream bandwidth is determined by the diplex filters, low pass filter (RPLPF), and upstream equalizer (MEQ * *) installed in the amplifier.2.Flatness is measured with respect to slope; slope is linear and calculated using a least squares.3.The operational gain is specified at F maxret and Ta = 25 ±5°C and includes gain control back‐off of 3.0 ±0.1 dB and a reverse equalizer loss of 1.0 dB.4.Specified at Ta = 25 ±5°C. Measured with an MEQ‐0‐0 installed in the reverse equalizer location and a 1 dB attenuator installed in the reverse output pad location. May degrade by upto 1 dB over the full operating temperature range.5.The return loss from 5–15 MHz may degrade by up to 1 dB over the operating temperature range.6.Specified relative to the response measured at Ta = 25 ±5°C.7.Hum modulation is measured at 15 Arms AC current passing through the port under test.8.The QAM load is 256 QAM, J.83 Annex B, 5.360537 MS/s; 6 MHz/channel.9.The NPR dynamic range is specified for an NPR greater than or equal to 40 dB.10.The BER dynamic range is specified for an uncorrected (Pre‐FEC) BER less than or equal to 1.0 x 10‐6.SPECIFICATIONSAC Input Current (Typical)0.81 A/25 W @ 45 V0.36 A/22.5 W @ 75 V0.30 A/22.5 W @ 90 VAC Input Voltage Range, VAC45–90AC Bypass Current, A15Operating Temperature Range‐40°to +60°C‐40°to +140°FHousing Dimensions, L x W x D12.3 x 9.6 x 3.5 inches312 x 243 x 89 mmWeight9 lbs4 kgNote: Specifications are subject to change without notice.Copyright Statement:©2022CommScope,Inc.All rights reserved.ARRIS,the ARRIS logo,and Flex Max are trademarks of CommScope,Inc.and/or its affiliates.All other trademarks are the property of their respective owners.No part of this content may be reproduced in any form or by any means or used to make any derivative work (such as translation,transformation,or adaptation)without written permission from CommScope,Inc and/or its affiliates (“CommScope”).CommScope reserves the right to revise or change this content from time to time without obligation on the part of CommScope to provide notification of such revision or change.Contact Technical Services for product support:•United States: +1‐888‐944‐4357•International: +1‐215‐323‐2345RELATED PRODUCTSADU/QADUOptical Nodes FM902 1.2 GHz Trunk/BridgerFrequency Split Upgrade Kits Forward Signal CorrectionPlug ‐in Accessories Installation Services1.2 GHz FM332 LINE EXTENDER ORDERING GUIDEIn the example below, part number FML12X085‐SHMPR1N corresponds to the shaded rows in the Key Guide.F M L 12X 085—S H M P R 1N REQUIRED ACCESSORIESModel NameDescription CE ‐120‐*CS ‐120‐*Forward1.2GHzCable Equalizer 2 to 20 dB in 1 dB steps ‐or ‐Forward 1.2 GHz Cable Simulator 1 to 10 dB in 1 dB steps MEQ ‐**‐*Return Equalizer, 5–42 MHz (042 Split), 5–85 MHz (085 Split), 5–204 MHz (204 Split)NPB ‐*NPB ‐750Plug ‐in attenuator/pad (values 0 to 26 dB in 1 dB steps)Plug ‐in terminator (75 ohm)。
ACPL-331J 1.5A电流输出的IGBT门极驱动光耦集成的(Vce)饱和度检测,欠压锁定,故障状态反馈和有源米勒钳位综述:ACPL - 331J是一种先进的1.5 A的输出电流,方便易用的智能化的门极驱动器使得IGBT的Vce的故障保护更加紧凑,价格合理,且易于实现功能,如集成的Vce检测,欠压锁定(UVLO),IGBT的“软”关断,隔离的集电极开路故障反馈和有源米勒钳位提供最大的设计灵活性和保护电路。
ACPL - 331J包含了一个GaAsP的LED。
通过该LED完成光电信号的耦合。
ACPL-331J非常适合用于驱动电机控制领域的功率IGBT和MOSFET。
这些光耦的电压、电流供给使其非常适用用于直接驱动1200V 100A以下的IGBT。
对于更高功率等级的IGBT,ACPL-331J通常被用来驱动由分离器件构成的IGBT门极驱动器。
ACPL-331J具备一个峰值为891V的绝缘电压。
结构框图:产品特点:z滞后的欠压封锁功能z饱和度侦测z米勒钳位z隔离的开路集电极故障反馈z IGBT软关断z IGBT下个开通周期的故障复位z提供SO - 16封装z安规认证详细说明:z 1.5A的最大输出峰值电流z 1.0A的最小输出峰值电流z温度范围内最大250nS的传输延时z100nS最大脉冲宽度失真z在V CM = 1500 V时,最小15 kV/µs的共模抑制能力z最大供电电流I CC(max) < 5 mAz温度范围内工作电压可达15V-30Vz1A的米勒钳位。
该脚不用时必须同VEE短接z宽的工作温度范围:–40°C to 100°C应用:z IGBT和功率MOSFET的驱动z交流和直流无刷电机驱动z变频器和UPS引脚功能介绍订货信息ACPL-331J 经过3750 Vrms 1分钟测试,符合UL1577标准。
备注 表面 符合IEC / EN产品编号 符合ROHS 标准 封装方式 安装 卷带装 DIN EN 60747-5-2 数量-000E SO-16 X X 45/管ACPL-331J -500E X X X 850/卷 订购时,从产品编号列表中选择产品编号,并结合其他所需的选项形成定单输入。
优势:为高密度场景提供企业级的无线网络减轻IT 部门负担,降低拥有成本提供灵活的部署选项支持最先的标准,同时老终端为支持您企业的应用提供扩展性AP332双射频模块,双频,3x3:3空间流802.11n AP功能与灵活性符合您的无线网络需求, 性能超乎您的预期AP332是双射频模块,3空间流的802.11n 无线接入点,专门用于数据、语音、视频应用的企业级网络。
AP332的每组射频卡提供450Mbps 空口接入速率,整机可以接入256个客户端。
AP332使得您的敏感应用,特别是在高密度要求下的环境表现依然值得信赖。
AP332能够同时支持多个资源密集型应用,最大限度的提高您企业生产力。
即插用的部署方式可以降低IT 部门的负担。
AP332还使得您可以非常便捷的部署一套可信赖的802.11n 网络,而且AP332对传统 802.11a/b/g 终端设备具有良好的兼容性。
更多关于AP332的产品信息,请访问 或者AP332可以提供无比拟的Meru 虚拟无线网络架构。
AP332为您选择内置或者外置天线提供灵活性。
和其他Meru 无线接入点一样,她可以无缝兼容所有Meru 控制器、System DirecSystem 管理系统、Meru 其他管理工具,从而为您的无线网络 提供智能化管理和流量控制的可能 管理和流量控制的可能。
功能特性:同时支持数据、语音和视频的应用零配置,即插用内置和外天线同时支持2.4GHz 5GHz 的 802.11n ,支持传统a/b/ga/b/g 终端设备兼容所有Meru 控制器和System Director 管理系统物理参数尺寸AP332i或者AP332e(包括支架)7. 09 ”(18.0cm) 长,7.09”(18.0cm) 宽,2.67”(6.77cm) 高重量AP332i(包括支架)2lbs 5.3 oz. (1057g)SafetyUL 60950-1; IEC 60950-1; CAN/CSA-C22.2No. 60950-1IEC 60950-1。
