新课程标准数学必修1第一章课后习题解答[唐金制]
- 格式:doc
- 大小:749.50 KB
- 文档页数:10
人教版高中数学必修1课后习题答案
人教版高中数学必修1课后习题答案
人教版高中数学必修1课后习题答案人教版高中数学必修1课后习题答案
人教版高中数学必修1课后习题答案人教版高中数学必修1课后习题答案人教版高中数学必修1课后习题答案
人教版高中数学必修1课后习题答案人教版高中数学必修1课后习题答案人教版高中数学必修1课后习题答案人教版高中数学必修1课后习题答案
人教版高中数学必修1课后习题答案
人教版高中数学必修1课后习题答案
人教版高中数学必修1课后习题答案
人教版高中数学必修1课后习题答案
人教版高中数学必修1课后习题答案
人教版高中数学必修1课后习题答案
人教版高中数学必修1课后习题答案
31。
高中数学必修1课后习题答案第一章集合与函数概念练习(第5页)1. (1)中国G A,美国WA,印度e A,英国A;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲. (2)—1仁A A={x\x2 =x} = {09\}(3)3冬B B = (xlx2+x-6 = 0) = (-3,2}. (4) 8 E C, 9.1 w C 9.1WN. 2.解(1)因为方程x2-9 = 0的实数根为X,=-3,%2=3,所以山方程J_9 = 0的所有实数根组成的集合为(-3,3};(2)因为小于8的素数为2,3,5,7, 所以山小于8的所有素数组成的集合为{2,3,5,7};(3)山{v JV | 3 I — |• 一 ~ ,得{ 一,即一•次函数y = x + 3与),=一2尤+ 6的图象的交点为(1,4),所以一次函数y = -2x + 6 [》=4y =工+ 3与y = -2尤+ 6的图象的交点组成的集合为((1,4)}:(4)山4x — 5v3,得x<2, 所以不等式4x-5<3的解集为{x\x<2}.练习(第7页)1.解:按子集元素个数来分类,不取任何元素,得0;取一个元素,得{〃},沛},化};取两个元素,得{。
,/,},{。
,。
},”,身;取三个元素,得{aM ,即集合}的所有子集为0,{□},{"},化},{□,/?},{〃,c},{Z?,c},c} . 2. (1)a e {a.h.c}。
是集合{a.b.c)中的一个元素;(2)O G(X I X2=O} {尤疽=0} = {0};(3)0 = {xeR\x2 + l = O)方程x2+l = O无实数根,(xe/?lx2 + l=O} = 0;4){。
,1住》(或{0,1}Q2V)(0,1}是自然数集合N的子集,也是真子集;(5 ){0} {x\x~ =x} (或{0}c {xl A*2=x}){x\x2 =%) = {0,1} ;(6 )(2,1} = {x I x2 - 3x + 2 = 0} 方程x' -3工 + 2 = 0 两根为为=1,易=2 .3.解:(1)| 切B = {x\x是的约数} = {1,2,4,8},旌A B ;(2)当k=2z 时,3*=6z;当k = 2z + l时,3*=6z + 3, 即8是人的真子集,B切A;(3)因为4与10的最小公倍数是20,所以A = B. 练习(第11 页)1 解:人16 = {3,5,6,8}0{4,5,7,8} = {5,8}, AU8 = {3,5,6,8}U{4,5,7,8} = {3,4,5,6,7,8}.2.解:方程亍_4x —5= 0 的两根为玉=一1,邑=5, 方程亍—1=()的两根为弟=一1,心=1 ,得A = {-1,5},B = {-1,1}, 即AnB = {—l}MUB = {—1,1,5} 解:A^B = {x\x^等腰直角三角形}A\jB = {x\x^等腰三角形或直角三角形}. 4.解:显然QB = {2,4,6}, QA = {1,3,6,7},则An(qg)={2,4},(〃A)n(〃8)={6}.2 2习题1.1 (第11页) A组I. (1) 3—E Q 3—是有理数;(2) 3?E N7 732=9是个自然数;(3)兀宅Q》是个无理数,不是有理数;(4) V2e/? 皿是实数;(5) V9eZ 西=3是个整数;(6) (V5)2G N (^5)2=5是个自然数.2. (1) 5E A; (2) 7WA; (3) -IO G A.当k = 2时,3上一1=5;当k=-3时,3S1 = —10; 3.解:(I)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(x-l)(x + 2)= 0的两个实根为石=一2,易=1,即{一2,1}为所求;(3)由不等式-3〈2=-1<3,得—1 v 尤V 2 ,旦x E Z ,即{0,1,2}为所求. 4.解:(1)显然^ 亍2 0,得X2-4>-4,即y 2 —4 ,2得二次函数V = X2-4的函数值组成的集合为{yly2—4}; (2)显然有x^O,得反比例函数y =—的自X 4变量的值组成的集合为{工1尤。
高中数学必修1课后习题答案第一章集合与函数概念练习(第5页)1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲. (2)1-∉A 2{|}{0,1}A x x x === (3)3∉B2{|60}{3,2}B x x x =+-==-. (4)8∈C ,9.1∉C 9.1N ∉.2.解:(1)因为方程290x -=的实数根为123,3x x =-=, 所以由方程290x -=的所有实数根组成的集合为{3,3}-; (2)因为小于8的素数为2,3,5,7, 所以由小于8的所有素数组成的集合为{2,3,5,7}; (3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <, 所以不等式453x -<的解集为{|2}x x <.练习(第7页)1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ;取两个元素,得{,},{,},{,a b a c b c ;取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{a b c a b a c b c a b c ∅.2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==; (3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅; 4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集;(5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ; (2)当2k z =时,36k z =;当21k z =+时,363k z =+, 即B 是A 的真子集,BA ; (3)因为4与10的最小公倍数是20,所以AB =.练习(第11页)1解:{3,5,6,8A B == ,{3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B == .2.解:方程2450x x --=的两根为121,5x x =-=,方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-,即{1},{1,1,5}A B A B =-=- .3.解:{|}A B x x = 是等腰直角三角形,{|}A B x x = 是等腰三角形或直角三角形. 4.解:显然{2,4,6}U B =ð,{1,3,6,7}U A =ð,则(){2,4}U A B = ð,()(){6}U U A B = 痧.习题1.1 (第11页) A 组1.(1)237Q ∈ 237是有理数; (2)23N ∈239=是个自然数;(3)Q π∉ π是个无理数,不是有理数; (4R(5Z3=是个整数; (6)2N ∈ 2)5=是个自然数. 2.(1)5A ∈; (2)7A ∉; (3)10A -∈. 当2k =时,315k -=;当3k =-时,3110k -=-; 3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求;(3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{01,2}为所求. 4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-;(2)显然有0x ≠,得反比例函数2y x=的自变量的值组成的集合为{|0}x x ≠;(3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥. 5.(1)4B -∉; 3A -∉; {2}B ; BA ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥; (2)1A ∈; {1}-A ; ∅A ;{1,1}-=A ; 2{|10}{1,1}A x x =-==-; (3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥, 则{|2}A B x x =≥ ,{|34}A B x x =≤< . 7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数, 则{1,2,3}A B = ,{3,4,5,6}A C = ,而{1,2,3B C = ,{3}B C = ,则(){1,2A BC= ,(){1,2,3,4,5,6,7,8}A B C = .9.解:同时满足菱形和矩形特征的是正方形,即{|}B C x x = 是正方形, 平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即{|}A B x x =是邻边不相等的平行四边形ð, {|}S A x x =是梯形ð.10.解:{|210}A B x x =<< ,{|37}A B x x =≤< ,{|3,7}R A x x x =<≥或ð,{|2,10}R B x x x =≤≥或ð得(){|2,10}R A B x x x =≤≥ 或ð, (){|3,7}R A B x x x =<≥ 或ð,(){|23,710}R A B x x x =<<≤< 或ð,(){|2,3710}R A B x x x x =≤≤<≥ 或或ð.B 组1.4 集合B 满足A B A = ,则B A ⊆,即集合B 是集合A 的子集,得4个子集. 2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合,即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得DC .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==, 当3a =时,集合{3}A =,则{1,3,4},A B A B ==∅ ; 当1a =时,集合{1,3}A =,则{1,3,4},{1}A B A B ==; 当4a =时,集合{3,4}A =,则{1,3,4},{4}A B A B == ; 当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},A B a A B ==∅ .4.解:显然{0,1,2,3,4,5,6,7,8,U =,由U A B = ,得U B A ⊆ð,即()U UA B B =痧,而(){1,3,5,7U A B = ð,得{1,3,5,7}U B =ð,而()U U B B =痧,即{0,2,4,6,8.9,10}B =.练习(第19页)1.解:(1)要使原式有意义,则470x +≠,即74x ≠-,得该函数的定义域为7{|}4x x ≠-;(2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤. 2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=, 同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=; (2)由2()32f x x x=+,得22()3232f a a a a a=⨯+⨯=+,同理得22()3()2()32f a a a a a -=⨯-+⨯-=-, 则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=. 3.解:(1)不相等,因为定义域不同,时间0t >; (2)不相等,因为定义域不同,0()(0)g x x x =≠.练习(第23页)1.解:, y ==,且050x <<, 即(050)y x =<<. 2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零; 图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.3.解:2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示.4.解:因为sin 60=,所以与A 中元素60相对应的B 中的元素是2; 因为sin 452= ,所以与B 中的元素2相对应的A 中元素是45.习题1.2(第23页)1.解:(1)要使原式有意义,则40x -≠,即4x ≠, 得该函数的定义域为{|4}x x ≠;(2)x R ∈,()f x =即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠,得该函数的定义域为{|12}x x x ≠≠且;(4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠, 得该函数的定义域为{|41}x x x ≤≠且. 2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等; (2)2()f x x =的定义域为R ,而4())g x =的定义域为{|0}x x ≥, 即两函数的定义域不同,得函数()f x 与()g x 不相等; (3)2x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等. 3.解:(1)定义域是(,)-∞+∞,值域是(,)-∞+∞;(2)定义域是(,0)(0,)-∞+∞ ,值域是(,0)(0,)-∞+∞ ;(3)定义域是(,)-∞+∞,值域是(,)-∞+∞;(4)定义域是(,)-∞+∞,值域是[2,)-+∞.4.解:因为2()352f x x x =-+,所以2()32)(2)852f =⨯--++即(8f =+; 同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++, 即2()352f a a a -=++; 22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++, 即2(3)31314f a a a +=++; 22()(3)352(3)3516f a f a a f a a +=-++=-+, 即2()(3)3516f a f a a +=-+.5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上; (2)当4x =时,42(4)346f +==--, 即当4x =时,求()f x 的值为3-; (3)2()26x f x x +==-,得22(6)x x +=-, 即14x =. 6.解:由(1)0,(3)0f f ==,得1,3是方程2x bx c ++=的两个实数根,即13,13b c +=-⨯=,得4,3b c=-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=,即(1)f -的值为8. 7.图象如下:8.解:由矩形的面积为10,即10xy =,得10(0)y x x =>,10(0)x y y=>, 由对角线为d,即d =,得(0)d x =>, 由周长为l ,即22l x y =+,得202(0)l x x x =+>, 另外2()l x y =+,而22210,x y dx y==+,得20)l =,即0)l d => 9.解:依题意,有2()2dx vt π=,即24vx t dπ=, 显然0x h ≤≤,即240v t h d π≤≤,得204h d t v π≤≤, 得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.解:从A 到B 的映射共有8个. 分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.解:(1)函数()r f p =的定义域是[5,0][2,6)- ; (2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.2.解:图象如下,(1)点(,0)x和点(5,)y不能在图象上;(2)省略.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.解:(1)步行的路程为12x -,得1235xt -=+,(012)x ≤≤,即125x t -=+,(012)x ≤≤.(2)当4x =时,12483()355t h -=+=+≈练习(第32页)1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高. 2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间. 3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数. 4.证明:设12,x x R ∈,且12x x <, 因为121221()()2()2()0f x f x x x x x -=--=->, 即12()()f x f x >, 所以函数()21f x x =-+在R 上是减函数.5.最小值.练习(第36页)1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=,所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-,所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x +=,其定义域为(,0)(0,)-∞+∞ ,因为对定义域内每一个x 都有22()11()()x x f x f x x x -++-==-=--,所以函数21()x f x x+=为奇函数;(4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=,所以函数2()1f x x =+为偶函数.2.解:()f x 是偶函数,其图象是关于y 轴对称的; ()g x 是奇函数,其图象是关于原点对称的.习题1.3A 组1.解:(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增;(2) 函数在(,0)-∞上递增;函数在[0,)+∞上递减. 2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-, 由12120,0x x x x +<-<,得12()()0f x f x ->, 即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数; (2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=,由12120,0xx x x >-<,得12()()0f x f x -<, 即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数; 当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数, 令()f x mx b =+,设12x x <, 而1212()()()f x f x m x x -=-, 当0m >时,12()0m x x -<,即12()()f x f x <,得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >, 得一次函数y mx b =+在(,)-∞+∞上是减函数.4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.解:对于函数21622100050x y x =-+-, 当16240502()50x =-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元.6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+, 即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-,得()(1)f x x x -=--,即()(1)f x x x =-, 所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩. B 组1.解:(1)二次函数2()2f x x x =-的对称轴为1x =, 则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数, 函数()g x 的单调区间为[2,4], 且函数()g x 在[2,4]上为增函数; (2)当1x =时,min ()1f x =-, 因为函数()g x 在[2,4]上增函数, 所以2min ()(2)2220g x g ==-⨯=. 2.解:由矩形的宽为x m ,得矩形的长为3032x m -,设矩形的面积为S , 则23033(10)22x x x S x --==-, 当5x =时,2max 37.5S m =, 即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m .3.判断()f x 在(,0)-∞上是增函数,证明如下: 设120x x <<,则120x x ->->, 因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-, 又因为函数()f x 是偶函数,得12()()f x f x <, 所以()f x 在(,0)-∞上是增函数.复习参考题A 组1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-; (2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =. 2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等 即{|}P PA PB =表示的点组成线段AB 的垂直平分线; (2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆. 3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线, 集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC == 的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC ∆的外心. 4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==, 当0a =时,集合B =∅,满足B A ⊆,即0a =; 当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a=, 得1a =-,或1a =, 综上得:实数a 的值为1,0-,或1. 5.解:集合20(,)|{(0,0)}30x y A B x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B = ; 集合20(,)|23x y A C x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭ ,即A C =∅ ; 集合3039(,)|{(,)}2355x y B C x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭ ;则39()(){(0,0),(,)}55A B B C =- . 6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥, 得函数的定义域为[2,)+∞; (2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞ .7.解:(1)因为1()1x f x x -=+,所以1()1a f a a -=+,得12()1111a f a a a -+=+=++, 即2()11f a a+=+; (2)因为1()1x f x x -=+, 所以1(1)(1)112a a f a a a -++==-+++, 即(1)2a f a a +=-+. 8.证明:(1)因为221()1x f x x +=-, 所以22221()1()()1()1x x f x f x x x+-+-===---, 即()()f x f x -=; (2)因为221()1x f x x +=-, 所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x =-. 9.解:该二次函数的对称轴为8k x =, 函数2()48f x x kx =--在[5,20]上具有单调性,则208k ≥,或58k ≤,得160k ≥,或40k ≤,即实数k 的取值范围为160k ≥,或40k ≤. 10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==, 即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称;(3)函数2y x -=在(0,)+∞上是减函数;(4)函数2y x -=在(,0)-∞上是增函数.B 组1.解:设同时参加田径和球类比赛的有x 人,则158143328x ++---=,得3x = 只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人.2.解:因为集合A ≠∅,且20x ≥,所以0a ≥. 3.解:由(){1,3}U A B = ð,得{2,4,5,6,7,8A B = , 集合A B 里除去()U A B ð,得集合B , 所以集合{5,6,7,8,9}B =. 4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=; 当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=; (1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩. 5.证明:(1)因为()f x axb =+,得121212()()222x x x x a f a b x x b ++=+=++, 121212()()()222f x f x ax b ax b a x x b ++++==++, 所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++得22121212121()(2)()242x x x x g x x x x a b ++=++++,22121122()()1[()()]22g x g x x ax b x ax b +=+++++, 2212121()()22x x x x a b +=+++,因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤,即222212121211(2)()42x x x x x x ++≤+,所以1212()()()22x x g x g x g ++≤. 6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<, 因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-, 又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数; (2)函数()g x 在[,]b a --上是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<, 因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-, 又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >, 所以函数()g x 在[,]b a --上是减函数. 7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则 0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩ 由该人一月份应交纳此项税款为26.78元,得25004000x <≤, 25(2500)10%26.78x +-⨯=,得2517.8x =, 所以该人当月的工资、薪金所得是2517.8元.。
