用列主元高斯消去法解线性方程Ax
- 格式:doc
- 大小:27.00 KB
- 文档页数:2
课程设计任务书前 言回顾普通解方程组的方法,一般都是先逐个削去未知变量,最终得到只有一个未知变量的方程,解之,把得到的值回代到消去变量过程中得到的方程组,逐个求出未知变量。
这种解线性方程组的基本方法就是这里要介绍的高斯消去法。
数学上,高斯消元法(或译:高斯消去法),是线性代数中的一个算法,可用来为线性方程组求解,求出矩阵的秩,以及求出可逆方阵的逆矩阵。
当用于一个矩阵时,高斯消元法会产生出一个“行梯阵式”。
高斯消元法可以用在电脑中来解决数千条等式及未知数。
高斯消元法可以用来找出一个可逆矩阵的逆矩阵。
用关联矩阵表述网络拓扑结构,并根据厂站拓扑结构和网络拓扑结构等概念简化了电力系统的拓扑结构。
根据广义乘法和广义加法的运算规则,将改进的高斯消元算法应用于电力系统拓扑结构分析中,并引入稀疏、分块处理等技术提高了上述拓扑分析的效率。
采用上述高斯消元算法对山东电网220kV 以上的变电站进行拓扑结构分析,结果表明了运用该高斯消元法进行网络拓扑分析的正确性和有效性。
用列主元素法,选取每列的绝对值最大的元素作为消去对象并作为主元素。
然后换行使之变到主元位子上,在进行消元计算。
设)()(k k b X A ,确定第k 列主元所在位置k i ,在交换k i 行和k 行后,在进行消元,并用MATLAB 软件进行求解。
目录摘要....................................................................................... 错误!未定义书签。
第1章绪论 ......................................................................... 错误!未定义书签。
第2章高斯消元法的算法描述 (2)2.1高斯消元法的原理概述 (2)c231730658" 2.1.1高斯消元法的消元过程 (2)c231730658" 2.1.2高斯消元法的回带过程 (3)c231730658" 2.1.3高斯消元法的复杂度分析 (4)c231730658" 2.2列主高斯消元法原理简介 (5)c231730658" 2.2.1列主高斯消元法的消元过程 (6)c231730658" 2.2.2列主高斯消元法的回带过程 (6)c231730658" 2.2.3列主高斯消元法的算法描述 (6)c231730662"第3章高斯消元法的物理应用 (9)3.1c231730663"电网模型的描述 (9)c231730658" 3.2电网模型的问题分析 (9)c231730658"3.3求解计算 (11)c231730693"参考文献 (13)摘 要用列主元素高斯消去法法,选取每列的绝对值最大的元素作为消去对象并作为主元素。
Lab06.Gauss 列主元素消去法实验【实验目的和要求】1.使学生深入理解并掌握Gauss 消去法和Gauss 列主元素消去法步骤; 2.通过对Gauss 消去法和Gauss 列主元素消去法的程序设计,以提高学生程序设计的能力;3.对具体问题,分别用Gauss 消去法和Gauss 列主元素消去法求解。
通过对结果的分析比较,使学生感受Gauss 列主元素消去法优点。
【实验内容】1.根据Matlab 语言特点,描述Gauss 消去法和Gauss 列主元素消去法步骤。
2.编写用不选主元的直接三角分解法解线性方程组Ax=b 的M 文件。
要求输出Ax=b 中矩阵A 及向量b ,A=LU 分解的L 与U ,det A 及解向量x 。
3.编写用Gauss 列主元素消去法解线性方程组Ax=b 的M 文件。
要求输出Ax=b 中矩阵A 及向量b 、PA=LU 分解的L 与U 、det A 及解向量x ,交换顺序。