SpecificationsType FCN capacitors are designed for applicationsrequiring a general purpose SMT capacitor with stabletemperature and frequency characteristics similar topolyester film capacitors. They are ideal for applicationssuch as EMI noise filtering, power supply input/outputfilters, audio or signal coupling, and IC power busbypassing or decoupling. FCN SMT capacitors have anon-inductive stacked metallized PEN film constructionwhich results in a low ESR and excellent high frequencyperformance.HighlightsDesigned for reflow solderingWithstands 150% of rated voltage for 60 secondsStacked metallized polyethylene naphthalate(PEN) filmPerforms like polyester capacitorsNonmagnetic and lead-free•••••Capacitance Range:Capacitance Tolerance:Voltages:Operating Temperature Range:IR (at 20 ºC, after 60 seconds):Dissipation Factor (Tanδ):Life Test:Moisture Resistance:1000 pF to 1.0 µF (1 kHz at 5 Vrms)±5% (J), ±10% (K) (See Ratings)16, 50, 100, 250 & 400 Vdc16, 50, 100Vdc (<0.012 µF);–55 ºC to +105 ºC100 Vdc (≥ 0.012 µF), 250, 400 Vdc;–40 ºC to +85 ºCC >0.33 µF: IR = 1000 MΩ•µF Min.C ≤0.33 µF: IR ≥ 3000 MΩ1.0% Max. (1 kHz at 5 Vrms)1000 h at rated temp. & 125% rated voltage∆ Capacitance: +1%, –6% maxDissipation Factor: 1.1% maxIR: 1000 MΩmin (C>0.33 µF, 300 MΩ•µF min)No significant visual damage1000 h at 40 ºC and 90 - 95% RH & rated voltage∆ Capacitance: +8/-5%Dissipation Factor: 1.5% maxIR: 100 MΩ min (C >0.33 µF, 30 MΩ•µF min)Voltage withstanding: 1.3 times rated voltage,1 min.No significant damageStable Stacked Metallized Film (PEN) Chips for Reflow SolderingT ype FCN SMT capacitors are the general purpose line of CDE’ssurface mount product offerings. They range in capacitance from.001 µF to 1.0 µF, and they are available in voltage ratings up to400 Vdc.Complies with the EU Directive2002/95/E C r e q u i r e m e n trestricting the use of Lead (Pb),Mercury (Hg), Cadmium (Cd),Hexavalent chromium (Cr(VI)),PolyBrominated Biphenyls (PBB)and PolyBrominated DiphenylEthers (PBDE).Part Numbering SystemSpecificationsResistance to Soldering Heat:5 s at max capacitor surface temperature ∆ Capacitance: ±5% maxDissipation Factor: 1.1% maxIR: 1000 MΩ min (C >0.33 µF, 300 MΩ•µF min)Voltage withstanding: 1.5 times rated voltage, 1 min.No significant visual damage.Surface Temperature:16 V & 50 V & 100 V ≤ 0.01 µF: 240 ºC max 100 V ≥ 0.012 µF, 250 V & 400 V: 230 ºC maxMoisture Resistance:500 h at 85 ºC and 85% RH ∆ Capacitance: ±10% max Dissipation Factor: 2% maxIR: 10 MΩ min (C >0.33 µF, 3 MΩ•µF min) Voltage withstanding: 1.3 times rated voltage, 1 min.No significant damageWithstand Voltage:16 V & 50 V, 100 V ≤ 0.01 µF: 175% rated voltage, 5 s100 V ≥ 0.012 µF, 250 V and 400 V: 150% rated voltage, 5 sFCN1206A102JH2TapeTape PackagingWidth Diameter Reel Type Case SizeVoltage Capacitance Tolerance Code (mm)[in.(mm)]QuantityFCN1206C = 16 Vdc 102 = 0.001 µF J = ±5%K1=87 (178)40001913H = 50 Vdc 223 = 0.022 µF K = ±10%J1, J2=87 (178)30002416 A = 100 Vdc 474 = 0.47 µFH1, H2=87 (178)30002420E = 250 Vdc H3=87 (178)20002820G = 400 VdcG1, G2, G3=87 (178)20003022E1, E2=1213 (330)30003925E3, E4=1213 (330)20003931D1, D2=1213 (330)30006031D3, D4, D5=1213 (330)20006040B, Z =1213 (330)1500U, V, X, Y =1613 (330)1000S, T=2413 (330)750Outline Drawingt L WTt = 0.014 ± 0.008 in. (0.35 ±0.2 mm)For 0.001 µF – 0.01 µF, 100 V, t = 0.026 ±0.012 in. (0.62 ± 0.3 mm) RatingsCap Catalog L W T(µF)Part Number in (mm)in (mm)in (mm)16 Vdc.12FCN1913C124J-E10.189±0.008 (4.8±0.2)0.130±0.012 (3.3±0.3)0.055±0.008 (1.4±0.2) .15FCN1913C154J-E20.189±0.008 (4.8±0.2)0.130±0.012 (3.3±0.3)0.079±0.008 (2.0±0.2) .18FCN1913C184J-E20.189±0.008 (4.8±0.2)0.130±0.012 (3.3±0.3)0.079±0.008 (2.0±0.2) .22FCN1913C224J-E40.189±0.008 (4.8±0.2)0.130±0.012 (3.3±0.3)0.094±0.008 (2.4±0.2) .27FCN2416C274J-D10.236±0.008 (6.0±0.2)0.161±0.012 (4.1±0.3)0.071±0.008 (1.8±0.2) .33FCN2416C334J-D20.236±0.008 (6.0±0.2)0.161±0.012 (4.1±0.3)0.079±0.008 (2.0±0.2) .39FCN2416C394J-D30.236±0.008 (6.0±0.2)0.161±0.012 (4.1±0.3)0.094±0.008 (2.4±0.2) .47FCN2416C474J-D40.236±0.008 (6.0±0.2)0.161±0.012 (4.1±0.3)0.110±0.008 (2.8±0.2)50 Vdc.056FCN1913H563J-E20.189±0.008 (4.8±0.3)0.130±0.012 (3.3±0.3)0.055±0.008 (1.4±0.2) .068FCN1913H683J-E20.189±0.008 (4.8±0.3)0.130±0.012 (3.3±0.3)0.079±0.008 (2.0±0.2) .082FCN1913H823J-E40.189±0.008 (4.8±0.3)0.130±0.012 (3.3±0.3)0.079±0.008 (2.0±0.2) .10FCN1913H104J-E30.189±0.008 (4.8±0.3)0.130±0.012 (3.3±0.3)0.094±0.008 (2.4±0.2) .12FCN2416H124J-D10.236±0.008 (6.0±0.2)0.161±0.012 (4.1±0.3)0.071±0.008 (1.8±0.2) .15FCN2416H154J-D20.236±0.008 (6.0±0.2)0.161±0.012 (4.1±0.3)0.079±0.008 (2.0±0.2) .18FCN2416H184J-D30.236±0.008 (6.0±0.2)0.161±0.012 (4.1±0.3)0.094±0.008 (2.4±0.2) .22FCN2416H224J-D40.236±0.008 (6.0±0.2)0.161±0.012 (4.1±0.3)0.110±0.008 (2.8±0.2)100 Vdc.0010FCN1206A102J-H20.126±0.008 (3.2±0.2)0.063±0.012 (1.6±0.3)0.043±0.008 (1.1±0.2) .0012FCN1206A122J-H20.126±0.008 (3.2±0.2)0.063±0.012 (1.6±0.3)0.043±0.008 (1.1±0.2) .0015FCN1206A152J-H20.126±0.008 (3.2±0.2)0.063±0.012 (1.6±0.3)0.043±0.008 (1.1±0.2) .0018FCN1206A182J-H20.126±0.008 (3.2±0.2)0.063±0.012 (1.6±0.3)0.043±0.008 (1.1±0.2) .0022FCN1206A222J-H20.126±0.008 (3.2±0.2)0.063±0.012 (1.6±0.3)0.043±0.008 (1.1±0.2) .0027FCN1206A272J-H20.126±0.008 (3.2±0.2)0.063±0.012 (1.6±0.3)0.043±0.008 (1.1±0.2) .0033FCN1206A332J-H30.126±0.008 (3.2±0.2)0.063±0.012 (1.6±0.3)0.059±0.008 (1.5±0.2) .0039FCN1206A392J-H30.126±0.008 (3.2±0.2)0.063±0.012 (1.6±0.3)0.059±0.008 (1.5±0.2) .0047FCN1206A472J-H30.126±0.008 (3.2±0.2)0.063±0.012 (1.6±0.3)0.059±0.008 (1.5±0.2) .0056FCN1210A562J-G20.126±0.008 (3.2±0.2)0.063±0.012 (1.6±0.3)0.059±0.008 (1.5±0.2) .0068FCN1210A682J-G20.126±0.008 (3.2±0.2)0.063±0.012 (1.6±0.3)0.059±0.008 (1.5±0.2) .0082FCN1210A822J-G30.126±0.008 (3.2±0.2)0.063±0.012 (1.6±0.3)0.083±0.008 (2.1±0.2) .010FCN1210A103J-G30.126±0.008 (3.2±0.2)0.063±0.012 (1.6±0.3)0.083±0.008 (2.1±0.2) .012FCN1913A123K-E10.189±0.008 (4.8±0.2)0.189±0.008 (3.3±0.3)0.055±0.008 (1.4±0.2) .015FCN1913A153K-E10.189±0.008 (4.8±0.2)0.189±0.008 (3.3±0.3)0.055±0.008 (1.4±0.2) .018FCN1913A183K-E10.189±0.008 (4.8±0.2)0.189±0.008 (3.3±0.3)0.055±0.008 (1.4±0.2) .022FCN1913A223K-E10.189±0.008 (4.8±0.2)0.189±0.008 (3.3±0.3)0.055±0.008 (1.4±0.2) .027FCN1913A273K-E10.189±0.008 (4.8±0.2)0.189±0.008 (3.3±0.3)0.055±0.008 (1.4±0.2) .033FCN1913A333K-E10.189±0.008 (4.8±0.2)0.189±0.008 (3.3±0.3)0.055±0.008 (1.4±0.2) .039FCN1913A393K-E10.189±0.008 (4.8±0.2)0.189±0.008 (3.3±0.3)0.055±0.008 (1.4±0.2)Cap Catalog L W T(µF)Part Number in (mm)in (mm)in (mm)100 Vdc.047FCN1913A473K-E20.189±0.008 (4.8±0.2)0.189±0.008 (3.3±0.3)0.079±0.008 (2.0±0.2) .056FCN1913A563K-E20.189±0.008 (4.8±0.2)0.189±0.008 (3.3±0.3)0.079±0.008 (2.0±0.2) .068FCN1913A683K-E40.189±0.008 (4.8±0.2)0.189±0.008 (3.3±0.3)0.094±0.008 (2.4±0.2) .082FCN1913A823K-E30.189±0.008 (4.8±0.2)0.189±0.008 (3.3±0.3)0.110±0.012 (2.8±0.3) .10FCN2416A104K-D10.189±0.008 (4.8±0.2)0.236±0.008 (6.0±0.2)0.071±0.012 (1.8±0.3) .12FCN2416A124K-D3*0.189±0.008 (4.8±0.2)0.236±0.008 (6.0±0.2)0.099±0.012 (2.4±0.3) .15FCN2416A154K-D4*0.189±0.008 (4.8±0.2)0.236±0.008 (6.0±0.2)0.110±0.012 (2.8±0.3) .18FCN2820A184K-Z0.280±0.016 (7.1±0.4)0.197±0.016 (5.0±0.4)0.079±0.012 (2.0±0.3) .22FCN2820A224K-Z0.280±0.016 (7.1±0.4)0.197±0.016 (5.0±0.4)0.094±0.012 (2.4±0.3) .27FCN2820A274K-Z0.280±0.016 (7.1±0.4)0.197±0.016 (5.0±0.4)0.114±0.012 (2.9±0.3) .33FCN2820A334K-Z0.280±0.016 (7.1±0.4)0.197±0.016 (5.0±0.4)0.138±0.012 (3.5±0.3) .39FCN3022A394K-X0.303±0.016 (7.7±0.4)0.217±0.016 (5.5±0.4)0.134±0.012 (3.4±0.3) .47FCN3022A474K-X0.303±0.016 (7.7±0.4)0.217±0.016 (5.5±0.4)0.157±0.012 (4.0±0.3) .56FCN3925A564K-V0.386±0.016 (9.8±0.4)0.248±0.016 (6.3±0.4)0.118±0.012 (3.0±0.3) .68FCN3925A684K-V0.386±0.016 (9.8±0.4)0.248±0.016 (6.3±0.4)0.142±0.012 (3.6±0.3) .82FCN3925A824K-V0.386±0.016 (9.8±0.4)0.248±0.016 (6.3±0.4)0.169±0.012 (4.3±0.3) 1.0FCN3925A105K-V0.386±0.016 (9.8±0.4)0.248±0.016 (6.3±0.4)0.201±0.012 (5.1±0.3)250 Vdc.0010FCN1913E102K-E1*0.189±0.008 (4.8±0.2)0.130±0.012 (3.3±0.3)0.055±0.008 (1.4±0.2) .0012FCN1913E122K-E1*0.189±0.008 (4.8±0.2)0.130±0.012 (3.3±0.3)0.055±0.008 (1.4±0.2) .0015FCN1913E152K-E1*0.189±0.008 (4.8±0.2)0.130±0.012 (3.3±0.3)0.055±0.008 (1.4±0.2) .0018FCN1913E182K-E1*0.189±0.008 (4.8±0.2)0.130±0.012 (3.3±0.3)0.055±0.008 (1.4±0.2) .0022FCN1913E222K-E1*0.189±0.008 (4.8±0.2)0.130±0.012 (3.3±0.3)0.055±0.008 (1.4±0.2) .0027FCN1913E272K-E1*0.189±0.008 (4.8±0.2)0.130±0.012 (3.3±0.3)0.055±0.008 (1.4±0.2) .0033FCN1913E332K-E1*0.189±0.008 (4.8±0.2)0.130±0.012 (3.3±0.3)0.055±0.008 (1.4±0.2) .0039FCN1913E392K-E1*0.189±0.008 (4.8±0.2)0.130±0.012 (3.3±0.3)0.055±0.008 (1.4±0.2) .0047FCN1913E472K-E1*0.189±0.008 (4.8±0.2)0.130±0.012 (3.3±0.3)0.055±0.008 (1.4±0.2) .0056FCN1913E562K-E1*0.189±0.008 (4.8±0.2)0.130±0.012 (3.3±0.3)0.055±0.008 (1.4±0.2) .0068FCN1913E682K-E1*0.189±0.008 (4.8±0.2)0.130±0.012 (3.3±0.3)0.055±0.008 (1.4±0.2) .0082FCN1913E822K-E1*0.189±0.008 (4.8±0.2)0.130±0.012 (3.3±0.3)0.055±0.008 (1.4±0.2) .010FCN1913E103K-E1*0.189±0.008 (4.8±0.2)0.130±0.012 (3.3±0.3)0.055±0.008 (1.4±0.2) .012FCN1913E123K-E1*0.189±0.008 (4.8±0.2)0.130±0.012 (3.3±0.3)0.055±0.008 (1.4±0.2) .015FCN1913E153K-E1*0.189±0.008 (4.8±0.2)0.130±0.012 (3.3±0.3)0.055±0.008 (1.4±0.2) .018FCN1913E183K-E2*0.189±0.008 (4.8±0.2)0.130±0.012 (3.3±0.3)0.079±0.008 (2.0±0.2) .022FCN1913E223K-E2*0.189±0.008 (4.8±0.2)0.130±0.012 (3.3±0.3)0.094±0.008 (2.4±0.2) .027FCN1913E273K-E4*0.189±0.008 (4.8±0.2)0.130±0.012 (3.3±0.3)0.110±0.008 (2.8±0.2) .033FCN1913E333K-E3*0.189±0.008 (4.8±0.2)0.130±0.012 (3.3±0.3)0.126±0.008 (3.2±0.2) .039FCN2416E393K-D2*0.236±0.008 (6.0±0.2)0.161±0.012 (4.1±0.3)0.079±0.008 (2.0±0.2) .047FCN2416E473K-D3*0.236±0.008 (6.0±0.2)0.161±0.012 (4.1±0.3)0.079±0.008 (2.0±0.2) .056FCN2416E563K-D4*0.236±0.008 (6.0±0.2)0.161±0.012 (4.1±0.3)0.094±0.008 (2.4±0.2) .068FCN2416E683K-D5*0.236±0.008 (6.0±0.2)0.161±0.012 (4.1±0.3)0.110±0.008 (2.8±0.2) .082FCN2420E823K-B*0.236±0.008 (6.0±0.2)0.197±0.016 (5.0±0.4)0.126±0.012 (3.2±0.3) .10FCN2420E104K-B*0.236±0.008 (6.0±0.2)0.197±0.016 (5.0±0.4)0.150±0.012 (3.8±0.3) .12FCN2420E124K-B*0.236±0.008 (6.0±0.2)0.197±0.016 (5.0±0.4)0.177±0.012 (4.5±0.3) .15FCN2825E154K-Y 0.280±0.016 (7.1±0.4)0.248±0.016 (6.3±0.4)0.138±0.012 (3.5±0.3) .18FCN2825E184K-Y 0.280±0.016 (7.1±0.4)0.248±0.016 (6.3±0.4)0.161±0.012 (4.1±0.3) .22FCN2825E224K-Y 0.280±0.016 (7.1±0.4)0.248±0.016 (6.3±0.4)0.201±0.012 (5.1±0.3) .27FCN3925E274K-V 0.386±0.020 (9.8±0.5)0.248±0.016 (6.3±0.4)0.154±0.012 (3.9±0.3)Cap Catalog L W T(µF)Part Number in (mm)in (mm)in (mm)250 Vdc.33FCN3925E334K-V 0.386±0.020 (9.8±0.5)0.248±0.016 (6.3±0.4)0.189±0.012 (4.8±0.3) .39FCN3931E394K-U 0.386±0.020 (9.8±0.5)0.315±0.016 (8.0±0.4)0.173±0.012 (4.4±0.3) .47FCN3931E474K-U 0.386±0.020 (9.8±0.5)0.315±0.016 (8.0±0.4)0.209±0.012 (5.3±0.3) .56FCN6031E564K-T 0.598±0.020 (15.2±0.5)0.315±0.016 (8.0±0.4)0.146±0.012 (3.7±0.3) .68FCN6031E684K-T 0.598±0.020 (15.2±0.5)0.315±0.016 (8.0±0.4)0.173±0.012 (4.4±0.3) .82FCN6040E824K-S 