高中数学必修1课后习题答案不可抄袭第一章集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.用符号“∈”或“∉”填空:(1)设A为所有亚洲国家组成的集合,则:中国_______A,美国_______A,印度_______A,英国_______A;(2)若2==,则1-_______A;{|}A x x x(3)若2=+-=,则3_______B;B x x x{|60}(4)若{|110}=∈≤≤,则8_______C,9.1_______C.C x N x1.(1)中国∈A,美国∉A,印度∈A,英国∉A;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A2===.{|}{0,1}A x x x(3)3∉B2=+-==-.B x x x{|60}{3,2}(4)8∈C,9.1∉C9.1N∉.2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合;(2)由小于8的所有素数组成的集合;(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合;(4)不等式453x -<的解集.2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-;(2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7};(3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.写出集合{,,}a b c 的所有子集.1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ;取两个元素,得{,},{,},{,}a b a c b c ;取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =;(3)∅______2{|10}x R x ∈+=; (4){0,1}______N ;(5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=.2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集;(5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈;(3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,B A ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.设{3,5,6,8},{4,5,7,8}A B ==,求,A B A B .1.解:{3,5,6,8}{4,5,7,8}{5,8}A B ==,{3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B ==.2.设22{|450},{|1}A x x x B x x =--===,求,A B A B .2.解:方程2450x x --=的两根为121,5x x =-=,方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-,即{1},{1,1,5}A B A B =-=-.3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,A B A B .3.解:{|}A B x x =是等腰直角三角形,{|}A B x x =是等腰三角形或直角三角形.4.已知全集{1,2,3,4,5,6,7}U =,{2,4,5},{1,3,5,7}A B ==,求(),()()U U U A B A B .4.解:显然{2,4,6}U B =,{1,3,6,7}U A =,则(){2,4}U A B =,()(){6}U U A B =.1.1集合习题1.1 (第11页) A 组1.用符号“∈”或“∉”填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ;(4_______R ; (5Z ; (6)2_______N .1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数;(3)Q π∉ π是个无理数,不是有理数; (4R 是实数;(5Z 3=是个整数; (6)2N ∈ 25=是个自然数.2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉” 符号填空:(1)5_______A ; (2)7_______A ; (3)10-_______A .2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-;3.用列举法表示下列给定的集合:(1)大于1且小于6的整数;(2){|(1)(2)0}A x x x =-+=;(3){|3213}B x Z x =∈-<-≤.3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求;(3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求.4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合;(2)反比例函数2y x =的自变量的值组成的集合;(3)不等式342x x ≥-的解集.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-;(2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠;(3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥.5.选用适当的符号填空:(1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ;(2)已知集合2{|10}A x x =-=,则有:1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ;(3){|}x x 是菱形_______{|}x x 是平行四边形;{|}x x 是等腰三角形_______{|}x x 是等边三角形.5.(1)4B -∉; 3A -∉; {2}B ; B A ; 2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ;2{|10}{1,1}A x x =-==-; (3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,A B A B .6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥,则{|2}A B x x =≥,{|34}A B x x =≤<.7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求A B , A C ,()A B C ,()A B C .7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数,则{1,2,3}A B =,{3,4,5,6}A C =,而{1,2,3,4,5,6}B C =,{3}B C =,则(){1,2,3,4,5,6}A B C =,(){1,2,3,4,5,6,7,8}A B C =.8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定,并解释以下集合运算的含义:(1)A B ;(2)A C .8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项, 即为()A B C =∅.(1){|}A B x x =是参加一百米跑或参加二百米跑的同学;(2){|}A C x x =是既参加一百米跑又参加四百米跑的同学.9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形,{|}B x x =是菱形, {|}C x x =是矩形,求B C ,A B ,S A .9.解:同时满足菱形和矩形特征的是正方形,即{|}B C x x =是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形,即{|}A B x x =是邻边不相等的平行四边形,{|}S A x x =是梯形.10.已知集合{|37},{|210}A x x B x x =≤<=<<,求()R A B ,()R A B ,()R A B ,()R A B .10.解:{|210}A B x x =<<,{|37}A B x x =≤<,{|3,7}R A x x x =<≥或,{|2,10}R B x x x =≤≥或,得(){|2,10}R A B x x x =≤≥或,(){|3,7}R A B x x x =<≥或,(){|23,710}R A B x x x =<<≤<或,(){|2,3710}R A B x x x x =≤≤<≥或或.B 组1.已知集合{1,2}A =,集合B 满足{1,2}A B =,则集合B 有 个. 1.4 集合B 满足A B A =,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.在平面直角坐标系中,集合{(,)|}C x y y x ==表示直线y x =,从这个角度看,集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示什么集合,C D 之间有什么关系2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合, 即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得D C .3.设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求,A B A B .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==,当3a =时,集合{3}A =,则{1,3,4},A B A B ==∅;当1a =时,集合{1,3}A =,则{1,3,4},{1}A B A B ==;当4a =时,集合{3,4}A =,则{1,3,4},{4}A B A B ==;当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},A B a A B ==∅.4.已知全集{|010}U A B x N x ==∈≤≤,(){1,3,5,7}U A B =,试求集合B .4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U A B =,得U B A ⊆,即()U U A B B =,而(){1,3,5,7}U A B =,得{1,3,5,7}U B =,而()U U B B =,即{0,2,4,6,8.9,10}B =.第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.求下列函数的定义域:(1)1()47f x x =+; (2)()1f x =. 1.解:(1)要使原式有意义,则470x +≠,即74x ≠-,得该函数的定义域为7{|}4x x ≠-;(2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤.2.已知函数2()32f x x x =+,(1)求(2),(2),(2)(2)f f f f -+-的值;(2)求(),(),()()f a f a f a f a -+-的值.2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=,同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+,同理得22()3()2()32f a a a a a -=⨯-+⨯-=-,则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.判断下列各组中的函数是否相等,并说明理由:(1)表示炮弹飞行高度h 与时间t 关系的函数21305h t t =-和二次函数21305y x x =-;(2)()1f x =和0()g x x =.3.解:(1)不相等,因为定义域不同,时间0t >;(2)不相等,因为定义域不同,0()(0)g x x x =≠.1.2.2函数的表示法练习(第23页)1.如图,把截面半径为25cm 的圆形木头锯成矩形木料,如果矩形的一边长为xcm , 面积为2ycm ,把y 表示为x 的函数.1.解:显然矩形的另一边长为2250x cm -,222502500y x x x x =-=-,且050x <<, 即22500(050)y x x x =-<<.2.下图中哪几个图象与下述三件事分别吻合得最好请你为剩下的那个图象写出一件事.(1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.2.解:图象(A)对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化;图象(B)对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速;图象(D)对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C)我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.3.画出函数|2|y x=-的图象.3.解:2,2|2|2,2x xy xx x-≥⎧=-=⎨-+<⎩,图象如下所示.时间(A)时间(B)时间(C)时间(D)4.设{|},{0,1}A x x B ==是锐角,从A 到B 的映射是“求正弦”,与A 中元素60相对应的B 中的元素是什么与B 中的元素22相对应的A 中元素是什么 4.解:因为3sin 602=,所以与A 中元素60相对应的B 中的元素是32; 因为2sin 452=,所以与B 中的元素22相对应的A 中元素是45. 1.2函数及其表示习题1.2(第23页)1.求下列函数的定义域:(1)3()4x f x x =-; (2)2()f x x =; (3)26()32f x x x =-+; (4)4()x f x -=. 1.解:(1)要使原式有意义,则40x -≠,即4x ≠, 得该函数的定义域为{|4}x x ≠;(2)x R ∈,2()f x x =都有意义,即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠, 得该函数的定义域为{|12}x x x ≠≠且;(4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠,得该函数的定义域为{|41}x x x ≤≠且.2.下列哪一组中的函数()f x 与()g x 相等(1)2()1,()1x f x x g x x=-=-; (2)24(),()f x x g x ==;(3)2(),()f x x g x ==2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()g x =的定义域为{|0}x x ≥, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(32x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.画出下列函数的图象,并说出函数的定义域和值域.(1)3y x=;(2)8yx=;(3)45y x=-+;(4)267y x x=-+.3.解:(1)定义域是(,)-∞+∞,值域是(,)-∞+∞;(2)定义域是(,0)(0,)-∞+∞,值域是(,0)(0,)-∞+∞;(3)定义域是(,)-∞+∞,值域是(,)-∞+∞;(4)定义域是(,)-∞+∞,值域是[2,)-+∞.4.已知函数2()352f x x x =-+,求(2)f -,()f a -,(3)f a +,()(3)f a f +.4.解:因为2()352f x x x =-+,所以2(2)3(2)5(2)2852f -=⨯--⨯-+=+, 即(2)852f -=+;同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++, 即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++, 即2(3)31314f a a a +=++; 22()(3)352(3)3516f a f a a f a a +=-++=-+, 即2()(3)3516f a f a a +=-+.5.已知函数2()6x f x x +=-, (1)点(3,14)在()f x 的图象上吗(2)当4x =时,求()f x 的值;(3)当()2f x =时,求x 的值.5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上;(2)当4x =时,42(4)346f +==--, 即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-, 即14x =.6.若2()f x x bx c =++,且(1)0,(3)0f f ==,求(1)f -的值.6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c++=的两个实数根,即13,13b c+=-⨯=,得4,3b c=-=,即2()43f x x x=-+,得2(1)(1)4(1)38f-=--⨯-+=,即(1)f-的值为8.7.画出下列函数的图象:(1)0,0()1,0xF xx≤⎧=⎨>⎩;(2)()31,{1,2,3}G n n n=+∈.7.图象如下:8.如图,矩形的面积为10,如果矩形的长为x,宽为y,对角线为d,周长为l ,那么你能获得关于这些量的哪些函数8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y =>,由对角线为d ,即d =(0)d x =>, 由周长为l ,即22l x y =+,得202(0)l x x x=+>, 另外2()l x y =+,而22210,xy d x y ==+,得(0)l d ===>,即(0)l d =>.9.一个圆柱形容器的底部直径是dcm ,高是hcm ,现在以3/vcm s 的速度向容器内注入某种溶液.求溶液内溶液的高度xcm 关于注入溶液的时间ts 的函数解析式,并写出函数的定义域和值域. 9.解:依题意,有2()2d x vt π=,即24vx t dπ=, 显然0x h ≤≤,即240vt h d π≤≤,得204h d t v π≤≤,得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.设集合{,,},{0,1}A a b c B ==,试问:从A 到B 的映射共有几个并将它们分别表示出来.10.解:从A到B的映射共有8个.分别是()0()0()0f af bf c=⎧⎪=⎨⎪=⎩,()0()0()1f af bf c=⎧⎪=⎨⎪=⎩,()0()1()0f af bf c=⎧⎪=⎨⎪=⎩,()0()0()1f af bf c=⎧⎪=⎨⎪=⎩,()1()0()0f af bf c=⎧⎪=⎨⎪=⎩,()1()0()1f af bf c=⎧⎪=⎨⎪=⎩,()1()1()0f af bf c=⎧⎪=⎨⎪=⎩,()1()0()1f af bf c=⎧⎪=⎨⎪=⎩.B组1.函数()r f p=的图象如图所示.(1)函数()r f p=的定义域是什么(2)函数()r f p=的值域是什么(3)r取何值时,只有唯一的p值与之对应1.解:(1)函数()r f p=的定义域是[5,0][2,6)-;(2)函数()r f p=的值域是[0,)+∞;(3)当5r>,或02r≤<时,只有唯一的p值与之对应.2.画出定义域为{|38,5}x x x -≤≤≠且,值域为{|12,0}y y y -≤≤≠的一个函数的图象. (1)如果平面直角坐标系中点(,)P x y 的坐标满足38x -≤≤,12y -≤≤,那么其中哪些点不能在图象上(2)将你的图象和其他同学的相比较,有什么差别吗2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.函数()[]f x x =的函数值表示不超过x 的最大整数,例如,[ 3.5]4-=-,[2.1]2=.当( 2.5,3]x ∈-时,写出函数()f x 的解析式,并作出函数的图象.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.如图所示,一座小岛距离海岸线上最近的点P的距离是2km,从点P沿海岸正东12km处有一个城镇.(1)假设一个人驾驶的小船的平均速度为3/km h,t(单km h,步行的速度是5/位:h)表示他从小岛到城镇的时间,x(单位:km)表示此人将船停在海岸处距P点的距离.请将t表示为x的函数.(2)如果将船停在距点P4km处,那么从小岛到城镇要多长时间(精确到1h)4.解:(1)驾驶小船的路程为222x +,步行的路程为12x -,得2221235x xt +-=+,(012)x ≤≤, 即24125x xt +-=+,(012)x ≤≤. (2)当4x =时,2441242583()355t h +-=+=+≈.第一章 集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.请根据下图描述某装配线的生产效率与生产线上工人数量间的关系.1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.整个上午(8:0012:00)天气越来越暖,中午时分(12:0013:00)一场暴风雨使天气骤然凉爽了许多.暴风雨过后,天气转暖,直到太阳落山(18:00)才又开始转凉.画出这一天8:0020:00期间气温作为时间函数的一个可能的图象,并说出所画函数的单调区间.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间.3.根据下图说出函数的单调区间,以及在每一单调区间上,函数是增函数还是减函数.3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数.4.证明函数()21f x x =-+在R 上是减函数. 4.证明:设12,x x R ∈,且12x x <,因为121221()()2()2()0f x f x x x x x -=--=->, 即12()()f x f x >,所以函数()21f x x =-+在R 上是减函数.5.设()f x 是定义在区间[6,11]-上的函数.如果()f x 在区间[6,2]--上递减,在区间[2,11]-上递增,画出()f x 的一个大致的图象,从图象上可以发现(2)f -是函数()f x 的一个 .5.最小值.1.3.2单调性与最大(小)值练习(第36页)1.判断下列函数的奇偶性:(1)42()23f x x x =+; (2)3()2f x x x =-(3)21()x f x x+=; (4)2()1f x x =+.1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=, 所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-, 所以函数3()2f x x x =-为奇函数;(3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞,因为对定义域内每一个x 都有22()11()()x x f x f x x x-++-==-=--, 所以函数21()x f x x+=为奇函数;(4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=, 所以函数2()1f x x =+为偶函数.2.已知()f x是偶函数,g x是奇函数,试将下图()补充完整.2.解:()f x是偶函数,其图象是关于y轴对称的;g x是奇函数,其图象是关于原点对称的.()习题A组1.画出下列函数的图象,并根据图象说出函数()y f x=的单调区间,以及在各单调区间上函数()=是增函数还是减函数.y f x(1)256y x=-.=--;(2)2y x x91.解:(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增; (2)函数在(,0)-∞上递增;函数在[0,)+∞上递减.2.证明:(1)函数2()1f x x =+在(,0)-∞上是减函数; (2)函数1()1f x x=-在(,0)-∞上是增函数.2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-,由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=, 由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.探究一次函数()y mx b x R =+∈的单调性,并证明你的结论. 3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数; 当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数, 令()f x mx b =+,设12x x <, 而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <, 得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >,得一次函数y mx b =+在(,)-∞+∞上是减函数.4.一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高.画出自服药那一刻起,心率关于时间的一个可能的图象(示意图). 4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.某汽车租赁公司的月收益y 元与每辆车的月租金x 元间的关系为21622100050x y x =-+-,那么,每辆车的月租金多少元时,租赁公司的月收益最大最大月收益是多少5.解:对于函数21622100050x y x =-+-,当162405012()50x =-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元. 6.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()(1)f x x x =+.画出函数()f x 的图象,并求出函数的解析式.6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-, 得()(1)f x x x -=--,即()(1)f x x x =-,所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩.B 组1.已知函数2()2f x x x =-,2()2([2,4])g x x x x =-∈.