4.给定方程组(1) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--11134.981.4987.023.116.427.199.103.601.3321x x x(2) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----15900001.582012151********.23107104321x x x x 先用编写的程序计算,再将(1)中的系数3.01改为3.00,0.987改为0.990;将(2)中的系数2.099999改为2.1,5.900001改为9.5,再用Gauss 列主元素消去法解,并将两次计算的结果进行比较。
【实验仪器与软件】1.CPU 主频在1GHz 以上,内存在128Mb 以上的PC ;2.Matlab 6.0及以上版本。
实验讲评:实验成绩:评阅教师:200 年 月 日Lab06.Gauss 列主元素消去法实验第一题:1、算法描述:Ⅰ、Gauss 消去法由书上定理5可知 设Ax=b ,其中A ∈R^(n(1)如果()0(1,2,....,1)k kka k n ≠=-,则可通过高斯消去法将Ax=b 约化为等价的 角形线性方程组,且计算公式为:① 消元计算(k=1,2,….,n-1)()()(1)()()(1)()()/,1,...,,,,1,...,,,1,...,.k k ik ik kk k k k ij ij ik kj k k k iiik k m a a i k n a a m a i j k n b b m b i k n ++==+=-=+=-=+② 回带公式()()()()()1/,()/,1,...,2,1.n n n n nn ni i i i iii j ii j i x b a x ba x a i n =+==-=-∑(2)如果A 为非奇异矩阵,则可通过高斯消去法将方程组Ax=b 约化方程组为上三角矩阵以上消元和回代过程总的乘除法次数为332333nn nn +-≈,加减法次数为32353263nnn n+-≈以上过程就叫高斯消去法。
实验名称:列主元消去法解方程组1 引言我们知道,高斯消去法是一个古老的解线性方程组的方法。
而在用高斯消去法解Ax=b时,其中设A为非奇异矩阵,可能出现的情况,这时必须进行带行交换的高斯消去法。
但在实际计算中即使但其绝对值很小时,用作除数,会导致中间结果矩阵元素数量级严重增长和舍入误差的扩散,使得最后的结果不可靠。
因此,小主元可能导致计算的失败,我们应该避免采用绝对值很小的主元素。
为此,我们在高斯消去法的每一步应该在系数矩阵或消元后的低阶矩阵中选取绝对值最大的元素作为主元素,保持乘数,以便减少计算过程中舍入误差对计算解的影响。
一种方式是完全主元消去法,这种消去法是在每次选主元时,选择为主元素。
这种方法是解低阶稠密矩阵方程组的有效方法,但这种方法在选取主元时要花费一定的计算机时间。
实际计算中我们常采用部分选主元的的消去法。
列主元消去法即在每次选主元时,仅依次按列选取绝对值最大的元素作为主元素,且仅交换两行,再进行消元计算。
2 实验目的和要求运用matlab编写一个.m文件,要求用列主元消去法求解方程组(实现PA=LU):要求输出以下内容:(1)计算解x;(2) L,U;(3)整形数组IP(i)(i=1,2,…,n-1)(记录主行信息)3 算法原理与流程图(1)算法原理设有线性方程组Ax=b,其中设A为非奇异矩阵。
方程组的增广矩阵为第1步(k=1):首先在A的第一列中选取绝对值最大的元素,作为第一步的主元素:,然后交换(A,b)的第1行与第i1行元素,再进行消元计算。
设列主元素消去法已经完成第1步到第k-1步的按列选主元,交换两行,消元计算得到与原方程组等价的方程组第k步计算如下:对于k=1,2,…,n-1(1)按列选主元:即确定ik使(2)如果,则A为非奇异矩阵,停止计算。
(3)如果ik≠k,则交换[A,b]第ik行与第k行元素。
(4)消元计算消元乘数满足:(5)回代求解计算解在常数项b(n)内得到。
高斯列主元消去法2.3高斯列主元消去法解线性方程组一:问题的提出我们都知道,高斯列主元素消去法是计算机上常用来求解线性方程组的一种直接的方法。
就是在不考虑舍入误差的情况下,经过有限步的四则运算可以得到线性方程组的准确解的一类方法。
实际运算的时候因为只能有限小数去计算,因此只能得到近似值。
在实际运算的时候,我们很多时候也常用高斯消去法。