0.598±0.020 (15.2±0.5)0.394±0.016 (10.0±0.4)0.165±0.012 (4.2±0.3) 1.0FCN6040E105K-S 0.598±0.020 (15.2±0.5)0.394±0.016 (10.0±0.4)0.201±0.012 (5.1±0.3)400 Vdc.0010FCN1913G102J-E10.189±0.008 (4.8±0.2) 0.130±0.012 (3.3±0.3) 0.055±0.008 (1.4±0.2) .0012FCN1913G122J-E1 0.189±0.008 (4.8±0.2) 0.130±0.012 (3.3±0.3) 0.055±0.008 (1.4±0.2) .0015FCN1913G152J-E1 0.189±0.008 (4.8±0.2) 0.130±0.012 (3.3±0.3) 0.055±0.008 (1.4±0.2) .0018FCN1913G182J-E1 0.189±0.008 (4.8±0.2) 0.130±0.012 (3.3±0.3) 0.055±0.008 (1.4±0.2) .0022FCN1913G222J-E1 0.189±0.008 (4.8±0.2) 0.130±0.012 (3.3±0.3) 0.055±0.008 (1.4±0.2) .0027FCN1913G272J-E1 0.189±0.008 (4.8±0.2) 0.130±0.012 (3.3±0.3) 0.055±0.008 (1.4±0.2) .0033FCN1913G332J-E1 0.189±0.008 (4.8±0.2) 0.130±0.012 (3.3±0.3) 0.055±0.008 (1.4±0.2) .0039FCN1913G392J-E1 0.189±0.008 (4.8±0.2) 0.130±0.012 (3.3±0.3) 0.055±0.008 (1.4±0.2) .0047FCN1913G472J-E1 0.189±0.008 (4.8±0.2) 0.130±0.012 (3.3±0.3) 0.055±0.008 (1.4±0.2) .0056FCN1913G562J-E2 0.189±0.008 (4.8±0.2) 0.130±0.012 (3.3±0.3) 0.079±0.008 (2.0±0.2) .0068FCN1913G682J-E2 0.189±0.008 (4.8±0.2) 0.130±0.012 (3.3±0.3) 0.079±0.008 (2.0±0.2) .0082FCN1913G822J-E4 0.189±0.008 (4.8±0.2) 0.130±0.012 (3.3±0.3) 0.094±0.008 (2.4±0.2) .010FCN1913G103J-E3 0.189±0.008 (4.8±0.2) 0.130±0.012 (3.3±0.3) 0.110±0.008 (2.8±0.2) .012FCN2416G123J-D2 0.236±0.008 (6.0±0.2) 0.161±0.012 (4.1±0.3) 0.079±0.008 (2.0±0.2) .015FCN2416G153J-D3 0.236±0.008 (6.0±0.2) 0.161±0.012 (4.1±0.3) 0.079±0.008 (2.0±0.2) .018FCN2416G183J-D4 0.236±0.008 (6.0±0.2) 0.161±0.012 (4.1±0.3) 0.110±0.008 (2.8±0.2) .022FCN2416G223J-D5 0.236±0.008 (6.0±0.2) 0.161±0.012 (4.1±0.3) 0.126±0.012 (3.2±0.3) .027FCN2420G273J-B 0.236±0.008 (6.0±0.2) 0.197±0.016 (5.0±0.4) 0.118±0.012 (3.0±0.3) .033FCN2420G333J-B 0.236±0.008 (6.0±0.2) 0.197±0.016 (5.0±0.4) 0.142±0.012 (3.6±0.3) .039FCN2820G393J-Z 0.280±0.016 (7.1±.0.4) 0.197±0.016 (5.0±0.4) 0.126±0.012 (3.2±0.3) .047FCN2820G473J-Z 0.280±0.016 (7.1±.0.4) 0.197±0.016 (5.0±0.4) 0.150±0.012 (3.8±0.3) .056FCN2825G563J-Y 0.280±0.016 (7.1±.0.4) 0.248±0.016 (6.3±0.4) 0.142±0.012 (3.6±0.3) .068FCN2825G683J-Y0.280±0.016 (7.1±.0.4) 0.248±0.016 (6.3±0.4) 0.173±0.012 (4.4±0.3) .082FCN3925G823J-V 0.386±0.016 (9.8±0.4)0.248±0.016 (6.3±0.4) 0.134±0.012 (3.4±0.3) .10FCN3925G104J-V 0.386±0.016 (9.8±0.4)0.248±0.016 (6.3±0.4) 0.157±0.012 (4.0±0.3) .12FCN3931G124J-U 0.386±0.016 (9.8±0.4)0.315±0.016 (8.0±0.4) 0.150±0.012 (3.8±0.3) .15FCN3931G154J-U 0.386±0.016 (9.8±0.4)0.315±0.016 (8.0±0.4) 0.181±0.012 (4.6±0.3)Typical Temperature Characteristics Typical Frequency CharacteristicsVrms vs. Frequency CharacteristicsPulse Handling CapabilityTypical ApplicationsDC Blocking for xDSLIntegration for Electroluminescent (EL) DriverWith no piezoelectric effects to deal with, the SMT film capacitor will not create electrical noise in signal circuits or bu zz ing in power circuits.CapacitanceVoltage dV/dt Capacitance VoltagedV/dt CapacitanceVoltage dV/dt (µF)(Vdc)(volts/µsec)(µF)(Vdc)(volts/µsec)(µF)(Vdc)(volts/µsec).12 - .221660.0039100530.001 - .0039250615.27 - .471640.0047100480.0047 - .033250360.056 - .1050190.0056100450.039 - .12250240.12 - .2250130.0068100410.15 - .22250190.0011001000.0082100370.27 - .47250115.0012100920.01100340.56 - 1.025065.0015100830.012 - .082100320.001 - .0039400615.0018100760.10 - .15100210.0047 - .01400360.0022100690.18 - .33100120.012 - .033400240.0027100630.39 - .47100100.039 - .068400190.0033100570.056 - 1.010070.082 - .15400115。
ACPL-336J光耦隔离驱动应⽤笔记说ACPL-336J是光耦隔离驱动的祖先,其实是彻底错误的,因为在它之前AVAGO还有很多个版本。
但是如果说它的⽣⽗AVAGO公司是光耦隔离驱动的祖先应该是没错的。
中功率⼩功率的IGBT保护与驱动,⽤ACPL-336J再好不过了,如果不是特别特别抠成本的话。
AVAGO的IGBT驱动芯⽚我司有上⼗年的应⽤经验,⼩⼩⼀枚芯⽚,表⾯看起来就是搭建外围电路,驱动和保护IGBT,似乎很简单,确实,既然是专⽤驱动芯⽚,只是应⽤,核⼼的关键的东西,都由IC设计⼈员做了,集成到芯⽚⾥⾯了,外围电路的搭建相⽐芯⽚本⾝来说已经简单很多了。
不过⽤这款芯⽚完成基本功能,和⽤它来设计⼀个稳定可靠的产品之间还差⼗万⼋千⾥呢。
所以我感觉,电⼒电⼦领域的单板设计,也是很有搞头的。
有⼈的功率板驱动电路⽼是容易炸管⼦,或者批量应⽤后,⽼是有少量的同种问题出现,却不好定位。
关于这个⽚⼦在应⽤中会遇到哪些具体的问题以及实际的外围电路是什么样⼦的,⽤了哪些器件,参数如何计算,如何实验反馈确定最终参数的,这些问题就不具体说了,毕竟这是⼀家公司需要稍微保留⼀下的技术和经验秘密。
为了增强这部分应⽤思路,现在根据数据⼿册的内容做⼀些记录。
还是先把ACPL_336J的数据⼿册翻译⼀遍吧?DescriptionAvago’s ACPL-336J gate drive optocoupler features fast propagation delay with excellent timing skew performance. Smart features that are integrated to protect the IGBT include IGBT desaturation detection with soft-shutdown protection and fault feedback, undervoltage lockout and feedback, and active Miller current clamping. This full-featured and easy-to-implement IGBT gate drive optocoupler comes in a compact, surface-mountable SO-16 package for space-savings. It is suitable for driving IGBTs and power MOSFETs used in motor control and inverter applications.ACPL-336J 光耦合器具有很⼩的传输延时,极佳的时序抖动性能。
Description of Operation/运作描述1.Normal Operation/正常运作During normal operation, V OUT of the ACPL-332J is con-trolled by input LED current I F (pins 5, 6, 7 and 8), withthe IGBT collector-to-emitter voltage being monitoredthrough DDESAT. The FAULT output is high. See Figure 37.在正常运作状态,V OUT通过输入LED电流I F (pins 5, 6, 7 and 8)控制,同时IGBT集电极至发射极电压通过DDESAT进行检测。
故障输出“FAULT”为高电平, 见图37。
2.Fault Condition/故障状态The DESAT pin monitors the IGBT Vce voltage. When thevoltage on the DESAT pin exceeds 6.5 V while the IGBT ison, V OUT is slowly brought low in order to “softly” turn-offthe IGBT and prevent large di/dt induced voltages. Alsoactivated is an internal feedback channel which bringsthe FAULT output low for the purpose of notifying themicro-controller of the fault condition.DESAT 脚位检测IGBT V CE电压。