(1)求()f x ,()g x 的单调区间; (2)求()f x ,()g x 的最小值. 1.解:(1)二次函数2()2f x x x =-的对称轴为1x =, 则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数, 函数()g x 的单调区间为[2,4], 且函数()g x 在[2,4]上为增函数; (2)当1x =时,min ()1f x =-,因为函数()g x 在[2,4]上为增函数, 所以2min ()(2)2220g x g ==-⨯=.2.如图所示,动物园要建造一面靠墙的2间面积相同的矩形熊猫居室,如果可供建造围墙的材料总长是30m ,那么宽x (单位:m )为多少才能使建造的每间熊猫居室面积最大每间熊猫居室的最大面积是多少2.解:由矩形的宽为x m ,得矩形的长为3032xm -,设矩形的面积为S , 则23033(10)22x x x S x --==-, 当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m .3.已知函数()f x 是偶函数,而且在(0,)+∞上是减函数,判断()f x 在(,0)-∞上是增函数还是减函数,并证明你的判断.3.判断()f x 在(,0)-∞上是增函数,证明如下: 设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-, 又因为函数()f x 是偶函数,得12()()f x f x <, 所以()f x 在(,0)-∞上是增函数.复习参考题A 组1.用列举法表示下列集合: (1)2{|9}A x x ==; (2){|12}B x N x =∈≤≤; (3)2{|320}C x x x =-+=.1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-; (2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =.2.设P 表示平面内的动点,属于下列集合的点组成什么图形 (1){|}P PA PB =(,)A B 是两个定点; (2){|3}P PO cm =()O 是定点.2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等, 即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆. 3.设平面内有ABC ∆,且P 表示这个平面内的动点,指出属于集合{|}{|}P PA PB P PA PC ==的点是什么.3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线,集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC ∆的外心.4.已知集合2{|1}A x x ==,{|1}B x ax ==.若B A ⊆,求实数a 的值. 4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==, 当0a =时,集合B =∅,满足B A ⊆,即0a =;当0a ≠时,集合1{}B a=,而B A ⊆,则11a=-,或11a=, 得1a =-,或1a =, 综上得:实数a 的值为1,0-,或1.5.已知集合{(,)|20}A x y x y =-=,{(,)|30}B x y x y =+=,{(,)|23}C x y x y =-=,求A B ,A C ,()()A B B C .5.解:集合20(,)|{(0,0)}30x y A B x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B =;集合20(,)|23x y A C x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭,即A C =∅;集合3039(,)|{(,)}2355x y B C x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭;则39()(){(0,0),(,)}55A B B C =-.6.求下列函数的定义域: (1)y =(2)y =6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞;(2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞. 7.已知函数1()1xf x x-=+,求: (1)()1(1)f a a +≠-; (2)(1)(2)f a a +≠-. 7.解:(1)因为1()1xf x x-=+, 所以1()1a f a a -=+,得12()1111a f a a a-+=+=++, 即2()11f a a +=+; (2)因为1()1xf x x-=+, 所以1(1)(1)112a af a a a -++==-+++,即(1)2af a a +=-+.8.设221()1x f x x+=-,求证: (1)()()f x f x -=; (2)1()()f f x x=-.8.证明:(1)因为221()1x f x x +=-,所以22221()1()()1()1x x f x f x x x+-+-===---, 即()()f x f x -=;(2)因为221()1x f x x +=-,所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x=-.9.已知函数2()48f x x kx =--在[5,20]上具有单调性,求实数k 的取值范围. 9.解:该二次函数的对称轴为8k x =,函数2()48f x x kx =--在[5,20]上具有单调性,则208k ≥,或58k ≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤.10.已知函数2y x -=,(1)它是奇函数还是偶函数 (2)它的图象具有怎样的对称性 (3)它在(0,)+∞上是增函数还是减函数 (4)它在(,0)-∞上是增函数还是减函数10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==, 即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称; (3)函数2y x -=在(0,)+∞上是减函数; (4)函数2y x -=在(,0)-∞上是增函数.B 组1.学校举办运动会时,高一(1)班共有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时参加游泳比赛和球类比赛的有3人,没有人同时参加三项比赛.问同时参加田径和球类比赛的有多少人只参加游泳一项比赛的有多少人 1.解:设同时参加田径和球类比赛的有x 人, 则158143328x ++---=,得3x =,只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人. 2.已知非空集合2{|}A x R x a =∈=,试求实数a 的取值范围. 2.解:因为集合A ≠∅,且20x ≥,所以0a ≥.3.设全集{1,2,3,4,5,6,7,8,9}U =,(){1,3}U A B =,(){2,4}U A B =,求集合B . 3.解:由(){1,3}U A B =,得{2,4,5,6,7,8,9}A B =, 集合A B 里除去()U A B ,得集合B , 所以集合{5,6,7,8,9}B =.4.已知函数(4),0()(4),0x x x f x x x x +≥⎧=⎨-<⎩.求(1)f ,(3)f -,(1)f a +的值.4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=; 当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=;(1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩.5.证明:(1)若()f x ax b =+,则1212()()()22x x f x f x f ++=; (2)若2()g x x ax b =++,则1212()()()22x x g x g x g ++≤.5.证明:(1)因为()f x ax b =+,得121212()()222x x x x af a b x x b ++=+=++,121212()()()222f x f x ax b ax b ax x b ++++==++,所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++,得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++2212121()()22x x x x a b +=+++, 因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤, 即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. 6.(1)已知奇函数()f x 在[,]a b 上是减函数,试问:它在[,]b a --上是增函数还是减函数(2)已知偶函数()g x 在[,]a b 上是增函数,试问:它在[,]b a --上是增函数还是减函数6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数; (2)函数()g x 在[,]b a --上是减函数,证明如下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-,又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >,所以函数()g x 在[,]b a --上是减函数.7.《中华人民共和国个人所得税》规定,公民全月工资、薪金所得不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得额.此项税款按下表分段累计计算:某人一月份应交纳此项税款为26.78元,那么他当月的工资、薪金所得是多少7.解:设某人的全月工资、薪金所得为x元,应纳此项税款为y 元,则0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩由该人一月份应交纳此项税款为26.78元,得25004000x <≤, 25(2500)10%26.78x +-⨯=,得2517.8x =, 所以该人当月的工资、薪金所得是2517.8元.。
高中数学必修1课后习题答案 第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.用符号“∈”或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则:中国_______A ,美国_______A ,印度_______A ,英国_______A ;(2)若2{|}A x x x ==,则1-_______A ; (3)若2{|60}B x x x =+-=,则3_______B ;(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C . 1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲. (2)1-∉A 2{|}{0,1}A x x x ===.(3)3∉B 2{|60}{3,2}B x x x =+-==-. (4)8∈C ,9.1∉C 9.1N ∉. 2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合; (2)由小于8的所有素数组成的集合;(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (4)不等式453x -<的解集.2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-; (2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7};(3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.写出集合{,,}a b c 的所有子集.1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ; 取两个元素,得{,},{,},{,}a b a c b c ; 取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =; (3)∅______2{|10}x R x ∈+=; (4){0,1}______N ;(5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=. 2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集;(5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈;(3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+, 即B 是A 的真子集,BA ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.设{3,5,6,8},{4,5,7,8}A B ==,求,A B A B .1.解:{3,5,6,8}{4,5,7,8}{5,8}A B ==, {3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}AB ==.2.设22{|450},{|1}A x x x B x x =--===,求,A B A B .2.解:方程2450x x --=的两根为121,5x x =-=, 方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-, 即{1},{1,1,5}AB A B =-=-.3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,A B A B .3.解:{|}A B x x =是等腰直角三角形,{|}AB x x =是等腰三角形或直角三角形.4.已知全集{1,2,3,4,5,6,7}U =,{2,4,5},{1,3,5,7}A B ==, 求(),()()U U U AB A B .4.解:显然{2,4,6}UB =,{1,3,6,7}UA =,则(){2,4}U AB =,()(){6}U U A B =.1.1集合习题1.1 (第11页) A 组1.用符号“∈”或“∉”填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ;(4_______R ; (5Z ; (6)2_______N .1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数;(3)Q π∉ π是个无理数,不是有理数; (4R 是实数;(5Z 3=是个整数; (6)2N ∈ 25=是个自然数.2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉” 符号填空: (1)5_______A ; (2)7_______A ; (3)10-_______A . 2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-; 3.用列举法表示下列给定的集合: (1)大于1且小于6的整数; (2){|(1)(2)0}A x x x =-+=; (3){|3213}B x Z x =∈-<-≤.3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求; (3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求. 4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合;(2)反比例函数2y x=的自变量的值组成的集合; (3)不等式342x x ≥-的解集.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-;(2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥.5.选用适当的符号填空:(1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ; (2)已知集合2{|10}A x x =-=,则有:1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ; (3){|}x x 是菱形_______{|}x x 是平行四边形; {|}x x 是等腰三角形_______{|}x x 是等边三角形. 5.(1)4B -∉; 3A -∉; {2}B ; B A ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥; (2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ;2{|10}{1,1}A x x =-==-; (3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,AB A B .6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥, 则{|2}AB x x =≥,{|34}A B x x =≤<.7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求A B ,AC ,()A B C ,()A B C .7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数, 则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}B C =,{3}B C =, 则(){1,2,3,4,5,6}AB C =,(){1,2,3,4,5,6,7,8}A B C =.8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定, 并解释以下集合运算的含义:(1)A B ;(2)A C .8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项, 即为()A B C =∅.(1){|}A B x x =是参加一百米跑或参加二百米跑的同学; (2){|}AC x x =是既参加一百米跑又参加四百米跑的同学.9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形,{|}B x x =是菱形, {|}C x x =是矩形,求BC ,A B ,S A .9.解:同时满足菱形和矩形特征的是正方形,即{|}BC x x =是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即{|}AB x x =是邻边不相等的平行四边形,{|}SA x x =是梯形.10.已知集合{|37},{|210}A x x B x x =≤<=<<,求()RA B ,()R A B ,()R A B ,()R A B .10.解:{|210}A B x x =<<,{|37}A B x x =≤<,{|3,7}RA x x x =<≥或,{|2,10}RB x x x =≤≥或,得(){|2,10}RA B x x x =≤≥或,(){|3,7}RA B x x x =<≥或,(){|23,710}R A B x x x =<<≤<或,(){|2,3710}R AB x x x x =≤≤<≥或或.B 组1.已知集合{1,2}A =,集合B 满足{1,2}A B =,则集合B 有 个.1.4 集合B 满足AB A =,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.在平面直角坐标系中,集合{(,)|}C x y y x ==表示直线y x =,从这个角度看,集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示什么?集合,C D 之间有什么关系?2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合,即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得D C .3.设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求,A B A B .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==, 当3a =时,集合{3}A =,则{1,3,4},A B A B ==∅; 当1a =时,集合{1,3}A =,则{1,3,4},{1}A B A B ==; 当4a =时,集合{3,4}A =,则{1,3,4},{4}AB A B ==;当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},AB a A B ==∅.4.已知全集{|010}U AB x N x ==∈≤≤,(){1,3,5,7}U A B =,试求集合B .4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U AB =,得UB A ⊆,即()U UA B B =,而(){1,3,5,7}U A B =,得{1,3,5,7}UB =,而()UU B B =,即{0,2,4,6,8.9,10}B =.第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.求下列函数的定义域:(1)1()47f x x =+; (2)()131f x x x =-++.1.解:(1)要使原式有意义,则470x +≠,即74x ≠-,得该函数的定义域为7{|}4x x ≠-;(2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤. 2.已知函数2()32f x x x =+,(1)求(2),(2),(2)(2)f f f f -+-的值; (2)求(),(),()()f a f a f a f a -+-的值.2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=,同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+,同理得22()3()2()32f a a a a a -=⨯-+⨯-=-, 则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.判断下列各组中的函数是否相等,并说明理由:(1)表示炮弹飞行高度h 与时间t 关系的函数21305h t t =-和二次函数21305y x x =-; (2)()1f x =和0()g x x =.3.解:(1)不相等,因为定义域不同,时间0t >; (2)不相等,因为定义域不同,0()(0)g x x x =≠.1.2.2函数的表示法练习(第23页)1.如图,把截面半径为25cm 的圆形木头锯成矩形木料,如果矩形的一边长为xcm , 面积为2ycm ,把y 表示为x 的函数. 1.解:显然矩形的另一边长为2250x cm -,222502500y x x x x =-=-,且050x <<,即22500(050)y x x x =-<<.2.下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事. (1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进. 3.画出函数|2|y x =-的图象.3.解:2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示.{|},{0,1}A x x B ==是锐角,从A 到B 的映射是“求正弦”,4.设中元素60相对应与AB 中的元素是什么?与B 中的元素22相对应的A 中元素是什的么?4.解:因为3sin 602=,所以与A 中元素60相对应的B 中的元素是32; 因为2sin 452=,所以与B 中的元素22相对应的A 中元素是45. 1.2函数及其表示O离开家的距离时间(A ) O离开家的距离时间(B ) O离开家的距离时间(C ) O离开家的距离时间(D )习题1.2(第23页)1.求下列函数的定义域:(1)3()4xf x x =-; (2)()f x =(3)26()32f x x x =-+; (4)()f x =1.解:(1)要使原式有意义,则40x -≠,即4x ≠, 得该函数的定义域为{|4}x x ≠;(2)x R ∈,()f x =即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠, 得该函数的定义域为{|12}x x x ≠≠且;(4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠,得该函数的定义域为{|41}x x x ≤≠且. 2.下列哪一组中的函数()f x 与()g x 相等?(1)2()1,()1x f x x g x x=-=-; (2)24(),()f x x g x ==;(3)2(),()f x x g x ==.2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()g x =的定义域为{|0}x x ≥,即两函数的定义域不同,得函数()f x 与()g x 不相等;(32x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.画出下列函数的图象,并说出函数的定义域和值域. (1)3y x =; (2)8y x=; (3)45y x =-+; (4)267y x x =-+.3.解:(1)定义域是(,)-∞+∞,值域是(,)-∞+∞;(2)定义域是(,0)(0,)-∞+∞,值域是(,0)(0,)-∞+∞;(3)域是(,)-∞+∞,值域是(,)-∞+∞;定义(4)定义域是(,)-∞+∞,值域是[2,)-+∞.4.已知函数2()352f x x x =-+,求(f ,()f a -,(3)f a +,()(3)f a f +.4.解:因为2()352f x x x =-+,所以2(3(5(28f =⨯-⨯+=+即(8f =+同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++,即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++,即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+,即2()(3)3516f a f a a +=-+.5.已知函数2()6x f x x +=-, (1)点(3,14)在()f x 的图象上吗?(2)当4x =时,求()f x 的值;(3)当()2f x =时,求x 的值.5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上;(2)当4x =时,42(4)346f +==--, 即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-,即14x =.6.若2()f x x bx c =++,且(1)0,(3)0f f ==,求(1)f -的值.6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根,即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=,即(1)f -的值为8.7.画出下列函数的图象: (1)0,0()1,0x F x x ≤⎧=⎨>⎩; (2)()31,{1,2,3}G n n n =+∈.7.图象如下:8.