但是高斯消去法在计算机中运算的时候常会碰到两个问题。
1.一旦遇到一些主元等于0,消元过程便无法进行下去。
2.在长期使用中还发现,即使消元过程能进行下去,但是当一些主元的绝对值很小时,求解出的结果与真实结果相差甚远。
为了避免高斯消去法消元过程中出现的上述两个问题,一般采用所谓的选择主元法。
其中又可以分为列选主元和全面选主元两种方法。
目前计算机上常用的按列选主元的方法。
因此我在这里做的也是列选主元高斯消去法。
二、算法的基本思想大家知道,如果一个线性方程组的系数矩阵是上三角矩阵时,即这种方程组我们称之为上三角方程组,它是很容易求解的。
我们只要把方程组的最下面的一个方程求解出来,在把求得的解带入倒数第二个方程,求出第二个解,依次往上回代求解。
然而,现实中大多数线性方程组都不是上面所说的上三角方程组,所以我们有可以把不是上三角的方程通过一定的算法化成上三角方程组,由此我们可以很方便地求出方程组的解。
高斯消元法的目的就是把一般线性方程组简化成上三角方程组。
于是高斯消元法的基本思想是:通过逐次消元将所给的线性方程组化为上三角形方程组,继而通过回代过程求解线性方程组。
三、算法的描述1、设有n元线性方程组如下:=2、第一步:如果a11!=0,令li1= ai1/a11, I= 2,3,……,n用(-li1)乘第一个方程加到第i个方程上,得同解方程组:a(1)11a(1)12...a(1)1nx1b(1)1a(1)21a(1)22...a(1)2nx2b(1)2 .......=.a(1)n-11 a(1)n-12 . .a(1)n-1nxn-1b(1)n-1a(1)n1a(1)n2. . . a(1)nnxnb(1)n简记为:A(2)x=b(2)其中a(2)ij = a(1)ij – li1 a(1)1j ,I ,j = 2,3,..,nb(2)I = b(1)I – li1 b(1)1 ,I = 2,3,...,n第二步:如果a(2)22!=0,令li2= a(2)i2/a(2)22, I= 3,……,n依据同样的原理,对矩阵进行化间(省略),依次下去,直到完成!最后,得到上三角方程组:a(1)11a(1)12...a(1)1nx1b(1)1a(1)22 ...a(1)2nx2b(1)2 .......=.. .a(n-1)n-1nxn-1b(n-1)n-1. . . a(n)nnxnb(n)n简记为:A(n)x=b(n)最后从方程组的最后一个方程进行回代求解为:n = b(n) / a(n)nni = ( b(k)k - a(k)kjxj ) / a(k)kk以上为高斯消去法的基本过程。
计算方法实验报告1课题名称用列主元高斯消去法和列主元三角分解法解线性方程目的和意义高斯消去法是一个古老的求解线性方程组的方法,但由它改进得到的选主元的高斯消去法则是目前计算机上常用的解低阶稠密矩阵方程组的有效方法;用高斯消去法解线性方程组的基本思想时用矩阵行的初等变换将系数矩阵A 约化为具有简单形式的矩阵上三角矩阵、单位矩阵等,而三角形方程组则可以直接回带求解 用高斯消去法解线性方程组b Ax =其中A ∈Rn ×n 的计算量为:乘除法运算步骤为32(1)(1)(21)(1)(1)262233n n n n n n n n n n nMD n ----+=+++=+-,加减运算步骤为(1)(21)(1)(1)(1)(25)6226n n n n n n n n n n AS -----+=++=;相比之下,传统的克莱姆法则则较为繁琐,如求解20阶线性方程组,克莱姆法则大约要19510⨯次乘法,而用高斯消去法只需要3060次乘除法;在高斯消去法运算的过程中,如果出现absAi,i 等于零或过小的情况,则会导致矩阵元素数量级严重增长和舍入误差的扩散,使得最后的计算结果不可靠,所以目前计算机上常用的解低阶稠密矩阵方程的快速有效的方法时列主元高斯消去法,从而使计算结果更加精确; 2、列主元三角分解法高斯消去法的消去过程,实质上是将A 分解为两个三角矩阵的乘积A=LU,并求解Ly=b 的过程;回带过程就是求解上三角方程组Ux=y;所以在实际的运算中,矩阵L 和U 