当DESAT 脚位电压超过6.5V而IGBT处于导通状态时,V OUT被缓慢降到低电平以“软”关断IGBT, 防止大的di/dt诱发性电压产生. 同时被激活的有内部反馈通道, 其将故障信号“FAULT”(FAULT拔) 输出为低电平以通知微控制器发生了故障状态.3.Fault Reset/故障清零Once fault is detected, the output will be muted for 5 μs(minimum). All input LED signals will be ignored duringthe mute period to allow the driver to completely softshut-down the IGBT. The fault mechanism can be reset bythe next LED turn-on after the 5us (minimum) mute time.See Figure 37.一旦故障被检测到,输出将会被闭锁5微秒(最少), 在闭锁期间,所有LED输入信号将会被忽略以使驱动完全软关断IGBT。
Description of Operation/运作描述1.Normal Operation/正常运作During normal operation, V OUT of the ACPL-332J is con-trolled by input LED current I F (pins 5, 6, 7 and 8), withthe IGBT collector-to-emitter voltage being monitoredthrough DDESAT. The FAULT output is high. See Figure 37.在正常运作状态,V OUT通过输入LED电流I F (pins 5, 6, 7 and 8)控制,同时IGBT集电极至发射极电压通过DDESAT进行检测。
故障输出“FAULT”为高电平, 见图37。
2.Fault Condition/故障状态The DESAT pin monitors the IGBT Vce voltage. When thevoltage on the DESAT pin exceeds 6.5 V while the IGBT ison, V OUT is slowly brought low in order to “softly” turn-offthe IGBT and prevent large di/dt induced voltages. Alsoactivated is an internal feedback channel which bringsthe FAULT output low for the purpose of notifying themicro-controller of the fault condition.DESAT 脚位检测IGBT V CE电压。
当DESAT 脚位电压超过6.5V而IGBT处于导通状态时,V OUT被缓慢降到低电平以“软”关断IGBT, 防止大的di/dt诱发性电压产生. 同时被激活的有内部反馈通道, 其将故障信号“FAULT”(FAULT拔) 输出为低电平以通知微控制器发生了故障状态.3.Fault Reset/故障清零Once fault is detected, the output will be muted for 5 μs(minimum). All input LED signals will be ignored duringthe mute period to allow the driver to completely softshut-down the IGBT. The fault mechanism can be reset bythe next LED turn-on after the 5us (minimum) mute time.See Figure 37.一旦故障被检测到,输出将会被闭锁5微秒(最少), 在闭锁期间,所有LED输入信号将会被忽略以使驱动完全软关断IGBT。
电气传动2024年第54卷第1期ELECTRIC DRIVE 2024Vol.54No.1摘要:在当今减碳排放背景下,全控型功率器件IGBT 以优异的性能广泛用于各种变流器中,有效可靠的驱动电路对IGBT 的安全工作至关重要,特别是大功率应用场合。
针对大功率IGBT 应用中对驱动电路灵活可靠的要求,设计了一种基于智能集成光耦驱动器ACPL -332J 的IGBT 驱动保护电路,分析了ACPL -332J 的各项参数,并以ACPL -332J 为核心设计了驱动电路。
以英飞凌FF600R12ME4为应用IGBT ,通过双脉冲试验、短路试验验证了设计电路驱动及保护的有效性。
关键词:智能集成光耦驱动器ACPL -332J ;光耦驱动器;驱动保护电路;灵活可靠中图分类号:TM46文献标识码:ADOI :10.19457/j.1001-2095.dqcd25239A Design of Flexible and Reliable IGBT Driver CircuitHAN Song 1,2,YU Zhiqiang 1,2,WANG Mingyue 1,2,YU Hongze 1,2,JIA Pengfei 1,2(1.Tianjin Research Institute of Electric Science Co.,Ltd.,Tianjin 300180,China ;2.National Engineering Research Center for Electrical Transmission ,Tianjin 300180,China )Abstract:Under the background of carbon emission reduction ,fully controlled power device IGBT is widely used in various of converters with its excellent performance ,effective and reliable drive circuit is crucial to the safe operation of IGBT ,especially for high-power applications.Aiming at the requirement of flexible and reliable of IGBT drive circuit in high-power applications ,an IGBT drive and protection circuit based on intelligent integrated optocoupler driver ACPL-332J was designed ,the parameters of ACPL-332J were analyzed ,and the driving circuit was designed with ACPL-332J as the core.With Infineon FF600R12ME4as the application IGBT ,the effectiveness of the designed drive and protect circuit was verified by double pulse test and short circuit test.Key words:intelligent integrated optocoupler driver ACPL-332J ;optocoupler driver ;drive and protect circuit ;flexible and reliable基金项目:天津电气科学研究院有限公司科研基金(YF2023ZL009)作者简介:韩松(1988—),男,硕士研究生,工程师,Email :一种灵活可靠的IGBT 驱动电路设计韩松1,2,于志强1,2,王明玥1,2,于洪泽1,2,贾鹏飞1,2(1.天津电气科学研究院有限公司,天津300180;2.电气传动国家工程研究中心,天津300180)在节能减排的时代背景下,随着绝缘栅双极型晶体管(IGBT )的制造和应用技术日趋成熟,IGBT 以易于驱动、耐受电应力、热应力高的特点,被广泛应用于中高功率、中低频率变流器中[1]。
版权声明随附本产品发行的文件为研华公司2021年版权所有,并保留相关权利。
针对本手册中相关产品的说明,研华公司保留随时变更的权利,恕不另行通知。
未经研华公司书面许可,本手册所有内容不得通过任何途径以任何形式复制、翻印、翻译或者传输。
本手册以提供正确、可靠的信息为出发点。
但是研华公司对于本手册的使用结果,或者因使用本手册而导致其它第三方的权益受损,概不负责。
认可声明ARM为ARM Corporation的商标。
TI为Texas Instruments Inc.的商标。
ITE为ITE Tech Inc.的商标。
Eink为E Ink Holding Inc.的商标。
Microsoft Windows®为Microsoft Corp.的注册商标。
所有其它产品名或商标均为各自所属方的财产。
产品质量保证(两年)从购买之日起,研华为原购买商提供两年的产品质量保证。
但对那些未经授权的维修人员维修过的产品不予提供质量保证。
研华对于不正确的使用、灾难、错误安装产生的问题有免责权利。
如果研华产品出现故障,在质保期内我们提供免费维修或更换服务。
对于出保产品,我们将会酌情收取材料费、人工服务费用。
请联系相关销售人员了解详细情况。
如果您认为您购买的产品出现了故障,请遵循以下步骤:1.收集您所遇到的问题信息(例如,CPU主频、使用的研华产品及其它软件、硬件等)。
请注意屏幕上出现的任何不正常信息显示。
2.打电话给您的供货商,描述故障问题。
请借助手册,产品和任何有帮助的信息。
3.如果您的产品被诊断发生故障,请从您的供货商那里获得RMA (ReturnMaterial Authorization) 序列号。
这可以让我们尽快地进行故障产品的回收。
4.请仔细地包装故障产品,并在包装中附上完整的售后服务卡片和购买日期证明(如销售发票)。
我们对无法提供购买日期证明的产品不提供质量保证服务。
5.把相关的RMA序列号写在外包装上,并将其运送给销售人员。