如图,矩形的面积为10,如果矩形的长为x ,宽为y ,对角线为d ,周长为l ,那么你能获得关于这些量的哪些函数?8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y =>,由对角线为d,即d =,得(0)d x =>, 由周长为l ,即22l x y =+,得202(0)l x x x =+>, 另外2()l x y =+,而22210,xy d x y ==+,得(0)l d ===>,即(0)l d =>.9.一个圆柱形容器的底部直径是dcm ,高是hcm ,现在以3/vcm s 的速度向容器内注入某种溶液.求溶液内溶液的高度xcm 关于注入溶液的时间ts 的函数解析式,并写出函数的定义域和值域.9.解:依题意,有2()2dx vt π=,即24v x t d π=, 显然0x h ≤≤,即240v t h d π≤≤,得204h d t v π≤≤, 得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.设集合{,,},{0,1}A a b c B ==,试问:从A 到B 的映射共有几个?并将它们分别表示出来.10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.函数()r f p =的图象如图所示.(1)函数()r f p =的定义域是什么?(2)函数()r f p =的值域是什么?(3)r 取何值时,只有唯一的p 值与之对应?1.解:(1)函数()r f p =的定义域是[5,0][2,6)-;(2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.2.画出定义域为{|38,5}x x x -≤≤≠且,值域为{|12,0}y y y -≤≤≠的一个函数的图象.(1)如果平面直角坐标系中点(,)P x y 的坐标满足38x -≤≤,12y -≤≤,那么其中哪些点不能在图象上?(2)将你的图象和其他同学的相比较,有什么差别吗?2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.函数()[]f x x =的函数值表示不超过x 的最大整数,例如,[ 3.5]4-=-,[2.1]2=.当( 2.5,3]x ∈-时,写出函数()f x 的解析式,并作出函数的图象.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.如图所示,一座小岛距离海岸线上最近的点P 的距离是2km ,从点P 沿海岸正东12km 处有一个城镇.(1)假设一个人驾驶的小船的平均速度为3/km h ,步行的速度是5/km h ,t (单位:h )表示他从小岛到城镇的时间,x (单位:km )表示此人将船停在海岸处距P 点的距离.请将t 表示为x 的函数.(2)如果将船停在距点P 4km 处,那么从小岛到城镇要多长时间(精确到1h )?4.解:(1)驾驶小船的路程为222x +,步行的路程为12x -,得2221235x x t +-=+,(012)x ≤≤, 即241235x x t +-=+,(012)x ≤≤. (2)当4x =时,2441242583()3535t h +-=+=+≈.第一章 集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.请根据下图描述某装配线的生产效率与生产线上工人数量间的关系.1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.整个上午(8:0012:00)天气越来越暖,中午时分(12:0013:00)一场暴风雨使天气骤然凉爽了许多.暴风雨过后,天气转暖,直到太阳落山(18:00)才又开始转凉.画出这一天8:0020:00期间气温作为时间函数的一个可能的图象,并说出所画函数的单调区间.2.解:图象如下[8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间.3.根据下图说出函数的单调区间,以及在每一单调区间上,函数是增函数还是减函数.3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数.4.证明函数()21f x x =-+在R 上是减函数.4.证明:设12,x x R ∈,且12x x <,因为121221()()2()2()0f x f x x x x x -=--=->,即12()()f x f x >,所以函数()21f x x =-+在R 上是减函数.5.设()f x 是定义在区间[6,11]-上的函数.如果()f x 在区间[6,2]--上递减,在区间[2,11]-上递增,画出()f x 的一个大致的图象,从图象上可以发现(2)f -是函数()f x 的一个 .5.最小值.1.3.2单调性与最大(小)值练习(第36页)1.判断下列函数的奇偶性:(1)42()23f x x x =+; (2)3()2f x x x =- (3)21()x f x x+=; (4)2()1f x x =+. 1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=,所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-,所以函数3()2f x x x =-为奇函数; (3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞,因为对定义域内 每一个x 都有22()11()()x x f x f x x x-++-==-=--, 所以函数21()x f x x+=为奇函数; (4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=,所以函数2()1f x x =+为偶函数.2.已知()f x 是偶函数,()g x 是奇函数,试将下图补充完整.2.解:()f x 是偶函数,其图象是关于y 轴对称的;()g x 是奇函数,其图象是关于原点对称的.习题1.3A 组1.画出下列函数的图象,并根据图象说出函数()y f x =的单调区间,以及在各单调区间 上函数()y f x =是增函数还是减函数.(1)256y x x =--; (2)29y x =-. 1.解:(1)函数在5(,)2-∞上递减;函数在5[,)2+∞上递增;(2)函数在(,0)-∞上递增;函数在[0,)+∞上递减. 2.证明:(1)函数2()1f x x =+在(,0)-∞上是减函数; (2)函数1()1f x x=-在(,0)-∞上是增函数. 2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-,由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=, 由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.探究一次函数()y mx b x R =+∈的单调性,并证明你的结论. 3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数; 当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数, 令()f x mx b =+,设12x x <, 而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <, 得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >,得一次函数y mx b =+在(,)-∞+∞上是减函数.4.一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次 慢慢升高.画出自服药那一刻起,心率关于时间的一个可能的图象(示意图). 4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.某汽车租赁公司的月收益y 元与每辆车的月租金x 元间的关系为21622100050x y x =-+-,那么,每辆车的月租金多少元时,租赁公司的月收益最大?最大月收益是多少?5.解:对于函数21622100050x y x =-+-, 当162405012()50x =-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元.6.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()(1)f x x x =+.画出函数()f x 的图象,并求出函数的解析式.6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-, 得()(1)f x x x -=--,即()(1)f x x x =-,所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩.B 组1.已知函数2()2f x x x =-,2()2([2,4])g x x x x =-∈.(1)求()f x ,()g x 的单调区间; (2)求()f x ,()g x 的最小值. 1.解:(1)二次函数2()2f x x x =-的对称轴为1x =, 则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数, 函数()g x 的单调区间为[2,4],且函数()g x 在[2,4]上为增函数; (2)当1x =时,min ()1f x =-, 因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.如图所示,动物园要建造一面靠墙的2间面积相同的矩形熊猫居室,如果可供建造围墙的材料总长是30m ,那么宽x (单位:m )为多少才能使建造的每间熊猫居室面积最大?每间熊猫居室的最大面积是多少?2.解:由矩形的宽为x m ,得矩形的长为3032xm -,设矩形的面积为S , 则23033(10)22x x x S x --==-, 当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是18.75m^2.3.已知函数()f x 是偶函数,而且在(0,)+∞上是减函数,判断()f x 在(,0)-∞上是增函数还是减函数,并证明你的判断.3.判断()f x 在(,0)-∞上是增函数,证明如下: 设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-, 又因为函数()f x 是偶函数,得12()()f x f x <, 所以()f x 在(,0)-∞上是增函数.复习参考题A 组1.用列举法表示下列集合:(1)2{|9}A x x ==; (2){|12}B x N x =∈≤≤; (3)2{|320}C x x x =-+=.1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-;(2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =.2.设P 表示平面内的动点,属于下列集合的点组成什么图形? (1){|}P PA PB =(,)A B 是两个定点; (2){|3}P PO cm =()O 是定点.2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等, 即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆. 3.设平面内有ABC ∆,且P 表示这个平面内的动点,指出属于集合{|}{|}P PA PB P PA PC ==的点是什么.3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线, 集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC ∆的外心.4.已知集合2{|1}A x x ==,{|1}B x ax ==.若B A ⊆,求实数a 的值. 4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==, 当0a =时,集合B =∅,满足B A ⊆,即0a =; 当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a=, 得1a =-,或1a =, 综上得:实数a 的值为1,0-,或1.5.已知集合{(,)|20}A x y x y =-=,{(,)|30}B x y x y =+=,{(,)|23}C x y x y =-=,求AB ,A C ,()()AB BC .5.解:集合20(,)|{(0,0)}30x y A B x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B =;集合20(,)|23x y AC x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭,即A C =∅;集合3039(,)|{(,)}2355x y B C x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭; 则39()(){(0,0),(,)}55AB BC =-.6.求下列函数的定义域:(1)y =(2)||5y x =-.6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞;(2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞.7.已知函数1()1xf x x-=+,求: (1)()1(1)f a a +≠-; (2)(1)(2)f a a +≠-.7.解:(1)因为1()1xf x x -=+, 所以1()1a f a a -=+,得12()1111a f a a a -+=+=++, 即2()11f a a +=+;(2)因为1()1xf x x-=+,所以1(1)(1)112a af a a a -++==-+++,即(1)2af a a +=-+.8.设221()1x f x x +=-,求证:50(1)()()f x f x -=; (2)1()()f f x x=-.8.证明:(1)因为221()1x f x x +=-,所以22221()1()()1()1x x f x f x x x +-+-===---, 即()()f x f x -=;(2)因为221()1x f x x +=-,所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x=-.9.已知函数2()48f x x kx =--在[5,20]上具有单调性,求实数k 的取值范围. 9.解:该二次函数的对称轴为8k x =, 函数2()48f x x kx =--在[5,20]上具有单调性,则208k ≥,或58k≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤.10.已知函数2y x -=,(1)它是奇函数还是偶函数? (2)它的图象具有怎样的对称性? (3)它在(0,)+∞上是增函数还是减函数? (4)它在(,0)-∞上是增函数还是减函数?10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称; (3)函数2y x -=在(0,)+∞上是减函数; (4)函数2y x -=在(,0)-∞上是增函数.B 组1.学校举办运动会时,高一(1)班共有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时参加游泳比赛和球类比赛的有3人,没有人同时参加三项比赛.问同时参加田径和球类比赛的有多少人?只参加游泳一项比赛的有多少人? 1.解:设同时参加田径和球类比赛的有x 人, 则158143328x ++---=,得3x =, 只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人. 2.已知非空集合2{|}A x R x a =∈=,试求实数a 的取值范围. 2.解:因为集合A ≠∅,且20x ≥,所以0a ≥. 3.设全集{1,2,3,4,5,6,7,8,9}U =,(){1,3}UA B =,(){2,4}U A B =,求集合B .3.解:由(){1,3}UA B =,得{2,4,5,6,7,8,9}A B =,集合AB 里除去()U A B ,得集合B ,所以集合{5,6,7,8,9}B =.4.已知函数(4),0()(4),0x x x f x x x x +≥⎧=⎨-<⎩.求(1)f ,(3)f -,(1)f a +的值.4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=; 当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=;(1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩.5.证明:(1)若()f x ax b =+,则1212()()()22x x f x f x f ++=; (2)若2()g x x ax b =++,则1212()()()22x x g x g x g ++≤. 5.证明:(1)因为()f x ax b =+,得121212()()222x x x x af a b x x b ++=+=++,121212()()()222f x f x ax b ax b ax x b ++++==++, 所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++,得22121212121()(2)()242x x x x g x x x x a b ++=++++, 22121122()()1[()()]22g x g x x ax b x ax b +=+++++2212121()()22x x x x a b +=+++,因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤,即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. (1)已知奇函数()f x 在[,]a b 上是减函数,试问:6.[,]b a --上是增函数还是减函数?它在(2)已知偶函数()g x 在[,]a b 上是增函数,试问:它在[,]b a --上是增函数还是减函数?6.解:(1)函数()f x 在[,]b a --上也是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数; (2)函数()g x 在[,]b a --上是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-, 又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >, 所以函数()g x 在[,]b a --上是减函数.7.《中华人民共和国个人所得税》规定,公民全月工资、薪金所得不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得额.此项税款按下表分段累计计算: 某人一月份应交纳此项税款为26.78元,那么他当月的工资、薪金所得是多少?7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则0,02000(2000)5%,2000250025(2500)10%,25004000175(4000)15%,40005000x x x y x x x x ≤≤⎧⎪-⨯<≤⎪=⎨+-⨯<≤⎪⎪+-⨯<≤⎩由该人一月份应交纳此项税款为26.78元,得25004000x <≤, 25(2500)10%26.78x +-⨯=,得2517.8x =, 所以该人当月的工资、薪金所得是2517.8元.第三章 函数的应用 3.1函数与方程练习(P88)1.(1)令f (x )=-x 2+3x +5,作出函数f (x )的图象(图3-1-2-7(1)),它与x 轴有两个交点,所以方程-x 2+3x +5=0有两个不相等的实数根.(2)2x (x -2)=-3可化为2x 2-4x +3=0,令f (x )=2x 2-4x +3,作出函数f (x )的图象(图3-1-2-7(2)),它与x 轴没有交点,所以方程2x (x -2)=-3无实数根. (3)x 2=4x -4可化为x 2-4x +4=0,令f (x )=x 2-4x +4,作出函数f (x )的图象(图3-1-2-7(3)),它与x 轴只有一个交点(相切),所以方程x 2=4x -4有两个相等的实数根. (4)5x 2+2x =3x 2+5可化为2x 2+2x -5=0,令f (x )=2x 2+2x -5,作出函数f (x )的图象(图3-1-2-7(4)),它与x 轴有两个交点,所以方程5x 2+2x =3x 2+5有两个不相等的实数根.图3-1-2-72.(1)作出函数图象(图3-1-2-8(1)),因为f(1)=1>0,f(1.5)=-2.875<0,所以f(x)=-x3-3x+5在区间(1,1.5)上有一个零点.又因为f(x)是(-∞,+∞)上的减函数,所以f(x)=-x3-3x+5在区间(1,1.5)上有且只有一个零点.(2)作出函数图象(图3-1-2-8(2)),因为f(3)<0,f(4)>0,所以f(x)=2x·ln(x-2)-3在区间(3,4)上有一个零点.又因为f(x)=2x·ln(x-2)-3在(2,+∞)上是增函数,所以f(x)在(3,4)上有且仅有一个零点. (3)作出函数图象(图3-1-2-8(3)),因为f(0)<0,f(1)>0,所以f(x)=e x-1+4x-4在区间(0,1)上有一个零点.又因为f(x)=e x-1+4x-4在(-∞,+∞)上是增函数,所以f(x)在(0,1)上有且仅有一个零点.(4)作出函数图象(图3-1-2-8(4)),因为f(-4)<0,f(-3)>0,f(-2)<0,f(2)<0,f(3)>0,所以f(x)=3(x+2)(x-3)(x+4)+x在(-4,-3),(-3,-2),(2,3)上各有一个零点.图3-1-2-8练习(P91)1.由题设可知f(0)=-1.4<0,f(1)=1.6>0,于是f(0)·f(1)<0,所以函数f(x)在区间(0,1)内有一个零点x0.下面用二分法求函数f(x)=x3+1.1x2+0.9x-1.4在区间(0,1)内的零点.取区间(0,1)的中点x1=0.5,用计算器可算得f(0.5)=-0.55.因为f(0.5)·f(1)<0,所以x0∈(0.5,1).再取区间(0.5,1)的中点x2=0.75,用计算器可算得f(0.75)≈0.32.因为f(0.5)·f(0.75)<0,所以x0∈(0.5,0.75).同理,可得x0∈(0.625,0.75),x0∈(0.625,0.687 5),x0∈(0.656 25,0.687 5).由于|0.687 5-0.656 25|=0.031 25<0.1,所以原方程的近似解可取为0.656 25.2.原方程可化为x+lgx-3=0,令f(x)=x+lgx-3,用计算器可算得f(2)≈-0.70,f(3)≈0.48.于是f(2)·f(3)<0,所以这个方程在区间(2,3)内有一个解x0.下面用二分法求方程x=3-lgx在区间(2,3)的近似解.取区间(2,3)的中点x1=2.5,用计算器可算得f(2.5)≈-0.10.因为f(2.5)·f(3)<0,所以x0∈(2.5,3).再取区间(2.5,3)的中点x2=2.75,用计算器可算得f(2.75)≈0.19.因为f(2.5)·f(2.75)<0,所以x0∈(2.5,2.75).同理,可得x0∈(2.5,2.625),x0∈(2.562 5,2.625),x0∈(2.562 5,2.593 75),x0∈(2.578 125,2.593 75),x0∈(2.585 937 5,2.59 375).由于|2.585 937 5-2.593 75|=0.007 812 5<0.01,所以原方程的近似解可取为2.593 75.习题3.1 A组(P92)1.A,C 点评:需了解二分法求函数的近似零点的条件.2.由x,f(x)的对应值表可得f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,又根据“如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点.”可知函数f(x)分别在区间(2,3),(3,4),(4,5)内有零点.3.原方程即(x+1)(x-2)(x-3)-1=0,令f(x)=(x+1)(x-2)(x-3)-1,可算得f(-1)=-1,f(0)=5.于是f(-1)·f(0)<0,所以这个方程在区间(-1,0)内有一个解. 下面用二分法求方程(x+1)(x-2)(x-3)=1在区间(-1,0)内的近似解.取区间(-1,0)的中点x1=-0.5,用计算器可算得f(-0.5)=3.375.因为f(-1)·f(-0.5)<0,所以x0∈(-1,-0.5).再取(-1,-0.5)的中点x2=-0.75,用计算器可算得f(-0.75)≈1.58.因为f(-1)·f(-0.75)<0,所以x0∈(-1,-0.75).同理,可得x0∈(-1,-0.875),x0∈(-0.937 5,-0.875).由于|(-0.875)-(-0.937 5)|=0.062 5<0.1,所以原方程的近似解可取为-0.937 5.4.原方程即0.8x-1-lnx=0,令f(x)=0.8x-1-lnx,f(0)没有意义,用计算器算得f(0.5)≈0.59,f(1)=-0.2.于是f(0.5)·f(1)<0,所以这个方程在区间(0.5,1)内有一个解.下面用二分法求方程0.8x-1=lnx在区间(0,1)内的近似解.取区间(0.5,1)的中点x1=0.75,用计算器可算得f(0.75)≈0.13.因为f(0.75)·f(1)<0,所以x0∈(0.75,1).再取(0.75,1)的中点x 2=0.875,用计算器可算得f (0.875)≈-0.04.因为f (0.875)·f (0.75)<0,所以x 0∈(0.75,0.875).同理,可得x 0∈(0.812 5,0.875),x 0∈(0.812 5,0.843 75).由于|0.812 5-0.843 75|=0.031 25<0.1,所以原方程的近似解可取为0.843 75.5.由题设有f (2)≈-0.31<0,f (3)≈0.43>0,于是f (2)·f (3)<0,所以函数f (x )在区间(2,3)内有一个零点.下面用二分法求函数f (x )=lnx x2-在区间(2,3)内的近似解. 取区间(2,3)的中点x 1=2.5,用计算器可算得f (2.5)≈0.12.因为f (2)·f (2.5)<0,所以x 0∈(2,2.5).再取(2,2.5)的中点x 2=2.25,用计算器可算得f (2.25)≈-0.08.因为f (2.25)·f (2.5)<0,所以x 0∈(2.25,2.5).同理,可得x 0∈(2.25,2.375),x 0∈(2.312 5,2.375),x 0∈(2.343 75,2.375),x 0∈(2.343 75,2.359 375),x 0∈(2.343 75,2.351 562 5),x 0∈(2.343 75,2.347 656 25).由于|2.343 75-2.347 656 25|=0.003 906 25<0.01,所以原方程的近似解可取为2.347 656 25.B 组1.将系数代入求根公式x =242b b ac a -±-,得x =223(3)42(1)22±--⨯⨯-⨯=4173+, 所以方程的两个解分别为x 1=4173+,x 2=4173-.下面用二分法求方程的近似解.取区间(1.775,1.8)和(-0.3,-0.275),令f (x )=2x 2-3x -1.在区间(1.775,1.8)内用计算器可算得f (1.775)=-0.023 75,f (1.8)=0.08.于是f (1.775)·f (1.8)<0.所以这个方程在区间(1.775,1.8)内有一个解.由于|1.8-1.775|=0.025<0.1,所以原方程在区间(1.775,1.8)内的近似解可取为1.8.同理,可得方程在区间(-0.3,-0.275)内的近似解可取为-0.275.所以方程精确到0.1的近似解分别是1.8和-0.3.2.原方程即x 3-6x 2-3x +5=0,令f (x )=x 3-6x 2-3x +5,函数图象如下图所示.图3-1-2-9所以这个方程在区间(-2,0),(0,1),(6,7)内各有一个解.