可以直接计算出,而不需要任何中间步骤,从而在计算过程中将高斯消去法的步骤进行了进一步的简略,大大提高了运算速度,这就是三角分解法采用选主元的方式与列主元高斯消去法一样,也是为了避免除数过小,从而保证了计算的精确度计算公式1、 列主元高斯消去法设有线性方程组Ax=b,其中设A 为非奇异矩阵;方程组的增广矩阵为第1步k=1:首先在A 的第一列中选取绝对值最大的元素1l a ,作为第一步的主元素:111211212222112[,]n n n l n nn n a a a a b a a a b a a a b ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦a b然后交换A,b 的第1行与第l 行元素,再进行消元计算;设列主元素消去法已经完成第1步到第k -1步的按列选主元,交换两行,消元计算得到与原方程组等价的方程组 Akx=bk第k 步计算如下:对于k=1,2,…,n -11按列选主元:即确定t 使 2如果t ≠k,则交换A,b 第t 行与第k 行元素; 3消元计算消元乘数mik 满足:4回代求解2、 列主元三角分解法 对方程组的增广矩阵 经过k -1步分解后,可变成如下形式:111max 0l i i n a a ≤≤=≠(1)(1)(1)(1)(1)1112111(2)(2)(2)(2)22222()(()1)()()()()()1,1()(,)()[,][,] k k k k nk k nk n k k k k k kk kn k k k k n k k k n nn a a a a b a a a b a a b a b b a a a +++⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A b A b ()()max 0k k tk ik k i na a ≤≤=≠,(1,,)ik ik ik kka a m i k n a ←=-=+, (,1,,), (1,,)ij ij ik kji i ik k a a m a i j k n b b m b i k n ←+=+⎧⎨←+=+⎩⎪⎪⎩⎪⎪⎨⎧--=-←←∑+=)1,,2,1(,)(1n n i a x a b x a b x ii n i j j ij i i nnn n [,]A A b =11121,11111222,122221,11,1,1,211,11,2121,112,112,1k k k k k k k j n k k j n k k k i i i k n n kk kj kn k ik ij in i nknjk k k j k n n nnk k n a a a b A a u u u u u u y l l l l l l ll l l l u u u u u y u u u u y a a b a a b l a -------------⎡→⎣⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎦第k 步分解,为了避免用绝对值很小的数kku 作除数,引进量1111 (,1,,;1,2,,) ()/ (1,2,,;1,2,,)k kj kj km mj m k ik ik im mk kkm u a l u j k k n k n l a l u u i k k n k n -=-=⎧=-=+=⎪⎪⎨⎪=-=++=⎪⎩∑∑11(,1,,)k i ik im mk m s a l u i k k n -==-=+∑,于是有kk u =ks ;如果 ,则将矩阵的第t 行与第k 行元素互换,将i,j 位置的新元素仍记为jjl 或jja ,然后再做第k 步分解,这时列主元高斯消去法程序流程图max t ik i n s s ≤≤= ()/ 1,2,,)1 (1,2,,),kk k k t iki k ik u s s s l s s i k k n l i k k n ===++≤=++即交换前的,(且列主元高斯消去法Matlab主程序function x=gauss1A,b,c %列主元法高斯消去法解线性方程Ax=bif lengthA~=lengthb %判断输入的方程组是否有误disp'输入方程有误'return;enddisp'原方程为AX=b:' %显示方程组Abdisp'------------------------'n=lengthA;for k=1:n-1 %找列主元p,q=maxabsAk:n,k; %找出第k列中的最大值,其下标为p,qq=q+k-1; %q在Ak:n,k中的行号转换为在A中的行号if absp<cdisp'列元素太小,detA≈0';break;elseif q>ktemp1=Ak,:; %列主元所在行不是当前行,将当前行与列主Ak,:=Aq,:; 元所在行交换包括bAq,:=temp1;temp2=bk,:;bk,:=bq,:;bq,:=temp2;end%消元for i=k+1:nmi,k=Ai,k/Ak,k; %Ak,k将Ai,k消为0所乘系数Ai,k:n=Ai,k:n-mi,kAk,k:n; %第i行消元处理bi=bi-mi,kbk; %b消元处理endenddisp'消元后所得到的上三角阵是'A %显示消元后的系数矩阵bn=bn/An,n; %回代求解for i=n-1:-1:1bi=bi-sumAi,i+1:nbi+1:n/Ai,i;endclear x;disp'AX=b的解x是' x=b;调用函数解题列主元三角分解法程序流程图列主元三角分解法Matlab主程序①自己编的程序:function x=PLUA,b,eps %定义函数列主元三角分解法函数if lengthA~=lengthb %判断输入的方程组是否有误disp'输入方程有误'return;enddisp'原方程为AX=b:' %显示方程组Abdisp'------------------------'n=lengthA;A=A b; %将A与b合并,得到增广矩阵for r=1:nif r==1for i=1:nc d=maxabsA:,1; %选取最大列向量,并做行交换if c<=eps %最大值小于e,主元太小,程序结束break;elseendd=d+1-1;p=A1,:;A1,:=Ad,:;Ad,:=p;A1,i=A1,i;endA1,2:n=A1,2:n;A2:n,1=A2:n,1/A1,1; %求u1,ielseur,r=Ar,r-Ar,1:r-1A1:r-1,r; %按照方程求取ur,iif absur,r<=eps %如果ur,r小于e,则交换行p=Ar,:;Ar,:=Ar+1,:;Ar+1,:=p;elseendfor i=r:nAr,i=Ar,i-Ar,1:r-1A1:r-1,i; %根据公式求解,并把结果存在矩阵A中endfor i=r+1:nAi,r=Ai,r-Ai,1:r-1A1:r-1,r/Ar,r; %根据公式求解,并把结果存在矩阵A中endendendy1=A1,n+1;for i=2:nh=0;for k=1:i-1h=h+Ai,kyk;endyi=Ai,n+1-h; %根据公式求解yiendxn=yn/An,n;for i=n-1:-1:1h=0;for k=i+1:nh=h+Ai,kxk;endxi=yi-h/Ai,i; %根据公式求解xiendAdisp'AX=b的解x是'x=x'; %输出方程的解②可直接得到P,L,U并解出方程解的的程序查阅资料得子函数PLU1,其作用是将矩阵A分解成L乘以U的形式;PLU2为调用PLU1解题的程序,是自己编的Ⅰ.function l,u,p=PLU1A %定义子函数,其功能为列主元三角分解系数矩阵A m,n=sizeA; %判断系数矩阵是否为方阵if m~=nerror'矩阵不是方阵'returnendif detA==0 %判断系数矩阵能否被三角分解error'矩阵不能被三角分解'endu=A;p=eyem;l=eyem; %将系数矩阵三角分解,分别求出P,L,Ufor i=1:mfor j=i:mtj=uj,i;for k=1:i-1tj=tj-uj,kuk,i;endenda=i;b=absti;for j=i+1:mif b<abstjb=abstj;a=j;endendif a~=ifor j=1:mc=ui,j;ui,j=ua,j;ua,j=c;endfor