FEATURES• Small, leaded, flat TO-92-style package allows for a compact PCB layout• Wide operating voltage range of 4.5 Vdc to 24 Vdc allows these sensors to be used in a variety of applications • Current consumption of only 5 mA max. at 4.5 Vdc for energy efficiency• Bipolar magnetics for ring magnet applications with alternating North and South poles• Robust design: Will operate up to 150°C [302°F]• RoHS-compliant materials meet Directive 2002/95/EC POTENTIAL APPLICATIONS• Industrial: Speed and RPM (revolutions per minute) sensing, tachometer, counter pickup, flow-rate sensing, brushless dc (direct current) motor commutation, motor and fan control, robotics control• Transportation: Speed and RPM (revolutions per minute) sensing, tachometer, counter pickup, motor and fan control, electric window lift, convertible roof position• Medical: Motor assemblies, medication dispensing control PORTFOLIOOther bipolar digital position sensor ICs include:• SS400 Series. SS500 Series (selected catalog listings)• SS311PT, SS411P • SS40F, SS40AF • SS51T• SS30AT, SS40A, SS50ATSensing and Internet of ThingsDESCRIPTIONThese small and versatile digital Hall-effect devices are operated by the magnetic field from a permanent magnet or an electromagnet, and are designed to respond to alternating North and South poles. The built-in regulator provides enhanced stability of operation from 4.5 Vdc to 24 Vdc supply voltage range, and internal circuitry is designed to prevent sensor damage in case the supply voltage polarity is accidentally reversed. The open-collector sinking output voltage is easily interfaced with a wide variety of electronic circuits. The SS41 is tested at both 25°C [77°F] and 125°C [257°F]. For design flexibility, these product are available in the following flat TO-92 package styles:• SS41: Straight standard leads, bulk pack • SS41-L: Straight long leads, bulk pack• SS41-T2: Formed leads, ammopack tape-in-box• SS41-T3: Straight standard leads, ammopack tape-in-box • SS41-S: Surface mount, bulk pack• SS41-SP: Surface mount, pocket tape and reelBipolar Hall-Effect Digital Position Sensor ICs:SS41, SS41-L, SS41-T2, SS41-T3, SS41-S, SS41-SP32312814Issue B2Sensing and Internet of ThingsNOTICEThese Hall-effect sensor ICs may have an initial output in either the ON or OFF state if powered up with an applied magnetic field in the differential zone (applied magnetic field >Brp and <Bop). Honeywell recommends allowing 10 us after supply voltage has reached 5 V for the output voltage to stabilize.NOTICEThe magnetic field strength (Gauss) required to cause the switch to change state (operate and release) will be as specified in the magnetic characteristics. To test the switchagainst the specified limits, the switch must be placed in a uniform magneticfield.Table 2. Performance SpecificationsNOTICEAbsolute maximum ratings are the extreme limits the device will momentarily withstand without damage to the device. Electrical and mechanical characteristics are not guaranteed if the rated voltage and/or currents are exceeded, nor will the device necessarily operate at absolute maximum ratings.Figure 5. Wiring Diagrams3Sensing and Internet of Things4Sensing and Internet of ThingsFigure 6. Mounting and Dimensional Drawings (continued)SS41-T3: Straight Standard Leads, Ammopack Tape-in-Box5Sensing and Internet of Things6Sensing and Internet of ThingsFigure 6. Mounting and Dimensional Drawings (continued)SS41-S: Surface Mount, Bulk PackArbor holePCB Land Pattern1,70PCB Land Pattern7Sensing and Internet of ThingsHoneywell Sensing and Internet of Things 9680 Old Bailes Road Fort Mill, SC 29707www. For more informationHoneywell Sensing and Internet of Things services its customers through a worldwide network of sales offices and distributors. For application assistance, current specifications, pricing or the nearest Authorized Distributor, visit or call:Asia Pacific +65 6355-2828Europe +44 (0) 1698 481481USA/Canada+1-800-537-694532320997-B-EN | B | 01/18© 2018 Honeywell International Inc. All rights reserved .Warranty/RemedyHoneywell warrants goods of its manufacture as being free of defective materials and faulty workmanship during the applicable warranty period. Honeywell’s standard product warranty applies unless agreed to otherwise by Honeywell in writing; please refer to your order acknowledgment or consult your local sales office for specific warranty details. If warranted goods are returned to Honeywell during the period of coverage, Honeywell will repair or replace, at its option, without charge those items that Honeywell, in its sole discretion, finds defective. The foregoing is buyer’s sole remedy and is in lieu of all other warranties, expressed or implied, including those of merchantability and fitness for a particular purpose. In no event shall Honeywell be liable for consequential, special, or indirect damages.While Honeywell may provide application assistance personally, through our literature and the Honeywell web site, it is buyer’s sole responsibility to determine the suitability of the product in the application.Specifications may change without notice. The information we supply is believed to be accurate and reliable as of this writing. However, Honeywell assumes no responsibility for its use.ADDITIONAL INFORMATIONThe following associated literature is available on the Honeywell web site at :• Product Line Guide • Product Range Guide • Selection Guides•Application-specific Information。
使用说明书MODEL 3321微电脑电导率/电阻率控制器官网:www.open17.comCONTENTS简介 (2)产品检视 (2)MODEL 3321的使用 (3)A. 安装步骤 (3)B. 前面板及按键说明 (5)C. 显示 (7)D. 端子接线图 (9)E. 测量模式 (10)F. 设定模式 (11)G. 电导率/ 电阻率校正模式 (18)H. 继电器控制 (19)错误显示及原因 (20)规格 (22)质量保证 (24)- 1 -感谢您选用JENCO Model 3321,Model 3321电导率/电阻率控制器是使用单芯片微电脑设计的测试及控制器,它是包装在 1/8 DIN的外壳里,使用于实验室与各种控制场所。