取区间(-2,0)的中点x 1=-1,用计算器可算得f (-1)=1.因为f (-2)·f (-1)<0,所以x 0∈(-2,-1).再取(-2,-1)的中点x 2=-1.5,用计算器可算得f (-1.5)=-7.375.因为f(-1.5)·f(-1)<0,所以x0∈(-1.5,-1).同理,可得x0∈(-1.25,-1),x0∈(-1.125,-1),x0∈(-1.125,-1.062 5).由于|(-1.062 5)-(-1.125)|=0.062 5<0.1,所以原方程在区间(-2,0)内的近似解可取为-1.062 5.同理,可得原方程在区间(0,1)内的近似解可取为0.7,在区间(6,7)内的近似解可取为6.3.3.(1)由题设有g(x)=2-[f(x)]2=2-(x2+3x+2)2=-x4-6x3-13x2-12x-2.(2)函数图象如下图所示.图3-1-2-10(3)由图象可知,函数g(x)分别在区间(-3,-2)和区间(-1,0)内各有一个零点.取区间(-3,-2)的中点x1=-2.5,用计算器可算得g(-2.5)=0.187 5.因为g(-3)·g(-2.5)<0,所以x0∈(-3,-2.5).再取(-3,-2.5)的中点x2=-2.75,用计算器可算得g(-2.75)≈0.28.因为g(-3)·g(-2.75)<0,所以x0∈(-3,-2.75).同理,可得x0∈(-2.875,-2.75),x0∈(-2.812 5,-2.75).由于|-2.75-(-2.812 5)|=0.062 5<0.1,所以原方程在区间(-3,-2)内的近似解可取为-2.812 5.同样可求得函数在区间(-1,0)内的零点约为-0.2.所以函数g(x)精确到0.1的零点约为-2.8或-0.2.点评:第2、3题采用信息技术画出函数图象,并据此明确函数零点所在的区间.在教学中,如果没有信息技术条件,建议教师直接给出函数图象或零点所在区间.第三章复习参考题A组(P112)1.C2.C3.设经过时间t后列车离C地的距离为y,则y=200100,02,100200,2 5.t tt t-≤≤⎧⎨-<≤⎩图3-24.(1)圆柱形; (2)上底小、下底大的圆台形;(3)上底大、下底小的圆台形; (4)呈下大上小的两节圆柱形. 图略.图3-35.令f (x )=2x 3-4x 2-3x +1,函数图象如图3-3所示:函数分别在区间(-1,0)、(0,1)和区间(2,3)内各有一个零点,所以方程2x 3-4x 2-3x +1=0的最大的根应在区间(2,3)内.取区间(2,3)的中点x 1=2.5,用计算器可算得f (2.5)=-0.25.因为f (2.5)·f (3)<0,所以x 0∈(2.5,3). 再取(2.5,3)的中点x 2=2.75,用计算器可算得f (2.75)≈4.09.因为f (2.5)·f (2.75)<0,所以x 0∈(2.5,2.75).同理,可得x 0∈(2.5,2.625),x 0∈(2.5,2.5625),x 0∈(2.5,2.53125),x 0∈(2.515625,2.53125),x 0∈(2.515625,2.5234375).由于|2.523 437 5-2.515 625|=0.007 812 5<0.01,所以原方程的最大根约为2.523 437 5.6.令lgx =x 1,即得方程lgx x 1-=0,再令g (x )=lgx x1-,用二分法求得交点的横坐标约为2.5.图3-47.如图,作DE ⊥AB,垂足为E.由已知可得∠ADB=90°.因为AD=x ,AB=4,于是AD 2=AE×AB,即AE=AB AD 2=42x . 所以CD=AB-2AE=4-2×42x =422x -. 于是y =AB+BC+CD+AD=4+x +422x -+x =22x -+2x +8. 由于AD>0,AE>0,CD>0,所以x >0,42x >0,422x ->0,解得0<x <22. 所以所求的函数为y =22x -+2x +8,0<x <22. 8.(1)由已知可得N=N 0(λe 1)t .因为λ是正常数,e >1,所以e λ>1,即0<λe 1<1. 又N 0是正常数,所以N=N 0(λe1)t 是在于t 的减函数. (2)N=N 0e -λt ,因为e -λt =0N N ,所以-λt =ln 0N N ,即t =λ1-ln 0N N . (3)当N=20N 时,t =λ1-002N N =λ1-ln 2. 9.因为f (1)=-3+12+8=17>0,f (2)=-3×8+12×2+8=8>0,f (3)<0,所以,下次生产应在两个月后开始.B组1.厂商希望的是甲曲线;客户希望的是乙曲线.2.函数的解析式为y=f(t)=223,01, 23(2)3,12,23, 2.t tt tt⎧<≤⎪⎪⎪⎪--+<≤⎨⎪⎪>⎪⎪⎩函数的图象为图3-5备课资料[备选例题]【例】对于函数f(x)=ax2+(b+1)x+b-2(a≠0),若存在实数x0,使f(x0)=x0成立,则称x0为f(x)的不动点. (1)当a=2,b=-2时,求f(x)的不动点;(2)若对于任何实数b,函数f(x)恒有两个相异的不动点,求实数a的取值范围.解:(1)f(x)=ax2+(b+1)x+b-2(a≠0),当a=2,b=-2时,f(x)=2x2-x-4,设x为其不动点,即2x2-x-4=x,则2x2-2x-4=0,解得x1=-1,x2=2,即f(x)的不动点为-1,2.(2)由f(x)=x,得ax2+bx+b-2=0.关于x的方程有相异实根,则b2-4a(b-2)>0,即b2-4ab+8a>0.又对所有的b∈R,b2-4ab+8a>0恒成立,故有(4a)2-4·8a<0,得0<a<2.。
第一章集合与函数建议用时实际用时满分实际得分120分钟150分一、选择题(本大题共12小题,每小题5分,共60分)1.集合{1,2,3}的所有真子集的个数为( )A.3 B.6C.7 D.82.下列五个写法,其中错误..写法的个数为( )①{0}∈{0,2,3};②Ø{0};③{0,1,2}⊆{1,2,0};④0∈Ø;⑤0∩Ø=Ø.A.1 B.2C.3 D.43.使根式x-1与x-2分别有意义的x的允许值集合依次为M、F,则使根式x-1+x-2有意义的x的允许值的集合可以表示为( )A.M∪F B.M∩FC.∁M F D.∁F M4.已知M={x|y=x2-2},N={y|y=x2-2},则M∩N等于( )A.N B.MC.R D.Ø5.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-2x,则f(x)在R 上的表达式是()A.y=x(x-2)B.y=x(|x|-1)C.y=|x|(x-2)D.y=x(|x|-2)6.等腰三角形的周长是20,底边长y是一腰的长x的函数,则y等于( ) A.20-2x(0<x≤10)B.20-2x(0<x<10)C.20-2x(5≤x≤10)D.20-2x(5<x<10)7.用固定的速度向如图所示形状的瓶中注水,则水面的高度h和时间t之间的关系是 ( )8.已知y=f(x)是定义在R上的奇函数,则下列函数中为奇函数的是( )①y=f(|x|); ②y=f(-x);③y=xf(x); ④y=f(x)+x.A.①③ B.②③C.①④ D.②④9.已知0≤x≤32,则函数f(x)=x2+x+1( )A.有最小值-34,无最大值B.有最小值34,最大值1C.有最小值1,最大值19 4D.无最小值和最大值10.已知函数f(x)的定义域为[a,b],函数y=f(x)的图象如图所示,则函数f(|x|)的图象是 ( )c11.若偶函数f (x )在区间(-∞,-1]上是增函数,则( )A .f (-32)<f (-1)<f (2)B .f (-1)<f (-32)<f (2)C .f (2)<f (-1)<f (-32)D .f (2)<f (-32)<f (-1)12.(2009·四川高考)已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+x )f (x ),则52f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值是( ) A.0 B.12C.1D.52二、填空题(本大题共4小题,每小题5分,共20分)13.设全集U ={a ,b ,c ,d ,e },A ={a ,c ,d },B ={b ,d ,e },则ðU A ∩ðU B =________. 14.设全集U =R ,A ={x |x ≥1},B ={x |-1≤x <2},则ðU (A ∩B )=________.15.已知函数f (x )=x 2+2(a -1)x +2在区间(-∞,3]上为减函数,则实数a 的取值范围为________. 16.已知f (x )是偶函数,g (x )是奇函数,若11)()(-=+x x g x f ,则f (x )的解析式为_______.三、解答题(本大题共6小题,共70分)17.(10分) 设A ={x |2x 2+ax +2=0},B ={x |x 2+3x +2a =0},且A ∩B ={2}. (1)求a 的值及集合A ,B ;(2)设全集U =A ∪B ,求(ðU A )∪ (ðU B );(3)写出(ðU A )∪(ðU B )的所有子集18.(12分)已知集合A ={-1,1},B ={x |x 2-2ax +b =0},若B ≠Ø且BA ,求a ,b 的值.19.(12分) 已知函数f (x )=x 2-2x +2.(1)求f (x )在区间[12,3]上的最大值和最小值;(2)若g (x )=f (x )-mx 在[2,4]上是单调函数,求m 的取值范围.20.(12分)已知函数f (x )=4x 2-4ax +(a 2-2a +2)在闭区间[0,2]上有最小值3,求实数a的值.21.(12分)某公司需将一批货物从甲地运到乙地,现有汽车、火车两种运输工具可供选择.若该货物在运输过程中(含装卸时间)的损耗为300元/时,其他主要参考数据如下:工具 途中速度 (千米/时) 途中费用(元/千米) 装卸时间(小时) 装卸费 用(元)汽车 50821 000火车100 4 4 1 800问:如何根据运输距离的远近选择运输工具,使运输过程中的费用与损耗之和最小? 22.(12分)已知f (x )的定义域为(0,+∞),且满足f (2)=1,f (xy )=f (x )+f (y ),又当x 2>x 1>0时,f (x 2)>f (x 1).(1)求f (1)、f (4)、f (8)的值;(2)若有f (x )+f (x -2)≤3成立,求x 的取值范围一、选择题1. C 解析:含一个元素的有{1},{2},{3},共3个;含两个元素的有{1,2},{1,3},{2,3},共3个;空集是任何非空集合的真子集,故共有7个.2. C 解析:②③正确.3. B 解析:根式x -1+x -2有意义,必须x -1与x -2同时有意义才可.4. A 解析:M ={x |y =x 2-2}=R ,N ={y |y =x 2-2}={y |y ≥-2},故M ∩N =N . 5. D 解析:当x ≥0时,f (x )=x 2-2x ,f (x )为奇函数,∴ 当x <0时,f (x )=-f (-x )=-(x 2+2x )=-x 2-2x =x (-x -2).∴ (2)(0)()(2)(0),,x x x f x x x x ⎧⎨⎩-≥=--<即f (x )=x (|x |-2).6. D 解析:C =20=y +2x ,由三角形两边之和大于第三边可知2x >y =20-2x ,x >5; 由得.7. B 解析:水面升高的速度由慢逐渐加快.8. D 解析:因为y =f (x )是定义在R 上的奇函数,所以f (-x )=-f (x ).①y =f (|x |)为偶函数;②y =f (-x )为奇函数;③令F (x )=xf (x ),所以F (-x )=(-x )f (-x )=(-x )·[-f (x )]=xf (x ),所以F (-x )=F (x ),所以y =xf (x )为偶函数;④令F (x )=f (x )+x ,所以F (-x )=f (-x )+(-x )=-f (x )-x =-[f (x )+x ],所以F (-x )=-F (x ),所以y =f (x )+x 为奇函数.9. C 解析:f (x )=x 2+x +1=(x +12)2+34,画出该函数的图象知,f (x )在区间[0,32]上是增函数,所以f (x )min =f (0)=1,f (x )max =f (32)=194.10. B 解析:因为y =f (|x |)是偶函数,所以y =f (|x |)的图象是由y =f (x )把x ≥0的图象保留,再关于y 轴对称得到的.11. D 解析:由f (x )是偶函数,得f (2)=f (-2),又f (x )在区间(-∞,-1]上是增函数,且-2<-32<-1,则f (2)<f (-32)<f (-1).12. A 解析:令x =-12,则-12 f (12)=12 f (-12),又∵ f (12)=f (-12),∴ f (12)=0;令x =12,则12f (32)=32 f (12),得f (32)=0;令x =32,则32 f (52)=52 f (32),得f (52)=0;而0· f (1)=f (0)=0,∴ f =f (0)=0,故选A. 二、填空题13. Ø 解析:ðU A ∩ðU B =ðU (A ∪B ),而A ∪B ={a ,b ,c ,d ,e }=U .14. {x |x <1或x ≥2} 解析:A ∩B ={x |1≤x <2},∴ ðU (A ∩B )={x |x <1或x ≥2}. 15. a ≤-2 解析:函数f (x )图象的对称轴为直线x =1-a ,则由题意知:1-a ≥3,即a ≤-2.16.11)(2-=x x f 解析:由f (x )是偶函数,g (x )是奇函数,可得11)()(--=-x x g x f ,联立11)()(-=+x x g x f ,∴21111()()2111f x x x x =+=----.三、解答题17.解:(1)由交集的概念易得,2是方程2x 2+ax +2=0和x 2+3x +2a =0的公共解,则a=-5,此时A =⎩⎨⎧⎭⎬⎫12,2,B ={}-5,2.(2)由并集的概念易得,U =A ∪B =⎩⎨⎧⎭⎬⎫-5,12,2.由补集的概念易得,ðU A ={-5},ðU B =⎩⎨⎧⎭⎬⎫12.所以(ðU A )∪(ðU B )=⎩⎨⎧⎭⎬⎫-5,12.(3)(ðU A )∪(ðU B )的所有子集即集合⎩⎨⎧⎭⎬⎫-5,12的所有子集:,⎩⎨⎧⎭⎬⎫12,{-5},⎩⎨⎧⎭⎬⎫-5,12.18.解:(1)当B =A ={-1,1}时,易得a =0,b =-1.(2)当B 含有一个元素时,由Δ=0得a 2=b . 当B ={1}时,由1-2a +b =0,得a =1,b =1; 当B ={-1}时,由1+2a +b =0,得a =-1,b =1. 19.解:(1)∵ f (x )=x 2-2x +2=(x -1)2+1,x ∈[12,3],∴ f (x )的最小值是f (1)=1.又f (12)=54,f (3)=5,∴ f (x )的最大值是f (3)=5,即f (x )在区间[12,3]上的最大值是5,最小值是1.(2)∵ g (x )=f (x )-mx =x 2-(m +2)x +2,∴ m +22≤2或m +22≥4,即m ≤2或m ≥6.故m 的取值范围是(-∞,2]∪[6,+∞). 20.解:f (x )=4⎝⎛⎭⎫x -a22+2-2a .(1)当a2<0,即a <0时,f (x )min =f (0)=a 2-2a +2=3,解得a =1-2或a =12(舍去).(2) 当0≤a 2≤2,即0≤a ≤4时,f (x )min =⎝⎛⎭⎫a 2=2-2a =3,解得a =-12(舍去).(3) 当a2>2,即a >4时,f (x )min =f (2)=a 2-10a +18=3,解得a =5+10或a =510(舍去).综上可知:a 的值为1-2或5+10.21.解:设甲、乙两地距离为x 千米(x >0),选用汽车、火车运输时的总支出分别为y 1和y 2.由题意得两种工具在运输过程中(含装卸)的费用与时间如下表:工具途中及装卸费用途中时间汽车8x+1 000x50+2火车4x+1 800x100+4于是y1=8x+1 000+(x50+2)×300=14x+1 600,y2=4x+1 800+(x100+4)×300=7x+3 000.令y1-y2<0得x<200.①当0<x<200时,y1<y2,此时应选用汽车;②当x=200时,y1=y2,此时选用汽车或火车均可;③当x>200时,y1>y2,此时应选用火车.故当距离小于200千米时,选用汽车较好;当距离等于200千米时,选用汽车或火车均可;当距离大于200千米时,选用火车较好.22.解:(1)f(1)=f(1)+f(1),∴f(1)=0,f(4)=f(2)+f(2)=1+1=2,f(8)=f(2)+f(4)=1+2=3.(2)∵f(x)+f(x-2)≤3,∴f[x(x-2)]≤f(8).又∵对于函数f(x)有x2>x1>0时f(x2)>f(x1),∴f(x)在(0,+∞)上为增函数.∴解得2<x≤4.∴x的取值范围为(2,4]。
精品文档高中数学必修 1 课后习题答案第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示练习(第 5 页)1.用符号“”或“”填空:( 1)设 A 为所有亚洲国家组成的集合,则:中国 _______ A ,美国 _______ A ,印度 _______ A ,英国 _______ A ;( 2)若 A { x | x 2 x} ,则 1_______ A ;( 3)若 B { x | x 2 x 6 0} ,则 3 _______ B ;( 4)若 C { x N |1 x 10} ,则 8 _______ C , 9.1 _______ C .1.( 1)中国A ,美国 A ,印度 A ,英国A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.( 2) 1 A A { x | x 2x} {0,1} .( 3)3 BB { x | x 2 x 6 0} { 3,2}.(4) 8 C , 9.1 C 9.1 N .2.试选择适当的方法表示下列集合:( 1)由方程 x 2 9 0 的所有实数根组成的集合;( 2)由小于 8 的所有素数组成的集合;( 3)一次函数 y x 3 与 y 2x 6 的图象的交点组成的集合;( 4)不等式 4x 53 的解集.2.解:( 1)因为方程 x 2 9 0 的实数根为 x 13, x 2 3 ,所以由方程 x 2 90 的所有实数根组成的集合为{ 3,3} ;( 2)因为小于8 的素数为 2,3,5,7 ,所以由小于 8 的所有素数组成的集合为{2,3,5,7} ;y x 3 x 1 ( 3)由2x 6,得,yy4即一次函数 y x 3 与 y 2x 6 的图象的交点为 (1,4) ,精品文档所以一次函数y x 3 与 y2x 6 的图象的交点组成的集合为{(1, 4)} ;(4)由4x 5 3,得x 2,所以不等式 4x 5 3 的解集为{ x | x2} .1.1. 2 集合间的基本关系练习(第 7 页)1.写出集合{ a, b, c}的所有子集.1.解:按子集元素个数来分类,不取任何元素,得;取一个元素,得 { a},{ b},{ c};取两个元素,得 { a,b},{a, c},{ b,c} ;取三个元素,得 { a, b, c} ,即集合 { a, b,c} 的所有子集为,{ a},{ b},{ c},{a, b},{ a,c},{ b, c},{ a, b, c} .2.用适当的符号填空:( 1)a ______{ a,b,c};( 2)0 ______ { x | x20} ;( 3)______ { x R | x210} ;( 4){0,1} ______ N;( 5){0} ______{ x | x2x} ;(6){2,1} ______ { x | x23x20} .2 1)a{ a,b,c}a 是集合{ a, b, c}中的一个元素;.(( 2)0{ x | x20}{ x | x20}{0};( 3){ x R | x210}方程 x210 无实数根, { x R | x210};( 4){0,1}N(或 {0,1}N ){0,1} 是自然数集合N的子集,也是真子集;( 5){0}{ x | x2x}(或 {0}{ x | x2x} ){ x | x2x}{0,1} ;( 6){2,1}{ x | x23x20}方程 x23x 2 0 两根为 x11, x2 2 .3.判断下列两个集合之间的关系:(1)A{1,2,4} , B{ x | x是 8 的约数 } ;( 2)A { x | x 3k, k N},B{ x | x 6z, z N } ;(3)A{ x | x是 4 与 10 的公倍数 , x N} , B{ x | x 20m, m N } .精品文档3.解:( 1)因为 B{ x | x 是 8的约数 } {1,2,4,8} ,所以 A B ;( 2)当 k2z 时, 3k 6z ;当 k2z 1 时, 3k 6 z 3,即 B 是 A 的真子集, BA ;( 3)因为 4 与 10的最小公倍数是20 ,所以 A B .1.1.3 集合的基本运算练习(第 11 页)1.设 A {3,5,6,8}, B {4,5,7,8} ,求1.解: AI B {3,5,6,8} I {4,5,7,8}A UB {3,5,6,8} U {4,5,7,8}AI B,AUB .{5,8} ,{3,4,5,6,7,8} .2.设 A{ x | x 2 4x 5 0}, B { x | x 2 1} ,求 AI B, A U B .2.解:方程 x 2 4x 5 0 的两根为 x 11, x 2 5 ,方程 x 2 1 0 的两根为 x 1 1, x 2 1,得A { 1,5},B{ 1,1},即 AI B{ 1}, AUB{ 1,1,5}.3.已知 A{ x | x 是等腰三角形 } , B { x | x 是直角三角形 } ,求 A I B, A U B .3.解: A I B{ x | x 是等腰直角三角形 } ,A UB { x | x 是等腰三角形或直角三角形 } .4.已知全集 U{1,2,3,4,5,6,7} , A {2,4,5}, B {1,3,5,7} ,求 AI (痧B),(A)I (? B).UUU4.解:显然 e B{2, 4,6} , e A{1,3,6,7} ,UU则 A I (e B){2, 4} , (痧A) I ( B) {6} .UUU1.1 集合习题 1.1(第 11页)A 组1.用符号“”或“”填空:( 1) 3 2_______ Q ;( 2) 32 ______ N ; (3)_______ Q ;7( 4)2_______ R;( 5)9 _______ Z;(6)(5) 2_______ N.1.( 1)32Q32是有理数;(2)32N329是个自然数;77( 3)Q是个无理数,不是有理数;( 4)2R2是实数;( 5)9Z9 3 是个整数;(6)( 5)2N(5)2 5 是个自然数.2.已知A{ x | x 3k1,k Z},用“”或“” 符号填空:( 1)5 _______ A;( 2)7 _______ A;( 3)10 _______ A.2.( 1)5 A ;(2)7 A ;(3)10 A .当 k 2 时,3k 1 5;当 k 3时, 3k 1 10;3.用列举法表示下列给定的集合:( 1)大于且小于6的整数;1( 2)A { x | (x 1)(x2) 0};( 3)B { x Z | 3 2x 1 3}.3.解:( 1)大于1且小于 6 的整数为2,3,4,5 ,即 {2,3,4,5}为所求;( 2)方程( x 1)(x 2)0 的两个实根为 x12, x21,即 {2,1} 为所求;( 3)由不等式32x1 3,得 1 x 2 ,且 x Z ,即{0,1, 2}为所求.4.试选择适当的方法表示下列集合:( 1)二次函数y x24的函数值组成的集合;( 2)反比例函数y 2的自变量的值组成的集合;x( 3)不等式3x42x 的解集.4.解:( 1)显然有x20,得 x24 4 ,即 y4,得二次函数 y x24的函数值组成的集合为{ y | y4} ;( 2)显然有x0 ,得反比例函数y 20} ;的自变量的值组成的集合为 { x | x4x4( 3)由不等式3x42x ,得x,即不等式3x 42x 的解集为{ x | x5} .55.选用适当的符号填空:( 1)已知集合A{ x | 2x33x}, B{ x | x2} ,则有:4 _______ B ;3_______ A ;{2} _______B; B _______ A ;( 2)已知集合A{ x | x210} ,则有:1_______ A ;{ 1} _______A;_______ A;{1, 1} _______A;( 3){ x | x是菱形} _______ { x | x是平行四边形} ;{ x | x是等腰三角形 } _______ { x | x是等边三角形 } .5.( 1)4 B ;3A ;{2} B ;B A ;2x 3 3x x3,即A{ x | x3}, B { x | x 2} ;( 2)1 A ;{ 1} A ; A ;{1,1}=A;A{ x | x210} {1,1} ;( 3){ x | x是菱形}{ x | x是平行四边形 } ;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{ x | x是等边三角形 } { x | x是等腰三角形 } .等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合 A { x | 2 x 4}, B { x | 3x 7 8 2x} ,求 A U B, A I B .6.解:3x7 8 2x ,即 x 3 ,得A{ x | 2 x 4}, B { x | x 3} ,则 A U B { x | x 2} , A I B { x |3 x4} .7.设集合 A { x | x是小于 9 的正整数 } , B {1,2,3}, C {3,4,5,6} ,求A I B,AI C,AI (BUC),AU(BI C).7.解:A{ x | x是小于 9的正整数 } {1,2,3,4,5,6,7,8},则 A I B {1,2,3} , AI C {3,4,5,6} ,而 B U C {1,2,3,4,5,6} , B I C {3} ,则 A I ( B U C ) { 1,2,3,4,5,6} ,A U (B IC ) {1,2,3,4,5,6,7,8}.8.学校里开运动会,设 A { x | x是参加一百米跑的同学} ,B { x | x是参加二百米跑的同学} ,C { x | x是参加四百米跑的同学} ,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定,并解释以下集合运算的含义:( 1)AU B;( 2)AI C.8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,即为 (AI B)I C.( 1)A U B{ x | x是参加一百米跑或参加二百米跑的同学} ;( 2)A I C{ x | x是既参加一百米跑又参加四百米跑的同学} .9.设S{ x | x是平行四边形或梯形} , A { x | x是平行四边形 } , B{ x | x是菱形 } ,C { x | x是矩形 } ,求B I C, e A B , e S A.9.解:同时满足菱形和矩形特征的是正方形,即 B I C { x | x是正方形 } ,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形,即 e A B { x | x是邻边不相等的平行四边形} ,e S A{ x | x是梯形 } .10.已知集合 A { x | 3 x 7}, B { x | 2 x10} ,求 e R ( A U B) , e R( A I B) ,(e R A) I B , A U (e R B) .10.解:A U B{ x | 2 x 10} , A I B { x | 3 x 7} ,e R A { x | x 3,或 x 7} , e R B { x | x 2, 或 x10} ,得 e R ( A U B) { x | x 2, 或 x 10} ,e R ( A I B) { x | x 3,或 x 7} ,(e R A) I B { x | 2 x 3, 或7 x 10} ,A U (e R B) { x | x 2, 或 3 x 7或 x 10} .B 组1.已知集合A{1,2} ,集合B满足AU B {1,2},则集合 B 有个.1.4集合B满足AUB A,则 B A ,即集合 B 是集合 A 的子集,得4 个子集.2.