j=1:mc=pi,j;pi,j=pa,j;pa,j=c;endc=ta;ta=ti;ti=c;endui,i=ti;for j=i+1:muj,i=tj/ti;endfor j=i+1:mfor k=1:i-1ui,j=ui,j-ui,kuk,j;endendendl=trilu,-1+eyem;u=triuu,0Ⅱ.function x=PLU2A,b %定义列主元三角分解法的函数l,u,p=PLU1A %调用PLU分解系数矩阵A m=lengthA; %由于A左乘p,故b也要左乘p v=b;for q=1:mbq=sumpq,1:mv1:m,1;endb1=b1 %求解方程Ly=b for i=2:1:mbi=bi-sumli,1:i-1b1:i-1;endbm=bm/um,m; %求解方程Ux=y for i=m-1:-1:1bi=bi-sumui,i+1:mbi+1:m/ui,i;endclear x;disp'AX=b的解x是' x=b;调用函数解题①②编程疑难这是第一次用matlab编程,对matlab的语句还不是非常熟悉,因此在编程过程中,出现了许多错误提示;并且此次编程的两种方法对矩阵的运算也比较复杂;问题主要集中在循环控制中,循环次数多了一次或者缺少了一次,导致数据错误,一些基本的编程语句在语法上也会由于生疏而产生许多问题,但是语句的错误由于系统会提示,比较容易进行修改,数据计算过程中的一些逻辑错误,比如循环变量的控制,这些系统不会提示错误,需要我们细心去发现错误,不断修正,调试;。
数值分析-牛顿迭代法实验报告一、实验内容和要求用列主元高斯消去法解线性方程组Ax=b方程1:=;方程2:=;二、算法说明设Ax=b。
本算法用A的具有行交换的列祖元素消去法,校园结果冲掉A,乘数冲掉,计算解x冲掉常数项b,行列式存放在det中。
1.det←12.对于k=1,2,…,n-1(1)按列选主元=,(2)如果,=0,则计算停止(det(A)=0)(3)如果,=k,则转(4)(j=k,k+1,……,n)换行:,←-det(4)消元计算对于i=k+1,……,ni.←/ii.对于i=k+1,……,n←*iii.←-(5)det←*det3.如果,则计算停止(det(A)=0)4.回带求解(1)/(2)对于i=n-1,…,2,1←()/5.det←*det三、源程序#include <stdio.h>#include<conio.h>#include <math.h>#define max_dimension 20 //定义最大阶数为20 int n;static float a[max_dimension][max_dimension]; static float b[max_dimension];static float x[max_dimension];void main() {int I,j,d,row;float temp;float known_items;float l[max_dimension][max_dimension];printf("请输入方程的阶数:"); //输入矩阵阶数scanf("%d",&n);printf("\n");for (i=0; i<n; i++){printf("请输入第%d 的系数:",i+1); //矩阵输入for (j=0; j<n; j++){scanf("%f",&a[i][j]);}printf("\n");}printf("请输入常数项: "); //常数输入for (i=0; i<n; i++)scanf("%f",&b[i]);for (i=0; i<n; i++) //计算增广矩阵{for (j=0; j<n; j++);} for (d=0; d<n-1; d++){ row=d;for (i=d+1; i<n; i++) //查找最大元素所在行{if (fabs(a[i][d])>fabs(a[row][d]))row=i;}if (row!