投资学课件之最优风险资产组合
- 格式:pptx
- 大小:1.31 MB
- 文档页数:5
第三讲最优风险资产组合投资决策⏹投资决策可以看做为自上而下的过程⏹资本配置:风险资产与无风险资产之间的资本配置⏹资产配置:各类风险资产间的配置⏹证券选择:每类资产内部的证券选择分散化与组合风险⏹市场风险⏹系统性风险或不可分散风险⏹公司特有风险⏹可分散风险或非系统风险组合风险关于股票数量的函数组合分散化:应用纽约证券交易所股票数据协方差和相关性⏹投资组合的风险取决于投资组合中各资产收益率的相关性⏹协方差和相关系数提供了衡量两种资产收益变化的方式两个资产构成的资产组合: 收益与方差⏹组合的收益率⏹组合的期望收益⏹组合的方差p D D E Er w r w r =+()()()p D D E E E r w E r w E r =+222222(,)p D D E ED E D E w w w w Cov r r σσσ=++协方差与相关系数⏹协方差⏹相关系数:可能的值⏹如果ρ= + 1.0,资产间完全正相关⏹如果ρ= -1.0,资产间完全负相关(,)D E DE D E Cov r r ρσσ=1.0 1.0ρ+≥≥-相关系数⏹当ρDE = +1,不受相关性影响⏹当ρDE = -1,可完全对冲1DE DD E w w σσσ==-+p D D E E w w σσσ=+22()σσσ=-p D D E E w w 0σσ-=D D E E w w σσσ=+E D D Ew组合方差的计算组合期望收益关于投资比例的函数组合标准差关于投资比例的函数最小方差组合⏹最小方差组合由具有最小标准差的风险资产组成,这一组合的风险最低⏹当相关系数小于+1时,资产组合的标准差可能小于任何单个组合资产⏹当相关系数是-1时,最小方差组合的标准差是0组合期望收益关于标准差的函数相关效应⏹资产相关性越小,分散化就更有效,组合风险也就越低⏹随着相关系数接近于-1,降低风险的可能性也在增大⏹如果r = +1.0,不会分散任何风险⏹如果r = 0,σP可能低于任何一个资产的标准差⏹如果r = -1.0,可以出现完全对冲的情况债券和股票基金的投资可行集和两条资本配置线夏普比率⏹使资本组合P 的资本配置线的斜率最大化⏹斜率的目标方程是⏹这个斜率就是夏普比率()P f P P E r r S σ-=计算最优风险组合P⏹对于两个风险资产的组合P ,期望收益和标准差为⏹需解以下问题⏹最优风险组合的解()max σ-=iP f P w P E r r S ()()()p D D E E E r w E r w E r =+22221/2(2(,))σσσ=++p D D E E D E D E w w w w Cov r r ..1=∑i s t w 222()()(,)()()(()())(,)σσσ-=+-+D EE D E D D E E D D E D E E R E R Cov R R w E R E R E R E R Cov R R 1=-E Dw w债券和股票基金的投资可行集、最优资本配置线和最优风险资产组合决定最优组合最优组合的成分构造整个组合的步骤⏹确定所有证券的特征(期望收益率、方差、协方差)⏹建立风险资产组合⏹计算最优风险组合P⏹在此基础上计算组合P的期望收益和标准差⏹在风险资产和无风险资产之间配置资金⏹计算投资风险资产组合P的比例⏹计算整个组合中各资产的比例马科维茨资产组合选择模型⏹证券选择(多个风险资产和一个无风险资产的情况)⏹第一步,确定风险资产的最小方差边界⏹第二步,确定无风险资产下的最优风险资产组合⏹第三步,确定最优风险资产组合和无风险资产一定比例的最终组合风险组合组合边界⏹马科维茨资产组合选择模型是组合管理的第一步:确认有效的组合集,即风险资产有效边界⏹任意风险组合的期望收益和方差,都可以通过计算下式得到⏹核心原理:对于任意期望收益率水平,我们只关注风险最低的组合。