在平面直角坐标系中,集合C{( x, y) | y x} 表示直线y x,从这个角度看,2x y1表示什么?集合 C , D 之间有什么关系?集合 D ( x, y) |4 y5x2.解:集合D( x, y) |2x y1表示两条直线 2x y 1, x 4 y 5 的交点的集合,x4 y52x y 1即 D( x, y) | {(1,1)} ,点 D (1,1)显然在直线 y x 上, x 4y 5得D C .3.设集合 A { x | ( x 3)( x a) 0, a R} , B { x | ( x4)( x 1) 0} ,求 AUB,AI B .3.解:显然有集合 B{ x | (x 4)( x 1)0} {1,4} ,当 a 3 时,集合 A {3} ,则 AU B{1,3,4}, A I B;当 a 1 时,集合 A {1,3} ,则 A U B {1,3,4}, A I B {1} ; 当 a4 时,集合 A {3,4} ,则 A U B{ 1,3,4}, A I B {4} ;当 a1,且 a 3 ,且 a 4时,集合 A {3, a} ,则 A U B {1,3,4, a}, A I B.4.已知全集 UA UB { x N | 0 x 10} , A I (e B){ 1,3,5,7} ,试求集合 B .U4.解:显然 U{0,1,2,3,4,5,6,7,8,9,10} ,由 UA UB ,得 e BA ,即 A I (痧B)B ,而 A I (e B){1,3,5,7} ,UUUU得 e B { 1,3,5,7} ,而 B痧( B) ,UUU即 B {0,2,4,6,8.9,10} .第一章集合与函数概念1. 2 函数及其表示1.2.1 函数的概念练习(第 19 页)1.求下列函数的定义域:1;( 2) f (x)1 xx 3 1. (1)f ( x)4x77 1.解:( 1)要使原式有意义,则4x 7 0 ,即 x,4得该函数的定义域为{ x | x7} ;4( 2)要使原式有意义,则1 x 0 ,即 3 ,x 3 0x 1精品文档得该函数的定义域为{ x |3x1} .2.已知函数f ( x)3x22x ,( 1)求f (2), f (2),f (2) f (2)的值;( 2)求f (a), f ( a), f (a) f (a) 的值.2.解:( 1)由f ( x)3x22x,得 f (2)3222218,同理得 f (2)3(2) 22(2)8 ,则 f (2) f (2)18826 ,即 f (2)18, f (2)8, f (2) f (2)26 ;( 2)由f ( x)3x22x ,得 f ( a) 3 a2 2 a 3a22a ,同理得 f (a)3(a)22(a)3a22a ,则 f ( a) f (a)(3a22a)(3a22a)6a2,即 f ( a)3a22a, f (a) 3a22a, f (a) f (a)6a2.3.判断下列各组中的函数是否相等,并说明理由:( 1)表示炮弹飞行高度h与时间t关系的函数h 130t5t 2和二次函数 y 130x5x2;( 2)f ( x) 1和g(x) x0.3.解:( 1)不相等,因为定义域不同,时间t0 ;( 2)不相等,因为定义域不同,g(x)x0 (x 0) .1.2.2 函数的表示法练习(第 23 页)1.如图,把截面半径为25cm 的圆形木头锯成矩形木料,如果矩形的一边长为xcm ,面积为 ycm2,把y表示为 x 的函数.1.解:显然矩形的另一边长为502x2 cm ,y x 502x2x2500x2,且 0x 50 ,即 y x 2500x2(0 x50).2.下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事.( 1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;( 3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.离开家的距离离开家的距离离开家的距离离开家的距离O时间O时间O时间O时间( A)(B)(C)(D)2.解:图象( A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化;图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速;图象( D)对应事件( 1),返回家里的时刻,离开家的距离又为零;图象( C)我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进.3.画出函数y | x 2 | 的图象.x 2, x23.解:y| x 2 |,图象如下所示.x 2, x24.设A { x | x是锐角}, B{0,1} ,从 A 到 B 的映射是“求正弦” ,与 A 中元素60o相对应的 B 中的元素是什么?与 B 中的元素2相对应的 A 中元素是什么?24.解:因为sin 60o 3,所以与 A 中元素60o相对应的 B 中的元素是 3 ;22因为 sin 45o 2,所以与B 中的元素2相对应的 A 中元素是45o.221. 2 函数及其表示习题 1. 2(第 23 页)1.求下列函数的定义域:( 1)f ( x)3x;( 2)f ( x)x2;x4(3)f ( x)x26;( 4)f ( x) 4 x .3x2x 11.解:( 1)要使原式有意义,则x0 ,即 x4,得该函数的定义域为{ x | x4} ;( 2)x R,f ( x)x2都有意义,即该函数的定义域为R ;( 3)要使原式有意义,则x23x20 ,即x 1 且 x 2,得该函数的定义域为{ x | x1且 x2} ;( 4)要使原式有意义,则4x01 ,x1,即 x 4 且 x得该函数的定义域为{ x | x4且 x1} .2.下列哪一组中的函数 f (x) 与 g(x) 相等?()f (x) x 1, g(x)x21;() f ( x)x2, g( x) ( x )4;1x2(3)f (x)x2 , g( x)3 x6.2.解:( 1)f ( x)x1的定义域为R,而 g(x)x21 的定义域为 { x | x0} ,x即两函数的定义域不同,得函数 f ( x) 与 g ( x) 不相等;()f ( x)x 2的定义域为R,而 g (x)( x)4的定义域为{ x | x 0},2即两函数的定义域不同,得函数 f ( x) 与 g ( x) 不相等;( 3)对于任何实数,都有 3 x6x2,即这两函数的定义域相同,切对应法则相同,得函数 f (x) 与 g( x) 相等.3.画出下列函数的图象,并说出函数的定义域和值域.82( 1)y3x ;(2)y;(3)y4x 5 ;(4) y x 6x7 .3.解:( 1)定义域是 ( ,),值域是 (,);(2)定义域是 ( ,0) U (0,) ,值域是 ( ,0) U (0,) ;(3)定义域是 ( ,),值域是 (,);(4)定义域是 (,) ,值域是 [2,) ..已知函数f ( x)3x 25x2,求 f (2) ,f (a),f (a3),f (a) f (3).4.解:因为2,所以 f (2)3(25(2) 2852,f ( x)3x5x22)4即 f (2)85 2 ;同理, f ( a)3(a) 25( a)23a25a2,即 f (a)3a25a 2 ;f (a3)3(a3)25(a3)23a213a14 ,即 f (a3)3a213a14 ;f (a) f (3)3a25a2 f (3)3a25a16,即 f (a) f (3)3a25a16.5.已知函数f ( x)x 2 ,x 6(1)点(3,14)在f ( x)的图象上吗?(2)当x 4时,求f ( x)的值;(3)当f (x) 2时,求x的值.5.解:( 1)当x32514 ,3 时, f (3)633即点 (3,14)不在 f ( x) 的图象上;( 2)当x442 3 ,时, f (4)64即当 x4时,求 f ( x) 的值为 3 ;( 3)f (x)x22 ,得 x 22( x 6) ,x6即 x14 .6.若f ( x)x2bx c ,且 f (1)0, f (3)0 ,求 f (1) 的值.6.解:由 f (1)0, f (3) 0,得 1,3 是方程 x2bx c 0 的两个实数根,即 1 3b,1 3 c ,得 b4, c3,即 f (x)x24x 3 ,得 f ( 1)( 1)24(1)38,即 f ( 1) 的值为8.7.画出下列函数的图象:0, x0( 2)G (n) 3n 1,n {1,2,3}.( 1)F ( x);1,x07.图象如下:8.如图,矩形的面积为10 ,如果矩形的长为x ,宽为y,对角线为d,周长为 l ,那么你能获得关于这些量的哪些函数?8.解:由矩形的面积为10,即xy10( x 0) , x1010 ,得 y( y 0) ,x y由对角线为 d ,即 d x 2y2,得 d x2100x2( x 0) ,由周长为 l ,即l 2x 2 y ,得 l2x 200),(xx精品文档另外 l 2( x y) ,而 xy 10, d 2 x 2 y 2 ,得 l 2 ( x y) 2 2 x 2y 22xy2 d 2 20 (d0) ,即 l2 d 2 20 (d0) .9.一个圆柱形容器的底部直径是dcm ,高是 hcm ,现在以 vcm 3 / s 的速度向容器内注入某种溶液.求溶液内溶液的高度 xcm 关于注入溶液的时间 ts 的函数解析式,并写出函数的定义域和值域.9.解:依题意,有( d)2 x vt ,即 x4v t ,2d 2显然 0x h ,即 04v t h ,得 0 th d 2 ,d 24v得函数的定义域为 [0,h d 2] 和值域为 [0, h] .4v10.设集合 A { a,b, c}, B {0,1} ,试问:从 A 到 B 的映射共有几个?并将它们分别表示出来.10.解:从 A 到 B 的映射共有8 个.f (a) 0 f ( a) 0f (a) 0 f (a) 0分别是f (b) 0 , f (b)0 , f (b)1 , f (b)0 ,f (c) 0 f (c) 1 f (c) 0 f (c) 1 f ( a) 1 f (a) 1f (a) 1 f ( a) 1f (b) 0 , f (b) 0 , f (b)1 , f (b)0 .f ( c) 0f (c) 1f (c)f (c)1B组1.函数 r f ( p) 的图象如图所示.( 1)函数 rf ( p) 的定义域是什么?( 2)函数r f ( p) 的值域是什么?( 3)r取何值时,只有唯一的p 值与之对应?1.解:( 1)函数r f ( p) 的定义域是 [ 5,0] U [2,6) ;( 2)函数r f ( p) 的值域是 [0,) ;( 3)当r 5 ,或 0 r 2 时,只有唯一的p 值与之对应.2.画出定义域为{ x | 3 x8,且 x 5} ,值域为 { y |1y2, y0} 的一个函数的图象.()如果平面直角坐标系中点P( x, y) 的坐标满足3x8,1y 2 ,那么其中哪些点不能在图象1上?( 2)将你的图象和其他同学的相比较,有什么差别吗?2.解:图象如下,(1)点( x,0)和点(5, y)不能在图象上;( 2)省略.3 f (x)[ x]的函数值表示不超过x的最大整数,例如,[ 3.5]4,[2.1] 2..函数当 x( 2.5,3]时,写出函数 f ( x) 的解析式,并作出函数的图象.3, 2.5x22,2x11,1x 03.解:f (x)[ x]0,0x11, 1x22,2x33,x3图象如下4.如图所示,一座小岛距离海岸线上最近的点P 的距离是 2km ,从点 P 沿海岸正东 12km 处有一个城镇.( 1)假设一个人驾驶的小船的平均速度为3km/ h ,步行的速度是5km/ h , t (单位: h )表示他从小岛到城镇的时间,x (单位:km)表示此人将船停在海岸处距P 点的距离.请将t 表示为x的函数.( 2)如果将船停在距点P 4km 处,那么从小岛到城镇要多长时间(精确到1h )?4.解:( 1)驾驶小船的路程为x222,步行的路程为 12 x ,得 t x22212x(0x12) ,35,即 t x2412 xx12) .35, (0( 2)当x4241242584 时,t533 (h) .35第一章集合与函数概念1. 3 函数的基本性质1.3.1 单调性与最大(小)值练习(第 32 页)1.请根据下图描述某装配线的生产效率与生产线上工人数量间的关系.1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.整个上午(8: 00 : 12 : 00) 天气越来越暖,中午时分(12 : 00 : 13: 00) 一场暴风雨使天气骤然凉爽了许多 . 暴风雨过后,天气转暖,直到太阳落山(18: 00) 才又开始转凉.画出这一天8:00 : 20:00 期间气温作为时间函数的一个可能的图象,并说出所画函数的单调区间.2.解:图象如下[8,12] 是递增区间,[12,13] 是递减区间,[13,18] 是递增区间, [18, 20] 是递减区间.3.根据下图说出函数的单调区间,以及在每一单调区间上,函数是增函数还是减函数.3.解:该函数在[ 1,0] 上是减函数,在[0,2] 上是增函数,在[2,4] 上是减函数,在 [4,5] 上是增函数.4.证明函数 f ( x)2x 1在R上是减函数.4.证明:设x1 , x2R ,且 x1x2,因为 f ( x1 ) f ( x2 )2( x1x2 ) 2( x2x1 )0 ,即 f ( x1 ) f ( x2 ) ,所以函数 f (x)2x 1在R上是减函数.5.设f (x)是定义在区间[ 6,11] 上的函数.如果 f (x) 在区间 [ 6, 2] 上递减,在区间[ 2,11] 上递增,画出 f (x) 的一个大致的图象,从图象上可以发现 f ( 2) 是函数 f ( x) 的一个.5.最小值.1.3.2 单调性与最大(小)值练习(第 36 页)1.判断下列函数的奇偶性:( 1)f ( x)2x43x2;(2) f ( x) x32x( 3)f ( x)x2 1 ;( 4)f (x) x2 1 .x1.解:( 1)对于函数f (x)2x43x2,其定义域为 ( ,) ,因为对定义域内每一个 x 都有 f (x)2(x)43(x)22x43x2 f ( x) ,精品文档所以函数( 2)对于函数f (x) 2x43x2为偶函数;f (x) x32x ,其定义域为( ,) ,因为对定义域内每一个 x 都有 f (x)( x) 32(x)(x32x) f ( x) ,所以函数 f ( x)x32x 为奇函数;( 3)对于函数f (x)x21,0) U (0,) ,因为对定义域内x,其定义域为 (每一个 x 都有 f (x)( x)21x21f ( x) ,x x所以函数 f (x)x21x为奇函数;( 4)对于函数f (x)x2 1 ,其定义域为 (,) ,因为对定义域内每一个 x 都有 f (x)( x) 21x21 f ( x) ,所以函数 f ( x)x2 1 为偶函数.2. 已知f ( x)是偶函数,g(x)是奇函数,试将下图补充完整 .2.解: f (x) 是偶函数,其图象是关于y 轴对称的;g( x) 是奇函数,其图象是关于原点对称的.精品文档习题 1.3A 组1. 画出下列函数的图象,并根据图象说出函数y f (x) 的单调区间,以及在各单调区间上函数 yf ( x) 是增函数还是减函数 .( 1) yx 2 5x 6 ;( 2) y9x 2 .1.解:( 1)函数在 (, 5) 上递减;函数在 [ 5, ) 上递增;2 2(2)函数 在( ,0) 上递增;函数在 [0, ) 上递减 .2. 证明:( 1)函数 f (x)x 2 1 在 (,0) 上是减函数;1( 2)函数f (x) 1 在 ( ,0) 上是增函数 .x2.证明:(1)设 x 1x 2 0 ,而 f ( x 1 ) f ( x 2 ) x 12 x 2 2 ( x 1 x 2 )( x 1 x 2 ) ,由 x1x20, x1 x2 0 ,得 f ( x1 ) f (x2 )0 ,即 f ( x1 ) f ( x2 ) ,所以函数 f ( x)x2 1 在(,0) 上是减函数;( 2)设x1x20 ,而 f ( x1 ) f ( x2 )11x1x2,x2x1x1 x2由 x1x20, x1 x2 0 ,得 f (x1) f (x2 )0 ,即 f ( x1 ) f (x2 ) ,所以函数 f ( x)11,0) 上是增函数.在 (x3.探究一次函数 y mx b( x R) 的单调性,并证明你的结论.3.解:当m0 时,一次函数y mx b 在 (,) 上是增函数;当 m0 时,一次函数y mx b 在 (,) 上是减函数,令 f (x) mx b ,设 x1x2,而 f (x1) f (x2 ) m(x1x2 ) ,当 m0 时,m(x1x2 )0 ,即 f ( x1 ) f ( x2 ) ,得一次函数 y mx b 在 (,) 上是增函数;当 m0 时,m(x1x2 )0 ,即 f ( x1 ) f (x2 ) ,得一次函数 y mx b 在 (,) 上是减函数.4.一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高 . 画出自服药那一刻起,心率关于时间的一个可能的图象(示意图).4.解:自服药那一刻起,心率关于时间的一个可能的图象为5. 某汽车租赁公司的月收益y 元与每辆车的月租金x 元间的关系为x2y162x 21000 ,那么,每辆车的月租金多少元时,租赁公司的月收益最大?最大月收益是多50少?5.解:对于函数y x2162x 21000 ,50当 x162307050 (元),4050时,y max2( 1 )50即每辆车的月租金为4050 元时,租赁公司最大月收益为307050元.6. 已知函数 f (x) 是定义在R上的奇函数,当x 0 时, f (x)x(1 x) .画出函数 f (x)的图象,并求出函数的解析式.6.解:当x 0时,x0 ,而当 x0 时,f (x) x(1x) ,即 f ( x)x(1x) ,而由已知函数是奇函数,得 f ( x)f (x) ,得 f (x)x(1x) ,即 f ( x)x(1 x) ,f ( x)x(1x), x0所以函数的解析式为x(1x), x. 0 B组1. 已知函数 f (x) x22x , g( x) x22x (x [2, 4]) .( 1)求f ( x),g( x)的单调区间;(2)求 f ( x),g( x)的最小值.1.解:( 1)二次函数 f ( x) x22x 的对称轴为x 1 ,则函数 f (x) 的单调区间为(,1),[1,) ,且函数 f (x) 在 (,1)上为减函数,在[1,) 上为增函数,函数 g( x) 的单调区间为[2,4] ,且函数 g( x) 在 [2,4] 上为增函数;( 2)当x 1 时, f ( x)min 1 ,因为函数 g(x) 在 [2,4] 上为增函数,所以 g ( x) min g(2) 22220.2.如图所示,动物园要建造一面靠墙的2 间面积相同的矩形熊猫居室,如果可供建造围墙的材料总长是30m ,那么宽x(单位:m)为多少才能使建造的每间熊猫居室面积最大?每间熊猫居室的最大面积是多少?2.解:由矩形的宽为303xS ,x m ,得矩形的长为m ,设矩形的面积为2则 S303x3( x210 x)x22,当 x 5 时,S max37.5 m2,即宽 x 5 m才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是37.5 m2.3. 已知函数f (x)是偶函数,而且在(0, ) 上是减函数,判断 f (x) 在 (,0) 上是增函数还是减函数,并证明你的判断 .3.判断f (x)在(,0) 上是增函数,证明如下:设 x1 x20 ,则 x1x20 ,因为函数 f( x) 在 (0,) 上是减函数,得 f ( x1) f ( x2 ) ,又因为函数 f ( x) 是偶函数,得 f ( x1 ) f ( x2 ) ,所以 f (x) 在 (,0) 上是增函数.复习参考题A 组1.用列举法表示下列集合:( 1)A{ x | x29} ;( 2)B{ x N |1 x 2} ;( 3)C{ x | x23x 20} .1.解:( 1)方程x29 的解为 x13, x2 3 ,即集合 A {3,3} ;( 2)1x 2 ,且 x N ,则x1,2 ,即集合 B{ 1,2} ;( 3)方程x23x 2 0 的解为 x11, x2 2 ,即集合 C {1,2} .精品文档2.设 P 表示平面内的动点,属于下列集合的点组成什么图形?(1) { P | PAPB} (A, B 是两个定点 ) ;( 2) { P | PO 3cm} (O 是定点 ) .2.解:( 1)由 PA PB ,得点 P 到线段 AB 的两个端点的距离相等,即 { P | PA PB} 表示的点组成线段AB 的垂直平分线;( 2) { P | PO 3cm} 表示的点组成以定点O 为圆心,半径为 3cm 的圆.3. 设平面内有 ABC ,且 P 表示这个平面内的动点,指出属于集合{P|PA PB}I {P|PA PC} 的点是什么 .3.解:集合 { P | PAPB} 表示的点组成线段 AB 的垂直平分线,集合{P|PAPC} 表示的点组成线段 AC 的垂直平分线,得{ P |PAPB} I { P | PA PC} 的点是线段 AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC 的外心.4. 已知集合 A{ x | x 21},B{ x | ax 1} . 若 B A ,求实数 a 的值 .4.解:显然集合 A{ 1,1} ,对于集合 B{ x | ax 1} ,当 a0 时,集合 B,满足 B A ,即 a 0 ;当 a 0 时,集合 B 1},而B1 1 1,{ A ,则1 ,或a aa得 a 1 ,或 a 1 ,综上得:实数 a 的值为1,0 ,或 1.5. 已知集合 A {( x, y) | 2xy0} , B {( x, y) | 3x y 0} , C {( x, y) | 2xy 3} ,求 A I B ,AI C , (AI B)U(BI C) .5.解:集合 A I B( x, y) |2x y 03x y{(0,0)} ,即 A I B {(0,0)} ;集合集合A I C2x y 0 ,即AIC( x, y) |y3 ;2xB I C3x y 03 9( x, y) |y{(,)} ;2x 355则 (AI B) U(BI C) {(0,0),( 3,9)} .5 5精品文档( 1)y x 2x 5 ;( 2)y x 4 .| x |56.解:( 1)要使原式有意义,则x20,即 x 2 ,x50得函数的定义域为 [2,) ;(2)要使原式有意义,则得函数的定义域为x4,即 x 4 ,且 x 5 ,| x | 50[4,5)U (5,) .7. 已知函数f (x)1x,求:1x( 1)f ( a) 1(a1) ;( 2)f (a 1)(a2) .7.解:( 1)因为所以f ( x)1x ,1xf (a)1a,得 f (a) 11a1 2 ,1a1a 1 a即 f ( a) 12;1 a ( 2)因为f (x)1x ,1x所以 f (a 1)1( a1)a,1 a1a2即 f ( a 1)a.a28. 设f ( x)1x2,求证:1x2( 1)f ( x) f ( x) ;( 2)f (1) f (x) . x8.证明:(1)因为f (x)1x2,1x2所以 f ( x)1(x) 21x2f (x) ,1(x) 21x2即 f ( x) f ( x) ;1x 2( 2)因为f ( x) 2,1x11(1)2x2)x1 f (x) ,所以 f (1x2x1(21)x1f (x) .即 f ( )x9. 已知函数f (x)4x2kx8 在 [5,20]上具有单调性,求实数k 的取值范围. 9.解:该二次函数的对称轴为x k ,8函数 f ( x) 4 x2kx8 在[5,20] 上具有单调性,则k20 ,或k5 ,得k160 ,或 k 40 ,88即实数 k 的取值范围为 k160 ,或 k 40 .10.已知函数y x 2,(1)它是奇函数还是偶函数?(2)它的图象具有怎样的对称性?(3)它在(0,) 上是增函数还是减函数?(4)它在( ,0)上是增函数还是减函数?10.解:( 1)令f ( x)x2,而 f ( x) ( x) 2x 2 f ( x) ,即函数 y x 2是偶函数;( 2)函数y x 2的图象关于 y 轴对称;( 3)函数y x2在 (0,) 上是减函数;( 4)函数y x2在 (,0) 上是增函数.B组1.学校举办运动会时,高一( 1)班共有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有 14人参加球类比赛,同时参加游泳比赛和田径比赛的有 3人,同时参加游泳比赛和球类比赛的有 3 人,没有人同时参加三项比赛 . 问同时参加田径和球类比赛的有多少人?只参加游泳一项比赛的有多少人?1.解:设同时参加田径和球类比赛的有x 人,则 15 8 14 3 3 x28 ,得 x 3 ,只参加游泳一项比赛的有15 3 39 (人),2.已知非空集合 A{ x R | x2a} ,试求实数 a 的取值范围.2.解:因为集合A,且 x20 ,所以a0 .3.设全集 U{1,2,3,4,5,6,7,8,9}, e U (A U B){1,3} , A I(e U B) {2, 4} ,求集合B. 3.解:由e U( A U B) {1,3},得A U B{2,4,5,6,7,8,9} ,集合 AU B里除去AI(e U B) ,得集合B,所以集合 B{5,6,7,8,9} .4.已知函数 f (x)x(x4), x03) , f (a1)的值 . x(x4), x. 求f (1),f (4.解:当x0 时, f ( x)x(x4) ,得 f (1)1(14) 5 ;当 x0 时, f ( x)x(x4) ,得 f ( 3)3( 34)21;f (a1)(a1)(a5), a1(a1)(a3), a .1 5.证明:( 1)若f (x)ax b ,则 f ( x 1(2)若g (x) x2ax b,则5.证明:(1)因为f (x) axf ( x1 ) f ( x2 )2x1x2所以 f ()x2 )f ( x1)f ( x2);22g(x1x2 )g( x1 ) g( x2 ) .22b ,得 f (x12x2 )ax1x2ba( x1 x2 ) b ,22ax1 b ax2b a(x1x2 ) b ,22f ( x1 ) f ( x2 ) ;2( 2)因为g( x)x2ax b ,得g (x1x2) 2g( x1 ) g(x2 ) 21(x12x222x1x2 ) a(x1x2 ) b ,421[( x12ax1b) (x22ax2 b)]21( x12x22 ) a(x1x2 ) b ,22因为1( x12x222x1 x2 )1( x12x22 )1(x1 x2 )20 ,424即1( x12x222x1 x2 )1( x12x22 ) ,42所以g(x1x2)g (x1) g (x2 ) .226. ( 1)已知奇函数f (x) 在 [a,b] 上是减函数,试问:它在[b,a] 上是增函数还是减函数?( 2)已知偶函数g( x) 在 [ a,b] 上是增函数,试问:它在[b,a] 上是增函数还是减函数?6.解:( 1)函数f ( x)在[ b,a] 上也是减函数,证明如下:设 b x1 x2 a ,则 a x2x1 b ,因为函数 f ( x) 在 [ a, b]上是减函数,则全月应纳税所得额税率(00)f ( x2 ) f ( x1 ) ,不超过 500元的部分5又因为函数 f ( x) 是奇函数,则 f ( x2 )f ( x1 ) ,超过 500 元至 2000 元的部分10f (x1 ) f ( x2 ) ,即超过 2000元至 5000 元的部分15所以函数 f (x) 在 [b, a] 上也是减函数;( 2)函数g(x)在[b, a] 上是减函数,证明如下:设 b x1x2 a ,则 a x2x1 b ,因为函数 g( x) 在 [ a, b] 上是增函数,则g ( x2 ) g(x1 ) ,又因为函数g (x) 是偶函数,则g( x2 ) g(x1 ) ,即 g( x1 )g( x2 ) ,所以函数 g(x) 在 [ b, a] 上是减函数.7. 《中华人民共和国个人所得税》规定,公民全月工资、薪金所得不超过2000 元的部分不必纳税,超过 2000元的部分为全月应纳税所得额.此项税款按下表分段累计计算:某人一月份应交纳此项税款为 26.78元,那么他当月的工资、薪金所得是多少?7x元,应纳此项税款为y元,则.解:设某人的全月工资、薪金所得为0,0x2000(x2000) 5%, 2000x2500 y.精品文档由该人一月份应交纳此项税款为26.78元,得 2500 x4000 ,25 ( x 2500) 10% 26.78 ,得x2517.8 ,所以该人当月的工资、薪金所得是2517.8元.。