=d){for (j=d; j<n; j++){temp=a[row][j];a[row][j]=a[d][j];a[d][j]=temp;}temp=b[row];b[row]=b[d];b[d]=temp;}for (i=d+1; i<n; i++){l[i][d]=-a[i][d]/a[d][d];for (j=d; j<n; j++){a[i][j]=a[i][j]+a[d][j]*l[i][d];}b[i]=b[i]+b[d]*l[i][d];}}for (i=0; i<n; i++) //计算上三角矩阵{for (j=0; j<n; j++);}printf("\n");for (i=n-1; i>-1; i--){known_items=0;for (j=1; j<n-i; j++){known_items=known_items+a[i][i+j]*x[i+j]; }x[i]=(b[i]-known_items)/a[i][i];} printf("X的值分别为:\n");for (i=0; i<n; i++)printf("%.5f ",x[i]);//输出x的值printf("\n");getch();}四、实验结果方程1:=1592.22119=-631.76123=-493.50037方程2:=119.52600=-47.14207=-36.83984五、说明与分析在高斯消去法运算的过程中,如果出现(A(i,i))的绝对值等于零或过小的情况,则会导致矩阵元素数量级严重增长和舍入误差的扩散,使得最后的计算结果不可靠,所以需先对矩阵进行变换在计算。
解线性方程组的方法线性方程组是数学中常见的一类方程组,它由一组线性方程组成,常用形式为:a₁₁x₁ + a₁₂x₂ + … + a₁ₙxₙ = b₁a₂₁x₁ + a₂₂x₂ + … + a₂ₙxₙ = b₂⋮aₙ₁x₁ + aₙ₂x₂ + … + aₙₙxₙ = bₙ其中,a₁₁, a₁₂, …, a₁ₙ, a₂₁, a₂₂, …, aₙₙ为已知系数,b₁,b₂, …, bₙ为已知常数,x₁, x₂, …, xₙ为未知数。
解线性方程组的方法有多种,下面将详细介绍其中的几种常用方法。
1. 列主元高斯消元法列主元高斯消元法是一种经典的解线性方程组的方法。
它的基本思想是通过消元将线性方程组转化为三角形式,然后逐步回代求解未知数。
具体步骤如下:(1)将系数矩阵按列选择主元,即选取每一列中绝对值最大的元素作为主元;(2)对系数矩阵进行初等行变换,使主元所在列下方的元素全部变为零;(3)重复上述步骤,直到将系数矩阵化为上三角矩阵;(4)从最后一行开始,逐步回代求解未知数。
2. Cramer法则Cramer法则是一种基于行列式的解线性方程组的方法。
它利用克拉默法则,通过求解线性方程组的系数矩阵的行列式和各个未知数对应的代数余子式的乘积,进而得到方程组的解。
具体步骤如下:(1)计算线性方程组的系数矩阵的行列式,若行列式为零,则方程组无解,否则进行下一步;(2)分别将每个未知数对应的列替换为常数向量,并计算替换后的系数矩阵的行列式;(3)将第二步计算得到的行列式除以第一步计算得到的行列式,得到各个未知数的解。
需要注意的是,Cramer法则只适用于系数矩阵为非奇异矩阵的情况。
3. 矩阵求逆法矩阵求逆法是一种利用矩阵求逆运算解线性方程组的方法。
它将线性方程组转化为矩阵形式,通过求解系数矩阵的逆矩阵,然后与常数向量相乘得到未知数向量。
具体步骤如下:(1)将线性方程组的系数矩阵记为A,常数向量记为b,未知数向量记为x;(2)判断A是否可逆,若A可逆,则进行下一步,否则方程组无解;(3)求解系数矩阵的逆矩阵A⁻¹;(4)计算未知数向量x = A⁻¹b。
用高斯消元法和列主元消去法求解线性代数方程组(X*是方程组的精确解)1 高斯消去法1.1 基本思想及计算过程高斯(Gauss )消去法是解线性方程组最常用的方法之一,它的基本思想是通过逐步消元,把方程组化为系数矩阵为三角形矩阵的同解方程组,然后用回代法解此三角形方程组得原方程组的解。
为便于叙述,先以一个三阶线性方程组为例来说明高斯消去法的基本思想。