Model 3321可显示电导率、电阻率或者温度。
每次开机,整机的微处理器就会执行一次自我诊断。
该控制器配备有2个控制继电器,所有继电器是可以调整控制点及迟滞宽度。
小心地打开包装,检视仪器及配件是否有因运送而损坏,如有发现损坏,请即刻通知任氏的代理商,并以原包装寄回送检。
- 2 -RVIEW A. 安装步骤图一1. 在厚度1/16英寸(1.5mm)~3/8英寸(9.5mm)的安装板上开一个大小如左图的方孔。
见图一。
图二2. 先拆下固定支架,将机器放入刚开的方孔内。
见图二。
.- 3 -安装板 固定支架图三3. 装上支架,并将支架往前推紧,确保机器固定在安装板上。
见图三。
【注意】:如果不按以上方式安装仪表,可能致使仪表受到损害。
- 4 -B. 前面板及按键说明整机的显示板拥有一个四位LCD显示以及四个机械式开关。
1. [ MODE ] 键:1a. 在测量模式,按此键依次循环显示电导率值和温度值或者电阻率值和温度值。
1b. 在设定模式,按住此键三秒,整机将退回上一个设定参数。
2. [ UP ] 键:2a. 在校正模式,按此键将显示上一个校正项目。
在设定模式,按此键将显示上一个设定项目或者增加设定项目的数值。
Gate Drive Optocoupler Basic Design for IGBT / MOSFET Applicable to All Gate Drive OptocouplersApplication Note 5336IntroductionThis application note covers the topic of calculating gate driver power and thermal dissipation of the gate drive optocoupler IC. Gate drive optocouplers are used to drive, turning-on and off, power semiconductor switches, MOSFETs / IGBTs. The gate drive power calculation can be divided into three parts; power consumed or lost in the internal circuitry of the driver, power sent to the power semiconductor switches (IGBT/MOSFET) and power lost at the external component between the driver IC and the power semiconductor switch, e.g. across external gate resistor. In the following example, we will discuss a IGBT gate driver design using Avago ACPL-332J (2.5Apeak in-telligent gate driver) This design guide is applicable for MOSFET gate driver.IGBT/MOSSFET Gate ResistorWhen choosing the value of R G, it is important to look from the point from both gate driver IC and the power semiconductor switches, MOSFET / IGBT. For the gate driver IC, we choose an R G that is within the IC maximum allowable power disippation rating while sourcing/ sinking the highest possible driver current. From the IGBT or MOSFET point of view, the gate resistor influences the voltage change dV CE/dt and current change di C/dt during the turn on and turn off period.So it is important when a designer chooses an IGBT or MOSFET, the appropriate gate driver optocoupler is also chosen as the current and power rating of this driver determine how fast the IGBT or MOSFET is turn-on and turn-off.Figure 1. Block Diagram of ACPL-332JFigure 2. V OL vs I OLStep I: Calculate R G minimum from I OL peak specification:To find the peak charging l OL assume that the gate is initially charged the steady-state value V CC . For ACPL-332J, the voltage drop is linearly approximated as 4.5V for 2.5A output at 70°C (Fig 2: V OL vs I OL ). Therefore apply the following relationship:01234567800.511.522.5I oL -OUTPUT LOW CURRENT -AV O L -L O W O U T P U T V O L T A G E D R O P -VGate Drive Power Operation within IC Maximum Allowable Power RatingsThe power dissipation of the gate drive optocoupler is a combination of output-side power to IGBT/MOSFET, red circle and the input-side power due to input LED power dissipation, blue circle. The power dissipation for second LED used in fault feedback is neglected as the current to drive the open-collector transistor is small. The calculation steps are:1. Calculate the minimum desired R G according to the maximum peak gate current2. Calculate total power dissipation3. Compare the input and output power dissipation calculated in step #2 to the maximum recommended dissipation for the IC. (If the maximum recommended level has been exceeded, it may be necessary to raise the value of R G to lower the switching power and repeat step #2.)In this example, the total input and output power dissipa-tion of ACPL-332J is calculated given the following condi-tions:• I G = I ON, MAX ~ 2.0 A • V CC2 = 18 V• V EE = -5 V, (Note: V EE = 0V if negative voltage supply is not required in application)• f SWITCH = 15 kHz• Ambient Temperature = 70°CI OL,PEAK = 2.0A @ 4.5V internal voltage drop R g = V CC2 – V EE – V OL = (18V - (-5V) - 6.3)/ 2.5 A = 6.68 Ω (approximately 6.8 Ω)Note: The value of the gate resistance has a significant impact on the dynamic performance of IGBTs/MOSFETs. A smaller gate resistor charges and discharges the power transistor input capacitance faster reducing switching times and switching losses. The trade off is that this could lead to higher voltage oscillations. In the MOSFET and IGBT datasheet, there is usually a recommended gate resistor which is used for the datasheet characterization. However, designer should be cautious not to over-drive the gate drive IC using the recommended gate resistance from the IGBT or MOSFET datasheet.Step II: Calculate total power dissipation in the gate driver:The total power dissipation (P T ) is equal to the sum of the input-side power (P I ) and output-side power (P O ) dissipa-tion:P T = P I + P OP I = I F(ON) ,max * V F,max where,I F(ON),max = 12mA V F,max = 1.95VThe I F(ON) can be found in the recommended operting conditions and V F can be found in ACPL-332J datasheet, Table 5 of the electrical specifications.Electrical SpecificationMinTyp Max Units Input Forward Voltage, V F 1.1.61.95VP O = P O(BIAS) + P O(SWTICH)= I CC2.MAX * (V CC2–V EE ) + ∆V GE * Q G * f SWITCH where,P O(BIAS) = steady-state power in the driver due tobiasing the device. P O(SWITCH) = Driver power for charging