高中数学必修 1 课后习题答案第一章 集合与函数概念1.1 集合1.1.1 集合的含义与表示练习(第 5 页) 1.用符号“∈”或“∉ ”填空:(1)设 A 为所有亚洲国家组成的集合,则:中国_______A ,美国_______ A , 印度_______ A ,英国_______ A ;(2)若{}x x x A ==2|,则1-_______A ;(3)若{}06|2=-+=x x x B ,则3 _______ B ;(4)若 {}011|≤≤∈=x N x C ,则8 _______ C , 1.9_______ C .1 解:(1)中国A ∈,美国A ∉,印度A ∈,英国A ∉;(中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲。
)(2)A ∉-1 {}{}1,0|2===x x x A(3)B ∉3 {}}{2,306|2-==-+=x x x B(4)C ∈8,C ∉1.9 N ∉1.92.试选择适当的方法表示下列集合:(1)由方程092=-x 的所有实数根组成的集合;(2)由小于8的所有素数组成的集合;(3)一次函数3+=x y 与62+-=x y 的图象的交点组成的集合;(4)不等式 354<-x 的解集。
2.解:(1)方程092=-x 的实数根为3,321=-=x x ,所以由方程092=-x 的所有实数根组成的集合为}{3,3-; (2)因为小于8的素数为7,5,3,2,所以由小于8的所有素数组成的集合为{}7,5,3,2;(3)由 ⎩⎨⎧+-=+=623x y x y ,得⎩⎨⎧==41y x , 即一次函数3+=x y 与62+-=x y 的图象的交点为)4,1(,所以一次函数3+=x y 与62+-=x y 的图象的交点组成的集合为}{)4,1(;1.1.2 集合间的基本关系练习(第 7 页)1.写出集合}{c b a ,,的所有子集.1.解:按子集元素个数来分类,不取任何元素,得φ;取一个元素,得}{a ,}{b ,}{c ;取两个元素,得 }{b a ,,}{c a ,,}{c b ,;取三个元素,得}{c b a ,,,即集合}{c b a ,,的所有子集为φ,}{a ,}{b ,}{c ,}{b a ,,}{c a ,,}{c b ,,}{c b a ,,。
新版高一数学必修第一册第一章全部配套练习题(含答案和解析)1.1 集合的概念第1课时集合的概念基础练巩固新知夯实基础1.有下列各组对象:①接近于0的数的全体;①比较小的正整数的全体;①平面上到点O的距离等于1的点的全体;①直角三角形的全体.其中能构成集合的个数是()A.2 B.3C.4 D.52.已知集合A由x<1的数构成,则有()A.3①A B.1①AC.0①A D.-1①A3.集合A中只含有元素a,则下列各式一定正确的是()A.0①A B.a①A C.a①A D.a=A4.若a,b,c,d为集合A的四个元素,则以a,b,c,d为边长构成的四边形可能是() A.矩形B.平行四边形C.菱形D.梯形5.已知集合A含有三个元素2,4,6,且当a①A,有6-a①A,则a为() A.2 B.2或4C .4D .06.若x ①N ,则满足2x -5<0的元素组成的集合中所有元素之和为________. 7.已知①5①R ;①13①Q ;①0①N ;①π①Q ;①-3①Z .正确的个数为________.能 力 练综合应用 核心素养8.已知x ,y 都是非零实数,z =x |x |+y |y |+xy|xy |可能的取值组成集合A ,则( )A .2①AB .3①AC .-1①AD .1①A9.已知集合A 中含有三个元素1,a ,a -1,若-2①A ,则实数a 的值为( )A .-2B .-1C .-1或-2D .-2或-310.集合A 中含有三个元素2,4,6,若a ①A ,且6-a ①A ,那么a =________. 11.由实数x ,-x ,|x |,x 2及-3x 3所组成的集合,最多含有________个元素.12.已知集合M 中含有三个元素2,a ,b ,集合N 中含有三个元素2a,2,b 2,且M =N .求a ,b 的值.13.设A 为实数集,且满足条件:若a ①A ,则11-a①A (a ≠1).求证:(1)若2①A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.14.已知方程ax2-3x-4=0的解组成的集合为A.(1)若A中有两个元素,求实数a的取值范围;(2)若A中至多有一个元素,求实数a的取值范围.【参考答案】1.A 解析 ①不能构成集合,“接近”的概念模糊,无明确标准.①不能构成集合,“比较小”也是不明确的,多小算小没明确标准.①①均可构成集合,因为任取一个元素是否是此集合的元素有明确的标准可依. 2.C 解析 很明显3,1不满足不等式,而0,-1满足不等式.3.C 解析 由题意知A 中只有一个元素a ,①a ①A ,元素a 与集合A 的关系不能用“=”,a 是否等于0不确定,因此0是否属于A 不确定,故选C .4.D 解析 由集合中的元素具有互异性可知a ,b ,c ,d 互不相等,而梯形的四条边可以互不相等. 5.B 解析 若a =2①A ,则6-a =4①A ;或a =4①A ,则6-a =2①A ;若a =6①A ,则6-a =0①A . 6.3 解析 由2x -5<0,得x <52,又x ①N ,①x =0,1,2,故所有元素之和为3.7.3 解析 ①①①是正确的;①①是错误的. 8.C 解析 ①当x >0,y >0时,z =1+1+1=3;①当x >0,y <0时,z =1-1-1=-1; ①当x <0,y >0时,z =-1+1-1=-1; ①当x <0,y <0时,z =-1-1+1=-1, ①集合A ={-1,3}. ①-1①A .9.C 解析 由题意可知a =-2或a -1=-2,即a =-2或a =-1,故选C .10.2或4 解析若a =2,则6-2=4①A ;若a =4,则6-4=2①A ;若a =6,则6-6=0①A .故a =2或4. 11.2 解析 因为|x |=±x ,x 2=|x |,-3x 3=-x ,所以不论x 取何值,最多只能写成两种形式:x ,-x ,故合中最多含有2个元素.12.解 法一 根据集合中元素的互异性,有⎩⎪⎨⎪⎧a =2ab =b 2或⎩⎪⎨⎪⎧ a =b 2b =2a ,解得⎩⎪⎨⎪⎧ a =0,b =1或⎩⎪⎨⎪⎧a =0,b =0或⎩⎨⎧a =14,b =12.再根据集合中元素的互异性,得⎩⎪⎨⎪⎧a =0,b =1或⎩⎨⎧a =14,b =12.法二 ①两个集合相同,则其中的对应元素相同.①⎩⎪⎨⎪⎧ a +b =2a +b 2a ·b =2a ·b 2,即⎩⎪⎨⎪⎧a +b b -1=0 ①ab ·2b -1=0 ①①集合中的元素互异,①a ,b 不能同时为零. 当b ≠0时,由①得a =0,或b =12.当a =0时,由①得b =1,或b =0(舍去). 当b =12时,由①得a =14.当b =0时,a =0(舍去).①⎩⎪⎨⎪⎧a =0,b =1或⎩⎨⎧a =14,b =12.13.证明 (1)若a ①A ,则11-a①A .又①2①A ,①11-2=-1①A .①-1①A ,①11--1=12①A .①12①A ,①11-12=2①A . ①A 中另外两个元素为-1,12.(2)若A 为单元素集,则a =11-a,即a 2-a +1=0,方程无解. ①a ≠11-a,①集合A 不可能是单元素集.14.解 (1)因为A 中有两个元素,所以方程ax 2-3x -4=0有两个不等的实数根,所以⎩⎪⎨⎪⎧a ≠0,Δ=9+16a >0,即a >-916且a ≠0.所以实数a 的取值范围为a >-916,且a ≠0.(2)当a =0时,由-3x -4=0得x =-43;当a ≠0时,若关于x 的方程ax 2-3x -4=0有两个相等的实数根,则Δ=9+16a =0,即a =-916;若关于x 的方程无实数根,则Δ=9+16a <0,即a <-916, 故所求的a 的取值范围是a ≤-916或a =0.1.1 集合的概念 第2课时 集合的表示基 础 练巩固新知 夯实基础1.集合A ={x ①Z |-2<x <3}的元素个数为( ) A .1 B .2 C .3 D .42.方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1的解集不可以表示为( )A.错误! B.错误!C .{1,2}D .{(1,2)} 3.集合{(x ,y )|y =2x -1}表示( ) A .方程y =2x -1 B .点(x ,y )C .平面直角坐标系中的所有点组成的集合D .函数y =2x -1图象上的所有点组成的集合4.对集合{1,5,9,13,17}用描述法来表示,其中正确的是( ) A.{}x |x 是小于18的正奇数 B.{}x |x =4k +1,k ①Z ,且k <5 C.{}x |x =4t -3,t ①N ,且t ≤5 D.{}x |x =4s -3,s ①N *,且s ≤55.集合M ={(x ,y )|xy <0,x ①R ,y ①R }是( )A .第一象限内的点集B .第三象限内的点集C .第四象限内的点集D .第二、四象限内的点集6.集合{x ①N |x 2+x -2=0}用列举法可表示为________.7.将集合{(x ,y )|2x +3y =16,x ,y ①N }用列举法表示为________. 8.有下面四个结论:①0与{0}表示同一个集合;①集合M ={3,4}与N ={(3,4)}表示同一个集合;①方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2}; ①集合{x |4<x <5}不能用列举法表示. 其中正确的结论是________(填写序号).能 力 练综合应用 核心素养9.已知x ,y 为非零实数,则集合M =⎩⎨⎧⎭⎬⎫m ⎪⎪m =x |x |+y |y |+xy |xy |为( ) A .{0,3} B .{1,3} C .{-1,3}D .{1,-3}10.已知集合A ={}x |x =2m -1,m ①Z ,B ={}x |x =2n ,n ①Z ,且x 1,x 2①A ,x 3①B ,则下列判断不正确的是( ) A .x 1·x 2①A B .x 2·x 3①B C .x 1+x 2①BD .x 1+x 2+x 3①A11.已知集合A ={x |x =3m ,m ①N *},B ={x |x =3m -1,m ①N *},C ={x |x =3m -2,m ①N *},若a ①A ,b ①B , c ①C ,则下列结论中可能成立的是( ) A .2 006=a +b +c B .2 006=abc C .2 006=a +bcD .2 006=a (b +c )12.已知集合A ={1,2,3},B ={(x ,y )|x ①A ,y ①A ,x +y ①A },则B 中所含元素的个数为________.13.定义集合A -B ={x |x ①A ,且x ①B },若集合A ={x |2x +1>0},集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x -23<0,则集合A -B =________.14.已知集合A ={x ①R |ax 2+2x +1=0},其中a ①R .若1是集合A 中的一个元素,请用列举法表示集合A .15.设集合A={1,a,b},B={a,a2,ab},且A=B,求a2014+b2014.16.若P={0,2,5},Q={1,2,6},定义集合P+Q={a+b|a①P,b①Q},用列举法表示集合P+Q.【参考答案】1.D 解析因为A={x①Z|-2<x<3},所以x的取值为-1,0,1,2,共4个.2.C 解析C选项表示两个数.3. D 解析集合{(x,y)|y=2x-1}的代表元素是(x,y),x,y满足的关系式为y=2x-1,因此集合表示的是满足关系式y=2x-1的点组成的集合,故选D.4.D解析对于x=4s-3,当s依次取1,2,3,4,5时,恰好对应的x的值为1,5,9,13,17.5. D 解析因xy<0,所以有x>0,y<0;或者x<0,y>0.因此集合M表示的点集在第四象限和第二象限.6. {1} 解析由x2+x-2=0,得x=-2或x=1. 又x①N,①x=1.7. {(2,4),(5,2),(8,0)} 解析①3y=16-2x=2(8-x),且x①N,y①N,①y为偶数且y≤5,①当x=2时,y=4,当x=5时y=2,当x=8时,y=0.8. ① 解析 {0}表示元素为0的集合,而0只表示一个元素,故①错误;①集合M 是实数3,4的集合,而集合N 是实数对(3,4)的集合,不正确;①不符合集合中元素的互异性,错误;①中元素有无穷多个,不能一一列举,故不能用列举法表示.9. C 解析 当x >0,y >0时,m =3,当x <0,y <0时,m =-1-1+1=-1.当x ,y 异号,不妨设x >0,y <0时,m =1+(-1)+(-1)=-1.因此m =3或m =-1,则M ={-1,3}. 10. D ①集合A 表示奇数集,集合B 表示偶数集,①x 1,x 2是奇数,x 3是偶数,①x 1+x 2+x 3为偶数. 11. C 解析 由于2 006=3×669-1,不能被3整除,而a +b +c =3m 1+3m 2-1+3m 3-2=3(m 1+m 2+m 3-1)不满足;abc =3m 1(3m 2-1)(3m 3-2)不满足;a +bc =3m 1+(3m 2-1)(3m 3-2)=3m -1适合; a (b +c )=3m 1(3m 2-1+3m 3-2)不满足.12. 3 解析 根据x ①A ,y ①A ,x +y ①A ,知集合B ={(1,1),(1,2),(2,1)},有3个元素.13. {x |x ≥2} 解析 A =⎩⎨⎧⎭⎬⎫x ⎪⎪ x >-12,B ={x |x <2}, A -B =⎩⎨⎧⎭⎬⎫x ⎪⎪x >-12且x ≥2={x |x ≥2}. 14. 解 ①1是集合A 中的一个元素,①1是关于x 的方程ax 2+2x +1=0的一个根,①a ·12+2×1+1=0,即a =-3.方程即为-3x 2+2x +1=0,解这个方程,得x 1=1,x 2=-13,①集合A ={-13,1}.15.解 ①A =B ,①⎩⎪⎨⎪⎧ a 2=1,ab =b 或⎩⎪⎨⎪⎧ a 2=b ,ab =1.解方程组得,⎩⎪⎨⎪⎧ a =-1,b =0或⎩⎪⎨⎪⎧a =1,b =1,或a =1,b 为任意实数.由集合元素的互异性得a ≠1,①a =-1,b =0,故a 2014+b 2014=1.16. 解 ①当a =0时,b 依次取1,2,6,得a +b 的值分别为1,2,6;当a =2时,b 依次取1,2,6,得a +b 的 值分别为3,4,8;当a =5时,b 依次取1,2,6,得a +b 的值分别为6,7,11. ①P +Q ={1,2,3,4,6,7,8,11}.1.1 集合的概念 第2课时 集合的表示基 础 练巩固新知 夯实基础1.集合A ={x ①Z |-2<x <3}的元素个数为( ) A .1 B .2 C .3 D .42.方程组⎩⎪⎨⎪⎧x +y =3,x -y =-1的解集不可以表示为( )A.错误! B.错误!C .{1,2}D .{(1,2)} 3.集合{(x ,y )|y =2x -1}表示( ) A .方程y =2x -1 B .点(x ,y )C .平面直角坐标系中的所有点组成的集合D .函数y =2x -1图象上的所有点组成的集合4.对集合{1,5,9,13,17}用描述法来表示,其中正确的是( ) A.{}x |x 是小于18的正奇数 B.{}x |x =4k +1,k ①Z ,且k <5 C.{}x |x =4t -3,t ①N ,且t ≤5 D.{}x |x =4s -3,s ①N *,且s ≤55.集合M ={(x ,y )|xy <0,x ①R ,y ①R }是( )A .第一象限内的点集B .第三象限内的点集C .第四象限内的点集D .第二、四象限内的点集6.集合{x ①N |x 2+x -2=0}用列举法可表示为________.7.将集合{(x ,y )|2x +3y =16,x ,y ①N }用列举法表示为________. 8.有下面四个结论:①0与{0}表示同一个集合;①集合M ={3,4}与N ={(3,4)}表示同一个集合;①方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2}; ①集合{x |4<x <5}不能用列举法表示. 其中正确的结论是________(填写序号).能 力 练综合应用 核心素养9.已知x ,y 为非零实数,则集合M =⎩⎨⎧⎭⎬⎫m ⎪⎪m =x |x |+y |y |+xy |xy |为( ) A .{0,3} B .{1,3} C .{-1,3}D .{1,-3}10.已知集合A ={}x |x =2m -1,m ①Z ,B ={}x |x =2n ,n ①Z ,且x 1,x 2①A ,x 3①B ,则下列判断不正确的是( ) A .x 1·x 2①A B .x 2·x 3①B C .x 1+x 2①BD .x 1+x 2+x 3①A11.已知集合A ={x |x =3m ,m ①N *},B ={x |x =3m -1,m ①N *},C ={x |x =3m -2,m ①N *},若a ①A ,b ①B , c ①C ,则下列结论中可能成立的是( ) A .2 006=a +b +c B .2 006=abc C .2 006=a +bcD .2 006=a (b +c )12.已知集合A ={1,2,3},B ={(x ,y )|x ①A ,y ①A ,x +y ①A },则B 中所含元素的个数为________.13.定义集合A -B ={x |x ①A ,且x ①B },若集合A ={x |2x +1>0},集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x -23<0,则集合A -B =________.14.已知集合A ={x ①R |ax 2+2x +1=0},其中a ①R .若1是集合A 中的一个元素,请用列举法表示集合A .16.设集合A ={1,a ,b },B ={a ,a 2,ab },且A =B ,求a 2014+b 2014.16.若P ={0,2,5},Q ={1,2,6},定义集合P +Q ={a +b |a ①P ,b ①Q },用列举法表示集合P +Q .【参考答案】3. D 解析 因为A ={x ①Z |-2<x <3},所以x 的取值为-1,0,1,2,共4个.4. C 解析 C 选项表示两个数.3. D 解析 集合{(x ,y )|y =2x -1}的代表元素是(x ,y ),x ,y 满足的关系式为y =2x -1,因此集合表示的是满足关系式y =2x -1的点组成的集合,故选D.4. D 解析 对于x =4s -3,当s 依次取1,2,3,4,5时,恰好对应的x 的值为1,5,9,13,17.5. D 解析因xy <0,所以有x >0,y <0;或者x <0,y >0.因此集合M 表示的点集在第四象限和第二象限.6. {1} 解析 由x 2+x -2=0,得x =-2或x =1. 又x ①N ,①x =1.7. {(2,4),(5,2),(8,0)} 解析 ①3y =16-2x =2(8-x ),且x ①N ,y ①N ,①y 为偶数且y ≤5,①当x =2时,y =4,当x =5时y =2,当x =8时,y =0.8. ① 解析 {0}表示元素为0的集合,而0只表示一个元素,故①错误;①集合M 是实数3,4的集合,而集合N 是实数对(3,4)的集合,不正确;①不符合集合中元素的互异性,错误;①中元素有无穷多个,不能一一列举,故不能用列举法表示.9. C 解析 当x >0,y >0时,m =3,当x <0,y <0时,m =-1-1+1=-1.当x ,y 异号,不妨设x >0,y <0时,m =1+(-1)+(-1)=-1.因此m =3或m =-1,则M ={-1,3}. 12. D ①集合A 表示奇数集,集合B 表示偶数集,①x 1,x 2是奇数,x 3是偶数,①x 1+x 2+x 3为偶数. 13. C 解析 由于2 006=3×669-1,不能被3整除,而a +b +c =3m 1+3m 2-1+3m 3-2=3(m 1+m 2+m 3-1)不满足;abc =3m 1(3m 2-1)(3m 3-2)不满足;a +bc =3m 1+(3m 2-1)(3m 3-2)=3m -1适合; a (b +c )=3m 1(3m 2-1+3m 3-2)不满足.12. 3 解析 根据x ①A ,y ①A ,x +y ①A ,知集合B ={(1,1),(1,2),(2,1)},有3个元素.13. {x |x ≥2} 解析 A =⎩⎨⎧⎭⎬⎫x ⎪⎪ x >-12,B ={x |x <2}, A -B =⎩⎨⎧⎭⎬⎫x ⎪⎪x >-12且x ≥2={x |x ≥2}. 14. 解 ①1是集合A 中的一个元素,①1是关于x 的方程ax 2+2x +1=0的一个根,①a ·12+2×1+1=0,即a =-3.方程即为-3x 2+2x +1=0,解这个方程,得x 1=1,x 2=-13,①集合A ={-13,1}.15.解 ①A =B ,①⎩⎪⎨⎪⎧ a 2=1,ab =b 或⎩⎪⎨⎪⎧ a 2=b ,ab =1.解方程组得,⎩⎪⎨⎪⎧ a =-1,b =0或⎩⎪⎨⎪⎧a =1,b =1,或a =1,b 为任意实数. 由集合元素的互异性得a ≠1,①a =-1,b =0,故a 2014+b 2014=1.17. 解 ①当a =0时,b 依次取1,2,6,得a +b 的值分别为1,2,6;当a =2时,b 依次取1,2,6,得a +b 的 值分别为3,4,8;当a =5时,b 依次取1,2,6,得a +b 的值分别为6,7,11.①P+Q={1,2,3,4,6,7,8,11}.1.2集合间的基本关系基础练巩固新知夯实基础1.下列集合中,结果是空集的是()A.{x∈R|x2-1=0} B.{x|x>6或x<1}C.{(x,y)|x2+y2=0} D.{x|x>6且x<1}2.已知集合N={1,3,5},则集合N的真子集个数为()A.5B.6C.7D.83.下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若∅A,则A≠∅.其中正确的个数是()A.0 B.1 C.2 D.34.下列正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的Venn图是()5.已知集合P={x|x2=1},集合Q={x|ax=1},若Q⊆P,那么a的值是________.6.设集合A={x|x2+x-6=0},B={x|mx+1=0},则满足B⊆A的实数m的值所组成的集合为________.7. 已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B⊆A,求实数m的取值范围.8.已知集合A={x|x<-1或x>4},B={x|2a≤x≤a+3},若B⊆A,求实数a的取值范围.能力练综合应用核心素养9.已知集合A={x|a-1≤x≤a+2},B={x|3<x<5},则能使A⊇B成立的实数a的取值集合是()A.{a|3<a≤4}B.{a|3≤a≤4}C.{a|3<a<4}D.⌀10.若集合A={1,3,x},B={x2,1},且B⊆A,则满足条件的实数x的个数是()A.1B.2C.3D.411.适合条件{1}⊆A{1,2,3,4,5}的集合A的个数是()A.15 B.16 C.31 D.3212.已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为() A.1 B.2 C.3 D.413.设集合A={-1,1},集合B={x|x2-2ax+b=0},若B≠⌀,B⊆A,则(a,b)不能是()A.(-1,1)B.(-1,0)C.(0,-1)D.(1,1)14.已知集合A={x|x2=a},当A为非空集合时a的取值范围是________.15.设集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y<0},那么M与P的关系为________.16.已知集合A={x|ax2+2x+a=0,a∈R},若集合A有且仅有两个子集,则a的值是________.17.已知集合M={x|x2+2x-8=0},N={x|(x-2)(x-a)=0},若N⊆M,则实数a的值是.18.已知集合A={x|x2-4x+3=0},B={x|mx-3=0},且B⊆A,求实数m的集合.19. 已知集合A={1,3,-x3},B={x+2,1},是否存在实数x,使得B是A的子集?若存在,求出集合A,B;若不存在,请说明理由.20.已知集合A={x|-1≤x≤6},B={x|m-1≤x≤2m+1},且B⊆A.(1)求实数m的取值集合;(2)当x∈N时,求集合A的子集的个数.【参考答案】1. D 解析 对D ,显然不存在既大于6又小于1的数,故{x |x >6且x <1}=∅.2. C 解析 集合N 的真子集有:∅,{1},{3},{5},{1,3},{1,5},{3,5},共7个.3. B 解析 ①错,空集是任何集合的子集,有∅⊆∅;②错,如∅只有一个子集;③错,空集不是空集的真子集;④正确,因为空集是任何非空集合的真子集.4. B 解析 由N ={-1,0},知N M ,故选B.5. 0,±1 解析 P ={-1,1},Q ⊆P ,所以 (1)当Q =∅时,a =0. (2)当Q ≠∅时,Q ={1a },∴1a =1或1a =-1,解之得a =±1. 综上知a 的值为0,±1.6. ⎩⎨⎧⎭⎬⎫0,13,-12 解析 ∵A ={x |x 2+x -6=0}={-3,2},又∵B ⊆A ,当m =0,mx +1=0无解,故B =∅,满足条件,若B ≠∅,则B ={-3},或B ={2},即m =13,或m =-12,故满足条件的实数m ∈⎩⎨⎧⎭⎬⎫0,13,-12.7. 解 A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},且B ⊆A . ①若B =∅,则m +1>2m -1,解得m <2, 此时有B ⊆A ;②若B ≠∅,则m +1≤2m -1,即m ≥2, 由B ⊆A ,得⎩⎪⎨⎪⎧m ≥2m +1≥-22m -1≤5,解得2≤m ≤3.由①②得m ≤3.∴实数m 的取值范围是{m |m ≤3}.8. 解 当B =∅时,只需2a >a +3, 即a >3.当B ≠∅时,根据题意作出如图所示的数轴,可得⎩⎪⎨⎪⎧ a +3≥2a ,a +3<-1或⎩⎪⎨⎪⎧a +3≥2a ,2a >4.解得a <-4或2<a ≤3. 综上,实数a 的取值范围为{a |a <-4或a >2}.9. B 解析∵A ⊇B ,∴{a -1≤3,a +2≥5,解得3≤a ≤4.经检验知当a=3或a=4时符合题意.故3≤a ≤4.10. C 解析 由B ⊆A ,知x 2=3,或x 2=x ,解得x =±3,或x =0,或x =1,当x =1时,集合A ,B 都不满足元素的互异性,故x =1舍去. 11. A 解析 因为集合A 中必须包含元素1,但从元素2、3、4、5中至多选取3个,于是集合A 的个数是24-1=15个,故选A.12. D 解析 用列举法表示集合A ,B ,根据集合关系求出集合C 的个数.由x 2-3x +2=0得x =1或x =2,∴A ={1,2}.由题意知B ={1,2,3,4},∴满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. 13. B 解析 当a=-1,b=1时,B={x|x 2+2x+1=0}={-1},符合; 当a=b=1时,B={x|x 2-2x+1=0}={1},符合; 当a=0,b=-1时,B={x|x 2-1=0}={-1,1},符合; 当a=-1,b=0时,B={x|x 2+2x=0}={0,-2},不符合.14. a ≥0 解析 要使集合A 为非空集合,则应有方程x 2=a 有解,故只须a ≥0.15. M =P 解析 ∵xy >0,∴x ,y 同号,又x +y <0,∴x <0,y <0,即集合M 表示第三象限内的点,而集合P 表示第三象限内的点,故M =P .16. 0或±1 解析因为A有且仅有两个子集,所以A仅有一个元素,即方程ax2+2x+a=0仅有一根,当a =0时,方程化为2x=0,A={0},符合题意;当a≠0时,Δ=4-4a2=0,解得a=±1此时A={-1}或{1},符合题意.综上所述a=0或a=±1.17.-4或2 解析M={x|x2+2x-8=0}={2,-4}.当a≠2时,N={x|(x-2)(x-a)=0}={2,a}.∵N⊆M,∴a=-4.当a=2时,N={x|(x-2)(x-a)=0}={2},此时N⊆M,符合题意.18. 解由x2-4x+3=0,得x=1或x=3.∴集合A={1,3}.(1)当B=∅时,此时m=0,满足B⊆A.(2)当B≠∅时,则m≠0,B={x|mx-3=0}={3m}.∵B⊆A,∴3m=1或3m=3,解之得m=3或m=1.综上可知,所求实数m的集合为{0,1,3}.19 . 解因为B是A的子集,所以B中元素必是A中的元素,若x+2=3,则x=1,符合题意.若x+2=-x3,则x3+x+2=0,所以(x+1)(x2-x+2)=0.因为x2-x+2≠0,所以x+1=0,所以x=-1,此时x+2=1,集合B中的元素不满足互异性.综上所述,存在实数x=1,使得B是A的子集,此时A={1,3,-1},B={1,3}.20.解:(1)①当m-1>2m+1,即m<-2时,B=⌀符合题意.②当m-1≤2m+1,即m≥-2时,B≠⌀.由B⊆A,借助数轴(如图所示),得{m -1≥-1,2m +1≤6,m ≥−2,解得0≤m ≤52.所以0≤m ≤52.经验证知m=0和m=52符合题意.综合①②可知,实数m 的取值集合为 {m |m <−2或0≤m ≤52}. (2)∵当x ∈N 时,A={0,1,2,3,4,5,6}, ∴集合A 的子集的个数为27=128.1.3 集合的基本运算 第1课时 并集与交集基 础 练巩固新知 夯实基础1.已知集合A ={-1,0,1},B ={x |-1≤x <1},则A ∩B 等于( ) A .{0} B .{-1,0} C .{0,1}D .{-1,0,1}2.已知集合A ={x |x ≥0},B ={x |-1≤x ≤2},则A ①B=( ) A .{x |x ≥-1}B .{x |x ≤2}C.{x|0<x≤2} D.{x|1≤x≤2}3.若集合A={参加伦敦奥运会比赛的运动员},集合B={参加伦敦奥运会比赛的男运动员},集合C={参加伦敦奥运会比赛的女运动员},则下列关系正确的是()A.A①B B.B①CC.A∩B=C D.B①C=A4.已知集合M={x|(x-1)2<4,x①R},N={-1,0,1,2,3},则M∩N=()A.{0,1,2} B.{-1,0,1,2}C.{-1,0,2,3} D.{0,1,2,3}5.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N为()A.x=3,y=-1 B.(3,-1)C.{3,-1} D.{(3,-1)}6.设集合M={1,2},则满足条件M①N={1,2,3,4}的集合N的个数是()A.1 B.3 C.2 D.47.设A={x|-3≤x≤3},B={y|y=-x2+t}.若A∩B=①,则实数t的取值范围是()A.t<-3 B.t≤-3C.t>3 D.t≥38.若集合A={x|x≤2},B={x|x≥a},满足A∩B={2},则实数a=________.9.设集合A={-2},B={x|ax+1=0,a①R},若A∩B=B,求a的值.10.已知集合A={x|-1≤x<3},B={x|2x-4≥x-2}.(1)求A∩B;(2)若集合C={x|2x+a>0},满足B①C=C,求实数a的取值范围.能力练综合应用核心素养11.集合A={0,2,a},B={1,a2},若A①B={0,1,2,4,16},则a的值为()A.0 B.1C.2 D.412.已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},且B≠①,若A①B=A,则() A.-3≤m≤4 B.-3<m<4C.2<m<4 D.2<m≤413.已知集合A={1,3,m},B={1,m},A①B=A,则m等于()A.0或 3 B.0或3C.1或 3 D.1或314.设集合A={x|-1≤x≤2},B={x|-1<x≤4},C={x|-3<x<2}且集合A∩(B①C)={x|a≤x≤b},则a=________,b=________.15.已知M={x|y=x2-1},N={y|y=x2-1},那么M∩N等于。