⎪⎩⎪⎨⎧=++II =++I =++III)(323034)(5253)(6432321321321x x x x x x x x x 把方程(I )乘(23-)后加到方程(II )上去,把方程(I )乘(24-)后加到方程(III )上去,即可消去方程(II )、(III )中的x 1,得同解方程组⎪⎩⎪⎨⎧=+-II -=-I =++III)(20223)(445.0)(64323232321x x x x x x x将方程(II )乘(5.03)后加于方程(III ),得同解方程组: ⎪⎩⎪⎨⎧-=-II -=-I =++III)(42)(445.0)(6432332321x x x x x x由回代公式(3.5)得x 3 = 2,x 2 = 8,x 1 = -13。
下面考察一般形式的线性方程组的解法,为叙述问题方便,将b i 写成a i , n +1,i = 1, 2,…,n 。
⎪⎪⎩⎪⎪⎨⎧=++++=++++=+++++++1,3322111,223232221211,11313212111n n n nn n n n n n n n n n a x a x a x a x a a x a x a x a x a a x a x a x a x a(1-1)如果a 11 ≠ 0,将第一个方程中x 1的系数化为1,得)1(1,1)1(12)1(121+=+++n n n a x a x a x其中)0(11)0()1(1aa aijj=, j = 1, …, n + 1(记ij ij a a =)0(,i = 1, 2, …, n ; j = 1, 2, …, n + 1)从其它n –1个方程中消x 1,使它变成如下形式⎪⎪⎩⎪⎪⎨⎧=++=++=++++++)1(1,)1(2)1(2)1(1,2)1(22)1(22)1(1,1)1(12)1(121n n n nn n n n n n n n a x a x a a x a x a a x a x a x(1-2)其中n i a m a aij i ij ij ,,2)1(1)1( =⋅-=,1,,3,211)1(11+==n j a a m i i由方程(1-1)到(1-2)的过程中,元素11a 起着重要的作用,特别地,把11a 称为主元素。
数值试验报告分析一、实验名称:解线性方程组的列主元素高斯消去法和LU 分解法二、实验目的及要求:通过数值实验,从中体会解线性方程组选主元的必要性和LU分解法的优点,以及方程组系数矩阵和右端向量的微小变化对解向量的影响。
三、算法描述:本次试验采用的是高斯列主元消去法和LU分解法求解线性方程组的解。
其中,高斯消去法的基本思想是避免接近于零的数作分母;能进行到底的条件: 当A可逆时,列主元Gauss(高斯)消去法一定能进行到底。
优点: 具有很好的数值稳定性;具有与顺序Gauss 消去法相同的计算量。
列主元Gauss(高斯)消去法的精度显著高于顺序Gauss(高斯)消去法。
注意:省去换列的步骤,每次仅选一列中最大的元。
矩阵的三角分解法是A=LU,L 是下三角阵,U是上三角阵,Doolittle 分解:L 是单位下三角阵,U是上三角阵;Crout 分解:L 是下三角阵,U是单位上三角阵。
矩阵三角分解的条件是矩阵 A 有唯一的Doolittle 分解的充要条件是 A 的前n-1 顺序主子式非零;矩阵A有唯一的Crout 分解的充要条件是 A 的前n-1 顺序主子式非零。
三角分解的实现是通过(1)Doolittle 分解的实现;(2)Doolittle 分解的缺点:条件苛刻,且不具有数值稳定性。
(3)用Doolittle 分解求解方程组: AX=b LUX=b LY=bA=LU UX=Y ;四、实验内容:解下列两个线性方程组3.01 6.03 1.99 x1 11) 1.27 4.16 1.23 x2 10.987 4.81 9.34 x3 110 7 0 1 x1 83 2.099999 6 2 x2 5.9000012) 5 1 5 1x3 52 1 0 2 x4 1a、用你熟悉的算法语言编写程序用列主元高斯消去法和LU分解求解上述两个方程组,输出Ax=b 中矩阵 A 及向量b, A=LU 分解的L 及U,detA 及解向量x.b、将方程组(1)中系数 3.01 改为 3.00 ,0.987 改为0.990 ,用列主元高斯消去法求解变换后的方程组,输出列主元行交换次序,解向量x 及detA ,并与(1)中结果比较。