anddischarging of device gate capacitances. I CC2.MAX = Supply Current to power internal circuity ∆V GE = V CC2 + |V EE |Q G= Total gate charge of the IGBT or MOSFET as described in the manufacturer specification (Illustrated in Figure 3) = 240nC (approximation for a 100A IGBT)f SWITCH = switching frequency of applicationThe output detector junction temperature is given by T J = P D *( q J-P + q P-A ) + T AUsing the q J-P = q 9-12 = 30°C/W (ACPL-332J Table 7. Package Characteristic) and T A of 70°C and assuming the thermal resistance from pin to ambient, q P-A is 50°C/W T J = 197.8*(30+50) + 70°C = 85.8°CIf the juntion temperature is higher than the maximum junction temperature rating (in this case 125°C), the desired specification must be derated according.Designers should note that the thermal resistance between pin to ambient is also the PCB heatsink thermal resistance. This thermal resistance is then dependent on the area size on the PCB and the free air-flow.Further Topics:Higher Output Current Using an External Current Buffer:To increase the IGBT gate drive current, a non-inverting current buffer (such as the npn/pnp buffer shown in Figure 75 of HCPL-316J data sheet) may be used. Inverting types are not compatible with the desatura-tion fault protection circuitry and should be avoided. To preserve the slow IGBT turn-off feature during a fault condition, a 10 nF capacitor should be connected from the buffer input to V EE and a 10Ω resistor inserted between the output and the common npn/ pnp base. The MJD44H11/ MJD45H11 pair is appropriate for currents up to 8A maximum. The D44VH10/ D45VH10 pair is appro-priate for currents up to 15 A maximum.Thermal ModelMost of the steady state thermal model of gate drive op-tocouplers can be found in AN1087. The thermal resis-tance values given in this model can be used to calculate the temperatures at each node for a given operating condition.Figure 3. Typical IGBT Gate Charge CurveV GE (V)(C)GStep III: Compare the calculated power dissipation with the absolute maximum values in the IC:For the ACPL-332J, the maximum power dissipation can be found in Table 3 of the ACPL-332J data sheet. Absolute Maximum rating in AV02-0120EN data sheet. Also, it requires derating of 10mW/°C if the operating tempera-ture is above 90°C (Note. 2 ACPL-332J datasheet).Absolute Maximum RatingMinMax Units Output IC Power Dissipataion, Po 600mWInput IC Power Dissipation, P I150P I = 23.4 mW < 150 mW (abs. max.) )OKP O = 197.8 mW < 600 mW (abs. max.) ) OKTherefore, the power dissipation absolute maximum rating has not been exceeded for the above example.Note: Heat dissipation for different packages require derating when the operating temperature exceed a certain level. For ACPL-332J, as operating temperature is below 90oC, derating is not necessary. Operating temperature is different for different productsAnother method to check if the device is within the maximum limits is to calculate the junction temperature of the device. We continue to use the example provided earlier.Power dissipation, P D = 23.4 + 197.8 = 221.2mWUsing the above information, we calculate both P I and P O belowP I = 12 mA * 1.95 V = 23.4mW P O = P O(BIAS) + P O(SWITCH)= 5.0 mA * (18 V – (–5 V)) + (18V + 5V) * 240nC * 15 kHz = 115mW + 82.8mW = 197.8 mWPrinted Circuit Board Layout ConsiderationsAdequate spacing should always be maintained between the high voltage isolated circuitry and any input refer-enced circuitry. Care must be taken to provide the same minimum spacing between two adjacent high-side isolated regions of the printed circuit board. Insufficient spacing will reduce the effective isolation and increase parasitic coupling that will degrade CMR performance. The placement and routing of supply bypass capacitors requires special attention. During switching transients, the majority of the gate charge is supplied by the bypass capacitors. Maintaining short bypass capacitor trace lengths will ensure low supply ripple and clean switching waveforms.Figure 5 below shows example PCB layout using HCPL-316J gate driver optocoupler. Ground Plane connections are necessary for pin 4 (GND1) and pins 9 and 10 (V EE) in order to achieve maximum power dissipation as the HCPL-316J is designed to dissipate the majority of heat generated through these pins. This is also applicable for ACPL-332J. For this case, the ground plane connections are pin 1, pin 4 (V SS) and pin 4 (V SS), pin 9 and 12 (V EE). Actual power dissipation will depend on the application environment (PCB layout, air flow, part placement, etc.) See Application Note 1087 section for details on how to estimate junction temperature.The layout examples in Figure 5 have good supply bypassing and thermal properties, exhibit small PCB foot-prints, and have easily connected signal and supply lines. The four examples cover single sided and double sided component placement, as well as minimal and improved performance circuits.Figure 5. Recommended layout(s)For product information and a complete list of distributors, please go to our web site: Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 005- 008 Avago Technologies. All rights reserved.AV0 -04 1EN - July 9, 008。