(新教材)部编人教版高中数学必修一第一章课后练习和习题汇总(附答案)目录第一章集合与常用逻辑用语.1.1 集合的概念1.2 集合间的基本关系1.3集合的基本运算1.4 充分条件与必要条件1.5全称量词与存在量小结复习参考题1第一章集合与常用逻辑用语1.1集合的概念练习1.判断下列元素的全体是否组成集合,并说明理由:(1)与定点A,B等距离的点;【答案解析】:是集合,因为这些点有确定性.(2)高中学生中的游泳能手.【答案解析】:不是,因为是否能手没有客观性,不好确定.2.用符号“∈”或“∉”填空:0___ N; -3___ N; 0.5__Z; √2__z; ⅓__Q; π__R.【答案解析】:根据自然数,整数,有理数,实数的定义即可判断.0是自然数,则0∈N ;-3不是自然数,则-3∉N ; 0.5,√2 不是整数,则0.5∉Z,√2∉Z;⅓是有理数,则⅓∈Q ;π 是无理数,则π∈R故答案为:(1)∈;(2)∉ ;(3)∉ ;(4)∉ ;(5)∈ ;(6)∈3.用适当的方法表示下列集合:(1)由方程x²-9=0的所有实数根组成的集合;【答案解析】:{-3, 3}.(2)一次函数y=x+3与y=-2x+6图象的交点组成的集合;【答案解析】: {(1, 4)}.(3)不等式4x- 5<3的解集.【答案解析】:{x | x<2}.习题1.1一、复习巩固1.用符号“∈”或“∉”填空:(1)设A为所有亚洲国家组成的集合,则中国____ A,美国____A,印度____A,英国____ A;【答案解析】:设A为所有亚洲国家组成的集合,则:中国∈A,美国∉A,印度∈A,英国∉A.(2)若A={x|x²=x},则-1____A;【答案解析】:A={x|x²=x}={0, 1},则-1∉A.(3)若B={x|x²+x-6=0},则3____B;【答案解析】:若B={x|x²+x-6=0}={x|(x+3)(x-2)=0}={-3,2},则3∉B; (4)若C={x∈N|1≤x≤10},则8____C, 9.1____C.【答案解析】:若C={x∈N|1≤x≤10}={1, 2, 3,4,5, 6,7, 8,9,10},则8∈C, 9.1∉C.2.用列举法表示下列集合:(1)大于1且小于6的整数;【答案解析】:大于1且小于6的整数有4个:2,3,4,5,所以集合为{2,3,4,5}.(2) A={x|(x-1)(x +2)=0};【答案解析】:(x- 1)(x+2)=0的解为x=1或x=-2,所以集合为{1, -2}.(3) B={x∈Z|-3<2x-1<3}.【答案解析】:由-3<2x-1<3,得-1<x<2.又因为x∈Z,所以x=0.或x=1,所以集合为{0,1}.二、综合运用3.把下列集合用另一种方法表示出来:(1) {2,4,6,8, 10};。
新课程标准数学必修1第一章课后习题解答第一章 集合与函数概念1.1集合练习(P5)1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A.(2)∵A={x |x 2=x }={0,1},∴-1∉A. (3)∵B={x |x 2+x -6=0}={-3,2},∴3∉A.(4)∵C={x ∈N|1≤x ≤10}={1,2,3,4,5,6,7,8,9,10},∴8∈C ,9.1∉C.2.(1){x |x 2=9}或{-3,3}; (2){2,3,5,7};(3){(x ,y )|⎩⎨⎧+=+=6-2x y 3x y }或{(1,4)};(4){x ∈R |4x -5<3}或{x |x <2}. 练习(P7)1.∅,{a },{b },{c },{a ,b },{a ,c },{b ,c },{a ,b ,c }.2.(1)a ∈{a ,b ,c }. (2)∵x 2=0,∴x =0.∴{x |x 2=0}={0}.∴0∈{0}.(3)∵x 2+1=0,∴x 2=-1.又∵x ∈R ,∴方程x 2=-1无解.∴{x ∈R |x 2+1=0}=∅.∴∅=∅. (4). (5)∵x 2=x ,∴x =0或x =1.∴{x |x 2=x }={0,1}.∴{0}{0,1}.(6)∵x 2-3x +2=0,∴x =1或x =2.∴{x |x 2-3x +2=0}={1,2}.∴{2,1}={1,2}.3.(1)由于1是任何正整数的公约数,任何正整数都是自身的公约数,所以8的公约数是1,2,4,8,即B={1,2,4,8}.∴AB.(2)显然B ⊆A ,又∵3∈A ,且3∉B ,∴B A. (3)4与10的最小公倍数是20,4与10的公倍数应是20的倍数,显然A=B.练习(P11)1.A∩B={5,8},A ∪B={3,5,6,7,8}.2.∵x 2-4x -5=0,∴x =-1或x =5.∴A={x |x 2-4x -5=0}={-1,5},同理,B={-1,1}.∴A ∪B={-1,5}∪{-1,1}={-1,1,5},A∩B={-1,5}∩{-1,1}={-1}.3.A∩B={x |x 是等腰直角三角形},A ∪B={x |x 是等腰三角形或直角三角形}.4.∵B={2,4,6},A={1,3,6,7},∴A∩(B)={2,4,5}∩{2,4,6}={2,4}, (A)∩(B)={1,3,6,7}∩{2,4,6}={6}.习题1.1 A 组(P11)1.(1)∈ (2)∈ (3)∉ (4)∈ (5)∈ (6)∈2.(1)∈ (2)∉ (3)∈3.(1){2,3,4,5}; (2){-2,1};(3){0,1,2}.(3)∵-3<2x -1≤3,∴-2<2x ≤4.∴-1<x ≤2.又∵x ∈Z ,∴x =0,1,2.∴B={x ∈Z |-3<2x -1≤3}={0,1,2}.4.(1){y |y ≥-4}; (2){x |x ≠0}; (3){x |x ≥54}. 5.(1)∵A={x |2x -3<3x }={x |x >-3},B={x |x ≥2},∴-4∉B ,-3∉A ,{2}B ,B A.(2)∵A={x |x 2-1=0}={-1,1},∴1∈A ,{-1}A ,∅A ,{1,-1}=A. (3);. 6.∵B={x |3x -7≥8-2x }={x |x ≥3},∴A ∪B={x |2≤x <4}∪{x |x ≥3}={x |x ≥2},A∩B={x |2≤x <4}∩{x |x ≥3}={x |3≤x <4}.7.依题意,可知A={1,2,3,4,5,6,7,8},所以A∩B={1,2,3,4,5,6,7,8}∩{1,2,3}={1,2,3}=B ,A∩C={1,2,3,4,5,6,7,8}∩{3,4,5,6}={3,4,5,6}=C.又∵B ∪C={1,2,3}∪{3,4,5,6}={1,2,3,4,5,6}.∴A∩(B ∪C)={1,2,3,4,5,6,7,8}∩{1,2,3,4,5,6}={1,2,3,4,5,6}.又∵B∩C={1,2,3}∩{3,4,5,6}={3},∴A ∪(B∩C)={1,2,3,4,5,6,7,8}∪{3}={1,2,3,4,5,6,7,8}=A.8.(1)A ∪B={x |x 是参加一百米跑的同学或参加二百米跑的同学}.(2)A∩C={x |x 是既参加一百米跑又参加四百米跑的同学}.9.B∩C={x |x 是正方形}, B={x |x 是邻边不相等的平行四边形},A={x |x 是梯形}.10.∵A ∪B={x |3≤x <7}∪{x |2<x <10}={x |2<x <10},∴(A ∪B)={x |x ≤2或x ≥10}.又∵A∩B={x |3≤x <7}∩{x |2<x <10}={x |3≤x <7},∴(A∩B)={x |x <3或x ≥7}. (A)∩B={x |x <3或x ≥7}∩{x |2<x <10}={x |2<x <3或7≤x <10},A ∪(B)={x |3≤x <7}∪{x |x ≤2或x ≥10}={x |x ≤2或3≤x <7或x ≥10}.习题1.2 A 组(P24)1.∵A={1,2},A ∪B={1,2},∴B ⊆A ,∴B=∅,{1},{2},{1,2}.2.集合D={(x ,y )|2x -y =1}∩{(x ,y )|x +4y =5}表示直线2x -y =1与直线x +4y =5的交点坐标;由于D={(x ,y )|⎩⎨⎧=+=54y x 1y -2x }={(1,1)},所以点(1,1)在直线y =x 上,即D C. 3.B={1,4},当a =3时,A={3},则A ∪B={1,3,4},A∩B=∅;当a ≠3时,A={3,a },若a =1,则A ∪B={1,3,4},A∩B={1};若a =4,则A ∪B={1,3,4},A∩B={4};若a ≠1且a ≠4,则A ∪B={1,a ,3,4},A∩B=∅.综上所得,当a =3时,A ∪B={1,3,4},A∩B=∅;当a =1,则A ∪B={1,3,4},A∩B={1};当a =4,则A ∪B={1,3,4},A∩B={4};当a ≠3且a ≠1且a ≠4时,A ∪B={1,a ,3,4},A∩B=∅.4.作出韦恩图,如图1-1-3-16所示,图1-1-3-16由U=A ∪B={x ∈N|0≤x ≤10},A∩(B)={1,3,5,7},可知B={0,2,4,6,8,9,10}.1.2函数及其表示练习(P19)1.(1)要使分式741+x 有意义,需4x+7≠0,即x≠47-. 所以这个函数的定义域是(-∞,47-)∪(47-,+∞); (2)要使根式有意义,需1-x≥0,且x+3≥0,即-3≤x≤1.所以这个函数的定义域是[-3,1].2.(1)f(2)=28,f(-2)=-28,f(2)+f(-2)=0;(2)f(a)=3a 3+2a ,f(-a)=-3a 3-2a ,f(a)+f(-a)=0.3.(1)两个函数的对应法则相同,而表示导弹飞行高度与时间关系的函数y=500x-5x 2是有实际背景的,这里x≥0;函数y=500x-5x 2,x ∈R ,这两个函数的定义域不同,故这两个函数不相等.(2)函数g(x)=x 0=1(x≠0)与函数f(x)=1,x ∈R 的对应法则相同,但定义域不同,所以不是相等的函数.已知函数解析式求函数值及不同变量的函数值的关系.练习(P23)1.设矩形一边长为xcm ,则另一边长为22x -50=22500x -.由题意,得y=x 22500x -,x ∈(0,50).2.图(A)与事件(2).图(B)与事件(3).图(D)与事件(1)吻合得最好.图(C)可叙述为:我出发后,为了赶时间,加速行驶,走了一段后,发现时间还早,于是放慢了速度.3.解析:由绝对值的知识,有f(x)=⎩⎨⎧<+-≥-.2,2,2,2x x x x 所以,f(x)=|x-2|的图象如下图所示.图1-2-2-234.与A 中元素60°对应的B 中的元素是23;与B 中元素22相对应的A 中的元素是45°. 习题1.2 A 组(P24)1.(1)(-∞,4)∪(4,+∞). (2)R .(3)要使分式有意义,只需x 2-3x+2≠0,即x≠1,且x≠2,所以这个函数的定义域是(-∞,1)∪(1,2)∪(2,+∞).(4)要使函数有意义,只需⎩⎨⎧≠≤⇒⎩⎨⎧≠-≥-,1,40104x x x x 即x≤4,且x≠1. 所以这个函数的定义域是(-∞,1)∪(1,4]. 2.(1)g(x)=xx 2-1=x-1,x≠0,该函数虽然与f(x)的对应关系相同,但是定义域不同, 所以f(x)与g(x)不相等. (2)g(x)=(x )4=x 2,x≥0,该函数虽然与f(x)的对应关系相同,但是定义域不同,所以f(x)与g(x)不相等. (3)g(x)=36x =x 2,x ∈R ,该函数与f(x)的对应关系相同,定义域相同,所以f(x)与g(x)相等.3. (1) (2)x ∈R ,y ∈R . x ∈(-∞,0)∪(0,+∞),y ∈(-∞,0)∪(0,+∞).图1-2-2-24 图1-2-2-25(3) (4)x ∈R ,y ∈R . x ∈R ,y ∈[-2,+∞).图1-2-2-26 图1-2-2-27 4.f(2-)=8+52,f(-a)=3a 2+5a+2,f(a+3)=3a 2+13a+14; f(a)+f(3)=3a 2-5a+16.5.(1)点(3,14)不在f(x)的图象上;(2)f(4)=-3;(3)x=14.6.解析:由韦达定理知1+3=-b ,1×3=c ,∴b=-4,c=3.∴f(x)=x 2-4x+3.∴f(-1)=(-1)2-4×(-1)+3=8. 答案:f(-1)=8.7. (1) (2)图1-2-2-28 图1-2-2-29 8.y=x 10 x ∈(0,+∞),y=21l-x x ∈(0,21l), y=22x d - x ∈(0,d),l=2x+x 20(x>0),l=2202+d . 9.由题意,可知容器内溶液高度为x 的体积等于注入的溶液的体积,即π(2d )2·x=vt ,整理得x=24d v π·t. 当容器注满时有π(2d )2h=vt ,得t=vh d 42π. 所以该函数的定义域是t ∈[0,v h d 42π],值域是x ∈[0,h ]. 10.共8个映射.图1-2-2-30B 组1.(1)[-5,0]∪[2,6);(2)[0,+∞);(3)[0,2)∪(5,+∞).2.图1-2-2-31(1)点(x ,0)和(5,y),即纵坐标为0或横坐标为5的点不能在图象上. (2)略.3.略.4.(1)t=512342x x -++,x ∈[0,12];(2)t=58320+≈3小时. 1.3 函数的基本性质练习(P32)1.从生产效率与生产线上工人数量的关系看,在生产劳动力较少的情况下,随人数的增加效率随着增大,但是到了一定数量后,人数再增多效率反而降低了.这说明劳动力可能过剩,出现了怠工等现象.2.图象如图1-3-2-2所示,图1-3-2-2函数的单调增区间为[8,12),[13,18);函数的单调减区间为[12,13),[18,20].3.函数的单调区间是[-1,0),[0,2),[2,4),[4,5].在区间[-1,0),[2,4)上是减函数;在区间[0,2),[4,5]上是增函数.4.证明:设x 1、x 2∈R ,且x 1<x 2,则f (x 1)-f (x 2)=(-2x 1+1)-(-2x 2+1)=2(x 2-x 1).∵x 1<x 2,∴x 2-x 1>0.∴f (x 1)>f (x 2).∴函数f (x )=-2x +1在R 上是减函数.5.如图1-3-2-3所示,图1-3-2-3从图象上可以发现f (-2)是函数的一个最小值.练习(P36)1.(1)对于函数f (x )=2x 4+3x 2,其定义域为(-∞,+∞).因为对定义域内的每一个x ,都有f (-x )=2(-x )4+3(-x )2=2x 4+3x 2=f (x ),所以函数f (x )=2x 4+3x 2为偶函数.(2)对于函数f (x )=x 3-2x ,其定义域为(-∞,+∞).因为对定义域内的每一个x ,都有f (-x )=(-x )3-2(-x )=-x 3+2x =-(x 3-2x )=-f (x ),所以函数f (x )=x 3-2x 为奇函数.(3)对于函数f (x )=xx 12+,其定义域为(-∞,0)∪(0,+∞). 因为对定义域内的每一个x ,都有f (-x )=x x -+-1)(2=xx 12+-=-f (x ), 所以函数f (x )=xx 12+-为奇函数. (4)对于函数f (x )=x 2+1,其定义域为(-∞,+∞).因为对定义域内的每一个x ,都有f (-x )=(-x )2+1=x 2+1=f (x ),所以函数f (x )=x 2+1为偶函数.2.f (x )的图象如图1-3-2-4所示,g (x )的图象如图1-3-2-5所示.图1-3-2-4 图1-3-2-5习题1.2 A 组(P39)1.(1)函数的单调区间是(-∞,25],(25,+∞). 函数y =f (x )在区间(-∞,25]上是减函数,在区间(25,+∞)上是增函数. (2)函数的单调区间是(-∞,0],(0,+∞).函数y =f (x )在区间(0,+∞)上是减函数,在区间(-∞,0]上是增函数. 图略.2.(1)设0<x 1<x 2,则有f (x 1)-f (x 2)=(x 12+1)-(x 22+1)=x 12-x 22=(x 1-x 2)(x 1+x 2).∵0<x 1<x 2,∴x 1-x 2<0,x 1+x 2<0. ∴f (x 1)>f (x 2). ∴函数f (x )在(-∞,0)上是减函数.(2)设0<x 1<x 2,则有f (x 1)-f (x 2)=(111x -)-(121x -)=21x 11x -=2121x x x x -. ∵0<x 1<x 2,∴x 1-x 2<0,x 1x 2>0. ∴f (x 1)<f (x 2). ∴函数f (x )在(-∞,0)上是增函数.3.设x 1、x 2是(-∞,+∞)上任意两个实数,且x 1<x 2.则y 1-y 2=(mx 1+b )-(mx 2+b )=m (x 1-x 2).∵x 1<x 2,∴x 1-x 2<0.当m <0时,∴y 1-y 2>0,即y 1>y 2.∴此时一次函数y =mx +b (m <0)在(-∞,+∞)上是减函数.同理可证一次函数y =mx +b (m >0)在(-∞,+∞)上是增函数.综上所得,当m <0时,一次函数y =mx +b 是减函数;当m >0时,一次函数y =mx +b 是增函数.4.心率关于时间的一个可能的图象,如图1-3-2-6所示,图1-3-2-65.y =502x -+162x -2100=501-(x 2-8100x )-2100=501-(x -4050)2+307 050. 由二次函数的知识,可得当月租金为4 050元时,租赁公司的月收入最大,最大收益为307 050元.6.图略,函数f (x )的解析式为⎩⎨⎧<-≥+.0),1(,0),1(x x x x x x B 组1.(1)函数f (x )在(-∞,1)上为减函数,在[1,+∞)上为增函数;函数g (x )在[2,4]上为增函数.(2)函数f (x )的最小值为-1,函数g (x )的最小值为0.2.设矩形熊猫居室的宽为x m ,面积为y m 2,则长为2330x -m , 那么y =x 2330x -=21(30x -3x 2)=23-(x -5)2+275.所以当x =5时,y 有最大值275, 即宽x 为5 m 时才能使所建造的每间熊猫居室面积最大,最大面积是275m 2. 3.函数f (x )在(-∞,0)上是增函数.证明:设x 1<x 2<0,则-x 1>-x 2>0.∵函数f (x )在(0,+∞)上是减函数,∴f (-x 1)<f (-x 2).∵函数f (x )是偶函数,∴f (-x )=f (x ).∴f (x 1)<f (x 2).∴函数f (x )在(-∞,0)上是增函数.第一章 复习参考题A 组(P44)1.(1)A={-3,3};(2)B={1,2};(3)C={1,2}.2.(1)线段AB 的垂直平分线;(2)以定点O 为原心,以3 cm 为半径的圆.3.属于集合的点是△ABC 的外接圆圆心.4.A={-1,1},(1)若a =0,则B=∅,满足B ⊆A ;(2)若a =-1,则B={-1},满足B ⊆A ;(3)若a =1,则B={1},满足B ⊆A.综上所述,实数a 的值为0,-1,1.5.A∩B={(x ,y )|⎩⎨⎧=+=0y 3x 0y -2x }={(x ,y )|⎩⎨⎧==0y 0x }={(0,0)}; A∩C={(x ,y )|⎩⎨⎧==3y -2x 0y -2x }=∅; B∩C={(x ,y )|⎩⎨⎧==+3y -2x 0y 3x }={(x ,y )|⎪⎪⎩⎪⎪⎨⎧-==5953y x }={(53,59-)}; (A∩B )∪(B∩C )={(0,0),(53,59-)}. 6.(1)要使函数有意义,必须|x |-2≥0,即x ≤-2或x ≥2,所以函数的定义域为{x |x ≤-2或x ≥2};(2)要使函数有意义,必须⎩⎨⎧≥+≥-,05,02x x 即⎩⎨⎧-≥≥,5,2x x 得x ≥2.所以函数的定义域为{x |x ≥2};(3)要使函数有意义,必须⎩⎨⎧≠-≥-,05||,04x x 即x ≥4,且x ≠5. 所以函数的定义域为{x |x ≥4,且x ≠5}.7.(1)f (a )+1=111++-a a =12+a ; (2)f (a +1)=)1(1)1(1+++-a a =a a +-2. 8.(1)∵f (-x )=22)(1)(1x x ---+=2211xx -+,∴f (-x )=f (x ). (2)∵f (x 1)=22)1(1)1(1x x -+=221111x x -+=222211x x x x -+=1122-+x x =2211x x -+-,∴f (x 1)=-f (x ). 9.二次函数f (x )的对称轴是直线x =8k ,则有8k ≤5或8k ≥20.解得k ≤40或k ≥160,即实数k 的取值范围是(-∞,40]∪[160,+∞).10.(1)函数y =x -2是偶函数; (2)它的图象关于y 轴对称;(3)函数在(0,+∞)上是减函数;(4)函数在(-∞,0)上是增函数.B 组 1.同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人.提示:由题意知有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,所以15+8+14=37,知共有37人次参加比赛.由已知共有28名同学参赛,且没有人同时参加三项,而37-28=9,知共有9名同学参加两项比赛.已知同时参加游泳和田径的有3人,同时参加游泳和球类的有3人,因此同时参加田径和球类的有3人;又已知有15人参加游泳比赛,因此只参加游泳一项的有9人.2.实数a 的取值范围为{a |a ≥0}.3.∵(A ∪B )=(A )∩(B )={1,3},A∩(B )={2,4},∴B={1,2,3,4}.∴B={5,6,7,8,9}.4.f (1)=1×(1+4)=5; f (-3)=-3×(-3-4)=21; f (a +1)=⎩⎨⎧-<++-≥++.1),3)(1(,1),5)(1(a a a a a a 5.证明:(1)f )2(21x x +=a ·221x x ++b =22221b ab b ax x +++=21(ax 1+b )+21(ax 2+b )=21[f (x 1)+f (x 2)], ∴f (221x x +)=21[f (x 1)+f (x 2)]. (2)g (221x x +)=(221x x +)2+a ·221x x ++b =21(21x +ax 1+b )+21(22x +ax 2+b )-41(x 1-x 2)2 =21[g (x 1)+g (x 2)]-41(x 1-x 2)2, ∵-41(x 1-x 2)2≤0, ∴g (221x x +)≤21[g (x 1)+g (x 2)]. 6.(1)奇函数f (x )在[-b ,-a ]上是减函数;(2)偶函数g (x )在[-b ,-a ]上是减函数.7.若全月纳税所得额为500元,则应交纳税款为500×5%=25(元).此时月工资为800+500=1 300(元);若全月纳税所得额为2000元,则应交纳税款为500×5%+1500×10%=175(元).此时月工资为800+500+1500=2800(元).由于此人交纳税款为26.78元,则此人的工资在区间(1300,2800)内,所以他当月的工资、薪金所得是800+500+1.02578.26-≈1317.8(元).奇、偶函数的性质(1)奇偶函数的定义域关于原点对称;奇函数的图象关于原点对称,偶函数的图象关于y 轴对称.(2)奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立.(3)f (-x )=f (x )⇔f (x )是偶函数,f (-x )=-f (x )⇔f (x )是奇函数.(4)f (-x )=f (x )⇔f (x )-f (-x )=0,f (-x )=-f (x )⇔f (x )+f (-x )=0.(5)两个奇函数的和(差)仍是奇函数,两个偶函数的和(差)仍是偶函数.奇偶性相同的两个函数的积(商、分母不为零)为偶函数,奇偶性相反的两个函数的积(商、分母不为零)为奇函数;如果函数y =f (x )和y =g (x )的奇偶性相同,那么复合函数y =f [g (x )]是偶函数,如果函数y =f (x )和y =g (x )的奇偶性相反,那么复合函数y =f [g (x )]是奇函数,简称为“同偶异奇”.(6)如果函数y =f (x )是奇函数,那么f (x )在区间(a ,b )和(-b ,-a )上具有相同的单调性;如果函数y =f (x )是偶函数,那么f (x )在区间(a ,b )和(-b ,-a )上具有相反的单调性.(7)定义域关于原点对称的任意函数f (x )可以表示成一个奇函数与一个偶函数的和,即f (x )=2)()(2)()(x f x f x f x f -++--.(8)若f (x )是(-a ,a )(a >0)上的奇函数,则f (0)=0;若函数f (x )是偶函数,则f (x )=f (-x )=f (|x |)=f (-|x |).若函数y =f (x )既是奇函数又是偶函数,则有f (x )=0。